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ABSTRACT
High data quality is paramount for the success of machine learn-
ing (ML) applications, as it broadly impacts model performance
and decision outcomes. In domains like medical diagnosis and
financial systems, inaccuracies or data incompleteness can result
in unreliable predictions, posing risks to system users. Unfortu-
nately, real-world data commonly exhibits noise, errors, missing
values, and inconsistencies, posing challenges to ML model accu-
racy. Data cleaning plays a vital role in addressing these issues
before model training, yet identifying dirty data instances can be
a cumbersome and time-consuming process.

In this context, numerous automated error detection tools for
tabular data have been introduced. Nevertheless, these tools suf-
fer from several shortcomings, encompassing the necessity for
domain-specific expertise and substantial time requirements. To
address these shortcomings, we introduce a novel error detection
tool, denoted as SAGED12, which leverage meta-learning prin-
ciples. Specifically, SAGED exploits an ensemble of pre-trained
models derived from historical datasets to facilitate error detec-
tion in new data with limited labeled instances. The method con-
sists of two key phases: knowledge extraction and error detection.
In the knowledge extraction phase, ML models are trained to dis-
tinguish erroneous instances within historical datasets, thereby
accumulating valuable insights. In the error detection phase, pre-
trained base models, chosen through rigorous matching, generate
a comprehensive feature vector based on predictions, facilitating
the role of a meta-classifier in pinpointing errors efficiently. As
a proof of concept, we conduct a comparative study of SAGED
against ten state-of-the-art error detection tools, employing a
set of 14 real-world datasets. The findings reveal the superior
performance of SAGED in error detection tasks, with limited
user intervention. SAGED’s promising results demonstrate its
effectiveness and efficiency in real-world scenarios.

1 INTRODUCTION
Data Quality Problems: In today’s data-driven world, enter-
prises and organizations across various industries broadly rely on
data to drive business growth and gain a competitive edge. Data-
intensive industries, e.g., banking, insurance, retail, and telecoms,
typically collect diverse types of data, including sensory read-
ings, financial records, and medical reports, to automate business
tasks, facilitate better decision-making, understand performance,
1The source code of SAGED, along with the baseline methods, is available at https:
//github.com/mohamedyd/SAGED
2SAGED is an abbreviation for Software AG Error Detection
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and satisfy customer requirements [35]. To reap these benefits,
businesses leverage analytics and business intelligence tools to
extract hidden patterns or effectively predict trends and future
events. However, the conclusions drawn from these tools can be
misleading when the collected data contains error profiles. Real-
world data often contain heterogeneous error profiles that may
emerge during data collection or transfer. Some common data
quality problems include missing values, duplicates, numerical
outliers, inconsistencies, and violation of business and integrity
rules (cf. Figure 1). Consequently, ensuring the accuracy and reli-
ability of the collected data becomes an essential prerequisite for
effective data-driven applications.

Assets

Name Age Gender Education Phone Salary

Bob Johnson 35 PhD 555-123-4567 80000

Carol Brown 42 F Master 555-234-5678 60000

DaveGreen 55 M Bachelor 555/345/6789 64000

Emily White 28 F Master 555-456-7890 70000

Frank Harris 38 M PhD 555-567-8901 13000

R1

R2

R3

R4

R5

A1 A2 A3 A4 A5 A6

Figure 1: Example of a dirty dataset which exhibits various
types of errors, including a typo (R3, A1), a missing value
(R1, A3), an improper formatting (R3, A5), and a numerical
outlier (R5, A6).

Challenges: In general, data cleaning tasks involve identi-
fying and correcting errors, handling missing values, removing
duplicates, and resolving inconsistencies. Performing such tasks
manually can be laborious and time-consuming, especially for
large datasets. Hence, numerous commercial and academic tools
have been developed recently to facilitate (semi)-automated de-
tection and repair of data errors. Examples of such tools include,
RAHA [24], OpenRefine and Trifacta [30], and AutoCure [2].
These tools primarily aim to streamline the data cleaning pro-
cess, offering time and effort savings while enhancing data qual-
ity. However, despite their advantages, these tools still exhibit
some limitations. First, the ML-agnostic tools, e.g., NADEEF [10]
and HoloClean [32], typically require users to provide clean-
ing signals, such as functional dependencies rules and integrity
constraints, which can be a cumbersome task. Second, the semi-
supervised tools, e.g., ED2 [28] and HoloDetect [18], often neces-
sitate extensive execution time and numerous user labels to iden-
tify erroneous data instances, leading to poor scalability, which
can be a significant drawback while working with large volumes
of data or time-sensitive tasks. Third, existing data cleaning tools
are mostly context-blind, meaning they overlook context infor-
mation and historical knowledge that could help make better
cleaning decisions [13].
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ProposedMethod: To address these challenges, we introduce
a novel solution called SAGED, which is a meta-learning-based
error detection tool specifically designed for tabular data. In gen-
eral, meta-learning exploits pre-trained models that have been
learned in prior tasks to facilitate the learning of new tasks or do-
mains with limited labeled data. Pillared on this concept, SAGED
has been designed to harness the insights derived from a set of
pre-cleansed historical data. By capitalizing on this reservoir of
knowledge, we can significantly reduce the execution time with-
out compromising the accuracy of error detection. It is crucial to
acknowledge that our approach is fundamentally motivated by
the ubiquitous presence of historically cleaned data exhibiting
comparable error profiles in a wide array of real-world appli-
cations. By tapping into this rich resource, SAGED leverages
the inherent similarities within these datasets to enhance its
detection capabilities. This enables our tool to efficiently and
effectively pinpoint errors, even in complex and multifaceted tab-
ular data structures commonly encountered in practical scenarios.
It is crucial to mention that SAGED’s operation is independent
of the domain congruity between the historical and input dirty
datasets. As shown in Section 5, SAGED effectively functions
with as few as two historical datasets.

In practice, SAGED consists of two sequential phases, namely
the knowledge extraction phase and the detection phase. The
knowledge extraction phase aims to train a series of ML mod-
els (i.e., one binary classifier for each column) to differentiate
between erroneous and clean instances within the historical
datasets. The detection phase begins by selecting a set of these
pre-trained models, which are chosen through a rigorous match-
ing process that aligns the characteristics of the dirty dataset
with those of the historical datasets. This matching ensures that
the selected pre-trained models possess relevant knowledge to
address the specific errors in the input dirty dataset. Once the
appropriate models have been selected, SAGED utilizes them
to generate high-level feature vectors. Specifically, the feature
vectors are the predictions generated by the selected base pre-
trained models. These predictions encapsulate valuable insights
and patterns learned from the historical datasets, representing
an abstract representation of the knowledge extracted from the
base pre-trained models. The feature vectors are then utilized to
train meta-classifiers to precisely detect errors in each column of
the input dirty dataset.

Summary of Contributions: The paper provides the fol-
lowing contributions: (1) We introduce a novel two-stage archi-
tectural framework to detect heterogeneous errors in tabular
data. This framework encompasses a comprehensive approach
that combines the power of meta-learning and semi-supervised
learning techniques. By leveraging this combined approach, our
framework achieves significant improvements in both the ef-
fectiveness and efficiency of error detection, together with en-
hancing SAGED’s ability to handle diverse and complex error
patterns present in tabular data. (2) SAGED implements several
advanced strategies which collectively contribute to the accuracy
and efficiency of error detection. These strategies encompass var-
ious stages, including dataset matching to ensure that the most
relevant and informative insights are leveraged during the error
detection process, tuples selection for labeling which enhances the
utilization of limited labeling resources, and label augmentation
which increases the labeled tuples to further improve the meta
classifiers. (3) We conduct extensive experiments to evaluate
SAGED in comparison to a wide collection of baseline detection

tools. The evaluation encompasses several metrics, including de-
tection accuracy, efficiency, and the impact of error detection on
downstream ML models. The results consistently demonstrate
that SAGED significantly reduces detection time while achieving
state-of-the-art accuracy. Notably, SAGED exhibits superior per-
formance compared to baseline tools in terms of both accuracy
and efficiency. This evaluation provides empirical evidence of
the effectiveness and practicality of SAGED. To the best of our
knowledge, SAGED is the first error detection tool that combines
meta-learning and semi-supervised learning for error detection
in structured data.

