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ABSTRACT
Geo-obfuscation is a location privacy protection mechanism used

by mobile users to conceal their precise locations when reporting

location data, and it has been widely used to protect the location

privacy of workers in spatial crowdsourcing (SC). However, this
technique introduces inaccuracies in the reported locations, rais-

ing the question of how to control the quality loss that results

from obfuscation in SC services. Prior studies have addressed

this issue in time-insensitive SC settings, where some degree of

quality degradation can be accepted and the locations can be

expressed with less precision, which, however, is inadequate for

time-sensitive SC.

In this paper, we aim to minimize the quality loss caused by

geo-obfuscation in time-sensitive SC applications. To this end, we

model workers’ mobility on a fine-grained location field and con-

strain each worker’s obfuscation range to a set of peer locations,
which have similar traveling costs to the destination as the ac-

tual location. We apply a linear programming (LP) framework to

minimize the quality loss while satisfying both peer location con-

straints and geo-indistinguishability, a location privacy criterion

extended from differential privacy. By leveraging the constraint

features of the formulated LP, we enhance the time efficiency of

solving LP through the geo-indistinguishability constraint reduc-

tion and the column generation algorithm. Using both simulation

and real-world experiments, we demonstrate that our approach

can reduce the quality loss of SC applications while protecting

workers’ location privacy.

1 INTRODUCTION
With the rapid advancement of wireless communication and

positioning technologies in mobile devices, spatial crowdsourc-
ing (SC) has become increasingly popular and attracted a large

number of mobile users to participate in various location-based

services (LBS) [15, 16, 32]. In SC, workers are required to be

physically present at task locations to complete tasks, such as

providing rides to passengers [5] or taking photos [2]. To en-

sure cost-effective services, tasks should be assigned to nearby

workers with minimal traveling costs, which requires workers to

report their current location to servers. However, such reporting
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may disclose sensitive personal information like home addresses

[30]. Furthermore, in many SC platforms, like PulsePoint [4],

workers are volunteers receiving little compensation, and dis-

closing their location may discourage participation, ultimately

leading to a low number of workers available in SC services.

In recent years, location privacy issues in LBS have received

significant attention, where a rich body of works has been cen-

tered on geo-obfuscation [7, 11, 24, 29, 33, 34, 39], a location pri-
vacy protection mechanism (LPPM) that enables workers to report
obfuscated locations to servers instead of their exact locations. Re-

cently, Andrés et al [7] introduced a formal privacy criterion for

geo-obfuscation, called geo-indistinguishability (Geo-Ind). Geo-
Ind requires that for each pair of real locations that are geograph-

ically close, their obfuscated locations are generated with similar

probability distributions, making it difficult for an attacker to

distinguish between the two real locations based on their obfus-

cated representations. Geo-obfuscation has been recognized as a

stronger alternative to mobile LBS compared to traditional cryp-

tographic approaches [12], as it places a lower computational

demand on mobile devices [22, 39] while effectively protecting

data in the case of a data breach on the server side [31].

However, the use of geo-obfuscation inevitably introduces

errors to the reported locations of workers, which can cause SC

servers to assign tasks to workers with higher traveling costs.

Therefore, a key issue of geo-obfuscation techniques is how to se-
lect suitable obfuscated locations that allow SC servers to accurately
estimate the traveling costs for the requested tasks.

Existing works. One of the most widely used paradigms to

tackle the quality issue caused by geo-obfuscation is to employ

a linear programming (LP) framework, of which the objective is

to minimize the quality loss (measured by the estimation error

of the workers’ traveling costs) while still satisfying the Geo-

Ind constraints [9]. Typically, LP-based geo-obfuscation methods

discretize the location field into a finite set of discrete locations.

Its decision variables determine the probability distributions of

obfuscated locations given each possible real discrete location.

As such, LP-based methods require 𝐾2
decision variables to de-

rive in LP given 𝐾 discrete locations in the location set. Such a

high computation load makes it difficult for LP-based methods

to cover a sufficiently high number of locations. For example,

covering thousands of discrete locations within a small town can

lead to millions of decision variables in LP [24].
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Figure 1: Coarse-grained vs. fine-grained obfuscation.

To reduce the computation load, most existing LP-based works

limit the design of geo-obfuscation to low granularity location
representation [10, 20, 27, 34, 37, 39], such as the grid map shown

in Fig. 1(a) (each grid cell represents a location). Moreover, the

existing LP-based methods [24, 34] aim to minimize the expected

traveling cost estimation error of all possible obfuscated locations,

but with no restriction for the estimation error caused by each

single obfuscated location. These methods, clearly, are unsuitable

to time-sensitive SC applications, such as cardiopulmonary resus-
citation (CPR) worker assignment, where every minute of delay in

initiating CPR reduces the probability of survival by 7–10% [17].

Our contributions. To address the research gap outlined above,

this paper aims to study the optimization of geo-obfuscation by
considering users’ fine-grained mobility features (Obj1), such as

within a building or a university campus, as Fig. 1(b) shows. In

particular, we consider workers’ mobility restrictions caused by

diverse environmental factors, e.g., workers cannot move freely

in a building due to the building’s structure; workers have to tra-

verse stairs to reach different floors. In this case, the location field

needs to be discretized at a higher granularity level. Moreover,

we propose a new approach to restrict the obfuscation range of each
actual location to a “peer location set”, which is composed of the
obfuscated locations with similar traveling costs to the destination
as the actual location (Obj2). As such, the estimation error of trav-

eling costs caused by each obfuscated location can be bounded

by a predetermined threshold.

The main challenge of achieving Obj1 and Obj2 lies in how

to efficiently solve the formulated LP to meet the demands of

time-sensitive SC. Given the number of fine-grained locations 𝐾 ,

formulating the LP problem requires 𝑂 (𝐾2) decision variables

and𝑂 (𝐾3) Geo-Ind constraints in the worst case. This means that

even a few hundred discrete locations can result in tens of thou-

sands of decision variables and millions of Geo-Ind constraints,

leading to a significant computation delay if we attempt to solve

it using the classic LP algorithms such as the simplex method

[14]. Additionally, the process of computing the peer location set

for each real location exhibits a𝑂 (𝐾) time complexity, leading to

an overall time complexity of 𝑂 (𝐾2) when calculating the peer

location sets for all locations. Finally, adding the peer location

constraints to the LP formulation causes a different constraint

structure compared to that of the classic geo-obfuscation opti-

mization problems [23, 24, 34], making their solutions hard to

apply to our newly formulated problem.

To address the aforementioned challenges, we design the fol-

lowing three methods to improve the computation efficiency of

geo-obfuscation:

(1) We design an algorithm to identify the peer locations for all

the locations jointly. Specifically, we sort all the locations in the

mobility graph based on their traveling costs to the given desti-

nation, and then calculate their peer location sets sequentially

via two sliding windows, achieving a 𝑂 (𝐾) average-case time
complexity.
(2) We perform Geo-Ind constraint reduction by exploring the Geo-
Ind’s transitivity property on each peer location set, which reduces
the number of Geo-Ind constraints from 𝑂 (𝐾3) to 𝑂 (𝐾2)
without compromising the optimality of the LP’s solutions.
(3) By leveraging the angular block structure of the constraint

matrix of the formulated LP, we employ the column generation
algorithm to further decrease both the number of decision
variables and the number of Geo-Ind constraints in LP
from 𝑂 (𝐾2) to 𝑂 (𝐾).

Finally, we assess the effectiveness of our approach through

both trace-driven simulation and real-world experiments. We

employ the vehicle trajectory dataset in Shenzhen [26] to sim-

ulate the distribution of crowdsourcing workers. We compare

the quality loss of our approach against three benchmarks: Grid-

based obfuscation [39], Laplacian noise [7], and vehicle-based

geo-obfuscation [24]. The simulation results demonstrate that our

approach reduces the quality loss by at least 61.76% compared to

the benchmarks. Furthermore, using the prototype we developed,

we conducted real-world experiments in two relatively smaller

target regions: our college building (Discovery Park) and our

university campus (UNT Denton campus). The experimental re-

sults show that our approach has an average computation time of

approximately 2.29 seconds, which is suitable for time-sensitive

SC tasks, such as CPR assignments.

The remainder of the paper is organized as follows: We first

overview the SC framework in Section 2 and formulate the prob-

lem in Section 3. We then introduce our algorithms in Section

4, and evaluate the performance in 5. We discuss related work

in Section 6 and conclude in Section 7.

2 FRAMEWORK
Our SC framework is depicted in Fig. 2, which comprises an SC
server, a task requester, and a pool of workers. Consider the CPR
assignment as an example: In the event of an emergency, nearby

CPR workers must proceed to the designated patient with the

shortest traveling time, aided by a server that provides task assign-

ments. It is worth noting that although our primary focus is on SC

applications, this framework can be applied with minimal mod-

ifications to general time-sensitive SC applications. For instance,

the SC server can be replaced by a service provisioning entity.

