
QPSeeker: An Efficient Neural Planner combining both data
and queries through Variational Inference∗

Christos Tsapelas
Athena Research Center

Athens, Greece
ctsapelas@athenarc.gr

Georgia Koutrika
Athena Research Center

Athens, Greece
georgia@athenarc.gr

ABSTRACT
Recently, deep learning methods have been applied on many
aspects of the query optimization process, such as cardinality
estimation and query execution time prediction, but very few
tackle multiple aspects of the optimizer at the same time or com-
bine both the underlying data and a query workload. QPSeeker
takes a step towards a neural database planner, encapsulating
the information of the data and the given workload to learn the
distributions of cardinalities, costs and execution times of the
query plan space. At inference, when a query is submitted to the
database, QPSeeker uses its learned cost model and traverses the
query plan space using Monte Carlo Tree Search to provide an
execution plan for the query.

1 INTRODUCTION
Cost-based query optimization is the process where a database
system determines the optimal execution plan for a query. Car-
dinality estimation, join order selection and computational cost
estimation of a (sub)plan highly affect the decisions of the planner
during the construction of the execution plan. Even though most
databases use hand-crafted heuristics, which encompass many
years of research, they do not scale well to modern analytical
workloads. Towards this direction, recent efforts have turned
their attention to deep neural networks and aim at substituting
traditional components of the planner with neural approximators
[14, 20, 26]. Despite promising results so far, we observe three
aspects of the optimization process that most state-of-the-art
methods do not tackle in their entirety:

− Optimization based either only on data or queries. Most ap-
proaches address query optimization from a workload-driven
point of view [9, 20, 39]. Few efforts focus on data distribution
approximation, mostly for the cardinality/selectivity estimation
problem [5, 26], taking into account only the underlying data.
We observe that a traditional query optimizer calculates and in-
ternally stores statistics regarding the underlying data, which are
used for the cost estimation of a plan operator, while it uses the
information provided from the workload for query caching or
optimization of similar queries, in other words it leverages infor-
mation from both data and the queries. We believe a ML-based
optimizer should do the same too.

− Optimization of a single task during query planning. When
a query is posed to the database system, a traditional query op-
timizer must estimate the selectivities of the query filters, the
cardinalities of join operators, and form an optimal join ordering
for the query. Very few ML-based methods tackle the aforemen-
tioned set of tasks at once [6], while most focus either only on
∗Produces the permission block, and copyright information

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the
27th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2024, ISBN 978-3-89318-094-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

cardinality estimation [29], query latency estimation [39] or join
order selection [37] by trying either to approximate the data
distributions or come up with rich query representations. All
these tasks are mutually dependent, hence optimizing only for
one makes the process inefficient.

− Training on only one plan of the query plan space per query
provided by the DB optimizer. The proposed methods tackling the
join ordering problem or taking into consideration the execu-
tion plan of the query for a particular task, rely heavily on the
execution plan provided by the database optimizer and do not
traverse the query plan space at all. As a result, the biases being
present in the optimizer’s logic form a biased dataset and get
transferred into the model’s weights [4]. A neural network has
the tendency to amplify the biases present in the training set. In
query optimization, and especially in production environments,
this side effect can have catastrophic results.

Motivated from the above limitations, we propose QPSeeker
1 (Query Plan Seeker), a novel end-to-end neural database plan-
ner that (a) simultaneously learns to perform all basic tasks of a
traditional optimizer, such as join order selection, cardinality/se-
lectivity estimation and execution time prediction, (b) leverages
queries and data for training and inference, (c) samples the query
space of each training query to generate an enriched training set,
and (d) uses its rich learned model for query planning.

Overview. In QPSeeker’s core is a model that learns to ap-
proximate the distributions of the cardinality, computational cost
and runtime of the plans in the workload. Our approach assumes
that queries with similar characteristics (e.g., number of tables,
number of joins, filters applied, etc.) and complexity in terms of
execution time will be close to each other in a latent space, and
we use variational inference to learn this space. Hence, at the
heart of our system lies a Variational Autoencoder (VAE) [13],
whose latent space is enforced to follow a Gaussian structure,
where each latent dimension represents a latent feature of the
data. At the end of training, similar queries and, particularly,
similar query execution plans will fall close to each other in the
learned latent space.

To jointly learn from both data and queries, information about
data and data distributions is used for training, along with fea-
tures extracted from the query. We address several challenges.
One challenge is to capture the data distributions from the table
data and provide a rich representation for further processing.
Moreover, the query/plan representations inside the system play
an important role in order to give the model the ability to capture
the correlations between the query, its complexity, and the data.
Furthermore, one important question is how we associate the
query and the execution plan we are investigating. For this pur-
pose, our approach comprises the following novel components.

First, for the representation of table data in the model, we
choose TaBERT [36], a language model for tabular data. Trained
on millions of tables from the WDC corpus [17], it learns much
1https://github.com/athenarc/QPSeeker

Series ISSN: 2367-2005 307 10.48786/edbt.2024.27

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.27

richer data representations than creating database table embed-
dings from scratch. Moreover, the pretraining tasks applied to
TaBERT, i.e., the datatype and cell value prediction, help TaBERT
to learn information about table data types and distributions.

Second, QPSeeker extracts the sets of relations, joins and pred-
icates from the query (as in [14]), and subsequently learns the
mapping between these three sets and the query plan statistics. In
this way, it is able to capture the distributions of various instances
of the above sets (in terms of which elements are present) paired
with the particular physical operators in the query plan.

Third, QPSeeker employs a rich, tree-like, query plan repre-
sentation that: (a) captures data distributions using TaBERT ; (b)
encodes each node in the plan using information about this node
(including the relations involved, the physical operation, and the
contextual representation of the table data) as well as the impact
of the previous operations in the subplan; and (c) computes an
embedding vector that contains the prediction of the values for
the cardinality, cost, and runtime for each node, as well as a data
vector that captures the impact of the node’s children.

Fourth, we observe that each plan node does not have the same
impact on the final runtime of the query and its computational
cost differs from the cost of the other nodes in the plan. For
example, an early decision of the planner for an Index Scan over
a table, which may seem promising at early stages, may lead
to bad paths (join orderings). Therefore, QPSeeker associates
a query and a plan by considering the impact of each plan node
on the query estimations through a cross-attention mechanism.
In particular, we apply attention between the query embedding
vector and the embedding vector of each node in the plan, to
score which nodes have the most impact on the final estimations.

For training, we generate sample plans for each query instead
of relying on a single, ‘best’, plan provided by the DB optimizer. In
this way, we “mimick” a traditional optimizer that traverses the
plan space for a given query and estimates the query execution
cost and runtime along with the cardinalities of the intermediate
results. For each query, we create samples from the plan space,
by taking different join orderings and different methods for the
operators of the query. The rationale for sampling the plan space
is that the DB optimizer relies on internal statistics and formulas
to make its estimations and come up with the best plan. If we
just rely on this plan to train our optimizer, we will not be able
to acquire such broad knowledge. Furthermore, we can either
use the internal cost model of the DBMS or a user-defined one to
generate the training data. Using sampling coupled with varia-
tional inference allows us to train our model not to directly learn
a mapping of the workload to the target values, but to approxi-
mate the distributions of the cardinality, computational cost and
runtime of the execution plans per query in the workload.

At inference, we use Monte Carlo Tree Search [15] along with
our learned cost model, which combines information from both
the data and the query, to traverse the query plan space.

Contributions. The contributions of this paper are:
• We introduce QPSeeker, a novel neural planner that simul-
taneously learns to perform all basic tasks of a traditional
optimizer, such as join ordering, cardinality/selectivity esti-
mation and execution time prediction.

• We cast our learning problem to a variational inference prob-
lem. We train our VAE-based model to approximate the dis-
tributions of the cardinality, computational cost and runtime
of the execution plans. Our model captures hidden common-
alities between the queries and the data into a latent space.

• We leverage both data and queries. We employ a rich query
plan representation that captures the correlations between
the query, its complexity, and the data. For the representa-
tion of table data, we choose TaBERT that captures the data
distributions and provides a rich data representation.

• We calculate the impact each plan node has on the query’s
estimations through an attention mechanism.

• For training, we generate sample plans from the query space
of each training query to generate an enriched training set.
In this way, we train our model not to directly learn a map-
ping of a workload to the target values, but to approximate
the distributions of the cardinality, computational cost and
runtime of the execution plans per query in the workload.

• At inference, we use the learnt model and Monte Carlo Tree
Search for query planning.

• We present detailed experimental results. Our experiments
show that QPSeeker achieves being an all-in-one planner that
performs all tasks of a query optimizer in an effective way
outperforming competitors. Especially, for complex queries, it
outperforms PostgreSQL. Furthermore, it learns better using
complex workloads, and it shows excellent adaptability to
different workloads, where competitors cannot cope.

2 RELATEDWORK
In the last years, there has been significant efforts into the inte-
gration of machine learning models into query optimizers.