2 SYSTEM OVERVIEW
Before delving into the architecture of SAGED, we first define
the structure of tabular data and dirty instances. Let’s denote a
tabular dataset as 𝐷 , which consists of 𝑁 tuples and𝑀 columns.
Each tuple, indexed by 𝑖 ∈ 1, 2, . . . , 𝑁 , represents an instance
or observation, while each column, indexed by 𝑗 ∈ 1, 2, . . . , 𝑀 ,
corresponds to a specific attribute or feature. The value in the
cell located at the intersection of the 𝑖-th tuple and 𝑗-th column
is denoted as 𝑑𝑖 𝑗 , where 𝑑𝑖 𝑗 represents the observed data point.
In this context, a dirty cell refers to a specific cell, denoted as
𝑑
dirty
𝑖 𝑗

, within a tabular dataset 𝐷 that deviates from expected
data quality standards or exhibits anomalies.

To illustrate the process and capabilities of SAGED, we will
walk through a detailed running example. This example utilizes a
fictional dataset of employee records to demonstrate how SAGED
detects errors in real-world scenarios. Figure 1 depicts an exam-
ple of historical HR datasets collected from 2018 to 2022, con-
taining records with various known errors. For instance, if cell
𝑑𝑖 𝑗 is undefined, i.e., represented as ∅ or NULL, it indicates the
absence or lack of recorded information, e.g., the cell (R1, A3)
in Figure 1. Alternatively, a cell is considered an outlier if its
value significantly deviates from the expected range or statisti-
cal distribution of the corresponding column, e.g., the cell (R5,
A6). Another error type is inconsistency which arises when 𝑑𝑖 𝑗
conflicts with predefined data constraints, violating data type
conventions, logical dependencies, or domain-specific rules, e.g.,
the cell (R3, A5). Finally, cells containing errors due to data entry
mistakes, computational errors, sensor inaccuracies, or trans-
mission glitches are also classified as erroneous, e.g., the cell
(R3, A1). In the running example, data engineers may manually
examine data or employ dataset-specific scripts to detect and
correct errors in historical datasets. However, they found this
process to be labor-intensive due to the challenges outlined in
Section 1. Herein, they decided to exploit SAGED that leverages
prior efforts and offers a dataset-agnostic automated solution for
identifying errors 𝐻dirty = {(𝑖, 𝑗) | 𝑑dirty

𝑖 𝑗
∈ 𝐷} in new or similar

datasets, e.g., HR data gathered after 2022.
Figure 2 demonstrates the architecture of SAGED, which com-

prises two sequential phases: an offline knowledge extraction
phase and an online detection phase. In the knowledge extraction
phase, a set of pre-cleansed datasets Dhist = {𝐷1, 𝐷2, . . . , 𝐷𝑊 }
are used as input for the automatic featurization module. Within
each historical dataset, every column 𝐶𝑘 𝑗 ∈ 𝐷𝑘 is accompanied
by a set of labels denoted as 𝐿𝐶𝑘 𝑗

= 𝑙1, 𝑙2, . . . , 𝑙𝑁 . These labels
indicate whether a particular cell 𝑑𝑖 𝑗 ∈ 𝐶𝑘 𝑗 is classified as dirty
or clean, and they are derived from a prior cleaning process. The
primary objective of this module is to generate a feature vec-
tor 𝐹𝐶𝑘 𝑗

∈ R𝑧𝑘 𝑗 for each column 𝐶𝑘 𝑗 in the historical datasets
Dhist, where 𝑧𝑘 𝑗 is the number of generated features. To this end,
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Figure 2: Architecture of SAGED showing several examined strategies for dataset matching and label generation.

we employ the Word2vec embeddings and the TF-IDF weight-
ing scheme, along with extracted metadata about each column.
These features serve to differentiate between clean and dirty cells,
thereby facilitating subsequent analysis.

For the running example with the hypothetical employee
dataset from 2018 to 2022, let’s focus on word embeddings for
the column Job Title and TF-IDF features for the Email column.
For job titles, Word2vec breaks down each title into individual
words, such as “Senior”, “Software”, and “Engineer” for “Senior
Software Engineer”. Each word is then represented as a vector
in a high-dimensional space, capturing semantic meaning. The
resulting vectors are averaged to obtain a single vector repre-
sentation for the entire job title. For the Email column, TF-IDF
determines the significance of individual words within email
content. Specifically, it calculates the frequency of unique words,
adjusted by their frequency across all emails. As a result, domain-
specific terms might have higher TF-IDF scores, while common
terms, such as “@companydomain.com”, will have lower scores
due to their high frequency across all emails. Conversely, unique
identifiers, like an employee’s name, might yield higher TF-IDF
scores, emphasizing their importance in the email’s context. In
this context, instances with erroneous or atypical content are
likely to yield elevated TF-IDF scores. For instance, the misspelled
domain “companidomain.con” and the use of “(at)” instead of
“@” are unique compared to other emails, thus they would have
higher TF-IDF scores.

The generated feature vectors may possess varying sizes due
to the diverse nature of the input data. However, the presence
of feature vectors with different dimensions can introduce chal-
lenges when matching with other datasets. To address this prob-
lem, we leverage the zero padding technique [17] to standardize
the size of all feature vectors. By padding the feature vectors
with zeros, we ensure uniform dimensions across the dataset,
i.e.,𝐹𝑝𝑎𝑑

𝐶𝑘 𝑗
= [𝐹𝐶𝑘 𝑗

, 0, 0, . . . , 0] ∈ R𝑧 , where 𝑧 is the unified size of
all feature vectors. For each column in the historical datasets,
the padded feature vectors, accompanied by the labels obtained
from a previous cleaning process, are utilized to train a binary
classifier, e.g., XGBoost or MLP network. Consequently, the out-
comes of this phase encompass the list of standardized feature
vectors Fℎ𝑖𝑠𝑡 = {𝐹𝑝𝑎𝑑

𝐶𝑘 𝑗
| 𝑘 ∈ [0,𝑊 ], 𝑗 ∈ [0, 𝑀]} (for simplicity,

we assume that all historical datasets have the same number
of columns) and the corresponding base pre-trained classifiers
B = {𝐵1, 𝐵2, . . . , 𝐵𝑊 ×𝑀 }.

In the detection phase, SAGED leverages the outcomes of the
knowledge extraction phase to identify errors present in dirty
datasets. Figure 3 illustrates the detection algorithm, delineating
the essential input parameters and the subsequent procedural
steps. This phase commences with identifying the most rele-
vant pre-trained base models B𝑟𝑒𝑙 ⊆ B (cf. lines 1-4). To this
end, SAGED implements two distinct matching methods, includ-
ing clustering and cosine similarity (i.e., sim(𝐶𝑡 ,𝐶𝑘 𝑗 ) ∀ 𝐶𝑡 ∈
𝐷𝑑𝑖𝑟𝑡𝑦,𝐶𝑘 𝑗 ∈ Dℎ𝑖𝑠𝑡 ). Such methods are utilized to determine
the compatibility between the pre-trained models and the fea-
ture vectors of the dirty dataset. The second step is to extract
a feature vector 𝐹𝐶𝑡

for each column 𝐶𝑡 ∈ 𝐷dirty (cf. lines 5-
10). The feature vectors encompass various elements such as
Word2Vec embeddings and TF-IDF scores, as well as metadata.
These feature vectors serve as representations capturing the rele-
vant characteristics of the columns. As analogue to the knowledge
extraction phase, the generated feature vectors are zero-padded
to ensure consistent dimensions, where F𝑑𝑖𝑟𝑡𝑦 = {𝐹𝐶𝑡

| 𝐶𝑡 ∈
𝐷dirty, 𝐹𝐶𝑡

∈ R𝑧 } represents the set of zero-padded feature vec-
tors of all columns in the dirty dataset.