ThreatModel. The task requester and theworkers need to report
the task’s location and the workers’ locations to the SC server to

enable task assignments. We assume that although the server is

not malicious, it might suffer from a passive attack where attackers
can eavesdrop on workers’ reported locations breached by the server
[7, 11, 29, 34]. Aswe target time-sensitive SC, we consider the case

that the task requester needs to disclose the exact task location to the
server (e.g., when a patient suffers from a heart attack out of the

hospital, his/her exact location needs to be disclosed to the server

to receive CPR as early as possible). Yet, workers’ exact locations
should be hidden from the server, especially in applications where

self-location disclosure might discourage more workers from

participating (e.g., volunteer-based scenarios [4]).

Obfuscation function. Similar to previous studies [24, 34], our

privacy-aware workers conceal their actual location by employ-

ing an obfuscation function before transmitting their location

to the server. The obfuscation function takes the worker’s true
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Figure 2: The framework of CPR for worker assignment.

location as input and generates a probability distribution of the

obfuscated location. The worker can then choose an obfuscated

location from this distribution to report.

Due to computational feasibility, we discretize the location

field of workers by a set of connectionsV = {𝑣1, ..., 𝑣𝐾 } [24, 34].
For instance, in the road network, a connection is created when-

ever a road intersects, branches, converges with other roads, or

changes direction. In a building, a connection is created when pas-

sageways/staircases are intersected. Given the discrete location

setV = {𝑣1, ..., 𝑣𝐾 }, the obfuscation function can be represented

by a stochastic matrix called the obfuscation matrix, denoted by

Z = {𝑧𝑖,𝑘 }𝐾×𝐾 . Each 𝑧𝑖,𝑘 represents the probability of selecting

𝑣𝑘 as the obfuscated location given the actual location 𝑣𝑖 .

Note that discretization is important if we consider users’

mobility restrictions in different scenarios. For example, obfus-

cating vehicle locations in different directions across different

road segments can result in varying quality losses due to the road

network and traffic conditions [24]. This requires the assessment

of quality loss for each obfuscated location given every possible

real location. In a continuous location field, this would lead to

intractable calculations.

SC task assignment. The process of a task assignment in our

SC framework includes the following steps (as shown in Fig. 2).

1○ The task requester, such as a patient, sends a request to the

SC server, including the task’s exact location.

2○ The server calculates the obfuscation matrix and broadcasts

the task request, along with the matrix, to nearby workers who

have opted in, without disclosing the task’s exact location. Specif-

ically, the matrix is received by the SC app installed in each user’s

mobile device.

3○ If a worker accepts the request, the SC app in worker’s mobile

device can automatically identify the row corresponding to the

user’s current location, and then randomly select an obfuscated

location by following the distribution recorded in that row, and

report the obfuscated location to the server. Note that although

creating the obfuscation matrix incurs some computation load

on the server side, selecting the obfuscated location using the

matrix has lower complexity. Given the row corresponding to

the user’s real location 𝑣𝑖 , the app partitions the interval [0, 1]
into 𝐾 subintervals (𝐾 is the number of locations). Each interval

𝑘 corresponds to location 𝑣𝑘 , with interval width 𝑧𝑖,𝑘 , i.e., the

probability of selecting 𝑣𝑘 as the obfuscated location. The app

generates a random number within [0, 1] following a uniform

distribution, and if the number falls within interval 𝑘 , it selects

𝑣𝑘 to report. This entire process has 𝑂 (𝐾) time complexity.

4○ Based on workers’ reported locations, the server estimates

their traveling costs to the task location and selects workers with

lower traveling costs to complete the task. The server then sends

the request, including the task’s exact location, to the selected

workers.

5○ Finally, the selected workers move to the task location to

complete the task.

Note that although the server generates the obfuscation ma-

trix, the workers’ exact locations remain hidden from the server

[34]. The obfuscation matrix is designed to satisfy the privacy cri-

terion Geo-Ind, which means that even if an attacker obtains the

workers’ reported obfuscated location and the obfuscation matrix

from the SC server, it is still difficult for the attacker to distinguish

the workers’ exact locations from other nearby locations. More

details on the calculation of the geo-obfuscation matrix, neces-

sary for achieving this feature, are presented in Sections 3 and 4.

Communication complexity of the SC task assignment.
In Step 1○, the task request requires only 1 message from the

requester (𝑂 (1)). Broadcasting the obfuscation matrix in Step

2○ involves sending 𝑁 messages (𝑂 (𝑁 )), and replying to the

server by workers in Step 3○ incurs an additional 𝑁 messages

(𝑂 (𝑁 )). Lastly, the task assignment in Step 5○ adds one more

message to the communication (𝑂 (1)). As a result, the overall
communication complexity of the entire process is 𝑂 (𝑁 ).

3 PROBLEM STATEMENT
In this section, we start by introducing the mathematical models

in Section 3.1, based on which we then formulate the problem in

Section 3.2. Table 1 lists the main notations and their descriptions

used throughout this paper.

Table 1: Main notations and their descriptions.

Symbol Description

V V = {𝑣1, ..., 𝑣𝐾 } denotes the discrete location set

G G = (V, E) denotes the mobility graph of workers;

whereV and E are the location set and the edge set

𝑒𝑖, 𝑗 Edge from 𝑣𝑖 to 𝑣 𝑗
𝑐𝑖, 𝑗 Traveling cost from 𝑣𝑖 to 𝑣 𝑗
Z Obfuscation matrix Z
𝑧𝑖,𝑘 Probability of selecting 𝑣𝑘 as the obfuscated location

given the real location 𝑣𝑖
P𝑖 Peer location set of 𝑣𝑖
𝜖 Privacy budget of Geo-Ind

Δ (Z) Expected quality loss caused by Z
𝑝𝑖 Prior probability that the worker is at location 𝑣𝑖 in G
T𝑖 Shortest path tree rooted at location 𝑣𝑖 in G

3.1 Model
3.1.1 Worker mobility model. Like [11, 24, 39], we consider

workers’ locations on a discrete location setV = {𝑣1, ..., 𝑣𝐾 }. If
a worker can travel from 𝑣𝑖 to 𝑣 𝑗 without visiting other locations

inV , then we build an edge 𝑒𝑖, 𝑗 from 𝑣𝑖 to 𝑣 𝑗 , and call that 𝑣𝑖 is

an in-neighbor of 𝑣 𝑗 (or 𝑣 𝑗 is an out-neighbor of 𝑣𝑖 ), and 𝑣𝑖 and
𝑣 𝑗 are adjacent to each other. Each 𝑒𝑖, 𝑗 is assigned a weight 𝑐𝑖, 𝑗
representing the traveling cost from 𝑣𝑖 to 𝑣 𝑗 . Then, we can create

a weighted directed graph G = (V, E), called mobility graph,
whereV and E denote the node (location) set and the edge set,

respectively. If 𝑣𝑖 is not an in-neighbor of 𝑣 𝑗 , then the traveling

cost 𝑐𝑖, 𝑗 from 𝑣𝑖 to 𝑣 𝑗 is equal to the length of the shortest path
from 𝑣𝑖 to 𝑣 𝑗 in the graph G (i.e., the sum of the cost of the edges

on the shortest path).

Based on the discrete location setV , the obfuscation matrix

Z = {𝑧𝑖,𝑘 }𝐾×𝐾 describes the probability distributions of obfus-

cated locations given any real location, i.e., each 𝑧𝑖,𝑘 denotes

the probability of taking 𝑣𝑘 as the obfuscated location given the

actual location 𝑣𝑖 .

3.1.2 Quality loss bounded by the peer location constraints. As
Fig. 3 shows, given the task location 𝑣t, two locations 𝑣𝑖 , 𝑣 𝑗 ∈ V
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are called peer locations, written as 𝑣 𝑗 ∼ 𝑣𝑖 , if and only if the

difference between their traveling costs to 𝑣t is no larger than 𝜂,

i.e.,
��𝑐𝑖,t − 𝑐 𝑗,t�� ≤ 𝜂, (1)

where 𝜂 > 0 is a pre-determined constant.

Property 3.1. (Properties of “∼”) According to the definition in
Equ. (1), the peer relation “∼” is (a) reflexive, i.e., 𝑣𝑖 ∼ 𝑣𝑖 , ∀𝑣𝑖 ∈ V ;
(b) commutative, i.e., 𝑣 𝑗 ∼ 𝑣𝑖 implies 𝑣𝑖 ∼ 𝑣 𝑗 , ∀𝑣𝑖 , 𝑣 𝑗 ∈ V ; (c) but
not transitive, i.e., 𝑣 𝑗 ∼ 𝑣𝑖 , 𝑣𝑖 ∼ 𝑣𝑘 doesn’t imply 𝑣 𝑗 ∼ 𝑣𝑘 .

