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ABSTRACT
Several recent works address challenges concerning declara-

tive query processing over videos. Data research encompasses
issues related to the presence of certain types of objects on video
frames. In this paper, we introduce algorithms that enable queries
involving objects as well as actions over videos. We first consider
the case of queries involving a number of objects and an action
over a streaming video in the absence of preprocessing. In this
case, we introduce algorithms (SVAQ and SVAQD) for identifying
video segments that satisfy the query predicates on the fly. We
then consider the offline case, during which a number of videos
are amenable to a single-time preprocessing in order to answer
adhoc queries of the type discussed in this paper. In this case,
we detail the types of preprocessing required and introduce al-
gorithm RVAQ that produces effectively top-k video segments
satisfying the query for user specified ranking functions. Our
overall approach and algorithms are grounded on sound statisti-
cal principles, being adaptive to the underlying video properties,
while utilizing state-of-the-art black box object and action detec-
tion models. We present the results of a thorough experimental
evaluation utilizing real benchmark videos and real-worldmovies.
Our results indicate that our algorithms attain superior accuracy
while offering substantial performance advantages compared to
other applicable approaches.

1 INTRODUCTION
Video data are ubiquitous. Video streaming dominates internet

traffic (nearly 80% of internet traffic is video equivalent to 282 EB
per month, increasing rapidly [47]). Cameras that are prevalent
in computing devices have transformed video production into
a commodity. As a result, it is easy to generate, upload, and
disseminate video data, whose automated analysis becomes a
pressing concern.

Given the importance and significance of video data, numer-
ous recent research efforts aim to develop suitable algorithms
and techniques to analyze and query videos [10, 12, 26, 29–31].
Advances in machine learning (ML) are offering highly sophisti-
cated algorithms to classify video frames [40], detect and track
objects across video frames [21, 24, 25, 37, 38, 48, 55], identify
and classify actions and interactions among objects present in
video frames [6, 8, 17, 18, 22, 42, 44]. These are fairly active re-
search areas in the computer vision (CV) community. At the
same time, in the data management community, there has been
increasing research interest in the development of declarative
query processing1 techniques over videos [10–12, 26, 28, 29, 29–
31, 49, 50]. These techniques typically introduce a declarative

1Declarative query processing emphasizes providing broad instructions regarding
the task to be completed, rather than the specifics on how to complete it imperatively.
SQL is widely considered a declarative query language.
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query interface (e.g. SQL-like languages) that is utilized to en-
able users to specify the desired video data retrieval from video
repositories, without concerning the exact execution process.
Execution frameworks are proposed to enhance the execution
process by augmenting both its accuracy and speed. The basic
idea is to expose the outcome of sophisticated ML vision algo-
rithms (e.g. object detection) as first class citizens to a declarative
query interface. Such queries are executed either in an online
manner (as the video is streaming, assuming no pre-processing)
or in an offline manner (over one or more long videos suitably
pre-processed). In either case, the query semantics are the same.
In the online case, the query identifies the frames or frame se-
quences where the query condition(s) are true and in the offline
case, the query reports the associated frames or frame sequences
where the query is true in one or more videos.

In this paper, we aim to overcome the challenges associated
with making actions in videos a first class citizen for declarative
query processing. Action recognition [8, 52] has been an active
research area in the ML vision community. Such algorithms ac-
cept a sequence of video frames and classify the frame sequence
as containing a specific action out of a list of possible actions
the model is trained on. For example, they can classify a frame
sequence as containing a human jumping or a human playing
guitar, etc. Equivalently, action detection models [5, 17, 20, 53]
can detect the precise frame sequence that an action is taking
place (typically labeling the frames at the start and the end of
the action sequence). Such models are fairly mature in the ML
community but still constitute active research topics.

Action recognition/detection models are typically trained end
to end. As such they require numerous datasets with suitable
types of actions for training. The ML community over the years
has developed a plethora of such datasets containing different
types of actions to train the models. A significant challenge to
utilizing action detection models as part of query processing
lies in the interaction of the action detection model with other
related query predicates. Consider for example a query seeking
to detect a frame sequence that depicts a robot dancing while a
car is visible in the frame sequence (as depicted in Figure 1):
SELECT frameSequence FROM (PROCESS inputVideo PRODUCE

frameSequence , det USING VisionModel)
WHERE det = Action('robot␣dancing ', 'car', 'human ')

From an action recognition perspective, the typical models for
detecting actions are trained on the actions themselves (e.g., robot
dancing) and are not aware of other objects. Thus, an action
recognition module that is trained to recognize a robot dancing
cannot be used to answer such a query in an effective manner
(as it necessitates a post-processing step). One could in principle
train a model to recognize actions that also contain a car in the
frame sequence. Such an approach is not scalable, however, as
it would require a model for any possible combination of query
predicates present in queries, which is clearly impractical.

A different practical approach would be to decouple the detec-
tion of the action from the detection of the other objects men-
tioned in a query. Namely, one could detect a sequence of frames
containing the desirable action using an action recognizer, then
utilize an object detector to detect frame sequences that contain
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the desired objects in the query and intersect them. In this man-
ner, the SQL-like query statements presented in the preceding
document transform into the following:
SELECT MERGE(clipID) AS Sequence
FROM (PROCESS inputVideo PRODUCE clipID , obj USING

ObjectDetector , act USING ActionRecognizer)
WHERE act='robot␣dancing ' AND obj.inc('car', 'human ')

Such an approach, however, requires several parameters/thresh-
olds to be decided apriori. For example, for how many frames
the frame sequence containing the action should overlap the
frame sequences containing objects in order to declare a query
match? Object detection algorithms are typically noisy (yield
false positives and negatives), so how would such noise affect the
thresholds? Is it possible or even feasible to choose or decide such
thresholds before a query executes or to tune such thresholds
for each different query predicate? In this paper, we place this
problem into perspective and we propose solutions for both an
online setting in which query results have to be reported as the
video streams and an offline setting in which queries are issued
against a specified repository of videos that have been suitably
pre-processed.

For the online case, we present a streaming algorithm, called
SVAQ, to identify segments (parts) of a Video Stream that satisfy
the Query predicates both in terms of the Action specified and
in terms of any additional query specified object predicates. To
eliminate the burden of setting query thresholds manually, and
cope with the inaccuracies inherent to action and object detection
models, we introduce a theoretically grounded approach based on
scan statistics [23, 35, 45]. This approach first estimates the distri-
bution of predictions made by each individual model involved in
the query when the query predicates are not satisfied. Then, for
each query predicate, it computes what constitutes a significantly
large number (a critical value, 𝑘crit) of positive predictions (the
query predicate is satisfied) conducted by each individual model
in a sequence of frames. These are utilized to synthesize an an-
swer and determine whether a query is satisfied in a sequence of
frames. Intuitively, if the number of positive predictions across
the models utilized in the query exceeds 𝑘crit in a sequence of
frames, then this frame sequence has a higher probability of
satisfying the query. In addition, instead of determining such
statistical properties statically, we propose a Dynamic method to
adjust them as the video stream evolves. Our proposed method,
called SVAQD, is able to detect sudden changes in the video stream
properties and adjust its estimations accordingly while capable
of ignoring gradual changes over time, thus dealing with concept
drift in a natural manner [45].

For the offline case, in which queries are issued against video
repositories, we present a framework to Rank the relevant Video
segments in the answers of the Action Query. Our ranking
framework, called RVAQ, can easily adopt any monotonic ranking
scheme. We present a sample one incorporating various query
specific signals such as the length of the answer video segments
and the number of the detected objects and actions across rele-
vant video parts. Our proposal consists of two steps: an ingestion
phase and a query phase. During the ingestion phase which is ex-
ecuted only once when videos are added to the repository (i.e., a
pre-processing step), several metadata (e.g., clip score tables) are
extracted in a query independent manner, which are later utilized
during query processing. During the query phase, our algorithm
first extracts query specific metadata (e.g., query specific result
sequences) from each video (materialized in the ingestion phase)
and utilizes a top-𝑘 query processing framework to produce the

Figure 1: An example video stream. Green rectangles represent
shots; rounded rectangles represent clips.

𝑘 most relevant results to the query. Given the specific nature
of our problem, we demonstrate that a very different query pro-
cessing methodology is required, compared to traditional top-𝑘
algorithms [16] for best performance.

In this paper, we make the following contributions:
• We formalize problems in the context of processing queries
on video (streams) containing objects and actions.
• For the case of processing such queries over streaming videos,
we introduce SVAQD that dynamically adjusts its estimates as
the stream evolves.
• For the case of processing queries over videos that are amenable
to pre-processing, we present RVAQ, which is able to process
queries involving objects and any action supported by objec-
t/action detection models and efficiently return top-𝑘 frame
sequences (for a user specified 𝑘) that satisfy the query.
• We conduct experiments utilizing real videos demonstrat-
ing the accuracy and performance benefits of our overall
approach.

This paper is organized as follows. §2 presents background
material and introduces terminology utilized in the remainder
of the paper. §3 presents our solution and associated algorithms
for the online case. In §4 we present algorithm RVAQ and detail
our proposal for processing top-𝑘 queries involving objects and
actions over pre-processed videos. §5 presents our experimental
evaluation. §6 reviews related work, followed by §7 which con-
cludes the paper and points to interesting problems for future
work.

2 BACKGROUND
A video is a sequence of frames 𝑉={𝑣1, . . . 𝑣 |𝑉 | }. The number

of frames (length) of a video |𝑉 | can be fixed or unbounded. If |𝑉 |
is unbounded we refer to𝑉 as a video stream. A video repository
is a collection of videos each of fixed length. In a video 𝑉 we
provide the following definitions.
(1) Frame, 𝑣 : this is the building block of a video, as well as an

input unit for object detection models. Each frame in 𝑉 has
an index (e.g., 𝑣𝑖 ) that indicates its position in 𝑉 .

(2) Shot, 𝑠 : a continuous (w.r.t. frame index) collection of frames
of set length (see Figure 1). Action recognition models [8]
accept a shot as input and yield action predictions the shot
includes.

(3) Clip, 𝑐 : continuous (w.r.t. frame index) collection of shots of
set length (see Figure 1). Clips contain several shots that may
yield multiple action and object predictions.

(4) Sequence, 𝑧: continuous collection of clips. Sequences are
the results of our query evaluation and can be of any length
as determined by our algorithms. Query result sequences are
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represented as 𝑃 = {(𝑐𝑙 , 𝑐𝑟 )}, which is a set of the pairs of
start and end clip identifiers for each result sequence returned
by our algorithms.

Consider the example of Figure 1, depicting a movie with more
than 100k frames. The video is divided into non-overlapping clips,
each of which contains a number (e.g., fifty continuous) of frames.
Then each clip is divided into a number (e.g., five) of shots with
each shot containing a number of continuous frames. The length
of shots in frames is decided by action recognition algorithms
[8, 52] (typical values in the literature range from 10-30). The
clip length is a parameter in our setting. Smaller clip lengths may
fragment a long result sequence into multiple sequences; while
a larger clip length may not. We will evaluate the effect of the
length of the clips in our experiments.