Learning Cardinality Estimation. For the regression problems
of cardinality and selectivity estimation, many (un)supervised
methods have been proposed. MSCN [14] is a supervised method
that uses set extraction of the basic elements (relations, joins and
predicates) from each query. Following the same rationale, a new
heuristic metric called Plan-Error is proposed for cost-guided
cardinality estimation [27]. These approaches neglect the presence
of the underlying data and their effect on query performance.

There are approaches that try to capture the underlying data.
Flow-Loss [26] defines a metric, where the query plan is formu-
lated as an electric circuit, and the model estimates the cheapest
path. DQM [5] faces the cardinality estimation task as both (un-
)supervised problem, by estimating distribution densities. Naru
[35] and its predecessor, UAE [31], use autoregressive models to
approximate joint distributions over the database tables. Neuro-
Card [34] estimates the cardinalities over extracted samples from
full outer joins of the database tables. DeepDB [8] introduced
relational sum product networks, which are tree-structured to
capture the data distributions using several local PDFs, and as
we go up the tree, each node stores cumulative PDFs. These ap-
proaches can approximate quite accurately the table distributions
for a small number of joins, but they do not scale well for many joins.
FLAT [41] uses another type of network, called factorize-sum-
split-product network (FSPN), to capture the underlying data
calculating the level of dependency of column via conditional fac-
torization. Finally, Fauce [19] introduced a model incorporating
uncertainty in its predictions.

Learning Join Orders. Another line of research has used rein-
forcement learning (RL) to find plans with low cost (e.g., [16],
ReJOIN [22]). Neo [21] proposes a learnable query optimizer
that incrementally searches and builds the physical query plan.
Despite the significant training time, the produced query plans
were very competitive compared to the plans of a commercial
optimizer. Neo also introduced the formulation of the query plan

308

as a Tree-Convolution, also used in Bao [20]. Bao uses RL to
learn hints at the plan operator level to advise the PostgreSQL
query optimizer. Bao’s approach was adopted to shrink the very
large search space of the SCOPE optimizer [2] to make it work
in a cloud environment [25]. RTOS [38] introduced a Tree-LSTM
structure used with Q-Learning to tackle the join order selection
task, but also needed large number of episodes to achieve com-
parable results. Balsa [33] used RL to produce query plans by
applying query plans to PostgreSQL and evaluating its choices by
trial and error. Toulouse [12] applies RL to learn join orders from
an expert cost-based optimizer and transfers this knowledge into
rule-based optimizers.

Learning Cost Estimation. Plan cost estimation is a critical task
of query optimization. E2E-Cost [29] and QPPNet [23] featurize
the physical query plan as a tree and propose to train a regression
model to predict the cost of a physical plan. E2E-Cost mimics
the tree-structure of the query plan into a Tree-LSTM model.
Moreover, it introduced a new approach to create a neural repre-
sentation keeping the logical semantics of a predicate as well as
a new method to create embeddings for string values. QPPNet
also follows the tree structure of the plan, associating each plan
operator to a small MLP. It proposed a plan-structured deep neu-
ral network, i.e., a neural network model specifically designed
to predict the latency of query execution plans by dynamically
assembling neural units in a network isomorphic to a given query
plan. Zero-Shot [6] aims at generalizing learned cost estimation
to unseen databases. In contrast to workload-driven approaches,
zero-shot cost models suggests a new learning paradigm based
on pre-trained cost models.

Comparison. QPSeeker is an end-to-end neural database plan-
ner that performs all basic tasks of an optimizer, i.e., join order
selection, cardinality/selectivity estimation, cost and execution
time prediction (while most works focus on a single task). Fur-
thermore, existing approaches are haunted by complex designs
and significant training times. For example, Neo [21] reported
24h for training, while QPPNet [23] used a network of 8 layers,
each additional hidden layer adding on the order of 214 additional
weights, that did not converge until epoch 1000 (28 hours). By
leveraging Variarional Inference [1] boosted by a language model
(TaBERT), QPSeeker is considerably leaner, just 10.8M parameters
in total, and can be trained in a short time, (less than 1h) as we
will see in the experiments, making it the first viable solution
that brings deep learning inside the query optimizer.

Furthermore, most approaches do not leverage both queries
and data. E2ECost [29] includes a small sample from each table in
the encoding similar to [14]. QPSeeker combines information from
the queries and the data. It employs a rich query plan representa-
tion approach that (a) captures data distributions using TaBERT
[36], a language model suited for tabular data, and (b) uses atten-
tion to weigh in the impact of each query plan node on the query
estimations. Note that recent works have focused on query plan
representations. For example, QueryFormer [40] proposes a dif-
ferent scheme based on Transformers that integrates histograms
obtained from database systems into query plan encoding.

3 THE PROPOSED FRAMEWORK
3.1 Problem Statement
Given a query, the goal of the planner is to come up with a good
execution plan. An execution plan is represented as a tree whose
internal nodes are operators and its leaves correspond to the
input tables of the query. During query planning, the accurate

Query Parser

query

Q
K

V

C
ro
ss
-A
tte

nt
io
n

H
ea
d

h

Concat

Linear

Cross-Attention

QPAttention

Relations
MLP

Relations Set

Average
Pooling

Joins
MLP

Joins Set

Average
Pooling

Concat

Query Encoder

Query
embedding

Join

Join Scan

Scan Scan

Query Plan Encoder

Plan Nodes
embeddings

TaBERT

DB
Cost Modeler

Li
ne
ar

card𝑒𝑠𝑡
cost𝑒𝑠𝑡

runtime𝑒𝑠𝑡

relations & joins set relations, filters & joins set

tables contextual
representations

estimations
after cross-
attention

Figure 1: QPSeeker’s architecture. The relations and joins sets are
encoded from theQuery Encoder resulting to the query embedding
(left). TaBERT provides the encodings for base relations and the
whole plan is encoded by the Plan Encoder (right). QPAttention
scores the impact of each node in the plan and encodes the input
QEP. The Cost Modeler (VAE) makes the estimates of target values
for each QEP (bottom).

estimations of cardinalities, costs, and runtimes of the execution
plan nodes give the ability to the optimizer to build good plans.

We start with a workload𝑊 of queries. For each query in𝑊
a) we extract the execution plan produced from the optimizer, or
b) we extract a sample of execution plans per query (more details
in Section 5.1). In the former case, our training set consists of a
one-to-one mapping between the queries and the execution plans,
while in the latter a one-to-many. Each unique pair of query and
execution plan is called QEP. Each 𝑄𝐸𝑃 is characterized by its
cardinality, computational cost, and runtime.

We aim to construct a model, which associates the table data
with the physical operations in the plan to predict the resulting
cardinalities, computational costs and runtimes for𝑊 , and fur-
ther to approximate the data distributions and the cardinality,
computational cost and runtime distributions from the available
workload, and make predictions for unseen queries. During in-
ference, when a query is posed to the database system, QPSeeker
uses the trained model and traverses the query plan space to
evaluate candidate plans and suggest the one to be executed.

3.2 QPSeeker Pipeline
We provide an overview of QPSeeker’s pipeline (Figure 1). From
each query, we extract three sets: (a) the set𝑇 q of query relations,
(b) the set 𝐽 q of joins, and (c) the set 𝑃q of conditions over the
database relations. The relations and joins are one-hot encoded
based on the database schema and these encodings are passed to
the Query Encoder to build the query embedding vector.

From the execution plan of each 𝑄𝐸𝑃 , the Plan Encoder en-
codes each physical operator and computes the values of the plan
in a bottom-up fashion, based on features present in the query.
Each plan node takes as input (a) the sum of one-hot encodings
of the relations being present at each level of the subplan, (b)
the physical operation applied also in one-hot encoding, and (c)
the contextual representation of the table data extracted from
TaBERT. The output of each node is an embedding vector, where
the last dimensions are the estimations of the cardinality, cost
and latency of the plan at this level. The root node holds these
values for the entire plan.

309

Next, we combine the outputs of the Query Encoder and Plan
Encoder, i.e., the query and the plan embedding vectors, using
Attention (QPAttention) to scorewhich nodes of the plan affect the
most the given query, followed by a dense layer, with output size
equal to the sum of the query and plan embedding vectors. The
above lead to the encoding of each 𝑄𝐸𝑃 to apply the Variational
Inference model.

The final component of QPSeeker is the Cost Modeler, respon-
sible to capture the distributions of the available 𝑄𝐸𝑃𝑠 in our
training set. The goal of the Cost Modeler is to approximate the
posterior distributions of the target values, which is accomplished
through a variational inference model. The purpose of this model
is to introduce a set of latent Gaussian variables to approximate
the desired distributions of QEPs in the training set. More details
in Section 4.4. Finally, the reconstructed vector is passed to a
linear layer to get the estimates of QPSeeker.

4 QEPS ENCODING
4.1 Query Encoding
The query encoder is responsible for providing a rich representa-
tion of the query. Its output will be used to compute the associa-
tion between the query and the execution plan.