The padded feature vectors are then used as input to the se-
lected pre-trained models Brel to generate the meta-features
Fmeta = {𝐹𝐶𝑡

| 𝐶𝑡 ∈ 𝐷dirty}, which encapsulate higher-level rep-
resentations derived from the combination of the pre-trained
models Brel and the padded feature vectors Fdirty (cf. lines 11-13).
To train the meta classifier, which is responsible for error detec-
tion in the dirty dataset, a subset of the meta-features needs to
be labeled. To accomplish this, SAGED implements various meth-
ods for selecting a subset of meta-features that can be labeled
by an oracle. These methods include active learning, random
sampling, clustering, and heuristic sampling. To augment the
number of labeled data without increasing the labeling budget,
SAGED explores four additional methods: KNN Shapely, active
learning, random sampling, and iterative refinement. These meth-
ods enable the expansion of the labeled dataset by incorporating
additional labeled instances in a resource-efficient manner. The
labeled data, obtained through the aforementioned methods, is
then utilized to train the meta classifier, which effectively detects
errors within the dirty dataset.

Revisiting the running example, we notice that the 2023 HR
dataset’s Age column is quite similar to the Age columns from
2018 and 2020, as shown by their high cosine similarity. Given
this similarity, SAGED utilizes the base models associated with
these past datasets to generate meta-features F 𝑎𝑔𝑒,23

meta for the 2023
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Require: historical data Dhist, dirty dataset 𝐷dirty =

𝐴1, . . . , 𝐴𝑀 , base classifiers B, size of feature vector 𝑧,
labeling budget 𝛾𝑙 , similarity threshold 𝜃sim

1: for all column𝐶𝑡 in 𝐷dirty and𝐶𝑘 𝑗 inDhist do ⊲ Section 3.1

2: Estimate 𝑆𝑡,𝑘 𝑗 ← similarity(𝐶𝑡 ,𝐶𝑘 𝑗 )
3: if 𝑆𝑡,𝑘 𝑗 ≥ 𝜃sim then
4: Append Brel ← Brel + 𝐵𝑘 𝑗 ⊲ Relevant base models
5: for all column 𝐴𝑖 ∈ 𝐷dirty do ⊲ Section 3.2
6: 𝐹𝐴𝑖

← [TF_IDF(𝐴𝑖 ),Word2Vec(𝐴𝑖 ), profiler(𝐴𝑖 )]
7: if |𝐹𝐴𝑖

| < 𝑧 then
8: Compute 𝑍𝑖 ← 𝑧 − |𝐹𝐴𝑖

| ⊲ # of zeros to be appended
9: Generate −−−−→𝑧𝑒𝑟𝑜𝑠 ← zeros(𝑍𝑖 ) ⊲ Create a zeros vector
10: 𝐹

pad
𝐴𝑖
← Concatenate(𝐹𝐴𝑖

,−−−−→𝑧𝑒𝑟𝑜𝑠) ⊲ Zero padding

11: for all model𝑚 𝑗 in Brel do
12: Append 𝐹meta

𝐴𝑖
← 𝐹meta

𝐴𝑖
+ predict(𝐹pad

𝐴𝑖
,𝑚 𝑗 )

13: Append Fmeta ← Fmeta + 𝐹meta
𝐴𝑖

⊲ All meta features

14: Estimate 𝑦user ← get_labels(Fmeta, 𝛾𝑙 ) ⊲ Section 4.1
15: Train Bmeta ←mlp(Fmeta, 𝑦user)
16: Find 𝐻dirty ← predict(Fmeta, Bmeta) ⊲ Error detection
17: Compute 𝑦aug ← aug_labels(Fmeta, 𝐻dirty) ⊲ Section 4.2
18: Update B̄meta ←mlp(Fmeta, [𝑦user, 𝑦aug])
19: Refine 𝐻dirty ← predict(Fmeta, B̄meta)

Figure 3: Error detection algorithm

Age data. These meta-features are thus expressed as F 𝑎𝑔𝑒,23
meta =

[𝐵𝑎𝑔𝑒,18 (𝐹𝑎𝑔𝑒,23), 𝐵𝑎𝑔𝑒,20 (𝐹𝑎𝑔𝑒,23)]. The elements of this array
are derived from the outputs of the base models 𝐵𝑎𝑔𝑒,18 and
𝐵𝑎𝑔𝑒,20, which have been previously trained on the padded fea-
tures (i.e., metadata, Word2Vec, and TF-IDF) of the Age columns
from the 2018 and 2020 datasets, respectively. The inputs to these
base pre-trained models are the padded feature vectors 𝐹𝑎𝑔𝑒,23–
corresponding to the Age column from the 2023 dataset. In this
manner, the meta-learning part of SAGED facilitates the exploita-
tion of prior cleaning efforts.

Following this, the semi-supervised learning part commences
with manually labeling a subset of the data to provide training
instances for a meta-classifier. Labeling is a prerequisite for semi-
supervised learning in all ML-based error detection tools. As
shown in Section 5, SAGED achieves superior performance over
baseline tools with significantly fewer labels. This classifier is
then employed to detect and categorize various errors within
the Age column. In this example, we utilized historical data from
the same domain as the new, dirty dataset. However, our experi-
mental evaluations (cf. Section 5) demonstrate that SAGED re-
mains effective even when the historical and input dirty datasets
originate from distinct domains. This cross-domain generalizabil-
ity highlights the robustness and adaptability of the proposed
method in diverse real-world scenarios where domain alignment
may not be guaranteed.

3 META LEARNING APPROACH
The offline phase primarily encompasses the extraction of diverse
features and the training of base pre-trained models. Given that
analogous feature extraction techniques will be applied during
the online phase, we have structured this paper to introduce
the components in the sequence of their execution within the
online phase. In this section, we explain the adopted similarity

measures and automated featurization techniques that underpin
the implementation of our meta-learning approach.

3.1 Similarity Measures
A pivotal step in our meta-learning approach involves the identi-
fication of historical datasets that exhibit a high degree of simi-
larity with the given dirty dataset. Empirical evidence from our
experiments indicates that columns with similar characteristics
across various datasets typically exhibit comparable error pro-
files. Accordingly, the identification of similar columns is crucial
for SAGED to effectively leverage base pre-trained models that
are most pertinent to the characteristics of the given dirty dataset.
SAGED implements two distinct techniques for identifying highly
similar datasets, namely cosine similarity and clustering. The for-
mer method quantifies how similar the data instances in the dirty
dataset are to the historical datasets. Before computing the cosine
similarity, SAGED ensures normalization for all attributes from
both the historical and dirty datasets. If the similarity between
column 𝐶𝑡 and historical column 𝐶𝑘 𝑗 surpasses a predetermined
threshold 𝜃𝑠𝑖𝑚 , then the associated base model 𝐵𝑘 𝑗 will be incor-
porated into the set of relevant models B𝐶𝑡

𝑟𝑒𝑙
for column 𝐶𝑡 .

The second technique entails clustering the columns of the
historical datasets Dhist, where each cluster comprises the most
closely related columns from these datasets. The core idea be-
hind this technique is to assign each dirty column to the cluster
containing the most similar historical columns. Figure 4 demon-
strates an example of the clustering technique employed to find
the historical attributes mostly similar to the dirty attributes. The
historical columns denoting attributes like the age of employees
𝐶11, customers𝐶23, or patients𝐶33 are grouped in a single cluster
(e.g., cluster K in Figure 4). As shown in the figure, each historical
column is associated with a pre-trained base model (e.g., model
𝐵11 is associated with column 𝐶11), which has been generated
in the knowledge extraction phase. To generate such clusters,
SAGED extracts a set of metadata features for each column in
the historical datasets (cf. Section 3.2). These extracted features
are then employed to train a K-Means algorithm. During the
online phase, the trained K-Means inference function is utilized
to assign each column 𝐶𝑡 ∈ 𝐷dirty to one of the clusters estab-
lished during the offline phase. Upon successful assignment to a
particular cluster, SAGED retrieves the corresponding base pre-
trained models B𝐶𝑡

rel that correspond to the historical columns
encompassed within the assigned cluster. These retrieved models
B𝐶𝑡

rel are then utilized to generate the meta-features F𝐶𝑡

meta, thus
facilitating effective adaptation and generalization of the learning
process for the dirty dataset.