Object Detection. A frame may hold a variety of object in-
stances of different types, which can be detected by an object
detection model. Each detected object instance is assigned a score
that indicates how confident the detector is for this prediction
and an estimated label indicating the object type of this instance.
Let 𝑂 be the set of all the object types that can be recognized
by the deployed detector. For each object type 𝑜𝑖∈𝑂 , we denote
max𝑆𝑜𝑖

(𝑣) as the maximum score for all the instances of 𝑜𝑖 on
frame 𝑣 given by the detector,

max𝑆𝑜𝑖
(𝑣) = max

{
𝑆∗ ∈ O(𝑜𝑖 |𝑣)

}
,

where O(𝑜𝑖 |𝑣) represents the set of the scores of each detection of
the instance of object type 𝑜𝑖 at frame 𝑣 . In accordance with prior
work [24, 38, 49], one imposes a threshold Tobj, on the scores to
filter out the predictions of all object instances that the detector
assigns a score below the threshold, keeping only detections with
sufficient score. Such a threshold can be configured per object
type but to ease notation, without loss of generality, we fix a
threshold across all object types an object detector supports. We
denote 1𝑜𝑖 (𝑣) as the prediction indicator of the object type 𝑜𝑖 on
frame 𝑣 provided by the object detection model,

1𝑜𝑖
(𝑣) = 1

[
max𝑆𝑜𝑖

(𝑣) ≥ Tobj
]
,

where 1[·] is an indicator function. We say that the object type
𝑜𝑖 has a positive prediction on frame 𝑣 , iff 1𝑜𝑖 (𝑣)=1.

Different instances of each object type can appear in the same
frame. In our framework, we enable an object tracking model [55]
that can track the same object instance across different frames.
Each object instance gets assigned a unique tracking identifier
by the object tracking model the first time it is detected. The
identifier remains the same as the object is detected across frames
for as long as it is present. We denote 𝑆𝑡𝑜𝑖

(𝑣) as the score of the
instance of object type 𝑜𝑖 with identifier 𝑡 on the frame 𝑣 given
by the tracking model.

Action Recognition.Action recognition takes place on shots;
utilizing an action recognition model [8], each shot is predicted
to have zero or more actions from a universe of action categories
the model is trained on. We denote 𝐴 the set of all the action
categories that can be recognized by the deployed action recog-
nition model. The action recognizer will provide scores for all
action categories predicted on each shot. For each action type
𝑎 𝑗∈𝐴, we denote 𝑆𝑎 𝑗 (𝑠 ) the score of 𝑎 𝑗 detected on shot 𝑠 . For
action recognition, a threshold, Tact, will also be set to filter out
the action predictions with scores below the threshold [7, 8, 44].
We denote 1𝑎 𝑗 (𝑠 ) as the prediction indicator of the action type
𝑎 𝑗 on shot 𝑠 ,

1𝑎 𝑗
(𝑠 ) = 1

[
𝑆𝑎 𝑗
(𝑠 ) ≥ Tact

]
.

The action 𝑎 𝑗 has a positive prediction on the shot 𝑠 , iff 1𝑎 𝑗 (𝑠 )=1.
Query. Generally, a query specification encompasses several

predicates, which can be specific actions (e.g., robot dancing from
Kinetics-700 [7]), presence of objects in frames (e.g., human, car),
or relationships between objects in frames (e.g., human left of
the car). In this paper, without loss of generality and to simplify
our notation, we consider queries encompassing conjunctions of
query predicates, with the predicates involving the presence of
both an action and some objects. Formally, a query 𝑞 is:

𝑞 : {𝑜1, ..., 𝑜𝐼 ∈ 𝑂 ;𝑎 ∈ 𝐴} ,
where 𝐼 is the number of query predicates involving object types,
𝑜𝑖 represents the type of the 𝑖th query object, and 𝑎 represents the
query action. The forthcoming proposal can be easily adapted to
accommodate more complicated queries that might incorporate
other types of predicates (e.g., object relationships2, multiple
actions3, disjunction of predicates4 ).

For example, for the query requesting a human jumping while
a car is present in the scene: 𝑞:{𝑜1=human;𝑜2=car;𝑎=jumping}.
A SQL-like query for the online (video streaming) case that we
will support in this work would be of the form:
SELECT MERGE(clipID) AS Sequence
FROM (PROCESS inputVideo PRODUCE clipID , obj USING

ObjectDetector , act USING ActionRecognizer)
WHERE act='jumping ' AND obj.include('car', 'human ')

The query employs an object detector and an action recognizer
to PROCESS the video, producing predictions of human, car and
jumping, and then MERGEs the continuous clips that contain all
query predicates to form result sequences. Similarly, an SQL-like
query that we will support over a video repository (offline case)
is:
SELECT MERGE(clipID) AS Sequence , RANK(act , obj)
FROM (PROCESS inputVideo PRODUCE clipID , obj USING

ObjectTracker , act USING ActionRecognizer)
WHERE act='jumping ' AND obj.include('car', 'human ')
ORDER BY RANK(act , obj) LIMIT K

The offline query first PROCESSs the video and MERGEs the ade-
quate clips to generate sequences. Then, it groups together the de-
tection scores (e.g., 𝑆𝑎 𝑗 (𝑠 ) ) in each sequence with a user-defined
aggregation function, RANK, to provide an overall ranking score
for each sequence. The top-K sequences will be returned ordered
by their ranking scores. inputVideo in the FROM clause can refer
to one or more videos suitably pre-processed as we detail in §4.

3 ONLINE CASE
In this section, we first propose an online model, namely SVAQ,

for processing queries with complex predicates on video streams,
and then propose an improved online model, namely SVAQD,
equipped with dynamic parameter adjustment yielding a more
robust processing framework.

3.1 Algorithm SVAQ
For the online case addressed in our work, algorithm SVAQ, is

responsible for processing a query𝑞:{𝑜1; ...;𝑜𝐼 ;𝑎}. For each object
type 𝑜𝑖 in 𝑞, we consider the positive object detection (1𝑜𝑖 (𝑣)=1)

2To support the predicate involving a constraint of object relationships, our proposal
will yield a binary output indicating the presence of each relationship per frame
based on the object detection outcomes, which technology is orthogonal to our
approach, similar to the approach undertaken in [31].
3To support the constraint of multiple actions, our proposal will yield a binary
output (indicators) for each queried action per clip based on the action recogni-
tion outcomes, and combine the indicators using a conjunction operation for all
predicates.
4To support the queries involving a disjunction of predicates, one could first trans-
form the predicates into conjunctive normal form, and then calculate the indicator
for each clause in each clip separately, and then combine these indicators to answer
the query.
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on frames as an event in a probabilistic sense. In order to cope
with object detection model noise (inaccuracies introducing false
positives and negatives) and also determine what constitutes
a suitable number of object detections of a specific type in a
sequence of frames, we will estimate (§3.2) a statistically sound
number of detections (𝑘crit_𝑜𝑖 , for 1≤𝑖≤𝐼 ). This will enable us to
compute all the clips considered to contain the object type 𝑜𝑖 .
The indicator of 𝑜𝑖 on clip 𝑐 is defined as,

1𝑜𝑖
(𝑐 ) = 1

[∑︁
𝑣∈𝑉 (𝑐 )1𝑜𝑖

(𝑣) ≥ 𝑘crit_𝑜𝑖
]
, (1)

where 𝑉 (𝑐) represents the set of frames in clip 𝑐 .
Similarly, for the action type 𝑎 specified in the query, we con-

sider a positive action classification (1𝑎 (𝑠 )=1) on shots as an
event. We will also determine (§3.2) a statistically sound number
of action classifications (𝑘crit_𝑎) to deal both with classification
inaccuracies and also infer what constitutes a suitable number of
action classifications of a specific type 𝑎 in a sequence of shots.
That way we will obtain the clips that are considered to contain
action 𝑎. The indicator of 𝑎 on clip 𝑐 then is,

1𝑎
(𝑐 ) = 1

[∑︁
𝑠∈𝑆 (𝑐 )

1𝑎
(𝑠 ) ≥ 𝑘crit_𝑎

]
, (2)

where 𝑆 (𝑐) represents the set of shots in clip 𝑐 .
For the query 𝑞, a clip 𝑐 is considered to contain all the query

specified object types and action (referred to as positive clips) if
all have positive predictions on clip 𝑐 , that is,

1𝑞
(𝑐 ) = 1𝑜1

(𝑐 ) ∧ · · · ∧ 1𝑜𝐼
(𝑐 ) ∧ 1𝑎 (𝑐 ) . (3)

The positive clips are merged to produce result sequences; let 𝑃𝑞
denote the set of result sequences for query 𝑞,

𝑃𝑞 =

{
(𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ] : 1(𝑐 )𝑞 =1;1(𝑐𝑙 −1)𝑞 =0;1(𝑐𝑟 +1)𝑞 =0

}
, (4)

where (𝑐𝑙 , 𝑐𝑟 ) represents a result sequence that starts from the
clip 𝑐𝑙 and ends at 𝑐𝑟 .

Algorithm SVAQ is presented as Algorithm 1. The input consists
of continuous sequence of frames X, the query 𝑞, and the values
𝑘crit_o_init/𝑘crit_a_init. The derivation of values𝑘crit_o_init/𝑘crit_a_init
will be discussed in §3.2. For purposes of exposition in Algorithm
1, we initialize all values 𝑘crit_𝑜𝑖 the same, but each may have its
own initial values. The algorithm outputs a set of result sequences
𝑃𝑞 . The algorithm determines clips from the video stream that
satisfy the query (Lines 4-6) and then merges them if they are
continuous into result sequences (Line 7).

When a new clip is considered, SVAQ conducts object detec-
tion and action recognition on its frames and shots respectively
and determines whether the clip satisfies query 𝑞. Algorithm 2
depicts the process of determining whether a clip 𝑐 satisfies the
query. For each object type specified in the query, the algorithm
determines the indicator of this object type on clip 𝑐 (Lines 2-5).
Next, it determines the indicator of the query action type on clip
𝑐 (Lines 9-12). Finally, it determines whether clip 𝑐 satisfies the
query (Line 13). As query predicates are evaluated sequentially,
a new predicate is evaluated only when the former predicate is
determined to be positive; otherwise this clip can be skipped5
(Lines 6-8).

5We observe that the positive rates among different predicates vary, implying their
distinct selectivity. The order in which predicates are evaluated could influence the
overall efficiency. A thorough investigation into the impact of the predicate order
will be conducted in future research. In this paper, the predicate order is determined
based on user expertise.