We follow the feature extraction process described in MSCN
[14]. Each relation in 𝑇 q is mapped to a one-hot vector of size
𝑁 , where 𝑁 is the number of database relations. Similarly, each
join in 𝐽 q is transformed into a one-hot vector with length 𝑀
equal to the number of all possible joins in the database. Next, we
transform each set of vectors into a fixed-size input for further
processing. We map𝑇 q and 𝐽 q to two fixed size arrays, 𝑁𝑥𝑁 and
𝑀𝑥𝑀 , respectively. The 𝑁𝑥𝑁 (𝑀𝑥𝑀 resp.) array contains all the
one-hot vectors for 𝑇 q (𝐽 q, resp.) at the first rows and the rest
are all zeros.

We feed each matrix, along with a column vector that serves as
mask to filter the non-zero rows, into a feed forward networkwith
five hidden layers (i.e., a Multi-layer Perceptron, MLP). Finally,
the encoder applies mean pooling among the elements of each
set to derive one representation for each set and concatenates
the two representations to form the query embedding vector. We
use this encoding method, which is based on sets, because we
wish to be able to approximate the distributions of the queries
containing a particular combination of relations and joins, rather
than learning a query specific encoding. This approach, along
with the Cost Modeler’s functionality, allows QPSeeker to be able
to associate and group alternative ways to execute a query, as
shown in Figure 5 (and will be discussed in Section 4.4).

4.2 Query Plan Encoding
The plan encoder aims at capturing the result of the interactions
of the physical operators over the tables learning from the opera-
tors and the structure of each query plan. In this way, the model
can learn, for example, the cost of applying a Hash Join over two
tables, where the outer table is accessed via an index.

Generally, the performance of each plan operator is highly
correlated with that of its children in the execution plan. During
the flow of computation performed inside the plan encoder, we
wish to capture this interaction between the nodes at the operator
level. Hence, at each node, we compute an embedding vector that
contains the prediction of the values for the cardinality, cost, and
runtime for this node, as well as the interaction between the
nodes. To capture the correlations between the nodes, we need
somehow to inform the parent about the output of its children.

LSTM (Join)

LSTM (Join) LSTM (Scan)

LSTM (Scan) LSTM (Scan)

0 . . . 0 0 0 . . . 1 . . . 0 0 . . . 1 0.3 0.6 0.8
[]

0.1 . . . 0.32 1 0 . . . 1 . . . 0 1 . . . 0 0.17 0.72 0.97
[]

0.13 . . . 0.23 0.45 0.78
[]

Zeros Padding Node Input

Ba
se
rel

ru
nt
im
e

ca
rdco
stSc
an
op

Ta
BE
RT

en
c

Children
mean pooling

Node Input

ru
nt
im
e

ca
rdco
st

Joi
n o
p

Ta
BE
RT

me
an

po
oli
ng

Joi
n r
els

ru
nt
im
e

ca
rdco
st

Figure 2: Plan Tree Encoding.

Hence, apart from the current state of the subplan, which will be
discussed shortly in node input, each node in the plan encoder
passes its output to its parent.

Figure 2 depicts our plan tree encoding. Plan Encoder assem-
bles the plan operators in a tree, having the same tree structure
as the execution plan provided by the optimizer.

Node Encoding. A query plan consists of two types of nodes:
(a) the leaf nodes that correspond to the scan operations over
the base tables of the database, and (b) the intermediate nodes
that correspond to the join operations. In our configuration, each
plan node is modeled as an LSTM cell [10]. Similar to the query
plans produced by a database system, where each node in a plan
is affected only by its children, the input of each LSTM cell can
come only from its children. Additionally, the architecture of the
LSTM cell suits very well the query plan encoding process, as
it can capture information over long sequences (its inputs) and
hence it can decide which information from its ancestors is useful
and which not.

Node Output. Each node of the plan outputs a vector (of size
1500) that contains useful knowledge about the interactions of
the operators in the query plan. An example vector is seen at the
output of the root node in Figure 2. The last three dimensions
of this vector are the estimations of the cardinality, cost, latency
of the node in the plan. The remaining dimensions comprise a
data vector that captures the interactions between the nodes of
the (sub-)plan under this node. As estimates for the whole query
plan, we consider the output of the root node of the plan.

Node Input. The input of a node is a fixed size (2048) vector
that combines several types of information. On the right side of
Figure 2, we see the input of a leaf node, and on the left side,
we see the input of an intermediate node. They share a similar
structure but they also have some differences as we explain below.

The input of a leaf is the concatenation of the following vectors
(looking at the example vector from right to left):
a. Estimations for the cardinality, cost and runtime for the oper-

ation of this node. For a given query plan, we use EXPLAIN
to get this information from the DB optimizer.

b. The physical operator applied to this node one-hot encoded.
c. The representation of the data processed. If there is a filter

in the set 𝑃q of predicates over a column of the table, we
take the representation of this column filtered based on this
predicate, otherwise the table representation. In both cases,
the representation is provided by TaBERT.

310

d. The table accessed in this leaf node in one-hot encoding.
e. Zeros for padding. The input of each node consists of two

parts. One part comes from its children nodes and one con-
cerns the operation of the node per se. Since leaf nodes do
not have children, they only encode information regarding
the node and the first part is padded with zeros to tell the
plan encoder that there are no children for this operator of
the plan, hence there is no information from a predecessor
node to affect the node.
The input of a non-leaf node is the concatenation of the fol-

lowing vectors:
a. Estimations of the cardinality, cost and runtime for the oper-

ation of the node computed by mean pooling the last three
dimensions of the output vectors of the node’s children.

b. The physical operator applied to the node one-hot encoded.
c. The representation of the data processed, which comes from

the result of mean pooling over the output from the [CLS]
token of each joined relation. This token has a special func-
tionality as it holds information over the entire table. More
details about the [CLS] token are provided below.

d. The relation encoding is the sum of one-hot vectors of all
relations joined up to this level of the plan. Providing this
encoding to the LSTM cell, we inform the plan which rela-
tionships are present in the subplan and which are not.

e. The information about the interaction between the children
and parent. Instead of zeros in leaf nodes indicating the ab-
sence of an ancestor, we desire that features from children
nodes are passed up the tree. Hence, we provide the result of
mean pooling from the data vectors of the node’s children.
TaBERT - Table Data Representation. While the query and the

plan representations are crucial, the representation of the table
data and their distributions are also very important. One ap-
proach would be to create embedding vectors from scratch for
each database like Neo [21] and TLSTM [29], but such a strategy
has limitations if the table data changes, because the model has to
be retrained again. To override the above restrictions, we reap the
benefits of transfer learning properties found in large pretrained
language models. TaBERT [36] is a special case of BERT [3] for
tabular data, and provides much richer and robust tabular data
representation, unbounded from the strict assumptions regarding
their datatypes and their prior distributions as in a RDBMS.

We use TaBERT as follows: for each 𝑄𝐸𝑃 in the workload, it
tokenizes the columns of the table, and for each column, it creates
(name, datatype, value) triplets separated by a special symbol.
Each value is extracted from the top-K rows of the table with
the biggest n-gram overlap with the query. Then, these triplets
are concatenated with the query and served as input to a BERT
model. After the initial BERT encoding, TaBERT needs to gather
the information from all row-level encodings into one vector
containing an output for each column. Consequently, it calculates
cell-wise attention over all rows, called vertical attention. Each
cell contains the output of TaBERT for each column in the table.
Finally, as in language modeling, where the [CLS] special token
at the start of each sentence holds information about the whole
sentence, similarly this token in the output of TaBERT holds
information for the whole table.

TaBERT is trained on Masked Column Prediction (MCP) and
Cell Value Recovery (CVR) objectives. The former encourages
the model to recover the name and the datatype of the masked

Q K

V

Query Plan
Attention Scores

QPAttention

Query
Embedding

Plan Nodes
Embedding

Cross-Attention

Figure 3: Attention between the query embedding and the plan
nodes’ embeddings.

column from its contexts, hence learning, in this way, the corre-
lation between the masked column and the other columns in the
table. With this task, we can pass to our plan encoder information
about the datatype of a column. The latter objective encourages
the model to predict the values of the masked columns. More
precisely, after column masking and the extraction of top-K rows
from the table, TaBERT is tasked to predict the values of the
masked cells. In this way, TaBERT captures information about
the column distribution, along with its context within the rows.
The developers provide three different models for 𝐾 = [1, 2, 3].
With the use of TaBERT, this information is also inferred in
QPSeeker’s plan encoder.

Hence, for each condition in 𝑃q and relation present in the
query, we use the latent representation extracted from TaBERT
by passing the query and the corresponding table where the con-
dition applies to. We extract the representation of the respective
column in the condition and the table representation to be used
in the inputs of the plan encoder as described earlier. The table
representation is extracted for all tables in the query, through
the [CLS] token.