3.2 Feature Representation
In this section, we elaborate on the various features that must be
extracted to enable error detection. SAGED extracts a compre-
hensive set of representative features, accurately characterizing
the underlying distribution of each column in both historical
and dirty datasets. To this end, a combination of methods and
techniques is employed to automatically extract these features,
including metadata profiling, Word2Vec embeddings, and the
TF-IDF weighting scheme. To generate these features, a metadata
profiler systematically traverses each column within the dataset
and performs computations on various parameters. These param-
eters encompass the frequency of values occurring in a column,
the proportion of explicitly specified missing values, the char-
acter count of each value, the proportion of alphabetic values
in a column, the proportion of numeric values in a column, the
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Figure 4: Example of assigning columns of a dirty dataset to
the clusters generated in the knowledge extraction phase.

proportion of values in a column with punctuation, and the pro-
portion of unique values in a column.

The extracted metadata provides valuable insights into the un-
derlying structure of the data within each column, enhancing our
understanding of its characteristics and distribution. Additionally,
it is pertinent to acknowledge that the scope of metadata features
can be expanded further by incorporating additional relevant pa-
rameters. The second set of features is obtained using Word2Vec
embeddings[15], a widely adopted technique in natural language
processing and information retrieval. Word2Vec efficiently cre-
ates word embeddings, representing words or strings as fixed-size
numeric vectors. This process facilitates the extraction of contex-
tual information, semantic and syntactic similarities, and word
relationships within documents. To this end, SAGED trains a
standard word embedding model, treating each tuple as a doc-
ument. Within this model, vectors are generated for individual
words, capturing their interdependence with their surrounding
context. When a Word2Vec vector exhibits a statistically signifi-
cant dissimilarity from other vectors within the same column, it
can serve as informative evidence for detecting potential errors.

Finally, the TF-IDF (Term Frequency-Inverse Document Fre-
quency) weighting scheme [34] is a statistical measure widely
employed to assess the significance of words, characters, or n-
grams within a corpus of documents. In the context of the error
detection problem, the terms “corpus” and “document” are de-
fined as follows: each value in a column represents a document,
while the values–encompassing the entire column–form the cor-
pus. In the context of SAGED, the TF-IDF method is thoughtfully
implemented at the character level, wherein each value in a col-
umn is assigned a vector of TF-IDF values specific to individual
characters. The computation of TF-IDF values involves two es-
sential metrics: the frequency of a character’s occurrence within
a document (TF), and the inverse document frequency of the
character across the entire corpus (IDF). For instance, Equation 1
expresses the TF-IDF value of the character 𝑋 in tuple 𝑖 , where
𝛼 (𝑋, 𝑖) denotes the number of character 𝑋 in tuple 𝑖 , 𝛼 (𝑖) is the
number of characters in tuple 𝑖 , and 𝛽 (𝑋 ) denotes the number of
tuples with character 𝑋 . By harnessing the TF-IDF method at the
character level, SAGED broadly captures the relative importance
of characters within the context of the dataset. This character-
level analysis enables the identification of distinctive character
patterns and their significance in the error detection process.

TF-IDF(character 𝑋, tuple 𝑖) = 𝛼 (𝑋, 𝑖)
𝛼 (𝑖) × log2

(
𝑁

𝛽 (𝑋 ) + 1

)
(1)

Figure 5 demonstrates the zero padding procedure employed
to preserve uniform feature vector dimensions. The number of
features generated by the metadata profiler and the Word2Vec
model remains constant across all attributes. Conversely, the TF-
IDF method is contingent upon the distinct characters present
within each column. For instance, consider column 𝐶11, which
contains the characters 1, 2, 3, and 3; while column 𝐶12 encom-
passes the characters 2, 3, 5, and ’s’. Since these two columns
contain different character sets, the TF-IDF feature count diverges
for each column; specifically, three TF-IDF features for 𝐶11 and
four for𝐶12. To standardize the dimensions of each feature vector,
after concatenating metadata, Word2Vec, and TF-IDF features,
we introduce zero-padding to fill in the absent characters, assign-
ing them a value of 0. Consequently, the TF-IDF feature vectors
for both 𝐶11 and 𝐶12 encompass five features corresponding to
the characters 1, 2, 3, 5, and ’s’. In this case, the feature values
for characters 5 and ’s’, in the case of 𝐶11, are set to zero. This
padding procedure thus facilitates the harmonization of feature
vectors, enabling the application of pre-trained base models to
the columns within the dirty datasets in the online phase.

0 0 0TF-IDFWord2VecMetadata

0 0 0TF-IDFWord2VecMetadata 0

Size of feature vector 

Figure 5: Zero padding of feature vectors.

4 SEMI-SUPERVISED LEARNING
In this section, we present the tuple sampling strategies for la-
beling and the label augmentation methods required to achieve
a semi-supervised detection of tabular data errors within the
confines of a constrained labeling budget.

4.1 Tuple Selection for Labeling
As described in Section 2, the detection phase initiates with
the selection of a set of base pre-trained models 𝐵𝑟𝑒𝑙 for gen-
erating meta features F𝑚𝑒𝑡𝑎 . Subsequently, such meta-features
are utilized to train a meta-detection classifier. To enable semi-
supervised learning, a subset of the meta-features requires label-
ing. One of the main objectives of SAGED is to reduce the labeling
budget 𝛾𝑙 while preserving the detection accuracy. Hence, we
implemented four distinct strategies for selecting tuples that
will receive labels from an oracle, including random sampling,
heuristic-based sampling, clustering-based sampling, and active
learning. The first strategy entails a random selection of tuples
for labeling, making it straightforward but not leveraging any
external knowledge. Alternatively, the heuristic-based sampling
strategy adopts a more informed approach by considering the
values within the meta-features. These meta-features encapsulate
inferences from pre-trained models, specifically designed to dis-
criminate between dirty and clean data instances. Consequently,
the heuristic-based sampling strategy involves a meticulous ex-
amination of each tuple within the meta-features, followed by
the selection of a subset with the highest occurrence of positive
values (i.e., ones). This selection criterion is predicated on the as-
sumption that a greater prevalence of positive values may signify
a higher likelihood of the data instance being deemed dirty.

The clustering-based sampling strategy, inspired by [24], pri-
marily aims to address the challenge of limited labeled data by ex-
ploiting the cluster assumption [8]. Such an assumption suggests
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that when two data points belong to the same cluster, they are
likely to share the same class label. Therefore, by clustering data
cells, we can expect cells within each cluster to have consistent
labels, i.e., either dirty or clean. Specifically, the clustering-based
sampling strategy employs the hierarchical Agglomerative clus-
tering algorithm to cluster each column of the meta-features. To
ensure contextual relevance for users during labeling, the strat-
egy selects entire tuples rather than individual data cells. This
allows users to better assess the data cell quality within the con-
text of its associated tuple. To this end, the strategy conducts 𝑘
clustering iterations, where 𝑘 = 𝛾𝑙 , and in each iteration, the cells
belonging to every column in the meta-features are clustered.
The strategy iteratively increments the number of clusters, which
can be generated by the Agglomerative clustering algorithm, and
solely one tuple is sampled for labeling in each iteration. To se-
lect such a tuple, the cluster labels for each column are obtained,
and the number of labels per cluster is counted. A probability
distribution 𝑝 , using the Softmax probability function, is then
computed based on the label count. Through the distribution 𝑝 ,
we can select a tuple that covers the most number of unlabeled
clusters, contributing to a more representative labeling process.
This iterative sampling process continues until the allocated la-
beling budget is fully utilized. It is important to highlight that
SAGED avoids label propagation, proposed in [24], since it in-
creases the number of noisy labels, thus adversely impacting the
detection accuracy.