Algorithm 1: SVAQ
Input: video stream X; 𝑞: {𝑜1; ...; 𝑜𝐼 ; 𝑎}; 𝑘crit_o_init, 𝑘crit_a_init;
Output: set of result sequences 𝑃𝑞 ;

1 𝑘crit_𝑜1 , 𝑘crit_𝑜2 , ..., 𝑘crit_𝑜𝐼 ← 𝑘crit_o_init.
2 𝑘crit_𝑎 ← 𝑘crit_a_init.
3 𝑃𝑞 ← ∅. # initialize the result sequence set.
4 while !X.𝑒𝑛𝑑 ( ) do
5 𝑐 ← X.𝑛𝑒𝑥𝑡 ( ) . # grab the next clip in video stream X.
6 1𝑞

(𝑐 ) ← get the indicator of clip 𝑐 through Algorithm 2
w.r.t. values 𝑘crit_𝑜1 , ..., 𝑘crit_𝑜𝐼 and 𝑘crit_𝑎 .

7 𝑃𝑞←
{
(𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ]:1𝑞 (𝑐 )=1;1𝑞 (𝑐𝑙 −1)=0;1𝑞 (𝑐𝑟 +1)=0;

}
.

Algorithm 2: Clip Indicator
Input: query 𝑞: {𝑜1; ...; 𝑜𝐼 ; 𝑎}; object detection model O and

action recognition model A; thresholds Tobj and Tact; clip
𝑐 ;

Output: indicator of clip 𝑐 :1𝑞 (𝑐 ) ;
1 for 𝑖 = 1, ..., 𝐼 do
2 for each frame 𝑣 in clip 𝑐 do
3 max𝑆𝑜𝑖

(𝑣) ← max{𝑆∗ ∈ O(𝑜𝑖 |𝑣) }.
4 1𝑜𝑖

(𝑣) ← 1
[
max𝑆𝑜𝑖

(𝑣) ≥ Tobj
]
.

5 1𝑜𝑖
(𝑐 ) ← 1

[∑
𝑣∈𝑉 (𝑐 ) 1𝑜𝑖

(𝑣) ≥ 𝑘crit_𝑜𝑖
]
.

6 if 1𝑜𝑖
(𝑐 ) = 0 then

7 1𝑞
(𝑐 ) ← 0.

8 Return 1𝑞 (𝑐 ) .

9 for each shot 𝑠 in clip 𝑐 do
10 𝑆𝑎 𝑗

(𝑠 ) ← A(𝑎 |𝑠 ) ,
11 1𝑎

(𝑠 ) ← 1

[
𝑆𝑎 𝑗
(𝑠 ) ≥ Tact

]
.

12 1𝑎
(𝑐 ) ← 1

[∑
𝑠∈𝑆 (𝑐 ) 1𝑎

(𝑠 ) ≥ 𝑘crit_𝑎
]
.

13 1𝑞
(𝑐 ) ← 1𝑜1

(𝑐 ) ∧ · · · ∧ 1𝑜𝐼 (𝑐 ) ∧ 1𝑎 (𝑐 ) .
14 Return 1𝑞 (𝑐 ) .

3.2 Statistical Properties of Event Sequences
The detection of objects taking place in frames is considered

a statistical event. Every time an object specified in the query is
detected on a frame, we consider the presence of this object in
the frame as an event associated with this object type occurring
on the frame. Similarly, when a shot is classified to contain the
action specified by the query, we consider this an event associated
with the action taking place at the shot. As a result, as the video
stream progresses, we generate sequences of events associated
with the objects and actions included in the query.

Our discussion in §3.1 left unspecified formal derivation of a
statistically significant number of events (objects or action) in a
sequence, which we will specify in this section. Scan statistics
[23, 35] is a powerful method to detect unusually high rates
of events in a large sequence. The primary idea is to compare
the observed distribution of events within a specific scanning
window against the expected distribution derived from statistical
assumptions. In our setting, we can deploy principles of scan
statistics to detect a high concentration of positive predictions by
the object detector (1𝑜𝑖 (𝑣)=1) and action recognizer (1𝑎 𝑗 (𝑠 )=1).

We refer to the lowest granularity at which an event may occur
(object detected or action predicted) as the occurrence unit (OU,
which can be a frame or a shot in our case). Let 𝑁 be the total
number of OUs. Since OU is discrete, we model event occurrence
by a Bernoulli distribution. Thus, the occurrence of events can be
modeled as 𝑁 Bernoulli trials with a set background probability
of success on a given trial 𝑝 .
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Let𝑛𝑦,𝑦+𝑤 denote the number of successes in trials𝑦,𝑦+1,𝑦+2,
...,𝑦+𝑤−1. After𝑁 OUs have been observed, defineS𝑤 (𝑁 ) as the
maximum number of OUs to be found in any scanning interval (se-
quence of OUs) of length 𝑤 , S𝑤 (𝑁 ) = max1≤𝑦≤𝑁−𝑤+1 𝑛𝑦,𝑦+𝑤 .
When S𝑤 (𝑁 )≥𝑘 , we say that a quota of at least 𝑘 successes
within some𝑤 consecutive trials has occurred. Following [35], we
can approximate the distribution 𝑃 (S𝑤 (𝑁 )≥𝑘 |𝑝,𝑤, 𝐿)6, where
𝐿=𝑁 /𝑤 and 𝑝 is a background probability. Based on the approxi-
mation, assuming that 𝑝 = 𝑝0 (for a given 𝑝0) we can compute
the smallest 𝑘 , a critical value, for objects and actions for which
the following holds:

𝑃 (S𝑤 (𝑁 ) ≥ 𝑘crit |𝑝0, 𝑤, 𝐿) ≤ 𝛼, (5)

where 𝛼 is the significance level. If the number of positive predic-
tions in a scanning interval is greater than the critical value, then
we say that at significance level 𝛼 the event (e.g., object type, an
action) is present at the scanning interval. For the case of object
types, which are part of the query, the OU is a frame, and for the
case of actions, it is a shot. Using the suitable OU in each case
(frame for object and shot for actions), we can compute critical
values independently for objects 𝑘crit_o_init (one per object used
in a query) and actions 𝑘crit_a_init using this methodology (as
utilized in Algorithm 1).

As a result, we can now define indicator functions for objects
and action to be present at a clip 𝑐 as follows:∑︁

𝑣∈𝑉 (𝑐 )
1𝑜𝑖
(𝑣) ≥ 𝑘crit_𝑜𝑖 ⇒ 1𝑜𝑖

(𝑐 ) = 1,∑︁
𝑠∈𝑆 (𝑐 )

1𝑎 𝑗
(𝑠 ) ≥ 𝑘crit_𝑎 ⇒ 1𝑎 𝑗

(𝑐 ) = 1,

where𝑉 (𝑐) and 𝑆 (𝑐) is the set of all frames and all shots in a clip.
A query will then be satisfied on a clip as per Equation 3. We note
that although our modeling is based on Bernoulli trials that are
assumed to be independent and identically distributed, following
the approach of [27] the entire analysis can be extended to incor-
porate random variables that have knownMarkov dependencies7.
From a practical point of view, such dependencies are not easy
to determine apriori, especially in a streaming scenario. We will
demonstrate experimentally in §5 that our analysis constitutes a
viable proxy for determining high rates of events in real videos.

So far, however, the background probability (either a single
one across all object predicates and the action or one per object
predicate separately and the action) has to be set apriori. This is
not easy to do in practice as one has no context or guidance on
how to set them. We will remove this constraint next.

3.3 Dynamic Parameter Updates (SVAQD)
We assumed so far, that the Bernoulli probability of positive

predictions, 𝑝0, is fixed across predicates of query 𝑞 (objects and
action) or equivalently that each object predicate and the action
have their own (possibly different) fixed probability of positive
predictions set apriori. In practice, however, the background
probability 𝑝0 can change suddenly. For instance, a surveillance
camera at a crossroad can experience peak traffic at certain times
6The approximation, 𝑃 (S𝑤 (𝑁 ) ≥𝑘 |𝑝,𝑤, 𝐿) ≈ 1 −𝑄2 (𝑄3/𝑄2 )𝐿−2 , is omitted here due
to space constraints. For details, please refer to [33].
7An approximation approach of 𝑃 (S𝑤 (𝑁 ) ≥𝑘 ) , developed using the finite Markov
chain embedding (FMCE) technique [19], can be accommodated for approximating
the distribution of the scan statistics defined on Markov-dependent Bernoulli trials.
In detail, FMCE first introduces the compound pattern to embed event sequences
that satisfy S𝑤 (𝑁 ) ≥𝑘 , which are also considered as states within the Markov chain.
Then, it computes the probability transition matrix for the Markov chain (with
known first-order stationary distribution) and uses it to approximate 𝑃 (S𝑤 (𝑁 ) ≥𝑘 ) .
The details are beyond the scope of the current paper; a future publication will
focus on this, providing a basic description of the extension we have outlined.

of the day, that is, the probability of a vehicle being detected
varies over time. Thus, deciding the value of 𝑝0 for the entire
video is not acceptable.

We aim to estimate the suitable value of 𝑝 utilizing data from
observations over a period of time. We present our derivation
assuming the granularity of an event is an OU (as in §3.2). The
maximum likelihood estimate of 𝑝 is 𝑁

∗
𝑁

, where 𝑁 ∗ is the number
of events (positive predictions for an object type or action) and
𝑁 is the total number of OUs. An intuitive method to estimate
𝑝 is to define a view length V . When updating the value of 𝑝 ,
only the events in V OUs before and after the current OU are
considered. However, this will introduce new parameters. Thus,
we use a more feasible parameter update method to update 𝑝
automatically, while ignoring gradual enough changes.

Let 𝑡 represent an occurrence unit and R a region around it;
such a region will contain occurrence units before and after 𝑡
in sequence. We observe that the probability of an event, drawn
from a Binomial distribution 𝑝 (𝑡), will fall in a region R: 𝑃 =∑
𝑖∈R 𝑝 (𝑡𝑖 ), where 𝑡𝑖 is the 𝑖-th occurrence unit in region R. If

we have 𝑁 ∗ events drawn from Binomial distribution 𝑝 (𝑡), the
probability that 𝑘 of these 𝑁 ∗ events fall in the region R is P(𝑘) =(𝑁 ∗
𝑘

)
𝑃𝑘 (1 − 𝑃)𝑁 ∗−𝑘 . It is known [4, 45] that the expectation and

variance of 𝑘
𝑁 ∗ is E[

𝑘
𝑁 ∗ ] = 𝑃 , Var[ 𝑘

𝑁 ∗ ] =
𝑃 (1−𝑃 )
𝑁 ∗ . Thus, when

𝑁 ∗ →∞, 𝑃 ≈ 𝑘
𝑁 ∗ . If we assume R is so small that 𝑝 (𝑡) does not

vary appreciably within it, then 𝑃 =
∑
𝑖∈R 𝑝 (𝑡𝑖 ) = 𝑝 (𝑡)𝑢, where

𝑢 is the volume enclosed by region R. Thus, we obtain

𝑝 (𝑡 ) = 𝑘

𝑁 ∗𝑢
=

1
𝑁 ∗𝑢

𝑁 ∗∑︁
𝑛=1

𝐾

( 𝑡 − 𝑡𝑛
𝑢

)
,

𝐾 is a kernel function; 𝑁 ∗ is the number of events; 𝑡𝑛 is the
occurrence unit that the 𝑛th event occurs.