For a given task location 𝑣t, we refer to the set of peer locations

of each location 𝑣𝑖 as P𝑖 =
{
𝑣 𝑗 ∈ V

��𝑣𝑖 ∼ 𝑣 𝑗 }. To ensure the

estimation accuracy of traveling cost, we restrict the obfuscation

range of a worker to his/her real location 𝑣𝑖 ’s peer location set P𝑖 ,
called the peer location constraints. Specifically, any location 𝑣𝑘
outside of 𝑣𝑖 ’s peer location set won’t be selected as an obfuscated

location for 𝑣𝑖 :

𝑧𝑖,𝑘 = 0, ∀𝑣𝑘 ∉ P𝑖 , (2)

In addition, for each real location 𝑣𝑖 , the sum probability of

selecting the obfuscated locations in P𝑖 should be 1 (probability
unit measure), i.e.,∑

𝑣𝑘 ∈P𝑖 𝑧𝑖,𝑘 = 1, ∀𝑖 = 1, ..., 𝐾 . (3)

Note that although limiting the selection of obfuscated loca-

tions to the peer location set narrows the obfuscation range, it

still upholds users’ location privacy. As exemplified in Fig. 4,

the peer locations P𝑖 of the real location 𝑣𝑖 are in the red area,

and the majority of these peer locations, e.g., {𝑣2, 𝑣3, 𝑣4, 𝑣5}, are
distanced from the actual location 𝑣𝑖 , even though they share

a similar traveling cost to the destination as 𝑣𝑖 . The substantial

distance between the real location and the peer locations leads to

a notable degree of inference error in the estimated location made

by a potential attacker. This observation is further demonstrated

by the findings presented in Fig. 16(a)(b) and Fig. 17(a)(b) in our

experiment in Section 5.

3.1.3 Privacy criterion. We select geo-indistinguishability (Geo-
Ind) [24, 34, 39] as the privacy criterion for the obfuscated loca-

tion selection. Intuitively, Geo-Ind enforces that, for any pair of

locations 𝑣𝑖 and 𝑣 𝑗 that are geographically close, the probability

distributions of their obfuscated locations should be sufficiently

close, so that it is hard for attackers to distinguish 𝑣𝑖 and 𝑣 𝑗 based

on their obfuscated locations. Compared to other criteria, such as

𝑙-diversity and expected inference error, Geo-Ind has exhibited a

stronger capacity to control the posterior information leakage

from obfuscated locations [39]. Without assuming certain types

of location prior distribution known by attackers, Geo-Ind en-

ables the application of our method in a broader range of practical

scenarios.

Formally, 𝜖-Geo-Ind is defined as, ∀𝑣𝑘 ∈ V ,

𝑧𝑖,𝑘 − 𝑒𝜖𝑐𝑖,𝑗 𝑧 𝑗,𝑘 ≤ 0, ∀𝑣𝑖 , 𝑣 𝑗 ∈ V, (4)

where 𝜖 is called privacy budget, quantifying how close are 𝑣𝑖
and 𝑣 𝑗 ’s obfuscated location probability distributions. Higher 𝜖

implies that the two real locations are more distinguishable and

hence a lower privacy level to achieve.

According to the peer location constraint (Equ. (2)) and the

peer relation’s commutativity (Property 3.1 (b)), when formulating

the Geo-Ind constraint (in Equ. (4)) for each obfuscated location

𝑣𝑘 , we only need to consider the real locations 𝑣𝑖 and 𝑣 𝑗 that are

𝑣𝑘 ’s peer locations, i.e., 𝑣𝑖 , 𝑣 𝑗 ∈ P𝑘 . Therefore, we modify the

𝜖-Geo-Ind constraint in Equ. (4) to: ∀𝑣𝑘 ∈ V ,

𝑧𝑖,𝑘 − 𝑒𝜖𝑐𝑖,𝑗 𝑧 𝑗,𝑘 ≤ 0, ∀𝑣𝑖 , 𝑣 𝑗 ∈ P𝑘 . (5)

3.2 Problem Formulation
Given the task location 𝑣t and the real location 𝑣𝑖 , the quality

loss caused by an obfuscated location 𝑣𝑘 is calculated by Δ𝑐𝑖,𝑘 =��𝑐𝑖,t − 𝑐𝑘,t��. We let 𝑝𝑘 (𝑘 = 1, ..., 𝐾) denote the prior probability

that a worker’s real location is at 𝑣𝑘 . The product 𝑝𝑖𝑧𝑖,𝑘 is the joint

distribution of the real location 𝑣𝑖 and the obfuscated location

𝑣𝑘 , and hence the expected quality loss of the obfuscation matrix

Δ (Z) over all possible 𝑣𝑖 and 𝑣𝑘 is defined by

Δ (Z) = ∑𝐾
𝑖=1

∑𝐾
𝑘=1

𝑝𝑖𝑧𝑖,𝑘Δ𝑐𝑖,𝑘 =
∑𝐾
𝑘=1

c⊤
𝑘
z𝑘 , (6)

where c𝑘 =
[
𝑝1Δ𝑐1,𝑘 , ..., 𝑝𝐾Δ𝑐𝐾,𝑘

]⊤
and z𝑘 = [𝑧

1,𝑘 , ..., 𝑧𝐾,𝑘 ]⊤.
Our objective is to minimize the expected quality loss Δ (Z) [9]

To satisfy the constraints of peer location (Equ. (2)), proba-

bility unit measure (Equ. (3)), Geo-Ind (Equ. (5)), and minimize

Δ (Z), we formulate the problem of Geo-obfuscation generation
in Time-sensitive SC (GTS) as the following linear programming
(LP) problem.

min Δ (Z) (7)

s.t. Equ. (2) (3) (5) are satisfied. (8)

In general, the computation load of an LP problem depends on

the number of decision variables and linear constraints [14]. In

the case of GTS, the numbers of decision variables and Geo-

Ind constraints are 𝑂 (𝐾2) and 𝑂 (𝐾3), respectively, leading to

an extremely high computation load. Furthermore, altering the

Geo-Ind constraints in Equ. (4) to Equ. (5) results in our problem

distinct from the classic geo-obfuscation optimization problems

[23, 24, 34]. As a consequence, the applicability of their constraint

reduction and decomposition techniques to this newly formulated

problem becomes challenging. Considering that the optimal Z
should be derived quickly in SC due to the time-sensitive nature

of applications, in Section 4, we present the new algorithms that

can solve GTS in a high time efficiency.

4 ALGORITHM DESIGN
In this section, we introduce three algorithms to improve the

computation efficiency of solving GTS: peer location searching
(Section 4.1), Geo-Ind-constraint reduction (Section 4.2), and the

column generation algorithm (Section 4.3).

4.1 Peer Location Searching
Upon receiving a task request, the server calculates the peer

location set for the actual location 𝑣𝑖 based on the task location

𝑣t. Note that as the server lacks information regarding the precise

location of the worker, it has to compute the peer location set for

all 𝑣𝑖 ∈ V .

To calculate the traveling cost 𝑐𝑖,t (or the shortest path dis-

tance) from each 𝑣𝑖 to 𝑣t, the server first builds the shortest path
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Figure 5: Sliding window of peer location searching (round 𝑖).

tree (SPT) rooted at 𝑣t using the Dijkstra’s algorithm [8]. The

server then sorts the locations in V according to 𝑐𝑖,t. Without

loss of generality, in what follows we assume that 𝑐𝑖,t ≤ 𝑐𝑖+1,t
(𝑖 = 1, ..., 𝐾 − 1).

Given the sorted locations 𝑣1, ..., 𝑣𝐾 , the server searches the

peer location set of each 𝑣𝑖 sequentially, such that in each round

𝑖 , the peer location set P𝑖 of 𝑣𝑖 can be identified.

As Fig. 5 shows, to avoid using nested loops with 𝑂 (𝐾2) time

complexity, a sliding window

[
𝑤
(𝑖 )
start

,𝑤
(𝑖 )
end

]
is maintained by the

server so that 𝑣𝑖 ’s peer location set P𝑖 falls exactly within the

window in each round 𝑖 , i.e., P𝑖 =
{
𝑣 𝑗 ∈ V

���𝑣 𝑗 ∈ [
𝑤
(𝑖 )
start

,𝑤
(𝑖 )
end

] }
.

To this end, we locate𝑤
(𝑖 )
start

and𝑤
(𝑖 )
end

to satisfy

𝑐𝑖,𝑡 − 𝜂 ∈
[
𝑐
𝑤
(𝑖 )
start

,𝑡
, 𝑐
𝑤
(𝑖 )
start
+1,𝑡

)
, 𝑐𝑖,𝑡 + 𝜂 ∈

(
𝑐
𝑤
(𝑖 )
end
−1,𝑡 , 𝑐𝑤 (𝑖 )

end
,𝑡

]
. (9)

Here, both𝑤
(0)
start

and𝑤
(0)
end

are initialized by 1. Comparing thewin-

dows for 𝑣𝑖−1 and 𝑣𝑖 , denoted by
[
𝑤
(𝑖−1)
start

,𝑤
(𝑖−1)
end

]
and

[
𝑤
(𝑖 )
start

,𝑤
(𝑖 )
end

]
,

we can find that

𝑐
𝑤
(𝑖−1)
start

,𝑡
≤ 𝑐𝑖−1,𝑡 − 𝜂 ≤ 𝑐𝑖,t − 𝜂 < 𝑐

𝑤
(𝑖 )
start
+1,𝑡 (10)

⇒ 𝑤
(𝑖−1)
start

< 𝑤
(𝑖 )
start
+ 1⇒ 𝑤

(𝑖−1)
start

≤ 𝑤 (𝑖 )
start

(11)

𝑐
𝑤
(𝑖−1)
end

−1,𝑡 < 𝑐𝑖−1,𝑡 + 𝜂 ≤ 𝑐𝑖,𝑡 + 𝜂 ≤ 𝑐𝑤 (𝑖 )
end
,𝑡

(12)

⇒ 𝑤
(𝑖−1)
end

− 1 < 𝑤
(𝑖 )
end
⇒ 𝑤

(𝑖−1)
end

≤ 𝑤 (𝑖 )
end

(13)

indicating that the sliding window never moves backward from

round 𝑖 − 1 to round 𝑖 (𝑖 = 1, ..., 𝐾 ).