Finally, the active learning strategy, inspired from [28], aims
to improve the performance of meta classifiers, i.e., detection
classifiers generated for each column 𝐶𝑡 ∈ 𝐷dirty, by iteratively
selecting and labeling the most informative data cells. To this end,
it directs labeling efforts toward uncertain regions of the feature
space. Specifically, the strategy comprises two main components:
column selection and data cell selection. The column selection
component determines which column should be labeled next by
analyzing the predictions made by the existing meta-classifiers
for each column in the dirty dataset. It identifies the column that
would benefit the most from acquiring new labels. Classification
models typically provide a probability score for each prediction,
indicating the certainty of the prediction. A higher certainty
implies higher convergence. The strategy calculates the average
certainty of all cells within each column and selects the column
with the lowest average certainty. Once a column is selected, the
data cell selection component randomly samples a set of data cells
within the chosen column. Afterward, an oracle manually verifies
these selected cells. The newly labeled data cells are incorporated
into the training set for the selected column’s meta-classifier,
which is then retrained with the augmented dataset. The active
learning process continues in a loop until the entire labeling
budget is utilized.

4.2 Label Augmentation
Label augmentation is an approach that aims to increase the
quantity of labeled data while adhering to a constrained labeling
budget. Figure 6 shows that this approach employs the predictions
generated by initial meta-classifiers that have been trained using
user-provided labels. Notably, our experimental findings indicate
that these classifiers typically exhibit high precision, instilling
confidence in their predictions and warranting their reuse to
augment the training data in subsequent iterations. Within the
context of SAGED, we implemented four distinct methods to
sample the predictions, each contributing to the expansion of the
labeled dataset, namely random sampling, iterative refinement,

active learning, and KNN Shapely. The first method involves
the stochastic selection of a subset of data cells along with their
corresponding labels from the obtained predictions. Although
less targeted than other methods, random sampling can still
contribute to the expansion of the labeled dataset.
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Figure 6: Augmenting user labels with model predictions.

To mitigate potential noise introduced by random sampling,
the iterative refinement method adopts a more focused approach
by exclusively sampling positively labeled instances, i.e., the dirty
data cells. The active learning method strategically selects in-
stances that pose challenges to the model’s current knowledge,
enabling the model to refine its understanding and adapt accord-
ingly. Our implementation of the active learning methods has
been introduced in Section 4.1. Finally, the KNN Shapley method
[20] assigns relevance scores to individual data cells, highlight-
ing their importance in the model’s decision-making process.
By prioritizing the data cells with higher Shapley values, the
KNN Shapely method effectively enriches the labeled dataset
with significant data cells. To this end, the KNN Shapley method
combines the K-Nearest Neighbors (KNN) algorithm with Shap-
ley values from cooperative game theory to prioritize the most
informative data cells. In our implementation, we opted to se-
lect the top 20% most important tuples based on a predefined
importance threshold. However, in cases where all tuples within
a specific column possess equal importance, we decided to skip
such columns, as they do not contribute to the diversification
and enrichment of the selected subset.

5 PERFORMANCE EVALUATION
In this section, we present an extensive evaluation of SAGED in
comparison to a set of baseline methods. Through a series of care-
fully designed experiments, we aim to address the following key
questions: (1)Which similarity measure method contributes more
significantly to enhancing the overall performance of SAGED?
(2) Which labeling strategy proves to be the most effective and
efficient in generating the meta-features? (3) What is the impact
of label augmentation, and which augmentation method is best
suited for error detection? (4)What is the influence of the number
of historical datasets on the overall performance of SAGED? (5)
How does SAGED compare to ML-based baselines in terms of
the required labeling budget? (6) How does SAGED compare to
the baselines concerning detection accuracy and efficiency? (7)
Finally, how does SAGED compare to the baselines when inte-
grated into an ML pipeline, specifically in terms of predictive
performance? By addressing these questions, we endeavor to
comprehensively demonstrate the strengths and capabilities of
SAGED and shed light on its effectiveness and potential advan-
tages over the baseline methods in the context of error detection.
We first describe the setup of our evaluations, before discussing
the results and the lessons learned throughout this study.
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5.1 Experimental Setup
We conducted a comprehensive evaluation of SAGED, employing
a diverse set of 14 real-world datasets that encompassed varying
data sizes and exhibited distinct error rates. Table 1 provides a
summary of the key characteristics of each dataset. It is worth
noting that such datasets are commonly encountered in the do-
main of data cleaning and have been extensively used in related
literature. Among these datasets, we specifically reserved two,
namely Adult and Movies, for the historical inventory (except for
the similarity experiment which explores the impact of increasing
the number of historical datasets). The remaining datasets were
utilized for evaluating the performance of SAGED in comparison
to the baseline tools. Notably, several datasets were included in
the evaluation due to their relevance to ML tasks, e.g., regres-
sion or classification. Examples of such datasets are Beers, Smart
Factory, and Nasa. For scalability analysis, two large datasets,
namely Soccer and Tax, were exclusively used. These datasets
enabled us to assess the performance of SAGED under conditions
of increased data size, a crucial aspect in real-world applications.

Table 1: Datasets used in the evaluation where the error
types are rules violation (RV), formatting issues (FI), out-
liers (OT), missing values (MV), and typos (TP)

Data Set Rows Columns Error Types Error Rate

Adult [21] 45223 15 RV, OT 0.09
Movies [22] 7390 17 MV, FI 0.06
Beers [19] 2410 11 MV, RV, TP 0.16
Bikes [12] 17378 16 OT, RV 0.1
Hospital [24] 1000 20 TP, RV, FI 0.03
Rayyan [29] 1000 11 MV, TP,RV 0.09
Flights [24] 2376 7 MV, TP, RV 0.3
Restaurants [28] 28788 16 OT, MV 0.15
Soccer [26] 200000 10 MV, OT, RV 0.27
Tax [6] 200000 15 TP, FI, RV 0.04
Breast Cancer [11] 700 12 MV, TP, OT 0.4
Smart Factory [7] 23645 19 MV, OT 0.83
Nasa [37] 1504 6 MV, OT, TP 0.13
Soil Moisture [33] 679 129 MV, OT 0.3

We present a comprehensive comparison of SAGED against a
diverse set of baseline tools, encompassing various methodolo-
gies. The evaluated baseline tools include ML-based approaches,
such as RAHA [24] and ED2 [28]; rule-based techniques, such
as HoloClean [32] and NADEEF [10]; knowledge base-powered
tools, including KATARA [9]; ensemble methods, such as dBoost
[25] and min-K [3]; and outlier detectors, such as FAHES [31],
standard deviation (SD), isolation forest (IF), and inter-quartile
range (IQR) [40]. The chosen baseline tools represent a compre-
hensive range of state-of-the-art solutions in the field of error
detection and data cleaning. Each tool brings a distinct approach
to the problem, incorporating various techniques and algorithms.
Further information about these tools and their specific method-
ologies can be found in Section 6.

As evaluation metrics, we employ precision, recall, F1 score,
and runtime to assess the effectiveness and efficiency of our pro-
posed approach. In this context, precision (𝑃 ) quantifies the pro-
portion of relevant instances (i.e., actual erroneous cells) among
the detected instances, represented as 𝑃 =

𝑡𝑝

𝑡𝑝+𝑓𝑝 , where 𝑡𝑝 and
𝑓𝑝 denote true positives and false positives, respectively. On the
other hand, recall (𝑅) is defined as the fraction of erroneous in-
stances that are correctly detected, given by 𝑅 =

𝑡𝑝

𝑡𝑝+𝑓𝑛 , where
𝑓𝑛 represents false negatives. The F1 score is computed as the

harmonic mean of precision and recall, given by 𝐹1 = 2 · 𝑃 ·𝑅
𝑃+𝑅 .