4.3 Attending the queries to the query plans
When the plan encoding phase is finished, QPSeeker combines
the query and the plan embedding vectors into one embedding
vector, as shown in Figure 3. However, the simple approach of
concatenating these two vectors into one common vector does
not have any semantic value, as they represent two different
sources, i.e., the query and the query plan along with table data.
Instead, we apply cross-attention inspired by the Perceiver ar-
chitecture [11]. Furthermore, we observe that each node does
not have the same impact on the plan in terms of the execution
time and computational cost for the complete plan. For example,
the selection of Sequential Scan instead of the use of an index
over a large table with a high selective filter affects more the
final execution time of the plan. Or the selection of an operator
requiring more memory and hence more computational cost, like
a Hash Join, will have a higher value for its cost, than an Index
Scan. Therefore, we desire to give a score to each plan node and
measure which nodes in the plan have the higher impact on the fi-
nal estimations. To this direction, we make use of cross-attention
between the query and the output of each node in the plan.

For the implementation of cross-attention, we follow the stan-
dard notation and create three matrices, the query, key and value,
(𝑄𝐾𝑉), which are used as projectionmatrices for each𝑄𝐸𝑃 . These
matrices project the query and plan embeddings into a latent
space, where both projections have the same dimensions. The
query and plan nodes embeddings are multiplied with 𝑄 ∈ R𝑞×𝑐
and 𝐾,𝑉 ∈ R𝑑×𝑐 respectively, where 𝑞 and 𝑑 are the output sizes
of the query encoder and the plan Encoder, while 𝑐 is the latent

311

space dimension. The above attention formulation corresponds
to one attention head. In QPSeeker, we use multi-head attention
with four attention heads. On each head, we calculate the scaled
dot-product of 𝑄,𝐾 matrices and apply softmax to the result. In
this way, we calculate the attention scores between the query and
the plan nodes. These scores capture the nodes in the plan with
the most impact with respect to the query. Then, QPAttention is
calculated by:

𝑄𝑃𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 =
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇)𝑉

√
𝑐

, where (1)

𝑄 = 𝑄𝑢𝑒𝑟𝑦𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑇𝑞, 𝐽𝑞) (2)
𝐾,𝑉 = 𝑃𝑙𝑎𝑛𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑇𝑞, 𝐽𝑞, 𝑡𝑎𝑏𝑙𝑒_𝑑𝑎𝑡𝑎) (3)

Finally, the output of each attention head is concatenated and
passed to a dense layer, resulting into a vector with size, equal to
the query embedding vector.

For queries containing no joins, the calculation of QPAttention
does not add any value, as the query plan will contain only one
operator. In this case, QPAttention is equal to the concatenation
of the query and plan embedding vectors.

4.4 Cost Modeler
So far, we have encoded the query, the table data associated with
the query plan, and for each 𝑄𝐸𝑃 , we have calculated how the
plan is associated with the query by weighing in the impact
of each plan node on the estimations for the query through an
attention mechanism. However, for each query, the space of
possible plans is huge, and each plan has different execution time
and computational cost. Our goal is to capture the distributions
of the cardinalities, costs and execution times for the plans in the
space of a query, and to generalise for the entire workload.

For this purpose, at the heart of QPSeeker lies a variational
autoencoder, acting as the cost modeler. The objective of the cost
modeler is not only to approximate the target distributions but
also to be able to generalise on unseen queries, by providing ac-
curate estimates for each plan node statistics, and consequently,
for a whole execution plan suggested by QPSeeker, through vari-
ational inference [1]. Our belief is that execution plans with
analogous complexity, in terms of runtime and execution cost, or
with similar characteristics, such as relations and filters applied,
if projected to a structured latent space, will have representations
close to each other, depicting these similarities. The use of the
VAE aims at the formation of such a latent space.

More precisely, our approach for the Cost Modeler is based
on the following framework: Given a set𝑊 of observed vari-
ables, i.e., in our case, a workload𝑊 of 𝑄𝐸𝑃𝑠 , where each 𝑄𝐸𝑃
is characterized by its cardinality, cost, and runtime, infer a la-
tent variable 𝑧, which generates the initial observations. The
described conditional probabilty can be written as:

𝑝 (𝑧 |𝑊) = 𝑝 (𝑊 |𝑧)𝑝 (𝑧)
𝑝 (𝑊)

where the density of workload𝑊 can be computed as:

𝑝 (𝑊) =
∫

𝑝 (𝑊 |𝑧)𝑝 (𝑧) 𝑑𝑧

As we observe, the calculation of the density function for our
workload𝑊 demands the computation of 𝑝 (𝑧), which we do not
have access to, as it is a latent variable, hence the above integral
is intractable. Despite that, we can approximate the above value
by applying variational inference [1].

Encoder

Q
PA

tte
nt
io
n

𝜇1

..

𝜇𝑘

𝜎𝑘

..

𝜎1

𝜇

𝜎

sample

D
ec
od

er

Re
co
ns
tr
uc
tio

n

Figure 4: VAE’s architecture. The latent space 𝑧 formulates a
mixture of univariate Gaussian distributions.

In variational inference, we specify a family of densities over
latent variable 𝑧, with the purpose to find the best candidate
approximation to the exact conditional. Hence, let 𝑞(𝑧 |𝑊) be the
approximation of the latent variable generating the values for car-
dinalities, costs and runtimes for the𝑄𝐸𝑃𝑠 in our given workload
𝑊 . Since we want to find the best candidate to approximate the
latent variable, the optimization problem is to minimize the error
between the latent and our approximation. Since both values are
density functions, our goal is to minimize the Kullback-Leibler
(KL) divergence, which can be written as follows:

𝐾𝐿𝑚𝑖𝑛 (𝑞(𝑧 |𝑊), 𝑝 (𝑧 |𝑊)) (4)

All we need is to specify the form of the latent variable.
Forcing structure into the latent space. VAE implements the

above model, and it consists of three parts: (a) the encoder, en-
coding the input into the latent space, (b) the sampler, sampling
from the latent distribution, and (c) the decoder, which receives
the sample from the latent and decodes it to the initial input.

Initially, the encoder receives the result of QPAttention and
encodes it into a latent space, serving as the 𝑝 (𝑊 |𝑧) in our frame-
work. Then, the sampler samples a data point from this latent
distribution, and finally, the decoder receives this vector from
this distribution and outputs the reconstructed vector, serving as
the approximation 𝑞(𝑧 |𝑊) in our framework. Finally, the recon-
structed vector is passed to a linear layer, to get the estimates for
a particular QEP.

As described above, in order for VAE to conform with our
described framework, its latent space must describe a distribu-
tion, thus it is forced to have a structure. QPSeeker forces this
structure to be a mixture of univariate Gaussians, and the latent
space represents the parameters of the distributions mixture. The
first half represents the mean and the other half the variance
of the latent distributions, as shown in Figure 4. Finally, during
training, QPSeeker minimizes: a) the reconstruction loss of QPAt-
tention and the KL divergence described in equation 4 and b) the
mean squared error (MSE) between the true values of QEPs and
QPSeeker estimates. The loss can be written as:

𝑄𝑃𝑆𝑒𝑒𝑘𝑒𝑟 loss = | |𝑥 − 𝑥 | |2 + 𝛽 ∗ 𝐾𝐿[𝑁 (𝜇𝑖 , 𝜎𝑖), 𝑁 (0, 1)] (5)

where 𝑥 are the estimates of QPSeeker and 𝑥 the true values of
a particular QEP. For 𝛽 > 1, we emphasize on the KL, encouraging
QPSeeker to learn broader distributions. More on the effect of 𝛽
in the experiments section.

Figure 5 shows how QPSeeker has organized its latent space
for QEPS produced by sampling from the JOB Benchmark [18].
We used the t-SNE method [30] to project the 32 latent features
into 2-d plane. The color codes indicate that these QEPs have
been produced from the same query template. QPSeeker has

312

Figure 5: t-SNE projection of Cost Modeler’s (VAE) latent space
on JOB. The colour codes indicate query plan samples produced
from the same query template.

organized its latent space, not only in a way that query plan
samples from the same query template are close to each other,
but also samples from different queries.

5 TRAINING LOOP & INFERENCE
We train under two settings: (a) for each query, we use the query
plan provided by the DB optimizer, and (b) we enumerate the
query plan space and extract a sample for training (Section 5.1). In
all cases, the first step is the extraction of the query representation
as described in Section 4.1. For example, in our training set exists
a 𝑄𝐸𝑃 containing the following query and execution plan:
query: select * from a, b, c where a.a1=b.b1 and b.b2=c.c1

and a.a2>1

plan: 1.[SeqScan(a),0.3,0.6,0,8], 2.[SeqScan(b),0.2,0.4,0.1]
3.[HashJoin(a, b),0.5,0.8,0.6], 4.[SeqScan(c),0.3,0.7,0.8]

5.[HashJoin(a, b, c),0.4,0.6,0.9]

Figure 6 shows the running example. Query Encoder takes
as input the relation and join matrices and produces the query
embedding vector (step 1). Then, we encode each execution plan
(Section 4.2), and we apply the cross-attention mechanism (Sec-
tion 4.3) to create the input for the cost modeler. For each QEP,
we get the base table representations from TaBERT and construct
the input of each node. The input of each node is passed through
the Plan Encoder resulting to the embedding vector of each node
(step 2). The next step is the calculation of QPAttention between
the query embedding and the five nodes in the plan (step 3). Then,
we pass this joint embedding vector of the QEP to the variational
autoencoder, and finally, (step 4) we pass the reconstructed vector
into a dense layer to get the prediction for the cardinalities, costs
and latencies of the encoded QEP (Section 4.4).