Time complexity of peer location searching. The time com-

plexity of the peer location searching can be calculated using

amortized analysis, which is a worst-case time complexity anal-

ysis of a sequence of operations [8]. In each round 𝑖 , the start-

ing location of the window moves from𝑤
(𝑖−1)
start

to𝑤
(𝑖 )
start

, taking

𝑤
(𝑖 )
start
−𝑤 (𝑖−1)

start
+ 1 iterations. In each iteration, the server checks

whether the current starting location satisfies Equ. (9), and if

not, it moves the window’s starting location to the next loca-

tion, which takes 𝑂 (1) operations. Thus, the time complexity

of moving the starting location of the window from round 1 to

round 𝐾 is

∑𝐾
𝑖=1

(
𝑤
(𝑖 )
start
−𝑤 (𝑖−1)

start
+ 1

)
×𝑂 (1) = 𝑂 (𝐾). Similarly,

we derive that the time complexity to move the ending location

of the window𝑤
(𝑖 )
end

is also𝑂 (𝐾). Therefore, the time complexity

of the peer location searching is 𝑂 (𝐾) +𝑂 (𝐾) = 𝑂 (𝐾).

4.2 The Geo-Ind Constraint Reduction
Since each obfuscated location 𝑣𝑘 (𝑘 = 1, ..., 𝐾 ) can have at most

𝐾 − 1 peer locations, the number of constraints created by each

obfuscated location in Equ. (5) is at most 𝐾 (𝐾 − 1). Therefore, in
the worst case, the total number of Geo-Ind constraints for all the

obfuscated locations 𝑣1, ..., 𝑣𝐾 is𝑂 (𝐾)×𝑂 (𝐾 (𝐾−1)) = 𝑂 (𝐾3). To

𝑣1 𝑣𝑚1
𝑣𝑚2

𝑣𝑚𝑛
𝑣𝑀

…… … …

Each neighboring peers satisfy Geo-I

Shortest path from 𝑣1 to 𝑣𝑀

The locations in 𝑃𝑘

Figure 6: Transitivity property of Geo-Ind in a graph.

improve time efficiency without sacrificing the optimality of the

GTS solution, we utilize the transitivity property of Geo-Ind con-

straints in graphs to reduce the number of Geo-Ind constraints.

It is important to highlight that, the transitivity property of

Geo-Ind, as defined in this paper, differs from the one presented

in [22]. In the context of [22], Geo-Ind was imposed on every pair

of adjacent locations (nodes) in the mobility graph. Conversely,

in the current paper, Geo-Ind is exclusively enforced between

each pair of locations 𝑣𝑖 and 𝑣 𝑗 that share the same peer location

𝑣𝑘 (according to Equ. (5)), i.e., 𝑣𝑖 and 𝑣 𝑗 have to be in the same

peer location set P𝑘 . Consequently, the transitivity property

expounded in [22] cannot be applied to our present scenario.

As a solution, we first define neighboring peers in Definition

4.1 and prove that, to enforce Geo-Ind for all the pairs in P𝑘 , it is
sufficient to enforce Geo-Ind only for each pair of neighboring

peers in P𝑘 . We then propose a time-efficient algorithm to create

the Geo-Ind constraints for all the neighboring peers in each peer

location set P𝑘 , of which the detailed pseudo code is shown in

Algorithm 1 and Algorithm 2.

Definition 4.1. (Neighboring peers) Given an obfuscated loca-

tion 𝑣𝑘 ’s peer location set P𝑘 , a pair of locations (𝑣𝑖 , 𝑣 𝑗 ) is called
neighboring peers if no other location 𝑣𝑙 ∈ P𝑘 is in the shortest

path between 𝑣𝑖 and 𝑣 𝑗 (in both directions). We useN𝑖,𝑘 to denote
the set of 𝑣𝑖 ’s neighboring peers in P𝑘 .

Theorem 4.2. (Transitivity of Geo-Ind in the peer location set)
To enforce Geo-Ind for each pair of locations in P𝑘 , it is sufficient
to enforce Geo-Ind only for each pair of neighboring peers in P𝑘 .

Proof. We pick up any pair of locations in P𝑘 . Without loss

of generality, we denote the two locations by (𝑣1, 𝑣𝑀 ) and denote
their shortest path in P𝑘 by S(𝑣1,𝑣𝑀 ) = ((𝑣1, 𝑣2) , ..., (𝑣𝑀−1, 𝑣𝑀 )),
as Fig. 6 shows. We then prove that (𝑣1, 𝑣𝑀 ) satisfies Geo-Ind if

all the neighboring peers in P𝑘 satisfy Geo-Ind.

We use 𝑣𝑚1
, ..., 𝑣𝑚𝑛

(1 < 𝑚1 < ... < 𝑚𝑛 < 𝑀) to denote

the locations in P𝑘 along the shortest path S(𝑣1,𝑣𝑀 ) , and let

𝑚0 = 1 and𝑚𝑛+1 = 𝑀 . Since 𝑣𝑚1
, ..., 𝑣𝑚𝑛

are in the shortest path

from 𝑣1 to 𝑣𝑀 sequentially, 𝑐1,𝑀 =
∑𝑛
𝑙=0

𝑐𝑚𝑙 ,𝑚𝑙+1 . Because each

neighboring peer (𝑣𝑚𝑙
, 𝑣𝑚𝑙+1 ) (𝑙 = 1, ..., 𝑀 − 1) satisfies Geo-Ind,

for each obfuscated location 𝑣𝑘 ,

𝑧
1,𝑘 − 𝑒𝜖𝑐1,𝑀 𝑧𝑀,𝑘 = 𝑧

1,𝑘 − 𝑒𝜖
∑𝑛

𝑙=0
𝑐𝑚𝑙 ,𝑚𝑙+1 𝑧𝑀,𝑘 (14)

=

𝑛∑︁
𝑙=0

(
𝑧𝑚𝑙 ,𝑘 − 𝑒

𝜖𝑐𝑚𝑙 ,𝑚𝑙+1 𝑧𝑚𝑙+1,𝑘
)︸                            ︷︷                            ︸

≤0 since (𝑣𝑚𝑙
, 𝑣𝑚𝑙+1 ) satisfy Geo-Ind

𝑒
𝜖
∑𝑙

ℎ=1
𝑐𝑚ℎ,𝑚ℎ+1

≤ 0, (15)

indicating that (𝑣1, 𝑣𝑀 ) satisfy Geo-Ind. The proof is completed.

□

Note that Theorem 4.2 presented in this paper is a generalized

version of the transitivity property established in [22].
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Figure 7: DFS of 𝑣𝑖 ’s neighboring peers in 𝑣𝑖 ’s SPT.

Neighboring peers’ searching algorithm. Theorem 4.2 states

that enforcing Geo-Ind only for neighboring peers in P𝑘 is suffi-

cient to enforce it for all pairs of locations in P𝑘 . To implement

this, Algorithm 1 formulates the Geo-Ind constraints for 𝑣𝑘 using

a shortest path tree approach. Specifically, using the Dijkstra

algorithm [8] (line 2), the algorithm constructs the shortest path

tree T𝑖 rooted at 𝑣𝑖 for each 𝑣𝑖 ∈ V . Then, the algorithm traverses

𝑣𝑖 ’s neighboring peersN𝑖,𝑘 in P𝑘 using a depth-first-search (DFS)
approach [8] (line 3–4) and formulates the Geo-Ind constraints

for 𝑣𝑖 and its neighboring peers (line 5–6). Algorithm 2 provides

the pseudo-code for DFS. As shown in Fig. 7, when a neighboring

peer of 𝑣𝑖 (step 1○) is reached, such as 𝑣 𝑗 , the algorithm back-

tracks to 𝑣 𝑗 ’s parent (step 2○) without exploring 𝑣 𝑗 ’s descendants.

This is because to reach a descendant of 𝑣 𝑗 , such as 𝑣𝑙 , from 𝑣𝑖 ,

the path must pass through 𝑣 𝑗 , indicating that 𝑣𝑙 cannot be 𝑣𝑖 ’s

neighboring peer according to Definition 4.1.