By choosing a smooth exponential kernel, for example,𝐾 ( 𝑡−𝑡𝑛𝑢 ) =
exp (− 𝑡−𝑡𝑛𝑢 ), the parameter update can be made very efficient
even for a large 𝑁 ∗. Given the estimate 𝑝 (𝑡), we can update it
after Δ𝑡 OUs:

𝑝 (𝑡 + Δ𝑡 ) = 1
𝑁 ∗𝑢

𝑁 ∗∑︁
𝑛=1

exp
(
− 𝑡 + Δ𝑡 − 𝑡𝑛

𝑢

)
= exp

(
− Δ𝑡
𝑢

)
𝑝 (𝑡 ) .

If an event occurs when updating the estimate 𝑝 (𝑡), a bias will
be generated. Edge correction [14] can help to remove the bias,

𝑝 (𝑡 ) = 1
𝑁 ∗𝑢

𝑁 ∗∑︁
𝑛=1

exp
(
− 𝑡 − 𝑡𝑛

𝑢

)
/
𝑁∑︁
𝑗=1

exp
(
−
𝑡 − 𝑡 𝑗
𝑢

)
=

1
𝑁 ∗𝑢

𝑁 ∗∑︁
𝑛=1

exp
(
− 𝑡 − 𝑡𝑛

𝑢

) 1 − exp
(
− 1
𝑢

)
1 − exp

(
− 𝑡
𝑢

) ,
where 𝑁 is the total number of OUs observed. This estimator is
unbiased in the case when the background probability is constant.
The overall update equations with edge correction

𝑝 (𝑡 + Δ𝑡 ) = 𝑝 (𝑡 )
1 − exp

(
− 𝑡
𝑢

)
exp

(
Δ𝑡
𝑢

)
− exp

(
− 𝑡
𝑢

) + 1 − exp
(
− 1
𝑢

)
𝑢

(
1 − exp

(
− 𝑡+Δ𝑡

𝑢

)) . (6)

This equation refines the background probability by smoothing
events over time. Thus for each object type specified in the query
and the action, we can now adjust the background probability
dynamically over time.

The resulting algorithm, named SVAQD, employs the method
of dynamic parameter adjustment for each object type present
in query predicates and for the action predicate (Equation 6). For
the case of object types, the occurrence unit is fixed to a frame,
and for the action, it is a shot. The process is shown in Algorithm
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Algorithm 3: SVAQD
Input: video stream X; query 𝑞: {𝑜1; ...; 𝑜𝐼 ; 𝑎}; initialized

background probabilities 𝑝obj0, 𝑝act0;
Output: set of result sequences 𝑃𝑞 ;

1 𝑝𝑜1 , ..., 𝑝𝑜𝐼 ← 𝑝obj0.
2 𝑝𝑎 ← 𝑝act0.
3 𝑘crit_𝑜1 , ..., 𝑘crit_𝑜𝐼 , 𝑘crit_𝑎 ← calculate critical values through

Scan Statistics (Equation 5) w.r.t. 𝑝𝑜1 , ..., 𝑝𝑜𝐼 , 𝑝𝑎 .
4 𝑃𝑞 ← ∅.
5 while !X.𝑒𝑛𝑑 ( ) do
6 𝑐 ← X.𝑛𝑒𝑥𝑡 ( ) . 1𝑞 (𝑐 ) ← get indicator of clip 𝑐 through

Algorithm 2 w.r.t. 𝑘crit_𝑜1 , ..., 𝑘crit_𝑜𝐼 and 𝑘crit_𝑎 .
7 if 1𝑞 (𝑐 ) = 1 then
8 𝑝𝑜1 , ..., 𝑝𝑜𝐼 , 𝑝𝑎 ← update background 𝑝s (Equation 6).
9 𝑘crit_𝑜1 , ..., 𝑘crit_𝑜𝐼 , 𝑘crit_𝑎 ← calculate the new critical

values through Scan Statistics w.r.t. 𝑝𝑜1 , ..., 𝑝𝑜𝐼 , 𝑝𝑎 .

10 𝑃𝑞 ←
{
(𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ] : 1(𝑐 )𝑞 =1;1(𝑐𝑙 −1)𝑞 =0;1(𝑐𝑟 +1)𝑞 =0;

}
.

3. Different from SVAQ, SVAQD is initialized with values 𝑝obj0 (can
be the same for all objects present in the query or different) and
𝑝act0 as input. The update of 𝑝 can be performed every time a
new event occurs (Lines 7-9), or after processing a fixed number
of clips. This algorithm will eliminate the influence of 𝑝obj0 and
𝑝act0 naturally, adjusting them as the statistical properties of the
video change, increasing the robustness of the online model.

4 OFFLINE CASE
We now focus on answering queries over one or more videos

in an offline manner. In this case, each video is amenable to
be pre-processed to extract metadata which is fully available
during query processing. During an ingestion phase we process
each video utilizing object detection and action detection models.
Since the queries are unknown, we process each frame extracting
metadata for all possible object and action types, supported by the
deployed object detection model and action recognition model.
At query time, when desired objects and actions are specified,
the applicable metadata are utilized for query processing.

We propose algorithm RVAQ to process queries utilizing meta-
data extracted during the ingestion phase. In order to effectively
limit the number of results returned, RVAQ uses scoring functions
to rank the results, returning only the 𝐾 highest scoring ones for
a user specified 𝐾 . We first detail a general class of scoring func-
tions supported by RVAQ in §4.1, and then present the ingestion
phase in §4.2, followed by algorithm RVAQ in §4.3 and §4.4.

4.1 Scoring Functions
The scoring functions utilized in our work map a result se-

quence 𝑧 to a score (a real value). The scoring functions utilize the
score provided by the object detection/tracking models (𝑆𝑡𝑜𝑖

(𝑣)

defined in §2) and the action recognition model (𝑆𝑎 𝑗 (𝑠 ) also de-
fined in §2) at the frame and shot level respectively. Our entire
framework is agnostic on the specific object detection/tracking
and action recognition models; any model can be utilized for this
purpose.

The score of a result sequence 𝑧 is concerned with the query
content, where we assume that the query is 𝑞 : {𝑜1; ...;𝑜𝐼 ;𝑎}
and the sequence 𝑧 = {𝑐1, 𝑐2, ..., 𝑐 |𝑧 | }. We denote 𝑆𝑞 (𝑧 ) the target
score of the sequence 𝑧 under the query 𝑞. For each clip in this
sequence 𝑧, we denote 𝑆𝑞 (𝑐 ) the score of a clip 𝑐 under the query
𝑞. The score of every type of queried object or action in a clip
can be also calculated. We denote 𝑆𝑜𝑖 (𝑐 ) the score of object type

𝑜𝑖 on a clip 𝑐 , and similarly 𝑆𝑎 (𝑐 ) the score of action type 𝑎 on
the clip 𝑐 .

In a clip 𝑐 , for any object type 𝑜𝑖 , 𝑆𝑜𝑖 (𝑐 ) should be calculated
by combining all the scores related to this object 𝑜𝑖 given by
the object detection model embedded in our algorithm. Let ℎ
represent the scoring function8.

𝑆𝑜𝑖
(𝑐 ) = ℎ (𝑆𝑡𝑜𝑖

(𝑣) |∀𝑡 ∈ 𝑇𝑜𝑖 (𝑐 ), ∀𝑣 ∈ 𝑉 (𝑐 ) ), (7)

where 𝑇𝑜𝑖 (𝑐) represents the set of all tracking IDs of the object
type 𝑜𝑖 that appear in clip 𝑐 . Analogous, in a clip 𝑐 , for any action
type 𝑎 𝑗 , 𝑆𝑎 𝑗 (𝑐 ) could be calculated by combining all the scores
related to this action,

𝑆𝑎 𝑗
(𝑐 ) = ℎ (𝑆𝑎 𝑗

(𝑠 ) |∀𝑠 ∈ 𝑆 (𝑐 ) ) . (8)

The overall score of a clip 𝑐 under the query 𝑞, 𝑆𝑞 (𝑐 ) , could
combine the scores of all queried objects and the queried action.
Let 𝑔 represent the mapping function,

𝑆𝑞
(𝑐 ) → 𝑔

(
𝑆𝑜1
(𝑐 ) , 𝑆𝑜2

(𝑐 ) , ..., 𝑆𝑜𝐼
(𝑐 ) , 𝑆𝑎

(𝑐 )
)
. (9)

Furthermore, the overall score of a sequence 𝑧 under the query 𝑞,
𝑆𝑞
(𝑧 ) , could combine the scores of all clips in the sequence. Let

𝑓 represent the scoring function,

𝑆𝑞
(𝑧) → 𝑓

(
𝑆𝑞
(𝑐1 ) , 𝑆𝑞

(𝑐2 ) , ..., 𝑆𝑞
(𝑐 |𝑧 | )

)
. (10)

Our proposal is agnostic of the specifics of scoring functions
adopted. In particular, any function 𝑓 , 𝑔, can be utilized in our
framework as long as they satisfy the following properties. In
particular for the sequence score function 𝑓 :
• Score of a sequence 𝑧 is monotonic to the score of each clip in
𝑧: 𝜕𝑆𝑞 (𝑧 )/𝜕𝑆𝑞 (𝑐𝑖 ) ≥ 0, ∀1 ≤ 𝑖 ≤ |𝑧 |.
• Score of a sub-sequence of a sequence 𝑧 is always lower than
that of 𝑧: 𝑆𝑞 (𝑧 ) ≥ 𝑆𝑞 (𝑧

′ ) , ∀𝑧′ ⊆ 𝑧.
• If a sequence is divided into two non-overlapping sub-sequences,
we can obtain the score of the original sequence by manip-
ulating the scores of its sub-sequences. Let ⊙ represent the
aggregation operator on scores:

if 𝑧1 ∪ 𝑧2 = 𝑧, 𝑧1 ∩ 𝑧2 = 𝜙, 𝑆𝑞
(𝑧) = 𝑆𝑞

(𝑧1 ) ⊙ 𝑆𝑞 (𝑧2 ) . (11)

For the clip score function 𝑔:
• Score of a clip 𝑐 is monotonic to the score of each predicate in
𝑐 ,
𝜕𝑆𝑞

(𝑐 ) /𝜕𝑆𝑜𝑖
(𝑐 ) ≥ 0, ∀𝑜𝑖 ∈ 𝑞; 𝜕𝑆𝑞

(𝑐 ) /𝜕𝑆𝑎 (𝑐 ) ≥ 0.