5.1 Query Plan Set Selection
In this section, we describe our approach for generating training
data from samples of the query plan space. In order to learn the
distributions of the cardinalities, costs and execution times of the
query plans set, the naïve approach is to enumerate the query
plan space per query and construct all possible query plans per
query. As the number of relations and joins increases, the plan
space is growing exponentially and the time to enumerate and
execute all these plans is prohibitive.

Hence, from the query graph, we enumerate all the possible
join orderings. Then, we transform each join order into the cor-
responding binary left-depth query plan tree, and we randomly
select an operation from PostgreSQL for each node of the plan.

HJ

(a, b, c)

HJ

(a, b)

SeqScan

(c)

SeqScan

(a)

SeqScan

(b)

0, 0, TaBERT(a), 0, 0, . . . , 1, 0, 1, . . . , 0, 0.3, 0.6, 0.8
[]

M.Pooling(SeqScan(a, b))
M.Pooling(TaBERT(a ,b))
1, 0, . . . , 1
1, 0, . . . , 0,

0.5, 0.8, 0.6

Interm. Node input

. . . , 0, 0.2, 0.4, 0.7
[]Plan Node output

(e) (c) (d) (b) (a)

Cross

Attention

Rels MLP Joins MLP

0 0 . . . 1
0 1 . . . 0
1 0 . . . 0
0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 0

©«

ª®®®®®®®®®®®¬

𝑁 × 𝑁

relations matrix

0 0 . . . 1
0 1 . . . 0
0 0 . . . 0

.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 0

©«

ª®®®®®®®®®¬

𝑀 × 𝑀

joins matrix

Cost

Modeler

card𝑒𝑠𝑡cost𝑒𝑠𝑡runtime𝑒𝑠𝑡

Plan Node
Embeddings
(step 2)

Query
Embedding
(step 1)

QPAttention
(step 3)

Predictions
(step 4)

Figure 6: Running example of an input QEP.

All leaf nodes refer to table scans and all intermediate nodes are
the join operations between two tables.

For each plan we construct, we calculate their corresponding
measures, by a simple yet effective user-defined cost model, then
we sort them based on the cost and pick the first 15% as the query
plan set for a particular query. Our cost model is defined below:

1. Seq Scan = tbl_blocks / block_size +
tbl_rows * cpu_tuple_cost

2. Index Scan = index_height * random_page_cost +
index_leaf_pages / 2 * cpu_tuple_cost

3. BitmapIndexScan = index_height *
random_page_cost + log(tbl_blocks / block_size)

4. Merge Join = (|relA| * log(|relA|) +
|relB| * log(|relB|) + |relA| + |relB|) * cpu_tuple_cost

5. HashJoin = (|relA| + 2 * |relB|) * cpu_tuple_cost

6. NestedLoops = (|relA| * relA_blocks + relB_blocks) *

cpu_tuple_cost

Our choice of left-depth trees is based on both traditional opti-
mizers and learned approaches like Flow-Loss [26] and MTMLF
[32]. We consider different join orderings because we wish our
cost model to be aware of the impact of alternate join orderings
on runtime and cost of a plan. This is achieved through the plan
encoding process, as the relations present in a subplan are given
as input both from the 1-hot encoding and from TaBERT embed-
dings. Additionally, even plans with the same join orderings but
with different operators, are very useful, since QPSeeker takes
into account all values and not just the cardinalities. This allows
us to fuse the complexity of each operator into the learned cost
model, as the estimates are given as input to each node and give
the ability to the model to learn an internal representation of
query plans with similar features, as shown in Figure 5.

Finally, all produced query plans are submitted to PostgreSQL
for execution. In order to inject our plan in the optimizer, we
use the PgCuckoo [9] extension with some modifications, which
forces the optimizer to use our hand-crafted query plan at run-
time. Moreover, we use the EXPLAIN ANALYZE functionality of
the database system to get the statistics from the execution of our
plan. In order to reduce the range of values among all the plans in
the query workload, making the predictions for QPSeeker easier,
we apply Min-Max scaling on the cardinalities of the queries,
their execution times and the cost per physical node in the plans.
We also apply the same process for the intermediate cardinalities
of all subplans.

313

5.2 Inference - Monte Carlo Tree Search
After training the costmodel of QPSeeker, the planner can be used
for planning new queries. As mentioned before, as the number
of relations increases, the number of possible execution plans
grows exponentially making the plan space intractable. In order
to traverse the search space fast and find a good execution plan,
we use the Monte Carlo Tree Search (MCTS) [15] algorithm. In
its basis, MCTS uses randomness to select the next plan operator
using sampling, thus it can estimate a near optimal action in
current state with low computation effort. Moreover, the fact that
it chooses the best action based on long-term rewards, makes it
very appealing for the query plan decision.

We use vanilla MCTS to traverse the query plan space in a
bottom-up fashion. We start from base relations and apply one
join at a time until all relations are present in the final plan. As a
reward function, we use the Upper Confidence bounds for Trees
(UCT) formula proposed be the authors:

𝑟𝑖

𝑛𝑖
+𝐶

√︄
𝑙𝑛𝑡

𝑛𝑖
(6)

where for the 𝑖-th node, 𝑟 i is its reward and calculates how
many times the node is present in the best plan so far during the
simulations. Next, 𝑛i is the number of rollouts, 𝑡 is the number of
rollouts of the parent node, and C is the exploration coefficient
parameter, ranging between [0, 1].

For the evaluation of each plan node, we use QPSeeker’s inter-
nal cost model. Finally, the execution planwith the least estimated
execution time is considered the best plan. The reward for each
node being present in the best plan discovered so far in the simu-
lation is one unit. For each query, we set a planning time cut-off
of 200ms and if the agent has not finished traversing the space
in this time budget, we select the best plan found so far. MCTS
consists of four steps:
1. Selection. Based on the current state of the selected subplan,

the agent chooses the new plan operator in the plan with
highest value, based on our policy, forming the new state of
the plan.

2. Expansion. The agent generates all possible nodes of the query
plan, based on the previously selected action in the plan.

3. Rollout. We start a simulation from the current state of the
plan by randomly selecting the next operator to be applied,
until the plan is complete.

4. Backpropagation. Based on the played simulation, we estimate
the execution time of the simulated plan using QPSeeker’s
cost model and update the rewards.

6 EXPERIMENTAL SETUP
In this section, we describe our experimental setup, and then
in Section 7, we present our experimental results. We evaluated
QPSeeker using 3 different workloads (Table 1).
1. The Synthetic used in MSCN [14]. This workload consists of

100𝑘 queries with 0-2 joins per query.
2. The JOB workload is an augmentation of the Join Order

Benchmark [18]. For each query, we extract sample plans
from the query plan space of each query, as described in
Section 5.1, resulting to 50𝑘 𝑄𝐸𝑃𝑠 .

Workload Queries QEPs Plan Source Database

Synthetic 100𝐾 100𝐾 DB optimizer IMDb
JOB 113 50𝐾 sampling IMDb
Stack 6.2𝐾 6.2𝐾 DB optimizer Stack

JOB-Light 70 70 - IMDb
JOB-Ext. 24 24 - IMDb

Table 1: Evaluation workloads, queries and plan genera-
tion process. Light and Extended versions of JOB were used
only for evaluation.

3. The Stack workload used in Bao [20], which contains over 18
million questions and answers from StackExchange webistes.
The workload consists of 6.2𝐾 queries.
All workloads used in our evaluation are proposed by previous

approaches and are well-studied. Synthetic and JOB are related to
the IMDb database, with size equal to 7.2𝐺𝐵, while Stack is equal
to 100𝐺𝐵. More specifically, Synthetic is the easiest among the
workloads, as the execution of the 100𝐾 queries lasted almost 3
days, meaning 1.3𝑠𝑒𝑐 per query on average, while JOB and Stack
took 9 and 1 days, with 15.7𝑠𝑒𝑐 and 2.5𝑠𝑒𝑐 per query, respectively.
The choice of the above workloads is based on some interesting
characteristics found in their distributions. Synthetic’s distribu-
tions for runtime and cost have the lowest values among the
three workloads as expected, but shows very wide range in the
cardinality distribution. It contains from highly selective queries
with 1-tuple result, to queries with up to approximately 460M
rows. Based on our encoding method, Synthetic has the most
sparse representation, as the 25% of the queries consist of only
one scan over a table, translating to a QEP containing only one
1-hot vector from the query and only one plan node. On the other
hand, JOB and Stack consist of queries with up to 16 and 18 joins
respectively, resulting to a much more dense input. In JOB’s case,
the runtime distribution has the highest values between the three
workloads, making it the slowest one, while cardinality and cost
distributions appear to have completely different distributions
from the other workloads, as they are multimodal distributions.
Finally, while Stack is connected to the largest database in our
setup, we do not observe any anomalies and all values follow
normal distributions with high variance. In this case, we aim to
test how QPSeeker works under a much bigger database.