Algorithm 1: The Geo-Ind constraint formulation for

𝑣𝑘 .

Input :P𝑘
Output :The set of Geo-Ind constraints for 𝑣𝑘

1 for each 𝑣𝑖 ∈ V do
2 Build the shortest path tree T𝑖 rooted at 𝑣𝑖 using the Dijkstra

algorithm;

3 N𝑖,𝑘 ← 𝜙 ;

4 N𝑖,𝑘 ← DFS(𝑣𝑖 , T𝑖 , P𝑘 , N𝑖,𝑘);

5 for each 𝑣𝑗 ∈ N𝑖,𝑘 do
6 Add the Geo-Ind constraint for (𝑣𝑖 , 𝑣𝑗 ) to the LP

formulation;

7 return;

Algorithm 2: DFS(𝑣 𝑗 , T𝑖 , P𝑘 , N𝑖,𝑘 ).
Input : 𝑣𝑗 , T𝑖 , P𝑘 , N𝑖,𝑘

Output :N𝑖,𝑘

1 if 𝑣𝑗 ∈ P𝑘 then
2 Add 𝑣𝑗 to N𝑖,𝑘 ; // Step 1○
3 return N𝑖,𝑘 ; // Step 2○
4 else
5 if 𝑣𝑗 is a leaf node of T𝑖 then
6 return N𝑖,𝑘 ;

7 for each child 𝑣𝑙 of 𝑣𝑗 in T𝑖 do
8 DFS(𝑣𝑙 , T𝑖 , P𝑘 , N𝑖,𝑘);

Complexity of GTS after the Geo-Ind constraint reduction.
After applying the Geo-Ind constraint reduction, the number of

Geo-Ind constraints for each obfuscated location 𝑣𝑘 is approx-

imately equal to the number of edges in the worker mobility

graph G. Note that G retrieved from real-world maps closely

resembles a planar graph, such as the city road map shown in Fig.

Upper layer

Lower layer

Sub1 SubK

…

Constraint matrix

1 0                
⋱

1 0

1 0
⋱

1 0

Geo-I
&Peer
of z1

Geo-I
&Peer
of zK

⋱

.

.

.

Joint 
constraints

Disjoint 
constraints

ො𝒛1,1 ො𝒛1,2

ො𝒛1,3

ො𝒛1,4

ො𝒛𝐾,1 ො𝒛𝐾,2

ො𝒛1,𝐾𝐾
ො𝒛𝐾,3

ො𝒛𝐾,4

(b) Disjoint feasible regions

(a) Block angular structure of 
constraints of the original problem

(c) Column generation algorithm

𝛬1 : 
Feasible 
region of 

𝒛1

𝛬𝐾 : 
Feasible 
region of 

𝒛𝐾

Optimality checkNew columns

ො𝒛1,𝐾1

Equ. (A): Master program

ഥ𝝀∗ =

minσ𝑘=1
𝐾 σො𝒛𝑘,𝑟∈ഥ𝛤𝑘

𝐜𝑘
⊤ො𝒛𝑘,𝑟 𝜆𝑘,𝑟

s. t. σ𝑘=1
𝐾 σො𝒛𝑘,𝑟∈ഥ𝛤𝑘

ො𝒛𝑘,𝑟 𝜆𝑘,𝑟 = 𝟏,

σො𝒛𝑘,𝑟∈ഥ𝛤𝑘
𝜆𝑘,𝑟 = 1, 𝜆𝑘,𝑟 ≥ 0, ∀𝑘, 𝑟

Equ. (B): Dual problem (optimality check)

ഥ𝝅∗ഥ𝝁∗ =

max σ𝑙 𝜇𝑙 + σ𝑘 𝜋𝑘

s. t. σ𝑘 𝜋𝑘ොz𝑘,𝑟 +𝜇𝑙 ≤ 𝐜𝑘
⊤ො𝒛𝑘,𝑟

∀ො𝒛𝑘,𝑟 ∈ ത𝛤𝑘 , 𝑙 = 1, … , 𝐾

Replace each 𝒛𝑘 by σ𝑟=1
𝐿𝑘 𝜆𝑘,𝑟ො𝒛𝑘,𝑟

DW formulation

… Subk …

Equ. (C): Subk: 𝒛𝑘
∗ = maxσ𝑘 𝜋𝑘𝑧𝑘,𝑙 +𝜇𝑙 − 𝐜𝑘

⊤𝒛𝑘 , s. t. 𝒛𝑘 ∈ 𝛬𝑘 , 𝑙 = 1, … , 𝐾

Block 1 Block K

Figure 8: Structure of the CG algorithm.

9 and the campus road map shown in Fig. 19(b). G can be also

a constant number of planar graphs, such as the building map

with 2 floors shown in Fig. 19(a), where each floor corresponds

to a planar graph. Since the number of edges in a planar graph

is 𝑂 (𝐾), the number of Geo-Ind constraints for each obfuscated

location 𝑣𝑘 is up to𝑂 (𝐾). Consequently, the total number of Geo-

Ind constraints for all the obfuscated locations 𝑣1, ..., 𝑣𝐾 is𝑂 (𝐾2).
As Theorem 4.2 suggests, the reduced constraints are sufficient

to maintain the optimality of the original GTS constraints.

Despite reducing the number of Geo-Ind constraints from

𝑂 (𝐾3) to 𝑂 (𝐾2), the Geo-Ind constraint reduction technique in

GTS still results in 𝑂 (𝐾2) decision variables and 𝑂 (𝐾2) Geo-
Ind constraints. Thus, the size of the constraint matrix in GTS

remains at𝑂 (𝐾2) ×𝑂 (𝐾2). Our experimental results in Section 5

reveal that the computation time required to solve the LP problem

with such a large size using classic algorithms (e.g., the simplex

method or the interior point algorithm) is prohibitively high (e.g.,

when 𝐾 ≥ 100).

In the next section, by leveraging the structural characteristics

of the GTS constraints, we will design optimization decompo-

sition techniques to tackle the problem. By doing so, we can

effectively reduce both the number of decision variables and Geo-

Ind constraints to𝑂 (𝐾), providing a much more manageable size

for the problem.

4.3 The Column Generation (CG) Algorithm
Recall that each decision vector z𝑘 = [𝑧

1,𝑘 , ..., 𝑧𝐾,𝑘 ]⊤ (𝑘 = 1, ..., 𝐾 )

denotes the probabilities of selecting 𝑣𝑘 as the obfuscated location

given the real locations 𝑣1, ..., 𝑣𝐾 . If the obfuscation matrix Z
is reshaped to a vector z = [z⊤

1
, ..., z⊤

𝐾
]⊤, then the constraint

matrix of z consists of two parts, as depicted in Fig. 8(a): (1) Joint
constraints, i.e., the probability unit measure (Equ. (3)), link all z1,
..., z𝐾 together; (2) Disjoint constraints, including the constraints

of peer locations (Equ. (2)) and Geo-Ind (Equ. (5)), are decomposed

to a set of matrix blocks. Each block 𝑘 contains the constraints

of z𝑘 .
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As Fig. 8(b) shows, the feasible region of each z𝑘 defined by

each block matrix 𝑘 is a polyhedron Λ𝑘 . Replacing each z𝑘 ∈ Λ𝑘
by a convex combination of Λ𝑘 ’s extreme points, we can obtain

theDantzigWolfe (DW) formulation of GTS, of which the decision
variables are the weights 𝝀 assigned to the extreme points of the

polyhedrons Λ1, ..., Λ𝐾 (the detailed DW formulation can be

found in our technical report [25]). Although the number of the

decision variables in the DW formulation is exponential with

respect to 𝐾 (as each polyhedron might have an exponential

number of extreme points), a majority of its extreme points are

not visited during the simplex method search. In this regard, we

only need to search a subset of extreme points (columns) to find

the optimal solution using the CG algorithm [23].

More precisely, as Fig. 8(c) shows, the CG algorithm starts with

a restricted master program (RMP) by considering only a subset

of columns of the original DW constraint matrix, and then use

its dual problem (DRMP) to test the optimality of RMP’s solution

𝝀
∗
. DRMP can be further decomposed into a set of subproblems;

if 𝝀
∗
hasn’t reached the optimal of the original DW formulation,

the subproblems can identify new columns to add to the master

program to improve the solution. This process is repeated until

𝝀
∗
converges to the optimal. A more detailed description of CG

can be found in our technical report [25].

Complexity of CG. The number of decision variables and the

number of constraints in both RMP and DRMP are 𝑂 (𝐾), which
can be efficiently solved using the simplex algorithm. The only re-

maining question is how many iterations are needed to converge

𝝀
∗
to the optimal. This aspect will be further discussed in our ex-

periment in Fig. 13 in Section 5. In the experiment, to check how

close 𝝀
∗
can achieve the optimal, we compare 𝝀

∗
with a lower

bound of the DW’s optimal solution (given by Theorem 4.3).