The F1 score provides a balanced measure that takes into account
both precision and recall, making it suitable for evaluating the
overall performance of the error detection process. Additionally,
we consider the runtime, which represents the time elapsed while
traversing an entire dataset to identify the erroneous cells. This
metric quantifies the efficiency of our approach in terms of com-
putational time. All experiments have been repeated ten times,
where the means of the ten runs are reported. We run all the
experiments on an Ubuntu 20.04 LTS machine with 16 2.60 GHz
cores and 64 GB memory.
5.2 Results
Before delving into the comparative analysis between SAGED
and the baseline tools, it is crucial to assess the influence of the
various components of SAGED, including similarity measures,
labeling strategies, and label augmentation methods 3.

Similarity. Figure 7 depicts a comparison of the performance
of SAGED when leveraging cosine similarity and clustering tech-
niques to identify relevant base pre-trained models. For instance,
Figure 7a illustrates the F1 score of SAGED when applied to
the Beers dataset, considering varying numbers of historical
datasets. As depicted in the figure, both clustering and cosine
similarity contribute significantly to SAGED’s performance, with
comparable effectiveness (i.e., both have an average F1 score of
98.3%). Similar findings have been observed for other datasets,
as depicted in Figures 7b-7e. Furthermore, the presented figures
indicate that increasing the quantity of historical datasets has a
beneficial effect on the accuracy of error detection. However, it
is important to note that this impact exhibits variations among
the diverse datasets. For instance, when considering Flights and
Soil Moisture datasets, a steep curve is observed, wherein aug-
menting the number of historical datasets from one to seven
results in performance improvements of 18% and 371%, respec-
tively. Conversely, the remaining datasets, such as Beers, Movies,
and Smart Factory, display a more gradual curve in response to
the increase in the number of historical datasets. Regarding the
detection time, The results show that both clustering and cosine
similarity exhibit similar impacts on the performance of SAGED.
Additionally, augmenting the number of historical datasets re-
sults in a linear increase in the detection time of SAGED. For
example, augmenting the number of historical datasets from one
to seven results in a 47% rise in the detection time of SAGED for
the Beers dataset. This is attributed to the utilization of more
meta-features for training the meta classifier.

Labeling Strategy. Figures 8-9 present a comprehensive eval-
uation of four labeling strategies concerning the detection ac-
curacy and detection time of SAGED. For instance, Figure 8a
delineates the F1 score of SAGED while identifying errors in the
Beers dataset, considering different labeling budgets. The figure
highlights that both clustering and random sampling slightly
outperform other strategies (both achieve an average F1 score
of 98%), with active learning exhibiting higher variance. Simi-
lar findings are observed across other datasets, as depicted in
Figures 8b-8e, except for the Breast Cancer dataset (Figure 8b),
where heuristic-based sampling demonstrates superior perfor-
mance. For the Flights, Hospital, and Rayyan datasets, random
sampling and clustering exhibit superior performance compared
to heuristic and active learning (e.g., random sampling outper-
forms active learning by 24% in the case of the Flights dataset).
3Due to space constraints, only a subset of the results is presented here. Compre-
hensive findings will be uploaded to the project’s online repository.
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Figure 7: Comparison of different similarity measures in terms of detection accuracy over a different number of historical
datasets used in the offline phase.
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Figure 8: Comparison of different labeling strategies in terms of detection accuracy.
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Figure 9: Comparison of different labeling strategies in terms of detection time.
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Figure 10: Comparison of different label augmentation methods in terms of detection accuracy.

The superiority of random sampling, observed across most
datasets, can be attributed to its ability to provide a diverse set
of samples drawn from the meta-features. Additionally, random
sampling ensures that all regions of the meta-features have an
equal chance of inclusion in the training set, thereby mitigating
potential biases that might arise from selective sampling. In terms
of the detection time, Figure 9 reveals that, for various datasets,
both random sampling and heuristic-based sampling exhibit no-
tably reduced time requirements compared to active learning and
clustering (e.g., random sampling requires less time than active
learning by on average 54% for the Beers dataset). Random sam-
pling’s computational efficiency stems from its straightforward
implementation, involving random selection of samples without
complex decision-making or querying. Conversely, as the label-
ing budget increases, the detection time exhibits linear growth
when employing active learning and clustering strategies.

Label Augmentation. Figure 10 shows the evaluation of SAGED
while employing diverse label augmentation methods under vary-
ing labeling budgets. In these experiments, we augmented the
user-labeled features with 20% of the predictions generated by the
meta-classifier for each column. As a baseline, we also included
the case of no-label augmentation. Surprisingly, the results indi-
cate no substantial difference between the various augmentation
methods. In several instances, SAGED demonstrates robust per-
formance even without label augmentation, as observed with the
Rayyan and Smart Factory datasets. Moreover, it is noteworthy
that the KNN-Shapley method did not perform well in most cases,
which suggests its limited effectiveness in this context. Drawing
upon the outcomes of these experiments and the aforementioned
ones, we have made an informed decision to configure SAGED
for the subsequent set of experiments. Specifically, we will em-
ploy clustering as the similarity measure method, adopt random
sampling as the labeling strategy, opt for no label augmentation,
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and use the Adult and Movies datasets in the historical inventory
during the evaluation process. These settings were chosen based
on their demonstrated effectiveness and efficiency in previous
evaluations, making them well-suited for further analysis.

Labeling Budget. In this series of experiments, we conduct a
comparative analysis between SAGED and ML-based baseline
tools, focusing on the impact of the required labeling budget.
Figures 11-12 present the accuracy and efficiency evaluations
of the compared tools across four datasets, while detecting er-
rors. For the Beers dataset (cf. Figure 11a), SAGED consistently
outperforms RAHA and ED2 even with small labeling budgets
(on average by 19.5% and 28% compared to ED2 and RAHA, re-
spectively). However, for the Bikes, Flights, and Smart Factory
datasets, the performance of ED2 becomes comparable to SAGED
when the labeling budget is relatively large. Regarding efficiency,
as shown in Figure 12, both SAGED and RAHA exhibit minimal
time requirements compared to ED2, which displays a linear in-
crease in detection time with a larger labeling budget (SAGED
saves 91% of time needed by ED2 for the Beers dataset). Notably,
SAGED consistently demonstrates promising results across dif-
ferent datasets, even with limited labeling budgets, highlighting
its potential for efficient error detection tasks.

Error Detection. In this series of experiments, we conducted a
comprehensive comparison of SAGED against all baseline tools
across diverse datasets. Table 2 provides a concise summary of
the obtained results, showcasing the detection precision, recall,
F1 score, and detection time for each tool. To facilitate the com-
parison, we have emphasized the best value in each column using
bold font and underlined the second-best value. For the detection
time column, we have considered the best values in light of the ac-
curacy of the corresponding baseline tools, ensuring that the time
value is considered only if the accuracy of the tool exceeds 50%.
Throughout these experiments, we maintained a fixed labeling
budget of 20 user labels for both SAGED and the ML-based tools.
Notably, some simpler baseline tools, such as SD, IF, and IQR, did
not detect any errors in certain datasets like Beers and Rayyan.
The results highlight SAGED’s superior performance, achieving
the highest accuracy while also demonstrating the shortest time
requirement for most datasets. ED2, on the other hand, exhibits
competitive F1 scores, but its extensive time requirements hin-
der its practicality. For example, in the Hospital dataset, ED2
attains an average F1 score of 99% but requires approximately
209 seconds. In contrast, SAGED achieves an average F1 score of
0.98 in merely five seconds. These findings underscore SAGED’s
efficiency and effectiveness in error detection tasks.