6.1 Competitors
We first compare QPSeeker’s cost model predictions against ded-
icated systems on each task. Then, we compare the query plans
produced by QPSeeker with two other optimizers:
1. Cost Model performance
• Cost Estimation. We compare our predictions on plan costs
with Zero-shot Cost Estimator [7]. It is a db-agnostic cost
estimator using features extracted from the execution plan
that are common across different databases. We train Zero-
Shot Cost Estimator over the databases/workloads provided
by the authors and we use QPSeeker workloads/databases as
inference.

• Cardinality Estimation. We compare our query cardinality
predictions withMSCN [14]. It is a cardinality estimator using
the relation, join and filter sets present in the query. We
transformed our input workloads to be suitable for input to
MSCN.

314

• Runtime Prediction. We compare QPSeeker’s runtime pre-
dictions with QPPNet [23], which is a plan-based runtime
estimator. It constructs a network similar to the tree struc-
ture of the execution plan, assigning a different MLP for each
plan operator. We extended their dataset creation process to
include QPSeeker workloads.

2. Query Optimization We use PostgreSQL as our baseline sys-
tem. Furthermore, we use Bao [20], which is a RL-based optimizer
providing hints to PostgreSQL planner to deactivate certain plan
operators per query. We trained Bao, by letting it to gain experi-
ence through the execution of the training set of QPSeeker. Then,
we use Bao as an advisor for the execution of the evaluation set.

6.2 Hyperparameters
The output size for the relations and joins MLP in Query Encoder
is 256 each, resulting in a 512-dimensional vector. The hidden
layer size of each MLP is 256. The output size of each plan node in
Plan Encoder is equal to 950 and we extract the hidden state of the
LSTM cell for each plan node. The Cross-Attentionmechanism has
ℎ = 4 attention heads with size 256. The output of each head is
concatenated and given as input to a linear layer with output size
equal to the sum of the two MLPs from the Query Encoder and
the output from the Plan Encoder. For the VAE, both the encoder
and the decoder are feed forward networks consisting of 5 hidden
layers each. The output of each hidden layer is cut down to the
half and doubled in the decoder case similarly. We tested various
sizes for all components of the architecture, where the increase
of parameters in the model did not result in significant boost in
predictions accuracy. We set the latent space of VAE to represent
32 latent features. For TaBERT, we extract the representation
of the tuple with the highest n-gram overlap with the query,
hence we set K = 1. The authors implemented instances for 𝐾 ∈
[1, 3] and trained both base and large instances of BERT[3]. We
show the impact of each configuration in Section 7.2. We did
not observe any significant difference in prediction accuracy,
but higher numbers of 𝐾 as using the large instance, have a
noticeable impact on computation cost and response time from
TaBERT. During training, we freeze TaBERT weights, to keep
low the computational cost of training. For each model instance,
we set the batch size equal to 16 with learning rate to 0.001.

6.3 Training Setup
In all training setups, we split the available workload into 80% -
20% training and evaluation 𝑄𝐸𝑃𝑠 sets, respectively. Especially,
in the JOB training setup, where the query plans are sampled, we
split the available𝑄𝐸𝑃𝑠 at query level, thus we evaluate QPSeeker
on queries never seen before. We experiment with the effect of 𝛽
parameter on QPSeeker’s distribution approximation (Formula
(5)). For each workload, we train 3 instances of QPSeeker with
𝛽 values in [100, 200, 300]. The 𝛽 values, were extracted after
monitoring the gradients of the network and the values between
the KL divergence and the reconstruction loss. For inference,
we experimented with the tunable bias exploration parameter
𝐶 ∈ [0.25, 0.5, 0.75], without noticing any significant difference
on the final plan produced, so we set the exploration parameter
𝐶 = 0.5. All experiments are performed on a Macbook Pro, M1
Pro and 32𝐺𝐵 RAM, using PyTorch [28].

As mentioned before, we use pgCuckoo to inject our execution
plans to PostgreSQL. We implemented a plan rewriter, where
the produced plan from QPSeeker is rewritten, following the
PgCuckoo’s Haskell library format. Then, our plan is compiled

Figure 7: Train Loss through time of QPSeeker against Zero-Shot.

into algebraic code used by the PostgreSQL executor. In this way,
we are able to control the plan generation granularity at plan-
operator level. This process is used for both the generation of
plans through sampling using our user-defined cost model for
training, as well as the plans produced during inference.

7 EXPERIMENTAL RESULTS
Initially, we evaluate the ability of QPSeeker to approximate the
distribution of 𝑄𝐸𝑃𝑠 for each evaluation workload and we pro-
vide Q-Error percentiles on each instance. Q-Error [24] essentially
measures the deviation between the predicted and true value,
in orders of magnitude. Next, using the best instance per work-
load, we compare QPSeeker’s cost model with state-of-the-art
systems per task and report again Q-Error percentiles. These are
presented in Section 7.1. Following, we evaluate the performance
of our cost model, by executing JOB with query plans produced
by a cost model trained on a completely different workload, like
Synthetic. Finally, we train different instances of our cost model
under different samples produced by our plan sampling method
and compare the impact of different instances of TaBERT. Both
of these evaluations are discussed in Section 7.2.

7.1 Cost Model Performance
First, we report Q-Error percentiles for cardinality, cost and run-
time prediction of QPSeeker for diferrent values of parameter 𝛽 .
Next, we use the best instance per workload, based on predicted
runtime, and compare Q-Error percentiles with each competitor
on all workloads.

7.1.1 Parameter 𝛽 effect. Table 2 shows the performance of
our model compared with true values for each quantity. For each
workload, we highlight the model instance with the best perfor-
mance regarding the runtime prediction, as this prediction is used
during inference as the scoring model for MCTS. Generally, we
observe that, in both JOB and Stack workloads, the smallest value
of 𝛽 = 100, has the best results, while for Synthetic, it is close
to QPSeeker instance with 𝛽 = 200. This result can be explained
from the formulation of our loss function. Keeping the value of
𝛽 low, favors the reconstruction loss, in other words, it focuses
more on correct predictions, making QPSeeker to be stricter to
its predictions.

Among datasets, we observe QPSeeker adapts really well on
the "complex" workloads, but it falls short on the "easy one" (i.e.,
the Synthetic). This difference between the Synthetic and the
other two workloads comes from the fact that the input to the
Query Encoder in the former case is much sparser than the latter
ones. A large subset of Synthetic queries involve only one table.
For these queries, the Relations MLP gets a matrix containing
the one-hot encoding in only one cell and the rest of the 𝑁𝑥𝑁

315

Table 2: QPSeeker Cost Model for different values of 𝛽 . Best model extracted using median Q-Error (50th percentile).

Cardinality Cost Runtime

Dataset Perc 𝛽 = 100 𝛽 = 200 𝛽 = 300 𝛽 = 100 𝛽 = 200 𝛽 = 300 𝛽 = 100 𝛽 = 200 𝛽 = 300

Synthetic

50% 23.72 18.49 21.02 5.31 4.20 5.11 4.20 3.79 4.15
90% 1440.46 1712.01 1477.18 30.75 40.86 31.82 58.35 71.87 58.389
95% 7332.00 7736.28 9047.75 2580.73 3654.32 2753.45 243.23 323.01 248.76
99% 9268.34 10 025.61 1148.05 3742.72 5299.70 3993.21 302.49 401.70 309.37
std 3196.24 3571.49 3893.63 827.55 1172.52 883.07 69.24 92.47 70.84

JOB

50% 2.40 5.79 6.23 122.56 160.80 94.62 1.97 2.05 2.12
90% 77.25 95.08 100.39 122.66 160.90 150.51 7.02 5.75 5.31
95% 1563.37 2137.53 2267.75 407.87 314.62 297.73 14.83 14.73 13.96
99% 1570.83 2275.12 2285.32 980.30 747.23 802.18 48.31 59.41 64.37
std 435.31 596.74 567.28 1734.80 1362.93 1396.26 24.28 25.25 27.89

Stack

50% 10.85 10.68 10.95 1.16 1.48 1.56 2.76 2.77 2.91
90% 268.71 275.21 253.63 1.52 1.93 1.96 17.44 15.51 19.59
95% 471.00 577.00 499.00 1.66 2.37 2.85 39.07 37.13 37.81
99% 1031.86 842.3 973.96 147.81 246.28 250.31 125.65 142.21 109.42
std 302.53 264.69 289.82 12.29 37.24 35.23 22.05 22.76 22.76

input contains zeros while the Joins MLP gets as input a matrix
fulled with zeros.

This observation also gives us food for thought regarding how
to train a neural model. A workload like Synthetic that contains
very simple queries may not help a neural model acquire good
knowledge of the complexity of the underlying schema and hence
the query complexity. This is an interesting research direction.