We impose no constraints for ℎ, the clip score function of a
specific object or action type. Our algorithms will be described
using an abstract representation for functions 𝑓 , 𝑔 and ℎ. We will
detail sample scoring function choices used in our experiments
in §5.

4.2 Ingestion Phase
Clip Score Tables. During the ingestion phase, metadata are
extracted from each video in a query independent manner. We
describe the process for a single video to simplify notation. Mul-
tiple videos are handled in the same manner by associating a
video identifier to each clip identifier (cid) below. We process the
video one clip 𝑐 at a time and calculate the scores for each object
type and each action type on the clip, materializing them in the
following tables,
table𝑜𝑖 : {cid, Score} ∀𝑜𝑖 ∈ 𝑂 ; table𝑎 𝑗 : {cid, Score} ∀𝑎 𝑗 ∈ 𝐴.

For each object type detected by the object detection model, we
calculate 𝑆𝑜𝑖 (𝑐 ) by Equation 7, and store it in 𝑡𝑎𝑏𝑙𝑒𝑜𝑖 as (𝑐, 𝑆𝑜𝑖 (𝑐 ) ).
8The function ℎ for every object or action can be different. We omit the subscript
for brevity.
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Similarly, For each action type that is recognized by the action
recognition model, we calculate 𝑆𝑎 𝑗 (𝑐 ) by Equation 8, and store it
in 𝑡𝑎𝑏𝑙𝑒𝑎 𝑗 as (𝑐, 𝑆𝑎 𝑗 (𝑐 ) ). The tuples in all these tables are ordered
by Score. Although we present the tables for a single video for
brevity, notice that it is very easy to add more videos or delete
videos in this setting, by manipulating the information in these
tables. We just associate a video identifier for each 𝑐𝑖𝑑 in the
tables.
Individual Sequences. Utilizing algorithm SVAQD (§3.3), for
each object type and action type, we determine the positive clips
utilizing Equations 1 and 2 respectively. As a result, for each
object and for each action type, the entire video is divided into
sequences by merging the corresponding consecutive positive
clips. Let 𝑃𝑜𝑖 denote the individual sequences for object type 𝑜𝑖 ,
𝑃𝑎 𝑗 denote the individual sequences for action type 𝑎 𝑗 . Let 𝐶 (𝑉 )
be the total number of clips in video 𝑉 ; then for 1 ≤ 𝑐𝑖 ≤ 𝐶 (𝑉 )
we have:
𝑃𝑜𝑖 ={ (𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ] : 1𝑜𝑖

(𝑐 ) = 1;1𝑜𝑖
(𝑐𝑙 −1) = 1𝑜𝑖

(𝑐𝑟 +1) = 0};

𝑃𝑎 𝑗 ={ (𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ] : 1𝑎 𝑗
(𝑐 ) = 1;1𝑎 𝑗

(𝑐𝑙 −1) = 1𝑎 𝑗
(𝑐𝑟 +1) = 0} .

For each object and action type, we first traverse all the clips in
the target video, and compute the indicators on each clip (Equa-
tion 1 and 2). Then, utilizing the equation above, we traverse the
indicators on all clips to extract the individual sequences for each
object type and each action type. The resulting sequences are
stored as {(𝑐𝑙 , 𝑐𝑟 )}, a set of the pairs of start and end clip iden-
tifiers. That way 𝑃𝑜𝑖 and 𝑃𝑎 𝑗 are materialized during ingestion
for each object type 𝑖 and action type 𝑗 in the deployed object
detection and action recognition models. This is easily accom-
plished with a single pass over all the clips of a video. A clip 𝑐
satisfies query 𝑞, if all the query object types and the action have
positive predictions on this clip (Equation 3). Let ⊗ denote the
intersection of two individual sequences defined in this paper.
For two individual sequences 𝑃1 and 𝑃2, 𝑃1 ⊗ 𝑃2 represents new
sequences that contain the clips both in 𝑃1 and 𝑃2,

𝑃1 ⊗ 𝑃2 = { (𝑐𝑙 , 𝑐𝑟 ) | ∀𝑐∈[𝑐𝑙 , 𝑐𝑟 ] : 𝑐 ∈ 𝐶 (𝑃1 ) ∩𝐶 (𝑃2 ) ;
𝑐𝑙 − 1 ∉ 𝐶 (𝑃1 ) ∩𝐶 (𝑃2 ) ;𝑐𝑟 + 1 ∉ 𝐶 (𝑃1 ) ∩𝐶 (𝑃2 ) }

where𝐶 (𝑃1) and𝐶 (𝑃2) represent the set of all the clip identifiers
that appear in the sequences of 𝑃1 and 𝑃2 respectively. Thus, one
can obtain sequences that satisfy query 𝑞, as:

𝑃𝑞 = 𝑃𝑎 ⊗ 𝑃𝑜1 ⊗ 𝑃𝑜2 ⊗ ... ⊗ 𝑃𝑜𝐼 (12)

For any query 𝑞, 𝑃𝑞 can be computed very efficiently; since all
the 𝑃𝑜𝑖 and 𝑃𝑎 involved in 𝑞 are set of clip identifier ranges, each
range can be viewed as an interval. All intervals can be sorted
by their start point and 𝑃𝑞 can be computed in a single pass by
an interval sweep [46]. Next, we will introduce sequence scores
and how to obtain the top 𝐾 sequences efficiently.

A straightforward way to identify the 𝐾 sequences in 𝑃𝑞 with
the highest score is to retrieve each clip in the sequences of 𝑃𝑞 ,
compute each sequence score (Equation 10) and report the 𝐾
sequences with the highest score. This however will involve a
large number of random accesses to the underlying clip score
tables 𝑡𝑎𝑏𝑙𝑒𝑜𝑖 , 𝑡𝑎𝑏𝑙𝑒𝑎 𝑗 . We will propose next a more efficient al-
gorithm to identify the result sequences that effectively prunes
early unnecessary sequences effectively limiting the number of
clips that need to be accessed.

4.3 The RVAQ Algorithm
The basic idea of RVAQ is to estimate bounds (upper and lower)

on the scores of each sequence in 𝑃𝑞 and refine them progres-
sively so that the top 𝐾 sequences with the highest scores can

be computed much faster without the need to inquire about the
scores of all clips across all sequences in 𝑃𝑞 .

The efficient access of the clips in 𝑃𝑞 is conducted with the help
of an iterator TBClip (Algorithm 5) that progressively delivers
clips of the sequences in 𝑃𝑞 along with their scores only; clips not
belonging to sequences in 𝑃𝑞 are excluded. In particular, TBClip
returns two clips each time (with scores calculated by Equation 9):
𝑐top, which is the clip in 𝑃𝑞 with the largest score among those
clips not already processed by the iterator, and 𝑐btm, which is
the clip in 𝑃𝑞 with the lowest score among those not already
processed. Each time we obtain new values for 𝑐top, 𝑐btm, the
upper and lower bounds of the scores for all sequences in 𝑃𝑞 are
re-estimated; the process continues until a stopping condition
is encountered and the 𝐾 sequences with the highest scores are
identified.

Let (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) ∈ 𝑃𝑞 be a sequence (1≤𝑖≤|𝑃𝑞 |); we denote

𝐵
𝑐𝑙
(𝑖 )

up , 𝐵𝑐𝑙
(𝑖 )

lo the estimates for its upper and lower bound scores.
Given 𝑐top and 𝑐btm, we refer to the clips in the sequence that have
larger/lower scores than 𝑐top and 𝑐btm respectively as top/bottom
processed clips in this sequence; we refer to all other clips in
this sequence as not processed. Let 𝐿𝑐𝑙

(𝑖 )
up and 𝐿𝑐𝑙

(𝑖 )

lo represent the
length of the sequence minus the number of processed top/bottom
clips belonging to this sequence,

𝐿
𝑐𝑙
(𝑖 )

up =𝑐
(𝑖 )
𝑟 −𝑐

(𝑖 )
𝑙
−
���{processed top clip 𝑐 ∈ [𝑐 (𝑖 )

𝑙
, 𝑐
(𝑖 )
𝑟 ] }

��� ,1≤𝑖≤ |𝑃𝑞 |;
𝐿
𝑐𝑙
(𝑖 )

lo =𝑐
(𝑖 )
𝑟 −𝑐

(𝑖 )
𝑙
−
���{processed bottom clip 𝑐 ∈ [𝑐 (𝑖 )

𝑙
, 𝑐
(𝑖 )
𝑟 ] }

��� ,1≤𝑖≤ |𝑃𝑞 | .
where 𝑆𝑐𝑙

(𝑖 )
up and 𝑆𝑐𝑙

(𝑖 )

lo represent the overall scores of top/bottom
clips that have been processed in sequence (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ),

𝑆
𝑐𝑙
(𝑖 )

up = 𝑓 (𝑆𝑞 (𝑐 ) |processed top clip 𝑐 ∈ [𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ] ), 1 ≤ 𝑖 ≤ |𝑃𝑞 |,

𝑆
𝑐𝑙
(𝑖 )

lo = 𝑓 (𝑆𝑞 (𝑐 ) |processed bottom clip 𝑐 ∈ [𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ] ), 1 ≤ 𝑖 ≤ |𝑃𝑞 |,

where 𝑓 is the sequence score function defined in Equation 10.
After obtaining a new 𝑐top from the iterator, the upper bounds
for all the sequences in 𝑃𝑞 will be re-estimated,

𝐵
𝑐𝑙
(𝑖 )

up = 𝑓 (𝑆𝑞 (𝑐top ) , ..., 𝑆𝑞 (𝑐top )︸                   ︷︷                   ︸
𝐿
𝑐𝑙
(𝑖 )

up

) ⊙ 𝑆𝑐𝑙
(𝑖 )

up , 1 ≤ 𝑖 ≤ |𝑃𝑞 | .
(13)

where 𝑆𝑞 (𝑐top ) represents the score of clip 𝑐top and ⊙ represents
the aggregation operator on sub-sequence scores defined in Equa-
tion 11; this is also the highest score of a clip among the not
processed top clips of all result sequences. If 𝑐top ∈ [𝑐𝑙 ( 𝑗 ) , 𝑐𝑟 ( 𝑗 ) ],
for 1 ≤ 𝑗 ≤ |𝑃𝑞 |, 𝐿𝑐𝑙

( 𝑗 )
up and 𝑆𝑐𝑙

( 𝑗 )
up will also be updated for the

sequence (𝑐𝑙 ( 𝑗 ) , 𝑐𝑟 ( 𝑗 ) ),

𝐿
𝑐𝑙
( 𝑗 )

up = 𝐿
𝑐𝑙
( 𝑗 )

up − 1, 𝑆
𝑐𝑙
( 𝑗 )

up = 𝑆
𝑐𝑙
( 𝑗 )

up ⊙ 𝑓 (𝑆𝑞 (𝑐top ) ),

Similarly, after obtaining a new, 𝑐btm from the iterator, the esti-
mation of the lower bound for each sequence (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) will
also be refined:

𝐵
𝑐𝑙
(𝑖 )

lo = 𝑓 (𝑆𝑞 (𝑐btm ) , ..., 𝑆𝑞 (𝑐btm )︸                     ︷︷                     ︸
𝐿
𝑐𝑙
(𝑖 )

lo

) ⊙ 𝑆𝑐𝑙
(𝑖 )

lo , 1 ≤ 𝑖 ≤ |𝑃𝑞 | .
(14)

We also update 𝐿𝑐𝑙
( 𝑗 )

lo and 𝑆𝑐𝑙
( 𝑗 )

lo for the sequence (𝑐𝑙 ( 𝑗 ) , 𝑐𝑟 ( 𝑗 ) )
if 𝑐btm∈[𝑐𝑙 ( 𝑗 ) , 𝑐𝑟 ( 𝑗 ) ]: 𝐿𝑐𝑙

( 𝑗 )

lo =𝐿
𝑐𝑙
( 𝑗 )

lo −1, 𝑆𝑐𝑙
( 𝑗 )

lo =𝑆
𝑐𝑙
( 𝑗 )

lo ⊙𝑓 (𝑆𝑞 (𝑐btm ) ) . For
each successive invocation of the iterator TBClip, the upper
and lower bounds of all sequences are refined and converge to
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the exact values unless this process halts earlier triggered by a
stopping condition.