Robustness. In this series of experiments, we delve into the ex-
amination of the robustness of SAGED in comparison to several
baseline tools. Robustness, in this context, refers to the ability
of the error detection tool to maintain favorable performance
across various error rates or outlier degrees (i.e., the magnitude
of deviation from the mean). To assess this robustness, we ana-
lyze the F1 score and detection time of SAGED and the baseline
tools across different datasets, considering diverse error rates. Fig-
ure 13 presents the results of these analyses for various datasets.
For instance, Figure 13a showcases the accuracy of SAGED and a
set of baseline tools while detecting errors in the Hospital dataset,
with the error rate ranging from 10% to 50%. Notably, SAGED con-
sistently outperforms the baseline tools (on average by 19% and
21.6% compared to ED2 and RAHA, respectively) across different
error rate values. Furthermore, Figure 13b reveals an intriguing
observation, wherein the amount of error has no discernible influ-
ence on the detection time of SAGED. This finding underscores

the efficiency of SAGED, as it consistently requires significantly
less time than these baseline tools (e.g., on average by 97%, 96.3%,
and 96.6% compared to ED2, KATARA, and dBoost). For the Nasa
dataset (cf. Figure 13c), SAGED and ED2 display comparable per-
formance, particularly at an error rate of 20%. However, SAGED
continues to outperform ED2, KATARA, and dBoost in terms
of time requirements, further highlighting its efficiency in the
context of robust error detection.

In addition to assessing the error rate, we conducted an evalua-
tion of SAGED and the baseline tools’ capability to detect outliers
with varying degrees. Figure 14 presents the F1 score and de-
tection time of the compared tools, considering different outlier
degrees. For both the Hospital and Nasa datasets (cf. Figures 14a
and 14c), SAGED consistently outperforms the other baseline
tools, regardless of the outlier degree (SAGED has an average
F1 score of 98.6% and 98.3% for the Hospital and Nasa dataset,
respectively). Although tools specifically designed for detecting
outliers, such as SD and IQR, exhibit improved performance with
increasing outlier degrees, they still significantly trail behind the
ML-based error detectors, including SAGED, ED2, and RAHA.
In terms of the detection time, Figures 14b and 14d illustrate
SAGED’s remarkable efficiency compared to other ML-based
baseline tools. SAGED consistently demonstrates significantly
shorter detection times (on average by 93% and 94.6% compared
to dBoost and KATARA, respectively), reinforcing its practicality
for real-world applications. Overall, the results demonstrate the
robustness and efficiency of SAGED across different datasets,
error rates, and outlier degrees, substantiating its suitability for
error detection tasks in various real-world scenarios.

Scalability. In this series of experiments, we investigate the
performance of SAGED and the baseline tools concerning er-
ror detection in datasets with large volumes of data. Figure 15
provides insights into the detection time of SAGED and the base-
line tools across various data fractions. For instance, considering
the Restaurants dataset (cf. Figure 15a), all detectors effectively
process all data fractions. However, SAGED exhibits notable su-
periority over ED2, dBoost, and KATARA, requiring significantly
less time (on average by 92%, 97.4%, and 94%, respectively). In
terms of accuracy, SAGED achieves an impressive average F1
score of 98.5%, while other tools fail to capture errors effectively.
Moving to the Soccer dataset (cf. Figure 15b), some baseline tools,
such as RAHA, dBoost, and KATARA, are terminated at a data
fraction of 80% due to their limited ability to handle large volumes
of data. In contrast, SAGED and ED2 successfully process data
fractions, with SAGED requiring substantially less time than ED2
(on average by 98%). Furthermore, SAGED attains an average F1
score of 93% compared to a mere 19% for ED2. Similar commend-
able results have been observed for the Flights and Tax datasets,
as depicted in Figures 15c and 15d. These findings demonstrate
SAGED’s robustness and efficiency in dealing with large-scale
datasets, making it a promising tool for effective error detection
across various real-world applications.

Modeling Accuracy. To comprehensively evaluate the perfor-
mance of SAGED and baseline tools in ML pipelines, we im-
plemented a neural network using Keras capable of handling
regression, binary, and multi-class classification tasks. Leverag-
ing a Bayesian-based informed search technique called Optuna
[5], SAGED effectively tunes crucial hyperparameters such as
the learning rate, number of hidden layers, and units per layer.
Throughout the experiments, we fixed the number of training
epochs to 500 to maintain consistency across evaluations. Radar
plots, as depicted in Figure 16, showcase the modeling accuracy
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Figure 11: Impact of labeling budget on the detection accuracy of SAGED and the baseline methods.
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Figure 12: Impact of labeling budget on the detection time of SAGED and the baseline methods.
Table 2: Comparison of SAGED and baseline tools in terms of detection accuracy and runtime

Beers Breast Cancer Flights Hospital Nasa Rayyan
P R F1 T P R F1 T P R F1 T P R F1 T P R F1 T P R F1 T

FAHES 0.03 0.00 0.00 1.78 0.11 0.04 0.06 0.57 0.35 0.01 0.03 1.23 0.06 0.03 0.04 1.59 1.00 0.05 0.09 0.50 0.00 0.00 0.00 0.45
IF 0.00 0.00 0.00 2.00 0.93 0.01 0.01 1.16 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.95
IQR 0.00 0.00 0.00 1.21 0.34 0.03 0.05 0.35 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.49
SD 0.00 0.00 0.00 1.29 1.00 0.01 0.03 0.34 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.49
KATARA 0.02 0.05 0.03 141.76 0.35 0.78 0.48 103.35 0.00 0.00 0.00 72.47 0.08 0.08 0.08 156.01 1.00 0.13 0.23 67.44 0.03 0.09 0.04 100.66
HoloClean 0.07 0.05 0.06 4.33 1.00 0.07 0.14 0.71 0.56 0.48 0.52 1.13 0.02 0.01 0.01 1.31 1.00 0.00 0.01 0.55 NaN NaN NaN NaN
dBoost NaN NaN NaN NaN 0.54 0.99 0.70 69.24 0.81 0.57 0.67 100.99 0.80 0.12 0.21 168.09 0.98 0.82 0.89 64.63 0.15 0.84 0.25 93.50
Min-k 0.74 0.67 0.70 247.36 0.86 0.20 0.27 263.62 0.88 0.70 0.78 140.38 0.48 0.02 0.03 540.16 1.00 0.46 0.63 165.79 0.71 0.84 0.77 290.4
RAHA 0.76 0.67 0.71 8.11 0.84 0.10 0.18 1.41 0.78 0.66 0.69 2.60 0.27 0.02 0.04 3.73 1.00 0.33 0.49 2.36 0.78 0.71 0.74 0.53
ED2 1.00 0.66 0.80 92.20 0.84 0.10 0.18 86.10 0.86 0.86 0.86 33.89 0.99 0.07 0.13 209.21 1.00 0.34 0.51 29.75 0.87 0.29 0.44 95.43
SAGED 0.99 0.98 0.98 6.88 0.99 0.92 0.95 3.73 0.83 0.78 0.80 3.84 0.98 0.91 0.95 5.11 1.00 1.00 1.00 3.36 0.95 0.90 0.92 4.77
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Figure 13: Comparison of SAGED with baseline methods with different error rates.
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Figure 14: Comparison of SAGED with baseline methods with different outlier degrees.
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Figure 15: Scalability analysis
of the neural network when trained on ground truth (indicated
by the green area) and repaired data using SAGED (SG2), along-
side a set of baseline tools. For repairing the detected errors, we
employed an ML-based imputation method that utilizes a deci-
sion tree model for numerical attribute repair and missForest
for categorical attribute repair. Figure 16a provides insights into
the modeling accuracy, represented by F1 scores, of the neural
network trained on various versions of the Beers dataset. Remark-
ably, SAGED achieves performance comparable to the ground
truth, attaining an average F1 score of 76.4%, whereas the model
trained on the original ground truth data achieves an average F1
score of 79%. Similar commendable results have been observed for
the Nasa dataset (regression task) and the Smart Factory dataset
(classification task), as illustrated in Figures 16b and 16c. These
results substantiate the efficacy of SAGED in effectively detecting
errors and improving the overall modeling accuracy of neural
networks in various ML pipeline tasks.