Theorem 4.3. For each sub𝑘 in each iteration 𝑛, we let

𝛿
(𝑛)
𝑙,𝑘

=
∑
𝑘 𝑧
∗
𝑘,𝑙
𝜋
∗(𝑛)
𝑘
+ 𝜇∗(𝑛)

𝑙
− c⊤

𝑘
z∗
𝑘

(16)

and 𝛿 (𝑛)
𝑙

= max𝑘 𝛿
(𝑛)
𝑙,𝑘

. Then,

𝜉 (𝑛) =
∑
𝑘 𝜋
∗(𝑛)
𝑘
+∑𝑙 (𝜇∗(𝑛)𝑙

− 𝛿 (𝑛)
𝑙

)
(17)

is a lower bound of the DW’s optimal. In this context, the superscript
(𝑛) signifies that the variables are in the 𝑛th iteration.

Proof. Based on Equ. (16), we obtain that, in each iteration 𝑛,

maxz𝑘 ∈Λ𝑘

{∑
𝑘 𝑧𝑘,𝑙𝜋

∗(𝑛)
𝑘
+
(
𝜇
∗(𝑛)
𝑙
− 𝛿 (𝑛)

𝑙

)
− c⊤

𝑘
z𝑘
}
≤ 0, (18)

implying

{
𝜋
∗(𝑛)
1

, ..., 𝜋
∗(𝑛)
𝐾

,

(
𝜇
∗(𝑛)
1
− 𝛿 (𝑛)

1

)
, ...,

(
𝜇
∗(𝑛)
𝐾
− 𝛿 (𝑛)

𝐾

)}
con-

struct a feasible solution to the dual problem. Therefore, the

corresponding objective value in the dual problem

∑
𝑘 𝜋
∗(𝑛)
𝑘
+∑

𝑙

(
𝜇
∗(𝑛)
𝑙
− 𝛿 (𝑛)

𝑙

)
offers a lower bound of the GTS optimal (ac-

cording to weak duality [14]). □

5 PERFORMANCE EVALUATION
In this section, we assess the performance of our fine-grained

geo-obfuscation algorithm, labeled as “FineGeo” for brevity.

In Section 5.1, we first conduct a large-scale trace-driven sim-

ulation using the map and the vehicle trajectory dataset of Shen-

zhen city
1
. In Section 5.2, we carry out two real-world experi-

ments in a building and a campus using the SC geo-obfuscation

prototype we developed.

1
The MATLAB source code of FineGeo is available at: https://github.com/chenxiunt/

fine-grained-geo-obfuscation

Figure 9: The road map of Shenzhen (including the heap map
of the GPS record density).
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Figure 10: Dataset statistics.

Benchmarks. We compare FineGeo against the following three

benchmarks, all of which use 𝜖-Geo-Ind as the privacy criterion:

(i) Grid-based geo-obfuscation (labeled as “Grid”) [34]. “Grid”
discretizes the location field into a grid map, rendering the

locations of workers indistinguishable within individual

grid cells. Similar to FineGeo, Grid’s objective is to mini-

mize the expected quality loss by employing an LP frame-

work, while abstaining from any constraint reduction or

optimization decomposition methods. Consequently, Grid

has to construct the obfuscation matrix based on a less

finely-grained location set. In particular, our initial investi-

gation reveals that when the number of locations exceeds

50, it is hard to directly use classic LP algorithms like the

Simplex method and the interior point algorithm to cal-

culate the obfuscation matrix efficiently. As such, we let

“Grid” discretize the target regions into 50 grid cells, de-

noted as "Grid-50". For the sake of comparison, we also

run the “Grid” that discretizes the target regions into 40

grid cells, referred to as “Grid-40”.

(ii) Laplacian noise (labeled as “Laplace”) [7], where the ob-
fuscated location of each real location 𝑣𝑖 follows a polar

Laplace distribution 𝑧𝑖,𝑘 ∝ 𝑒−𝜖𝑐𝑖,𝑘 (𝑣𝑘 ∈ V). The Lapla-
cian noise naturally satisfies 𝜖-Geo-Ind [7] without using

LP, and its time complexity is significantly lower than LP-

based methods. As such, Laplace can be developed on a

fine-grained location set like FineGeo. However, in Laplace,

users’ mobility is considered only on a 2-dimensional

plane, without considering any mobility restrictions they

may have. Additionally, it does not optimize the distribu-

tion of obfuscation locations to minimize quality loss.

(iii) Vehicle-based geo-obfuscation (labeled as “VGO”) [24], which
is our prior work aiming to protect the location privacy

of vehicles in SC. VGO takes into account the network-

constrained mobility features of the vehicles and employs

LP to minimize quality loss. However, when selecting ob-

fuscated locations, it does not impose any constraints to

mitigate the resulting quality loss for SC.
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Metrics. We test the following metrics of the different methods:

(1) Computation time to execute algorithms. The experiments

are performed on a server with two Intel Xeon Silver 4309Y

CPUs, each with 8 cores. The server runs Rocky Linux 8.6.

For FineGeo, we measure the computation time of peer

location searching (introduced in Section 4.1) and the CG

algorithm (introduced in Section 4.3), including the re-

stricted master program (RMP), its dual problem DRMP,

and the subproblems.

(2) Quality loss, measured by the average estimation error of

traveling distance (Δ(Z) defined by Equ. (6)). We didn’t se-

lect “traveling time” as the metric as it is highly impacted

by factors other than algorithms, e.g., the moving speed

of workers.

(3) Expected inference error (EIE), which describes the expected
distortion from the estimated location 𝑣 by the attacker

(using Beyesian inference attack [39]) to the actual loca-

tion 𝑣𝑖 . Higher EIE implies a higher privacy level achieved

by geo-obfuscation.

5.1 Trace-Driven Simulation
5.1.1 Dataset. As Fig. 9 shows, we select the Futian district in

Shenzhen city, China, as the target region of SC. The graph model

of the district is extracted by OpenStreetMap [3], which provides

fine-grained location (node) and road (edge) information of the

city, i.e., the average distance between adjacent locations (nodes)

is 184.9m. To crop the road map data, we used a bounding box

with a south-west corner coordinate of (latitude = 22.50, longitude
= 113.98) and a north-east corner coordinate of (latitude = 22.59,
longitude = 114.10), as per the municipal information of Shenzhen.

We partition the whole target region into 81 subregions indexed

by {1, 2, ..., 81}. The total number of nodes (discrete locations) in

the whole region is 7080, where the maximum number of nodes

in a subregion is 327. Fig. 10(a)(b) show the heat map of the num-

ber of nodes and the number of edges across the 81 subregions,

respectively.

The vehicle trajectory dataset used for the simulation contains

the timestamps, GPS positions, and velocities of around 27,996

vehicles in Shenzhen [38], including 15,610 taxicabs and 12,386

customized transit service vehicles in Dada Car corporation. We

use taxicabs and transit service vehicles as a proxy of crowd-

sourcing workers by assuming that workers’ locations follow the

same probability distribution with taxicabs and transit service

vehicles in the road network. Fig. 10(c) shows the heat map of

the vehicles’ GPS records across the 81 subregions.

5.1.2 Time efficiency of FineGeo. We first evaluate FineGeo’s

computation time, which includes the four components: peer lo-

cation searching, RMP, DRMP, and subproblems. This evaluation

covers the 81 subregions; the results are presented in Fig. 11(a).

The figure shows that the average computation time of peer loca-

tion searching, RMP, DRMP, and subproblems are 0.0008 seconds,

0.0477 seconds, 0.6244 seconds, and 0.0488 seconds, respectively,

and the total computation time to create an obfuscation matrix

is 0.7218 seconds.

Fig. 11(b) displays the computation time of FineGeo’s four com-

ponents given different values of 𝜂. Fig. 20(c) (Fig. 20(d), respec-

tively) displays the correlation between the total computation

time of FineGeo and the node density (edge density, respectively).

Our findings indicate that the total computation time of FineGeo

is positively correlated with 𝜂, node density, and edge density.

For instance, the correlation between the total computation time
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Figure 11: Computation time of FineGeo.
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Figure 12: Number of Geo-Ind constraints with andwithout
GCR.

and the node density (edge density, respectively) is 0.6925 (0.7142,

respectively). This is because a higher value of 𝜂, node density, or

edge density causes a larger peer location set for each obfuscated

location. This, in turn, requires more pairs of real locations to

satisfy the Geo-Ind constraints and leads to higher computation

time.

As a comparison of the time efficiency of FineGeo, we directly

use the MATLAB LP toolbox linprog [1] to solve GTS. Specifi-

cally, we employ the algorithms dual-simplex and interior-point,
both of which terminate without reaching the optimal solution

due to the large constraint matrix size of GTS.

5.1.3 Time efficiency improved by constraint reduction and
decomposition. As introduced in Section 4.2 and Section 4.3, Fi-

neGeo improves time efficiency in solving GTS via the two steps:

Geo-Ind constraint reduction (label as “GCR”) and the column gen-
eration algorithm (label as “CG”). In this part, we test specifically

how these two steps enhance the time efficiency of FineGeo.