The algorithm utilizes two priority queues to efficiently de-
termine whether a stopping condition is satisfied. Let 𝑃𝑄𝐾lo be a
priority queue containing the 𝐾 result sequences in 𝑃𝑞 with the
highest lower bounds, organized in non-decreasing order of the
bound estimates.

𝑃𝑄𝐾lo =

{(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
with 𝐾 highest 𝐵𝑐𝑙

(𝑖 )

lo |
(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
∈ 𝑃𝑞

}
.

Each time a new lower bound estimate for a sequence (Equa-
tion 14) is available, we update the priority queue 𝑃𝑄𝐾lo reflecting
the new score. Similarly, let 𝑃𝑄¬𝐾up be a priority queue for all
result sequences not in 𝑃𝑄𝐾lo ranked in non-decreasing order of
their upper bounds,

𝑃𝑄¬𝐾up =

{(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
ranked by 𝐵𝑐𝑙

(𝑖 )
up |

(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
∈
(
𝑃𝑞 \ 𝑃𝑄𝐾lo

)}
.

Each time a new upper bound estimate is available (Equation 13),
we update 𝑃𝑄¬𝐾up . If a sequence 𝑧 is inserted in 𝑃𝑄𝐾lo removing
sequence 𝑧′ from it, z is removed from 𝑃𝑄¬𝐾up and 𝑧′ is inserted
instead. Let 𝐵𝐾lo be the minimum of the lower bounds among the
sequences in 𝑃𝑄𝐾lo,

𝐵𝐾lo = min
{
𝐵
𝑐𝑙
(𝑖 )

lo |
(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
∈ 𝑃𝑄𝐾lo

}
.

Let 𝐵¬𝐾up be the maximum of the upper bounds of all the result
sequences not currently in 𝑃𝑄𝐾lo,

𝐵¬𝐾up = max
{
𝐵
𝑐𝑙
(𝑖 )

up |
(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
∈ 𝑃𝑄¬𝐾up

}
.

Formally, the stopping condition becomes

𝐵𝐾lo ≥ 𝐵
¬𝐾
up . (15)

The whole procedure, RVAQ, is presented in Algorithm 4.
Skipped Clips. During the execution of algorithm RVAQ, a lot
of information is gained regarding which of the not processed
clips are still relevant in estimating the upper/lower bounds and
which should be skipped by TBClip. The set 𝐶skip dynamically
adjusts as the algorithm executes containing clips that the iterator
TBClip can safely skip as they cannot contribute or alter the final
result. The set contains two types of clips:
• The clips that are in the target video but not in 𝑃𝑞 . At the
beginning of Algorithm 1 (Line 2), 𝐶skip will be initialized as
𝐶 (X) \𝐶 (𝑃𝑞), where 𝐶 (X) and 𝐶 (𝑃𝑞) represent the clips in
the target video and 𝑃𝑞 respectively.
• As algorithm RVAQ progresses, some sequences are placed
in the top-𝐾 result conclusively and some are conclusively
excluded from the top-𝐾 result. More specifically, for each
sequence (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) ∈ 𝑃𝑞 , if its upper bound is smaller than
𝐵𝐾lo, it will never be a top-𝐾 sequence; all the clips in this
sequence are added into 𝐶skip (Lines 13-14 Algorithm 1):

𝐵
𝑐𝑙
(𝑖 )

up < 𝐵𝐾lo ⇒ 𝐶skip = 𝐶skip ∪ range
(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
,

where range(𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) is the set of all clips in this sequence.
Similarly, if the lower bound of a sequence is larger than 𝐵¬𝐾up ,
it is one of the top-𝐾 sequences; if the final exact scores of
top-𝐾 sequences are not required, all the clips in this sequence
will be added into 𝐶skip (Lines 19-20),

𝐵
𝑐𝑙
(𝑖 )

lo > 𝐵¬𝐾up ⇒ 𝐶skip = 𝐶skip ∪ range
(
𝑐𝑙
(𝑖 ) , 𝑐𝑟

(𝑖 )
)
.

Algorithm 4: RVAQ
Input: query 𝑞: {𝑜1; ...; 𝑜𝐼 ; 𝑎}; ∀𝑖 ∈ [1, 𝐼 ]: 𝑃𝑜𝑖 ; 𝑃𝑎 ; 𝐾 ;
Output: top-K sequences: 𝑃 topfix ;

1 𝑃𝑞 ← 𝑃𝑎 ⊗ 𝑃𝑜1 ⊗ 𝑃𝑜2 ⊗ ... ⊗ 𝑃𝑜𝐼 .
2 𝐶skip ←𝐶 (X) \𝐶 (𝑃𝑞 ) .
3 𝐵𝐾lo , 𝐵

¬𝐾
up ← −1,∞.

4 for each (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) in 𝑃𝑞 do

5 𝐵
𝑐𝑙
(𝑖 )

up , 𝐵𝑐𝑙
(𝑖 )

lo , 𝑆𝑐𝑙
(𝑖 )

up , 𝑆𝑐𝑙
(𝑖 )

lo ←∞, −1, 0, 0.

6 𝐿
𝑐𝑙
(𝑖 )

up , 𝐿𝑐𝑙
(𝑖 )

lo ← 𝑐𝑟
(𝑖 ) − 𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) − 𝑐𝑙 (𝑖 ) .

7 𝑃𝑄𝐾lo←{(𝑐𝑙
(𝑖 ) , 𝑐𝑟 (𝑖 ) ) with K highest 𝐵𝑐𝑙

(𝑖 )

lo |
(𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) ∈𝑃𝑞 }.

8 𝑃𝑄¬𝐾up ←{(𝑐
(𝑖 )
𝑙
, 𝑐
(𝑖 )
𝑟 ) ranked by 𝐵

𝑐
(𝑖 )
𝑙
up | (𝑐

(𝑖 )
𝑙
, 𝑐
(𝑖 )
𝑟 ) ∈ (𝑃𝑞\𝑃𝑄𝐾lo ) }.

9 repeat
10 𝑐top, 𝑆𝑞 (𝑐top ) , 𝑐btm, 𝑆𝑞 (𝑐btm ) ← get the next top/bottom clip

through iterator TBClip (Algorithm 5) w.r.t.𝐶skip.
11 for each (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) in 𝑃𝑞 do

12 𝐵
𝑐𝑙
(𝑖 )

up ← 𝑓 (𝑆𝑞 (𝑐top ) , ...) ⊙ 𝑆𝑐𝑙
(𝑖 )

up , update 𝑃𝑄𝐾lo and
𝑃𝑄¬𝐾up .

13 if 𝐵𝑐𝑙
(𝑖 )

up < 𝐵𝐾lo then
14 𝐶skip ← 𝐶skip ∪ range(𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) .

15 𝑐𝑙
( 𝑗 ) ← 𝑐𝑙

(𝑖 ) | (𝑐𝑙 (𝑖 ) ,𝑐𝑟 (𝑖 ) ) ∈𝑃𝑞 : 𝑐𝑙 (𝑖 ) ≤𝑐top≤𝑐𝑟 (𝑖 ) .

16 𝑆
𝑐𝑙
( 𝑗 )

up , 𝐿𝑐𝑙
( 𝑗 )

up ← 𝑆
𝑐𝑙
( 𝑗 )

up ⊙ 𝑓 (𝑆𝑞 (𝑐top ) ) , 𝐿𝑐𝑙
( 𝑗 )

up − 1 .
17 for each (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) in 𝑃𝑞 do

18 𝐵
𝑐𝑙
(𝑖 )

lo ← 𝑓 (𝑆𝑞 (𝑐btm ) , ...) ⊙ 𝑆𝑐𝑙
(𝑖 )

lo , update 𝑃𝑄𝐾lo and
𝑃𝑄¬𝐾up .

19 if 𝐵𝑐𝑙
(𝑖 )

lo > 𝐵¬𝐾up then
20 𝐶skip ← 𝐶skip ∪ range(𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) .

21 𝑐𝑙
( 𝑗 ) ← 𝑐𝑙

(𝑖 ) | (𝑐𝑙 (𝑖 ) ,𝑐𝑟 (𝑖 ) ) ∈𝑃𝑞 : 𝑐𝑙 (𝑖 ) ≤𝑐btm≤𝑐𝑟 (𝑖 ) .

22 𝑆
𝑐𝑙
( 𝑗 )

lo , 𝐿𝑐𝑙
( 𝑗 )

lo ← 𝑆
𝑐𝑙
( 𝑗 )

lo ⊙ 𝑓 (𝑆𝑞 (𝑐btm ) ) , 𝐿𝑐𝑙
( 𝑗 )

lo − 1 .

23 𝐵𝐾lo ← min{𝐵𝑐𝑙
(𝑖 )

lo | (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) ∈ 𝑃𝑄𝐾lo }.

24 𝐵¬𝐾up ← max{𝐵𝑐𝑙
(𝑖 )

up | (𝑐𝑙 (𝑖 ) , 𝑐𝑟 (𝑖 ) ) ∈ 𝑃𝑄¬𝐾up }.
25 until 𝐵𝐾lo ≥ 𝐵

¬𝐾
up ;

26 Return 𝑃𝑄𝐾lo .

𝐶skip is used by the iterator TBClip (detailed in §4.4) to return
only clips relevant for further processing.