Discussion. In this section, we highlight the main findings and
considerations derived from the comprehensive evaluation of
SAGED. An ablation study has been carried out to determine
the most effective methods and algorithms that can enhance the
performance of SAGED. In terms of similarity measures, both
cosine similarity and clustering techniques contribute equally to
SAGED’s performance. Moreover, both techniques have the same
time requirements. Notably, increasing the number of historical
datasets leads to substantial accuracy improvements, ranging
from 18% to a remarkable 371%, depending on the dataset. As the
number of historical datasets grows, the likelihood of encompass-
ing a wider range of error patterns and scenarios increases. This
diversity in error profiles allows the error detection model to
learn from a more extensive spectrum of potential data errors. In
the realm of labeling strategies, random sampling and clustering
prove highly effective and demonstrate computational efficiency.
Random sampling’s ability to provide a diverse set of samples
and mitigate potential biases proves advantageous. Furthermore,
it requires significantly less time, surpassing active learning and
clustering strategies.

Aside from the ablation study, the results showed that SAGED
consistently outperforms baseline methods across various dimen-
sions. In the context of labeling budgets, SAGED consistently
outperforms RAHA and ED2 even with small budgets, showcas-
ing its effectiveness and efficiency. For instance, SAGED saves 91%
of the time needed by ED2 for the Beers dataset while achieving
an average F1 score of 0.98. The efficiency of SAGED stems from
leveraging the random sampling strategy for tuples selection,
which proved to be sufficient given the comprehensive meta-
features. Such features incorporate not only the characteristics of
the dirty data but also encapsulate knowledge of error patterns
extracted from historical datasets. Moreover, SAGED’s robust-
ness is strikingly evident as it outperforms baseline tools across

different datasets, error rates, and outlier degrees. It maintains
its efficiency, consistently requiring significantly less time than
its counterparts, even as error rates and outlier degrees vary. Fi-
nally, in terms of scalability, SAGED shines, achieving impressive
F1 scores and significantly shorter detection times than other
tools in large-scale datasets. These findings collectively demon-
strate SAGED’s strong potential as a reliable and efficient error
detection tool for a wide range of data-driven tasks.

While SAGED offers notable advantages and performance, it
exhibits certain considerations: (1) It relies on the availability
of pre-cleaned historical data with similar error profiles. Never-
theless, in real-world scenarios, obtaining such historical data
might not always be problematic. (2) SAGED extracts insights
and patterns from base models trained on historical data. The
generalization of these patterns to new, unseen errors might be
limited, potentially leading to reduced accuracy in scenarios with
different error patterns. In this case, it is highly recommended
to continuously update the inventory of historical datasets to
keep track of new error patterns. (3) SAGED’s reliance on predic-
tions generated by base pre-trained models and meta-classifiers
may result in a lack of interpretability, making it challenging
to explain why specific errors are detected or missed. However,
employing post-hoc interpretability techniques, e.g., feature im-
portance analysis or model visualization, can provide insights
into the decision-making process. (4) Finally, the use of historical
data raises concerns about data privacy and security, especially if
the historical data contains sensitive information. Adequate pre-
cautions and data anonymization measures would be necessary
to address these concerns.

6 RELATEDWORK
In this section, we provide an overview of state-of-the-art er-
ror detection tools from academia and industry. We cover tools
based on LLMs, rule-based tools, ML-based tools, and ensem-
ble methods [1]. Several recent proposals have explored the uti-
lization of Large Language Models (LLMs) in data management
tasks, including data cleaning and data integration. For instance,
Narayan et al. [27] applied a prompting approach to address er-
ror detection and demonstrated that augmenting prompts with
examples, known as a few-shot approach, allows LLM models to
outperform ML-based error detection tools. Additionally, Vos et
al. [39] introduced prefix-tuning as an alternative to fine-tuning
when employing LLMs for data-wrangling tasks. Another LLM-
based data cleaning method, RetClean [4], has been developed
to enhance the output of ChatGPT with knowledge from a user-
provided data lake. Despite the potential benefits of LLMs in
data management tasks, their adoption is still in its infancy and
poses significant challenges due to their domain specificity, data
privacy concerns, and resource-intensive nature.
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Figure 16: Modeling accuracy of a neural network trained on the ground truth and repaired data. The blue region represents
the accuracy when using the repaired versions as input to the neural network, while the green region represents the
accuracy when using the ground truth version of the dataset. The abbreviations represent SAGED as SG2 and the baseline
tools: E2 for ED2, K2 for KATARA, R2 for RAHA, and B2 for dBoost.

Aside from LLMs, the rule-based detection methods, e.g., Holo-
Clean [32] and NADEEF [10], tackle rule violation errors by
enforcing functional dependencies and integrity constraints. Pat-
tern enforcement and transformation methods, such as OpenRe-
fine [16], identify syntactic and semantic patterns in the data to
detect inconsistencies effectively. Quantitative error detection
algorithms, including dBoost [25], leverage statistical techniques
like histograms, Gaussian, and multivariate Gaussian mixtures
to detect outliers that deviate from the statistical distribution of
the dataset. Record linkage and de-duplication methods, such
as Data Tamr system [36], focus on entity consolidation when
multiple samples correspond to the same entity. It is noteworthy
that the mentioned methods do not employ machine learning for
error detection or data repair.

To address the heterogeneous dirtiness profiles encountered
in real-world datasets, holistic ML-based error detection methods
have been developed, treating error detection as a classification
task. For example, RAHA [24] employs simple error detection
methods to generate feature vectors, followed by training detec-
tion classifiers. Similarly, metadata-driven error detection [38]
extracts metadata to guide the training process. To enhance de-
tection performance, various methods, such as ED2 [28], Picket
[23], and HoloDetect [18], model attribute-level, tuple-level, and
dataset-level features describing the underlying distribution of a
dataset. These methods adopt different labeling strategies: RAHA
clusters samples by similarity and acquires labels per cluster,
propagating them within each cluster. ED2 utilizes active learn-
ing to acquire labels for samples the model is uncertain about.
HoloDetect reduces the labeling budget by generating synthetic
erroneous samples based on learned error patterns. Picket relies
on self-supervision to avoid the need for user labels.

The state-of-the-art error detection tools face several chal-
lenges that limit their effectiveness and adaptability: (1) the re-
liance on expert knowledge to provide cleaning signals, such as
functional dependencies, creates a barrier to entry and depends
heavily on the expertise of the data specialists. The accuracy
of these methods is contingent on the thoroughness and qual-
ity of the input configurations. (2) simpler error detection algo-
rithms often miss a wide range of errors due to their focus on

specific types, leading to a low overall recall rate. (3) ML-based
approaches typically do not incorporate contextual or histori-
cal data, which could otherwise enhance the precision of the
error detection process. Finally, ML-based methods can suffer
from long execution times, rendering them less feasible for use
with larger datasets, as seen with tools like Picket and RAHA,
which can be especially slow when generating cleaning strate-
gies. SAGED distinguishes itself from existing tools by forgoing
the need for an array of detection methods and the associated
pre-configurations. Instead, it capitalizes on the statistical and in-
tegrity characteristics intrinsic to the data to craft feature vectors
that encapsulate the data’s statistical distribution. This strategy
simplifies the preparatory process and mitigates the need for tun-
ing configurations. Moreover, SAGED employs meta-learning to
draw upon the insights gained from cleaning historical datasets
within the same or analogous projects. This knowledge transfer
facilitates a more comprehensive identification of error patterns
in new datasets, improving SAGED’s error detection capability
even when operating under constrained labeling resources.

7 CONCLUSION & OUTLOOK
In this study, we present SAGED, a meta-learning-based error
detection tool designed for tabular data. SAGED leverages his-
torical datasets to gain valuable insights into error profiles in
the given datasets. The tool employs two phases, knowledge
extraction, and detection, to achieve this goal. Extensive evalu-
ation against various baseline methods demonstrates SAGED’s
superior performance in terms of detection accuracy and time ef-
ficiency. Moreover, SAGED exhibits scalability with large datasets
and can handle diverse error rates and outlier degrees. Future
work involves extending SAGED by integrating a context mod-
eling tool, such as RTClean [14], to update the models when
the surrounding context changes. Additionally, innovative error
repair approaches like AutoCure [2] and BARAN [24] will be
incorporated to enhance the detected error repair capabilities.
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