Table 3: Cost Estimation Q-Error percentiles

W Perc QPSeeker Zero-shot PostgreSQL

Synth.

50% 4.20 1.83 4.71

90% 40.86 26.28 18.06

95% 3654.32 106.51 30.28

99% 5299.70 282.174 115.34

std 1172.52 49.54 522.61

JOB

50% 122.56 2.75 13.56

90% 122.66 11.86 401.91

95% 407.87 20.58 1316.60

99% 980.30 46.16 2961.72

std 1734.8 139.39 559.03

Stack

50% 1.16 2.52 596.91

90% 1.52 175.74 6050.96

95% 1.66 175.73 12 247.22

99% 147.81 1817.71 38 145.16

std 12.29 246.57 8395.04

7.1.2 Cost Estimation. For the Zero-Shot model, we had to
extend its parser to be compatible with our workload format.
We performed the evaluation suggested and implemented by the
authors. We trained Zero-shot model on 19 different databases
and 77 workloads (approximately 3 per database), the same used
by the authors. All hyperparameters remained unchanged and
we trained the model with the default setup proposed by the
authors. The evaluation results are shown in Table 3.

First, we observe that for the Synthetic workload, Postgres
gave significantly better predictions from the other two com-
petitors. Next, Zero-Shot outperformed QPSeeker on JOB and
achieved the best results among all systems. Finally, QPSeeker
outperformed by orders of magnitude both systems on Stack.
These results are very interesting, as each competitor is better

Table 4: Cardinality Estimation Q-Error percentiles

W Perc QPSeeker MSCN PostgreSQL

Synth.

50% 18.49 1.22 2.07

90% 1712.01 3.80 13.00

95% 7736.28 7.96 27.52

99% 10 025.61 31.59 154.66

std 3571.49 25.34 2042.65

JOB

50% 2.40 10.42 30.46

90% 77.25 634.92 1570.66

95% 1563.37 2128.60 3473.50

99% 1570.83 26 089.85 13 077.50

std 435.31 7879.18 2294.43

Stack

50% 10.85 3.71 257.00

90% 268.71 58.40 15 015.50

95% 471.00 216.98 37 465.50

99% 1031.86 940.38 275 255.55

std 302.53 3990.69 79 522.75

at exactly one workload. By an analysis of the workloads, we
observe QPSeeker could not capture the complex distributions
of the first two workloads, as they form distributions with more
than two modes.

7.1.3 Cardinality Estimation. For cardinality estimation, we
compare our system against MSCN. For each workload, we train
it with the default setup suggested by the authors. For MSCN to
be compatible with Stack and JOB workloads, we had to remove
any alphanumerical filters per query, as it accepts only numerical
ones. The results of our evaluation are shown in Table 4. On the
Synthetic workload, MSCN gives better results, as expected and
is accurate until the 90𝑡ℎ percentile. Next, on JOB, we observe
QPSeeker to provide the best estimates, while MSCN seems to
be unable to adapt to this workload from the 50𝑡ℎ percentile
and above. Finally, on Stack workload, QPSeeker provides decent
estimates for half of the queries, while both systems perform
close to each other as we go to the 99𝑡ℎ percentile. Interestingly,
on both complex workloads, QPSeeker outperforms PostgreSQL,
with the latter having the worst performance among all three
on Stack. Both Stack and JOB have complex queries with many
joins, where PostgreSQL makes bad estimations.

316

Table 5: Execution Time Estimation Q-Error percentiles

W Perc QPSeeker QPPNet PostgreSQL

Synth.

50% 3.79 1.41 1.68

90% 71.87 8.57 5.36

95% 323.01 17.35 13.03

99% 401.70 633.14 356.34

std 92.47 115.13 514.05

JOB

50% 1.97 8.89 116.98

90% 7.02 181.13 47 392.97

95% 14.83 575.79 297 577.39

99% 48.31 2682.05 3 646 587.51

std 24.28 2165.01 624 869.24

Stack

50% 2.76 3.99 1.17

90% 17.44 19.09 4.18

95% 39.07 31.50 4521.73

99% 125.65 70.04 103 700.91

std 22.05 14.97 363 394.66

7.1.4 Execution Time Prediction. For runtime prediction of
queries, we compare our system with QPPNet. Despite QPPNet’s
small size (approx. 4.5 MB), its complexity and the fact that each
neural unit needs an optimizer separately makes the training
process to be prohibitive for real-life scenarios. The results of
our evaluation are shown in Table 5. QPSeeker shows that it can
learn better when trained on complex workloads such as JOB and
Stack. For JOB, QPSeeker provides accurate estimates up to the
90𝑡ℎ percentile, while the value 7.02 on the 99𝑡ℎ percentile is very
satisfying. On the other hand, QPPNet manages to adapt for the
majority of the queries but not close to QPSeeker’s performance.
Finally, on the Stack workload, both systems are very competi-
tive with each other, with QPSeeker achieving to provide better
results for the vast majority of the queries. Again, we observe
that PostgreSQL does not cope well with the complex workloads.

Figure 8: (Left) Sample size impact and TaBERT size impact on
performance. (Right) Average Time spent on TaBERT.

In the above evaluation, we observe that PostgreSQL is com-
petitive or better compared with the competitors in Synthetic’s
case. Before executing any queries to the system, we have up-
dated the internal statistics using the ANALYZE command. From
the insights we provided in Section 6, the input to QPSeeker is
very sparse for Synthetic as the input for single scan queries is
only 1-hot vector and a plan node for the Query and Plan En-
coder, while the input to the Joins MLP for the entire dataset will

contain at most two 1-hot vectors as input. Similarly, Zero-Shot
and QPPNet rely heavily on the query plan face similar issues.
On the other hand, on the other two workloads, which contain a
significant bigger number of joins, we observe that PostgreSQL
shows poor performance even from the 50th percentile, while
the learned approaches shine.

7.2 Query Optimization
In this section, we evaluate the performance of query plans pro-
duced by QPSeeker in comparison with PostgreSQL and Bao on
two available workloads, Stack and JOB.

For Stack, QPSeeker and Bao were both trained and tested on
query sets coming from the same workload. As mentioned in
the training setup, test queries are never seen during training.
For the JOB workload and its variations, we wish to test how
well QPSeeker adapts to query workloads having completely
different distributions. Hence, we train QPSeeker on Synthetic
and test the query plans provided for all instances of JOB. From
our workload discussion, Synthetic is a simple workload, which
covers a small subset of database tables. For fair comparison, we
use the instance of Bao trained on the same training set with
QPSeeker. In all cases, QPSeeker consumed the time budget for
planning evaluating 772 plans for Stack, 377 for JOB and 1342 for
Synthetic.

7.2.1 Cost Model performance using sampling. In this section,
we evaluate the performance of our cost model trained with QEPs
produced by our proposed sampling method. We extract three
random subsets from the Stack workload containing a sample
of 10%, 25% and 50% of the available queries and each sample
is overset of the previous (the 10% exists in both 25% and 50%).
From each subset of queries, we sample query plans until we
reach the initial number of available QEPs and train our cost
model. In Figure 8, we observe that the cost model trained on the
10% of the queries is not competitve at all, while both the 25%
and 50% produce execution plans having similar performance, as
the one trained on the entire workload.

7.2.2 TaBERT impact. We evaluate the impact of TaBERT in
our cost model. While keeping the best configuration based on
Table 2, we test the performance of our cost model for K=1 and
K=3, while for both base and large instances of BERT model. In
Figure 8, we observe there is not a significant impact in perfor-
mance, but the we observe a significant increase in time spent to
extract the tables representations from TaBERT between different
values of K and for different instances of BERT. This increase is
expected because for K=3, TaBERT applies a rowwise Attention,
which is an intense computation and finally, the large instance
has 3× more parameters than base.

7.2.3 Queries executed through time. In Figure 10, we demon-
strate the number of queries executed during execution per work-
load. For the Stack and JOB workloads, QPSeeker is very close
with PostgreSQL, having very small variance in query runtime,
while in the extended version, it manages to outperform all com-
petitors. On the other hand, QPSeeker had the worst performance
in JOB-Light, by a large margin. This result produced by large
regressions on two memory-demanding queries in the workload.
Generally, Bao did not manage to adapt to any new workloads
having the worst performance except JOB-Light, where it needs
the double time in comparison with PostgreSQL to execute it.

317

Figure 9: Query Runtimes margins of Bao (blue) and QPSeeker (orange) compared with PostgreSQL on JOB (lower is better).

Figure 10: Number of queries completed through time.

7.2.4 JOB comparison. In Figure 9, we showcase the margin
between the runtimes of QPSeeker and Bao plans, when trained
on the Synthetic workload, compared with PostgreSQL on JOB.
We want to check if there is any speed-up for all 113 queries in
the workload.

First, we observe that Bao could not adapt to the new work-
load and provides a worst execution plan for the majority of
the queries. In total, Bao was a minute slower than PostgreSQL
across all queries in JOB, providing a better plan only on two
queries. On the other hand, QPseeker is on par with PostgreSQL
for the majority of the workload, performing better on some
queries, and only being worse on 4 queries. This result is very en-
couraging, as the majority of tables being present in JOB queries,
are not present in the Synthetic ones. Thus, QPSeeker not only
performed well on queries never seen before, but adapted also on
parts of the database that were never seen during training phase.