4.4 TBClip

We now discuss TBClip, an iterator presented by Algorithm
5 to return incrementally the highest and lowest ranking clips
that satisfy query 𝑞. The iterator deploys a variant of the popular
top-k query algorithm processing algorithm (e.g., [16]) with some
important differences as detailed below.

After some initialization the first time it is invoked (Lines 1-5),
the iterator proceeds in two steps. First, for each 𝑡𝑎𝑏𝑙𝑒𝑜𝑖 , 𝑡𝑎𝑏𝑙𝑒𝑎 𝑗
involved in 𝑞, conducts sorted access in parallel starting from
the row in each table, accessed last in the previous invocation,
until at least one new clip is identified in all the tables (Lines
8-13). Second, performs random accesses to obtain the scores of
all retrieved clips (Lines 16-22) to fully compute their scores. At
the same time, the iterator computes the clip with the current
lowest score (Lines 23-24). The clip with the highest score along
with the clip with the lowest score identified are returned by the
iterator in this invocation.
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Algorithm 5: iterator: TBClip
Input: query 𝑞: {𝑜1, ..., 𝑜𝐼 , 𝑎}; ∀𝑖 ∈ [1, 𝐼 ]: 𝑡𝑎𝑏𝑙𝑒𝑜𝑖 ; 𝑡𝑎𝑏𝑙𝑒𝑎 ;𝐶skip;
Output: next top and bottom clip identifiers and their scores:

𝑐top, 𝑆top, 𝑐btm, 𝑆btm
1 if this iterator is initialized then
2 𝐶top,𝐶btm ← ∅, ∅. # processed top/bottom clips.
3 𝐶𝑜1

top, ...,𝐶𝑜𝐼
top,𝐶𝑎 top ← ∅, ..., ∅, ∅.

4 𝐶𝑜1
btm, ...,𝐶𝑜𝐼

btm,𝐶𝑎btm ← ∅, ..., ∅, ∅.
5 𝑠𝑡𝑎𝑚𝑝top, 𝑠𝑡𝑎𝑚𝑝btm ← 1, 1.

6 ⊲ Step 1 (8-13) for each table, do sorted access in parallel from
the (𝑠𝑡𝑎𝑚𝑝top )th row until a new clip is found in all the tables.

7 repeat
8 𝑐𝑜1

∗, ..., 𝑐𝑜𝐼
∗, 𝑐𝑎∗ ← retrieve all the CIDs that appear on the

𝑠𝑡𝑎𝑚𝑝topth row of 𝑡𝑎𝑏𝑙𝑒𝑜1 , ..., 𝑡𝑎𝑏𝑙𝑒𝑜𝐼 , 𝑡𝑎𝑏𝑙𝑒𝑎
respectively.

9 𝐶𝑜1
top, ...,𝐶𝑜𝐼

top ←𝐶𝑜1
top ∪

{
𝑐𝑜1
∗}, ...,𝐶𝑜𝐼 top ∪ {

𝑐𝑜𝐼
∗}.

10 𝐶𝑎
top ←𝐶𝑎

top ∪ {𝑐𝑎∗}.
11 𝐶∩top ←𝐶𝑎

top ∩⋂𝐼𝑖=1𝐶𝑜𝑖 top −𝐶top −𝐶skip.
12 𝑠𝑡𝑎𝑚𝑝top ← 𝑠𝑡𝑎𝑚𝑝top + 1.
13 until |𝐶∩top | ≥ 1. ;
14 ⊲ Step 2 (16-22) perform random accesses to obtain the scores of

all the seen clips and return the clip with the highest score.
15 𝑆top ← −1.
16 𝐶∪top ←𝐶𝑎

top ∪⋃𝐼𝑖=1 𝐶𝑜𝑖 top −𝐶top −𝐶skip.
17 for each clip 𝑐 in𝐶∪top do
18 𝑆𝑜1

(𝑐 ) , ..., 𝑆𝑜𝐼
(𝑐 ) ← retrieve Scores from table𝑜1 , ..., table𝑜𝐼

w.r.t. CID 𝑐 .
19 𝑆𝑎

(𝑐 ) ← retrieve the 𝑆𝑐𝑜𝑟𝑒 from 𝑡𝑎𝑏𝑙𝑒𝑎 w.r.t. CID 𝑐 .
20 if 𝑆𝑎 (𝑐 ) (

∑𝐼
𝑖=1 𝑆𝑜𝑖

(𝑐 ) ) > 𝑆top then
21 𝑆top ← 𝑔

(
𝑆𝑎
(𝑐 ) , 𝑆𝑜1

(𝑐 ) , 𝑆𝑜2
(𝑐 ) , ..., 𝑆𝑜𝐼

(𝑐 )
)
.

22 𝑐top ← 𝑐 .

23 ⊲ Step 3 for each table, do reverse access from the bottom in
parallel from the (stampbtm )th row and update𝐶𝑜1

btm, ...,
𝐶𝑜𝐼

btm,𝐶𝑎btm, until a new clip is found in all the tables.
24 ⊲ Step 4 perform random accesses to obtain the scores of all the

seen clips and return the clip with the lowest score.
25 𝐶top,𝐶btm ←𝐶top ∪ 𝑐top,𝐶btm ∪ 𝑐btm.
26 Return 𝑐top, 𝑆top, 𝑐btm, 𝑆btm.

Thus, TBClip obtains both the highest ranking and the lowest
ranking clips every time it is called. Moreover, while accessing
the tables sequentially in parallel, we can skip ( Lines 11 and 16)
clips from further processing, if we are confident that these clips
cannot contribute to sequences in the final top-𝐾 result. Such
skipped clips belong to𝐶skip detailed in §4.3. Notice that set𝐶skip
expands dynamically as the algorithm progresses. In TBClip,
clips belonging to𝐶skip will only be accessed once during parallel
sorted access, and be excluded from further processing (thus
imposing no random access overhead in the ensuing execution).

5 EXPERIMENTAL EVALUATION
In this section, we present the results of our experimental

evaluation of our proposals on a variety of datasets. For purposes
of exposition, we utilize the following scoring functions in our
offline case experiments (utilizing the notation of §4.1),

ℎ : 𝑆𝑎 𝑗
(𝑐 )=

∑︁
𝑠∈𝑆 (𝑐 )

𝑆𝑎 𝑗
(𝑠 ) , 𝑆𝑜𝑖

(𝑐 )=
∑︁

𝑣∈𝑉 (𝑐 )

∑︁
𝑡 ∈𝑇𝑜𝑖 (𝑐 )

𝑆𝑡𝑜𝑖
(𝑣) ;

𝑔 : 𝑆𝑞 (𝑐 )=𝑆𝑎 (𝑐 )
(∑︁𝐼

𝑖=1
𝑆𝑜𝑖
(𝑐 )

)
; 𝑓 : 𝑆𝑞 (𝑧)=

∑︁
𝑐∈𝐶 (𝑧)𝑆𝑞

(𝑐 ) .

Functions 𝑓 and ℎ are additive on their operands, and function 𝑔
is monotonic. Any function that adheres to the properties of §4.1
can be easily adopted.

5.1 Experimental Setup
Models. Our proposals are orthogonal to the underlying objec-
t/action detection and tracking models utilized. Our approach can
work with any state-of-the-art model utilizing the best-in-kind
models. In our experiments, for purposes of exposition, we select
the following models as they have demonstrated solid perfor-
mance. We stress however that our proposal can work with any
model desired.
• MaskRCNN and YOLOv3. Mask R-CNN [24] stands as a two-
stage object detector trained on dataset COCO; YOLOv3 [36,
37] is an object detector with capability extending to 9000
distinct types of objects.
• I3D. I3D [8] is an action recognizer trained on dataset Kinetics
(encompassing 600 action types) [7].
• CenterTrack. CenterTrack [55] is a real-time object tracker
that localizes objects and predicts their associations with the
previous frames.
• Ideal Model. To evaluate our algorithms’ accuracy without
introducing errors in the detection models utilized, we also
include experiments utilizing the ideal models that essentially
generate detections matching the ground-truth labels exactly.

All models are set up as recommended in their papers.
Datasets.We use two video datasets in the experimental study.
• YouTube. ActivityNet [5] provides a large-scale YouTube video
benchmark for human activity understanding. We select more
than 600 videos in ActivityNet and authors manually label
the range of different objects appearing in each activity for
evaluating our proposal. We evaluate the algorithms on a fixed
set of queries depicted in Table 1.
• Movies. We select well-known movies and form queries in-
volving actions and objects appearing in them (Table 2) for
the evaluation of RVAQ.

For annotation, we first divide all the YouTube videos into 12 sets
according to their corresponding action types. For each set of
videos, we only focus on the types of objects that will be queried,
such as faucet andOven for the videos aboutwashing dishes. Then,
for each queried object type, we label the temporal boundaries of
the appearances of this object in each video. An objectmay appear
multiple times in a video, and the temporal boundaries of each
appearance will be annotated. The intersection of the temporal
intervals of all the query-specified objects and the action will be
considered as the result sequence that satisfies this query.
Metrics. For the evaluation of SVAQ and SVAQD, we first present
the F1 Score, evaluating the effectiveness of the algorithms to
identify the sequences compared to the ground truth, whose
computation follows the subsequent procedure:
> We say that a sequence 𝑧 identified by our proposal matches a
ground truth sequence 𝑧, iff the intersection over the union
(IOU) of the clips of the two sequences is above a threshold,
𝜂. We set the threshold 𝜂 to 0.5 in our evaluation signifying
substantial overlap between the sequences9. A result sequence,
𝑧, is considered as a true positive if the IOU between 𝑧 and
any sequence in the ground truth sequences is more than the
threshold 𝜂; otherwise, it is a false positive. A ground truth
sequence 𝑧, whose IOU with any result sequence is less than
𝜂, is considered a false negative.

In addition, detection models are prone to noise, leading to inac-
curate query processing outputs (as indicated in §1), where we
evaluate the effectiveness of SVAQD by quantifying the proportion

9The same IOU threshold (𝜂=0.5) is widely utilized in numerous other research
works, especially in object/action detection tasks [6, 24, 42, 52].
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Table 1: Action and object types queried in evaluation on YouTube, alongside the total length (in min) of videos containing each specific
action.

Action Object Len Action Object Len Action Object Len
𝑞1 Washing Dishes Faucet; Oven 57 𝑞5 Volleyball Tree 110 𝑞9 Doing Crunches Chair 85
𝑞2 Blowing Leaves Car; Plant 52 𝑞6 Playing Rubik Cube Clock 89 𝑞10 Blow-drying Hair Kid 138
𝑞3 Walking The Dog Tree; Chair 127 𝑞7 Cleaning Sink Faucet; Knife 84 𝑞11 Washing Hands Faucet; Dish 113
𝑞4 Drinking Beer Bottle; Chair 63 𝑞8 Kneeling Tree 104 𝑞12 Archery Sunglasses 156

Table 2: Action and object types queried on Dataset Movies.