With and withou GCR. Fig. 12(a)(b) presents a comparison be-

tween the numbers of Geo-Ind constraints in the LP formulation

(Equ. (7)-(8)) with and without GCR. From the figures, we find

that GCR reduces the number of Geo-Ind constraints of LP by

99.04%. Note that, on average, the number of neighboring peers

for each obfuscated location in the mobility graphs is 0.8819

times higher than the number of nodes in the graphs, indicating
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Figure 13: Convergence of CG.

that there are 𝑂 (𝐾) neighboring peers (each neighboring peer

corresponds to two Geo-Ind constraints) for each obfuscated

location. Hence, the simulation result demonstrates that GCR

reduces the number of Geo-Ind constraints in LP from cubic to

approximately quadratic with respect to the number of locations,

which is consistent with the complexity analysis in Section 4.2.

Time efficiency improved by CG. We proceed by evaluating

the time efficiency of CG. Recall that, in each iteration of CG, RMP,

DRMP, and all the subproblems have only 𝑂 (𝐾) decision vari-

ables and 𝑂 (𝐾) linear constraints, which can be solved quickly

using simplex methods. Therefore, the remaining question is how

many iterations are needed for CG to converge to a near-optimal

solution. Fig. 13(a)(b) presents an example of the convergence of

CG, where we compare the quality loss achieved by CG in one

trace (𝜖 = 10m
−1

and 𝜂 = 80m) with the lower bound derived

by Equ. (17) over iterations. Notably, the dual gap between CG’s

quality loss and the lower bound contains the minimum quality

loss. Fig. 13(a) reveals that CG can attain a near-optimal solution

at the 14th iteration, with the approximation ratio (i.e., the ratio
of the quality loss attained by CG and the quality loss’s lower

bound) reaching 1.003.

Fig. 13(b) shows the boxplot of the CG convergence for 81

different target regions in Shenzhen. This plot reveals a long tail

in the convergence of the CG algorithm, as evidenced by its slow

decrease in the approximation ratio after the ratio reaches 1.005.

To ensure time efficiency, in the following simulation, we set an

acceptable approximation threshold of 𝜉 = 1.005, prompting the

algorithm to terminate once the ratio of quality loss and its lower

bound reaches 𝜉 . Notably, setting 𝜉 = 1.005 results in an average
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Figure 17: QL and EIE of FineGeo.

of 13.758 iterations required for CG termination. Fig. 13(c) shows

the number of iterations to terminate CG across 81 subregions.

Remarkably, the average number of iterations to terminate CG

of all the subregions is 13.758 when 𝜂 = 50m.

We then test how the value of 𝜂 impacts the convergence of

CG. Fig. 13(d) shows the average number of iterations in the 81

subregions increase with the increase of 𝜂 (from 50m to 70m).

Fig. 13(e) (Fig. 13(f), respectively) illustrates the correlation be-

tween the number of iterations required to terminate CG and

the node density (edge density, respectively). The figures show

a positive correlation between the number of iterations and both

node density and edge density, with correlation coefficients of

0.7962 and 0.7948, respectively.

5.1.4 Comparison of quality loss with the benchmarks. In this

part, we evaluate the quality of FineGeo with the comparison

with the four benchmarks: Laplace, Grid-40, Grid-50, and VGO.
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We created 5,000 tasks and 20,000 workers that are uniformly

deployed across 81 subregions. Fig. 14(a)(b) compare the average

quality loss of the five algorithms in the 81 subregions, with vari-

ous 𝜖 and 𝜂, respectively. Both figures demonstrate that FineGeo

achieves significantly lower quality loss than the four bench-

marks. The quality loss of FineGeo is in the range of [20m, 40m],

and on average, it is 87.98%, 82.63%, 79.95%, and 61.76% lower

than that of Laplace, Grid-40, Grid-50, and VGO, respectively. For

example, assuming 30 kilometers/hour driving speed, the quality

loss of FineGeo results in only up to 4 seconds estimation error

of traveling time for vehicles. Such estimation error of traveling

time should be acceptable for time-sensitive SC applications like

CPR assignments.

Notably, Laplace has the highest quality loss since it assumes

workers can move freely without considering their mobility re-

strictions. The quality loss of Grid-40 and Grid-50 is higher than

FineGeo as both Grid-40 and Grid-50 are developed based on

coarse-grained location sets, which cannot accurately estimate

the traveling costs in SC. Not surprisingly, the quality loss of

Grid-40 is higher than that of Grid-50, since lower granularity

location representation causes higher quality loss. Finally, Fine-

Geo outperforms VGO since, besides minimizing the quality loss,

FineGeo additionally sets the peer location constraint to enforce

the estimation error of all the traveling costs to be bounded by

the threshold 𝜂.

Fig. 14(a) shows that all five algorithms have a lower quality

loss when 𝜖 is higher. According to the definition of 𝜖-Geo-Ind

(Equ. (4)), a higher privacy budget 𝜖 enforces less restriction on

the obfuscated location probability, allowing the algorithms to

select the obfuscated location near to the real location, ultimately

leading to a lower quality loss. Fig. 14(b) shows that the quality

loss of FineGeo increases with the increase of 𝜂. It is because a

higher 𝜂 allows a larger obfuscation range, which, on average,

introduces a higher estimation error of traveling distance.

By setting 𝜂 = 80m and 𝜖 = 10m
−1
, we depict the quality loss

distribution of the five algorithms in Fig. 15. From the figure,

we find that only FineGeo has its quality no higher than the

threshold 𝜂, because FineGeo enforces the obfuscation range to

the peer location set of which the quality loss is upper bounded

by 𝜂. In contrast, the other four algorithms don’t have such a

constraint.

5.1.5 Pivacy loss caused by peer location constraint. As demon-

strated by Fig. 14 and Fig. 15, FineGeo can achieve a lower quality

loss compared to the benchmarks since it restricts the selection

of obfuscated locations to the peer location set. The reduced ob-

fuscation range, however, might sacrifice the achieved privacy

levels. To further evaluate how much privacy and quality loss

are reduced by the peer location constraints, in Fig. 16(a)(b), we

compare the expected inference error (EIE) and the quality loss

of FineGeo in the 81 subregions with and without peer location

constraints when 𝜖 = 6m
−1

and 𝜖 = 10m
−1
, respectively. The

two figures show that when 𝜖 = 6m
−1

and 𝜖 = 10m
−1
, apply-

ing the peer location constraints can reduce the EIE of FineGeo

by 14.01% and 8.13%, and reduce the quality loss of FineGeo by

49.77% and 43.83%, respectively. This indicates that incorporating

peer location constraints significantly improves the accuracy of

travel cost estimation while maintaining a high level of privacy.

As illustrated in Fig. 4 in Section 3.1.2, peer locations exhibit

similar travel costs to the exact location of the worker, which

reduces the quality loss significantly. On the other hand, peer
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Figure 18: User interface of the
prototype.

(a) Campus

(a) Building

Figure 19: Real-world
mobility graph.
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Figure 20: Computation time with different 𝜂.
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Figure 21: Number of Geo-Ind constraints reduced by GCR.
locations remain sufficiently distant from the worker’s actual

position, leading to a sufficiently high EIE by attackers.

Additionally, we conducted a comparison of FineGeo’s perfor-

mance with varying values of 𝜂 and 𝜖 , as shown in Fig. 17(a) and

Fig. (b) respectively. The two figures show that FineGeo achieves

an average EIE of 208.14 meters, which is 7.18 times higher than

its quality loss. This substantial location inference error makes it

challenging for potential attackers to accurately track the precise

location of the SC worker.

5.2 Real-World Experiment
In this part, we carried out a pilot study to test the performance

of FineGeo in real-world scenarios within the UNT main cam-

pus (4,9 square kilometers of land area, including 213 discrete
locations) and the building “Discovery Park” (0.055 square kilo-

meters of land area, including 133 discrete locations) using
the prototype we developed. The prototype includes the main

functions of SC like geo-obfuscation and SC task assignment.

Specifically, on the user side, we developed an Android smart-

phone app based on the Google map API. Fig. 18(a) and (b) show

the user interfaces of the Android APP. As shown in Fig. 18(a),

a requester (or patient) can upload his/her task with the task

location specified. Workers (or participants) who opted in can

receive the nearby tasks and report their obfuscated location

to the server, as shown in Fig. 18(b). After receiving the work-

ers’ reported location, the server sends a list of task requests

to the worker, along with the traveling cost estimated based on
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Figure 22: Convergence of CG.
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Figure 23: Obfuscation distribution given different 𝜖 and 𝜂.
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Figure 24: QL of FineGeo with different 𝜖.
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Figure 25: QL of FineGeo with different 𝜂.

the worker’s obfuscated location. By selecting a task request, a

route will be displayed on the map to navigate this worker to the

selected task location.

Fig. 19(a) displays the mobility graph of the campus extracted

from OpenStreetMap [3]. The average distance between adjacent

locations (nodes) is 28.2 meters. Fig. 19(b) shows the mobility

graph of the building, which was extracted from the depart-

ment’s two-floor maps. In this graph, the intersections of the

passageways and staircases are considered “nodes”, and the arcs

connecting the junction locations of the passageways are consid-

ered “edges”. The average distance between nodes in this graph

is 7.71 meters.