7.3 Discussion
We make the following observations that touch upon perfor-
mance, training workloads, and research directions.
• QPSeeker can approximate quite well query cardinalities

and runtimes outperforming dedicated competitors and Post-
greSQL, while for cost, it could not capture complex distri-
butions well (which points to a possible direction for future
work). Furthermore, it manages to perform well for query
planning (outperforming Bao).

• Furthermore, training on one workload and evaluating on
a different one, we saw that QPSeeker can be as good as
PostgreSQL, while Bao could not adapt to the new workload.

• QPSeeker learns better using complex workloads. A work-
load like Synthetic that contains very simple queries may
not help a neural model acquire good knowledge of the com-
plexity of the underlying schema and the queries. Designing
appropriate training sets for neural models for databases is
required.

• QPSeeker outperforms PostgreSQL (and competitors) in com-
plex queries. That highlights a possible direction towards hy-
brid optimizers where a neural planner kicks in for complex
queries where traditional optimizers have trouble handling.

8 CONCLUSIONS
QPSeeker is a novel database planner that combines the database
data along with queries, to simultaneously learn to perform all
basic tasks of a traditional optimizer, i.e., estimate the running
time, computational cost and cardinality of a query, using vari-
ational inference, and it uses its rich learned model for query
planning.

We showed that QPSeeker organizes its latent space in a way,
where QEPs generated not only from the same but also from
different queries, have latent representations close to each other.
Moreover, we showed the formulation of such a cost model can
provide good estimates for the majority of queries in the work-
load and 𝛽 parameter significantly affects the final results. We
showed that its cost model often outperforms its competitors, and
that QPSeeker can achieve comparable or better performance,
on complex workloads, like JOB and its variations, even when
trained on a non-complex workload which can be easily con-
structed, like Synthetic. Our work opens up several interesting
research directions, including work on hybrid optimizers and
benchmarks.

ACKNOWLEDGMENTS
This work was supported by computational time granted from
the National Infrastructures for Research and Technology S.A.
(GRNET) in the National HPC facility - ARIS. This research has
been funded by the European Union through the Horizon.1.3
Research and Innovation Programme, in the context of the FAIR-
CORE4EOSC project under grant agreement No.GA 101057264.

REFERENCES
[1] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. 2017. Variational Infer-

ence: A Review for Statisticians. J. Amer. Statist. Assoc. 112, 518 (apr 2017),
859–877. https://doi.org/10.1080/01621459.2017.1285773

318

[2] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow. 1 (2008), 1265–1276.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar
Solorio (Eds.). Association for Computational Linguistics, 4171–4186. https:
//doi.org/10.18653/v1/n19-1423

[4] Melissa Hall, Laurens van der Maaten, Laura Gustafson, and Aaron Adcock.
2022. A Systematic Study of Bias Amplification. https://doi.org/10.48550/
ARXIV.2201.11706

[5] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2019. Multi-Attribute Selectivity Estimation Using Deep
Learning. https://doi.org/10.48550/ARXIV.1903.09999

[6] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for
Out-of-the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022),
2361–2374. https://www.vldb.org/pvldb/vol15/p2361-hilprecht.pdf

[7] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for
Out-of-the-box Learned Cost Prediction. https://doi.org/10.48550/ARXIV.
2201.00561

[8] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina,
Kristian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, Not
from Queries! Proc. VLDB Endow. 13, 7 (mar 2020), 992–1005. https://doi.org/
10.14778/3384345.3384349

[9] Denis Hirn and Torsten Grust. 2019. PgCuckoo: Laying Plan Eggs in Post-
greSQL’s Nest. In Proceedings of the 2019 International Conference on Man-
agement of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 1929–1932. https://doi.org/10.
1145/3299869.3320211

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[11] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol
Vinyals, and Joao Carreira. 2021. Perceiver: General Perception with Iter-
ative Attention. https://doi.org/10.48550/ARXIV.2103.03206

[12] Antonios Karvelas, Yannis Foufoulas, Alkis Simitsis, and Yannis Ioannidis.
2023. Toulouse: Learning Join Order Optimization Policies for Rule-based
Data Engines. (2023).

[13] Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes.
https://doi.org/10.48550/ARXIV.1312.6114

[14] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[15] Levente Kocsis and Csaba Szepesvári. 2006. Bandit Based Monte-Carlo Plan-
ning. Machine Learning: ECML 2006, 282–293. https://doi.org/10.1007/
11871842_29

[16] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph M. Hellerstein, and
Ion Stoica. 2018. Learning to Optimize Join Queries With Deep Reinforcement
Learning. ArXiv abs/1808.03196 (2018).

[17] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016.
A Large Public Corpus of Web Tables Containing Time and Context Metadata.
In Proceedings of the 25th International Conference Companion on World Wide
Web (Montréal, Québec, Canada) (WWW ’16 Companion). International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 75–76. https://doi.org/10.1145/2872518.2889386

[18] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.
2850594

[19] Jie Liu, Wenqian Dong, Qingqing Zhou, and Dong Li. 2021. Fauce: Fast and
Accurate Deep Ensembles with Uncertainty for Cardinality Estimation. Proc.
VLDB Endow. 14, 11 (jul 2021), 1950–1963. https://doi.org/10.14778/3476249.
3476254

[20] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2021. Bao: Making Learned Query Optimization Prac-
tical. Association for Computing Machinery, New York, NY, USA, 1275–1288.
https://doi.org/10.1145/3448016.3452838

[21] RyanMarcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (jul 2019), 1705–1718. https:
//doi.org/10.14778/3342263.3342644

[22] Ryan Marcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning
for Join Order Enumeration. In Proceedings of the First International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management (Houston,
TX, USA) (aiDM’18). Association for Computing Machinery, New York, NY,
USA, Article 3, 4 pages. https://doi.org/10.1145/3211954.3211957

[23] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(jul 2019), 1733–1746. https://doi.org/10.14778/3342263.3342646

[24] GuidoMoerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (aug 2009), 982–993. https://doi.org/10.14778/1687627.1687738

[25] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim
Kraska, Marc Friedman, and Alekh Jindal. 2021. Steering Query Optimizers:
A Practical Take on Big Data Workloads. In Proceedings of the 2021 Interna-
tional Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 2557–2569.
https://doi.org/10.1145/3448016.3457568

[26] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul,
Tim Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality
Estimates That Matter. Proc. VLDB Endow. 14, 11 (jul 2021), 2019–2032. https:
//doi.org/10.14778/3476249.3476259

[27] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska,
and Mohammad Alizadeh. 2020. Cost-Guided Cardinality Estimation: Focus
Where it Matters. 2020 IEEE 36th International Conference on Data Engineering
Workshops (ICDEW) (2020), 154–157.

[28] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

[29] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-Based Cost Estimator.
Proc. VLDB Endow. 13, 3 (nov 2019), 307–319. https://doi.org/10.14778/3368289.
3368296

[30] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. http:
//www.jmlr.org/papers/v9/vandermaaten08a.html

[31] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from
both Data and Queries for Cardinality Estimation. In Proceedings of the 2021
International Conference on Management of Data. 2009–2022.

[32] Ziniu Wu, Pei Yu, Peilun Yang, Rong Zhu, Yuxing Han, Yaliang Li, Defu
Lian, Kai Zeng, and Jingren Zhou. 2021. A Unified Transferable Model for
ML-Enhanced DBMS. https://doi.org/10.48550/ARXIV.2105.02418

[33] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and
Ion Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demon-
strations. In Proceedings of the 2022 International Conference on Management
of Data. ACM. https://doi.org/10.1145/3514221.3517885

[34] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen,
and Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables.
Proceedings of the VLDB Endowment 14, 1, 61–73.

[35] Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi
Chen, Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica.
2019. Deep Unsupervised Cardinality Estimation. Proceedings of the VLDB
Endowment 13, 3, 279–292.

[36] Pengcheng Yin, Graham Neubig, Wen tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Annual Conference of the Association for Computational Linguistics (ACL).

[37] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforce-
ment Learning with Tree-LSTM for Join Order Selection. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 1297–1308. https:
//doi.org/10.1109/ICDE48307.2020.00116

[38] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement
Learningwith Tree-LSTM for Join Order Selection. 2020 IEEE 36th International
Conference on Data Engineering (ICDE) (2020), 1297–1308.

[39] Ji Zhang. 2020. AlphaJoin: Join Order Selection à la AlphaGo. In PhD@VLDB.
[40] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A

Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow.
15, 8 (2022), 1658–1670. https://www.vldb.org/pvldb/vol15/p1658-zhao.pdf

[41] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping
Qian, Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate
Method for Cardinality Estimation. Proc. VLDB Endow. 14, 9 (may 2021),
1489–1502. https://doi.org/10.14778/3461535.3461539

319