5.2.1 Time efficiency of FineGeo. Fig. 20(a)(b) shows the com-

putation time (including peer location searching, RMP, DRMP,

and subproblems) of FineGeo for the two target regions with

different 𝜂 values. Our results show that the average computa-

tion time of FineGeo for the building and the campuses is 2.04

seconds and 2.53 seconds, respectively. As expected, the compu-

tation time of FineGeo in both figures increases with the increase

of 𝜂, as higher 𝜂 introduces more Geo-Ind constraints in LP. This

observation is consistent with the simulation results in Fig. 11(b).

Fig. 21(a)(b) compare the numbers of Geo-Ind constraints in

the LP formulation (Equ. (7)-(8)) with and without GCR in the two

target regions. The figures show that, on average, GCR reduces

the number of constraints by 99.71% and 99.85% for the building

and the campus, respectively.

Fig. 22(a)(b) show the number of iterations needed to termi-

nate CG for the building and the campus, respectively, with the

different 𝜂 values. Like the simulation, we set the acceptable

approximation ratio 𝜉 = 1.005. The figures show that it takes

16.8 iterations (39.9 iterations, respectively) to terminate the CG

algorithm when the target region is the building (the campus, re-

spectively). Moreover, in both figures, CG converges more slowly

when 𝜂 is higher, which is consistent with the simulation results

in Fig. 11(b).

5.2.2 Quality loss of FineGeo. We conducted four experi-

ments to evaluate the quality loss of FineGeo for the two target

regions.

Exp1 (building): 𝜂=20m and 𝜖 is increased from 15m
−1

to 35m
−1

.

Exp2 (campus): 𝜂=50m and 𝜖 is increased from 3m
−1

to 7m
−1
.

Exp3 (building): 𝜖 = 15m
−1

and 𝜂 is increased 𝜂 from 20m to 28m.

Exp4 (campus): 𝜖 = 3m
−1

and 𝜂 is increased from 50m to 70m.

For each experiment, we collected 1,000 location reports from

the participants.

Fig. 24(a)(b) and Fig. 25(a)(b) show the results of Exp 1–Exp4.

The figures indicate that the quality loss of FineGeo increases

with an increase in 𝜂 and decreases with an increase in 𝜖 . These

findings are consistent with the simulation results shown in Fig.

14(a)(b). The average quality loss of FineGeo in the building and

the campus is 10.99 meters and 19.57 meters, respectively. This

results in 3.33 seconds and 5.93 seconds estimation errors of

traveling time for pedestrians, assuming a running speed of 3.3

meters/second [19], which are acceptable for applications like

CPR assignment .

The heat maps in Fig. 23(a)(b)(c) illustrate how the obfuscated

location distribution of FineGeo is impacted by 𝜖 and 𝜂 for the

target region building. The figures show that when 𝜖 is higher (by

comparing Fig. 23(a)(b)), or 𝜂 is lower (by comparing Fig. 23(b)(c)),

the obfuscated location has a higher probability of being close

to the real location, ultimately resulting in a lower quality loss.

6 RELATED WORKS
The study of location privacy traces its roots back nearly two

decades, with Gruteser and Grunwald [13] introducing the con-

cept of “location𝑘-anonymity”. Subsequently, this concept evolved

into the notion of “𝑙-diversity”, meaning that a user’s location can-

not be distinguished from other 𝑙 − 1 nearby locations [39]. How-

ever, 𝑙-diversity oversimplifies the threat model by assuming that

all dummy locations are equally likely to be perceived as the real

location by potential attackers, rendering it vulnerable to various

inference attacks [7, 24, 39]. In recent years, Andr’es et al. [7] pro-
posed the privacy notion Geo-Ind based on the statistical notion

of differential privacy (DP). This work has spurred the develop-

ment of many new geo-obfuscation strategies [7, 29, 34, 39]. For

instance, Andrés et al. [7] not only introduced Geo-Ind but also

developed a geo-obfuscation method to add noise drawn from
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a polar Laplacian distribution to the actual location to achieve

Geo-Ind.

On the flip side, geo-obfuscation inevitably leads to errors in

users’ reported locations and loss of quality in LBS. To address

this issue, researchers have been exploring the trade-off between

privacy and quality of service. For instance, Bordenabe et al.
[9] proposed an optimization framework for geo-obfuscation to

minimize the quality loss for each user while adhering to the

Geo-Ind restrictions. Chatzikokolakis et al. [10] defined privacy

mass over the points of interest on the plane and set the privacy

budget 𝜖 of Geo-Ind for a location based on the local features of

each area. Wang et al. [34] considered the quality loss incurred by
all users as a whole and proposed a location privacy-preserving

task assignment algorithm to minimize the total traveling cost.

Most of the existing geo-obfuscation works adopt an LP frame-

work, which has relatively high time complexity if no constraint

reduction/decomposition is applied. To enhance computational

efficiency, as illustrated in Fig. 26, those works have to discretize

the location field of geo-obfuscation with low granularity [10,

20, 21, 27, 34, 37, 39]. For instance, recent works such as [34, 39]

discretize the workers’ location field into a grid map, where lo-

cations are indistinguishable in each grid (e.g., the grid cell size

𝑔 ranges from 766m×766m [39] to 1.0 km×1.0 km [34]). In such

cases, the estimation error of traveling time (or cost for simplicity)

caused by discretization alone can be as high as

√
2𝑔, which is un-

acceptable in time-sensitive SC applications such as CPR worker

assignment. Delaying the initiation of CPR by even a minute

can decrease the probability of survival by 7-10% [17]. Although

some works like [6, 23, 24, 35] have designed geo-obfuscation at

a higher granularity, they still have to restrict the target region

to a small area, such as 0.055km
2
[24], which is insufficient for

SC applications.

The works most relevant to this work are our recent work

[23, 24], in which we aimed to protect vehicles’ location privacy

in the road network. Both [23, 24] consider workers’ mobility

constraints and discretize vehicle locations with relatively high

granularity. However, these approaches cannot be directly ap-

plied to scenarios such as buildings, where the location field

requires even finer discretization and additional mobility restric-

tions. Moreover, while the works in [23, 24] aim to maximize

the privacy criterion expected inference errors (EIE) and minimize

quality loss, but with no guarantee for the quality of single task

assignment, making them unsuitable for time-sensitive SC.

7 DISCUSSIONS AND CONCLUSIONS
In this paper, we have developed a new geo-obfuscation approach

to protect workers’ location privacy in time-sensitive SC. We en-

force the workers’ obfuscated location to be within his/her “peer

location set” such that the traveling cost estimation errors of each

task are bounded by a threshold. We formulated a new obfusca-

tion generation problem, called GTS, and applied the Geo-Ind

constraint reduction and the DW optimization decomposition

to solve GTS in a time-efficient manner. The experimental re-

sults from simulation and real-world tests have demonstrated

the effectiveness of our approach. We envision several promising

research directions to further explore.

Firstly, this paper primarily addresses sporadic location pro-

tection, while some applications involve workers reporting their

locations multiple times, and these reported locations may exhibit

spatial correlations over time. Recognizing the mobility patterns

of workers across various environments, attackers may poten-

tially identify “impossible” locations during location inference,

thereby narrowing the search space for the true location. Consid-

ering that Geo-Ind-based methods, as context-free LPPMs, have

this common issue, we will expand the current problem scope

by considering multiple reports from mobile users, where the

correlation between obfuscated locations should be considered.

A potential countermeasure involves generating synthetic tra-

jectories that accurately reflect the realistic mobility patterns of

workers, and workers are suggested to select obfuscated locations

from the synthetic dataset, making it challenging for attackers

to discern the worker’s actual location during inference.

Secondly, in our current experiment setting, the edge weight of

our mobility graph is the traveling distance. As the next step, we

will also consider the case where the edge weight is the traveling

time along the edge. In this case, the mobility graph is a time-

varying graph with edge weights evolving due to the dynamic

traffic conditions. If traffic conditions don’t change significantly

during the period when the worker is moving to the destination,

we can approximate the travel time using a snapshot of the time-

varying graph (which is a static graph). If the graph is highly

dynamic, additional challenges arise in estimating travel time, a

topic beyond the scope of this paper, and we will discuss it in

future research.

Thirdly, in our current work, we consider homogeneous work-

ers, where a single graph adequately describes mobility. How-

ever, in real-world scenarios, workers may exhibit heterogene-

ity, comprising a mix of pedestrians and vehicles, for instance.

Therefore, addressing the challenge of modeling the mobility of

heterogeneous workers by incorporating multiple graphs into

geo-obfuscation is another important direction to further explore.

Finally, our current SC platform applies a uniform 𝑒𝑝𝑠𝑖𝑙𝑜𝑛

(privacy budget) for all the workers. We will further consider

the scenario where workers are allowed to set their own privacy

levels. In this case, it is important to design policies to incentivize

workers to balance individual benefits and the collective benefit

of all the workers.
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