Video Action Object Length
Coffee and Cigarettes Smoking Wine Glass, Cup 1h 36min
Iron Man Robot Dancing Car, Airplane 2h 6min
Star Wars 3 Archery Bird, Cat 2h 14min
Titanic Kissing Surfboard, Boat 3h 14min

of noise eliminated from the detection models by SVAQD.
For the evaluation of RVAQ, we measure the query runtime (or
query latency), as well as the number of random disk accesses to
the clip score tables required to answer the queries.
Algorithms Compared: Offline Case For the offline case al-
gorithm RVAQ utilizes both a forward and a backward pass on
the suitable tables to obtain top/bottom clips and utilizes a skip
mechanism to avoid accessing clips unnecessarily. For purposes
of exposition we also present a comparison with the following
algorithms:
• We utilize Fagin’s Algorithm [15] to produce top ranking clips
according to equation 12. Each clip as produced is checked
against the ranges of clips in 𝑃𝑞 . If the clip is not in any of the
clip ranges in 𝑃𝑞 it is disregarded. The score of each sequence
in 𝑃𝑞 is computed as its clips are produced and the algorithm
stops when the score of each sequence in 𝑃𝑞 has been pro-
duced and the final 𝐾 sequences are returned. We refer to this
algorithm as FA.
• We also include a variant of algorithm RVAQwithout activating
the skip mechanism in order to quantify the effectiveness of
our proposal. We refer to this algorithm as RVAQ-noSkip.
• Finally we consider the algorithm that accesses all clips in the
sequences of 𝑃𝑞 (Equation 12), calculates the scores of each
sequence and returns the 𝐾 sequences with the highest scores.
This algorithm accesses only the clips in the result sequences.
We refer to this algorithm as the 𝑃𝑞-Traverse.

Server. All algorithms were implemented in Python and run on a
Linux server with Intel Xeon Gold 6244 3.60GHz CPU and 64GB
memory and an NVIDIA RTX TITAN Xp GPU.

5.2 The Online Case
Impact of Background Probability. In our description of al-
gorithms SVAQ and SVAQD, there is an initialization of the back-
ground probability 𝑝0. We first explore the sensitivity of the
algorithms to this initialization. In Figure 2, we illustrate the per-
formance of the two algorithms for two queries on the YouTube
dataset, varying the background probability. The depicted queries
are (a): {𝑎=blowing leaves; 𝑜1=car} and (b): {𝑎=washing dishes;
𝑜1=faucet}. Similar results hold for the queries on other videos
in Dataset YouTube and are omitted for brevity. For each exper-
iment, we initialize both algorithms with the same value of 𝑝0
and report the associated F1 score for each query. As is evident in
the Figure, SVAQD has a very low dependency on the initial value
of 𝑝0 due to its adaptive design. In contrast, algorithm SVAQ has a
high dependency on the background probability value and some
initial values affect its accuracy substantially. Thus, the bene-
fits of the adaptive design of SVAQD are clear as the dependency
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Figure 2: F1 Scores of SVAQ/SVAQD on diff initial background prob.
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Figure 3: F1 scores of SVAQ and SVAQD for all the queries onYouTube.

on the initial value of the background probability is immaterial,
making it of choice.
F1 Score.We present the F1 scores for the two algorithms across
several diverse queries. As a basis for comparison, we observe
that the F1 scores of SVAQ as 𝑝0 varies in Figure 2 peaks in the
range [10−5, 10−4]. So we fix 𝑝0 for SVAQ to 𝑝0 = 10−4 in this
and subsequent experiments. Figure 3 presents the F1 scores for
all the queries on dataset YouTube, specified in Table 1, for SVAQ
and SVAQD. It is evident that SVAQD, which dynamically updates
𝑝0, provides superior performance on F1 Scores.
Impact of Predicate Correlation and Predicate Quantity.
There are two important factors that affect the overall F1 score,
namely the accuracy in the detection of the underlying object
and action models deployed as well as how correlated the ob-
ject and action predicates are. Table 3 presents the F1 scores for
twelve different queries on the YouTube dataset with varying
object predicates for the SVAQ and SVAQD algorithms. We observe
that for queries containing multiple correlated predicates (i.e.,
the range of frames on which both predicates are true exhibit
high overlap, such as the query about blowing leaves and person),
the predicates with higher detection accuracy (such as person)
may improve the precision of our model for the composite query,
compared to queries without the predicate (i.e., only blowing
leaves). This happens because predicates with higher accuracy of
detection (due to the object/action model deployed) may mitigate
the errors caused by predicates with lower detection accuracy.
In general, however, queries involving multiple predicates result
in slightly lower F1 scores since the likelihood of detection er-
rors increases with the number of query predicates. In practice,
utilizing the most accurate detectors for objects and actions is
preferred; SVAQD is able to attain superior accuracy for queries
of varying complexity.
Impact of Detection Noise. In Table 4, we present the F1 scores
for the two algorithms adopting different detection models. As
expected, lower accuracy models (e.g., YOLOv3 [37]) yield lower
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Table 3: F1 scores of queries with varying object predicates.

Queries SVAQ SVAQD

𝑎=blowing leaves 0.82 0.85
𝑎=blowing leaves, 𝑜1=person 0.90 0.93
𝑎=blowing leaves, 𝑜1=plant 0.84 0.87
𝑎=blowing leaves; 𝑜1=car 0.83 0.85
𝑎=blowing leaves, 𝑜1=person, 𝑜2=car 0.83 0.88
𝑎=blowing leaves, 𝑜1=person, 𝑜2=plant, 𝑜3=car 0.81 0.85
𝑎=washing dishes 0.86 0.88
𝑎=washing dishes, 𝑜1=person 0.89 0.93
𝑎=washing dishes, 𝑜1=oven 0.83 0.86
𝑎=washing dishes, 𝑜1=faucet 0.77 0.79
𝑎=washing dishes, 𝑜1=faucet, 𝑜2=oven 0.77 0.80
𝑎=washing dishes, 𝑜1=person, 𝑜2=faucet, 𝑜3=oven 0.78 0.82

Table 4: F1 scores of SVAQ and SVAQD with different detection mod-
els for the query q: {a=blowing leaves; o1=car}.

Methods in SVAQ F1 Methods SVAQD F1
SVAQ (MaskRCNN+I3D) 0.83 SVAQD (MaskRCNN+I3D) 0.85
SVAQ (YOLOv3+I3D) 0.80 SVAQD (YOLOv3+I3D) 0.82
SVAQ (Ideal Models) 1.00 SVAQD (Ideal Models) 1.00

Table 5: False positive rate of action/objection detection without
or with SVAQD.

Queries FPR of Action FPR of Object
w/o SVAQD w/ SVAQD w/o w/

a=blowing leaves; o1=car 0.10 0.05 0.31 0.18
a=washing dishes; o1=faucet 0.16 0.01 0.18 0.04

overall F1 scores when adopted in our algorithms, versus more
accurate models (e.g., Mask R-CNN [24]). We also present the
accuracy of our algorithms assuming the ideal models that have
a perfect detection accuracy (i.e., match the ground truth in all of
their inferences). It is evident that the major source of inaccuracy
for our algorithms is the errors introduced by the underlying
detectionmodels. When that source of inaccuracy is removed (i.e.,
utilizing better models) our algorithms improve their accuracy
in terms of identifying all results of interest compared to ground
truth.
Effectiveness of EliminatingDetectionNoise.Table 5 presents
the false positive rates (FPR) of the action recognizer and the
object detector over two queries on dataset YouTube, conducted
without (w/o) or with (w/) SVAQD. It is evident that, by employ-
ing our proposed query identification and merging techniques,
SVAQD can substantially reduce false positives produced by the
detection models by 50-80%, eliminating their errors effectively.
Impact of Clip Size. We conduct experiments varying the clip
size. The size of clips is a parameter in our setting and we wish
to explore how its choice affects the results reported. In Figure
4, we report the number of result sequences identified by our
algorithms with varying clip sizes for two different queries. As
is depicted in Figure 4, it is evident that the prevailing trend is
that with a smaller clip size, we generate more result sequences
(of smaller length), whereas, with a larger clip size, we will get
fewer result sequences (of larger length). However upon close
examination of the actual number of frames reported in each case,
irrespective of the clip size, the total number of frames reported
for each clip size remains stable. Thus the choice of the size of the
clip primarily affects the number of result sequences reported,
not the actual content of the sequences compared to ground truth.
In particular, if we evaluate the algorithms assessing the frame-
level F1 score comparing the frames in the sequences retrieved
to the ground truth, their accuracy exhibits low dependency on
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Figure 4: # of Sequences found with diff clip sizes.
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Figure 5: Frame-level F1 scores with diff clip sizes.

the clip size (as shown in Figure 5), which corroborates the fact
that frames in the result sequences obtained by our algorithms
are the same even if the clip size varies. Similar results hold for
the queries on other videos in Dataset YouTube and are omitted
for brevity.
Runtime Superiority. The query latency (or query runtime) for
both SVAQ and SVAQD is dominated (>98%) by the inference time
of the object detection and action recognition models. Taking
query 𝑞1 as an example, its overall query processing time is
171.8 minutes, with 168.7 minutes dedicated to model inference.
Making a comparison between our proposal and the solution
based on the end-to-end idea, we undertake the training of an end-
to-end model (using the network architecture in [8]) for query 𝑞1.
Despite yielding little improvements (<0.05) in F1 Score, the end-
to-end detection model has a training (fine-tuning) and query
processing time of >60 hours, which is significantly worse than
the runtime of SVAQD. This proves the statements made in §1 that
attempting to train an end-to-end model for recognizing actions
involving objects concurrently is not scalable nor applicable.

5.3 Performance of RVAQ
For the offline case, once the query is provided along with the

number of results required, the main objective is to produce the
results sequences with the highest score fast. Since the video se-
quences have been pre-processed, the execution of the algorithm
involves accessing information in secondary storage to produce
the results. As such we report on the runtime required to produce
the final answer, as well as the total number of random accesses
to secondary storage.

Table 6 presents the runtime and the total number of random
disk accesses conducted by all approaches we consider (§5.1) for
the movie, Coffee and Cigarettes, as per Table 2, as the number
𝐾 of highest ranking results varies. Table 7 presents the perfor-
mance of all approaches for the YouTube dataset with respect to
𝐾=5. Some observations are immediate; for algorithm FA as no
lower bounds can be obtained as well as there is no way to skip
unnecessary clips, the overall performance is substantially worse
than all other approaches. In Algorithm RVAQ-noSkip, we observe
that, although upper and lower bounds are obtained for the clips
accessed, the inability to skip irrelevant clips is detrimental to
the performance of the algorithm. For algorithm 𝑃𝑞-Traverse, the
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Table 6: Performance on movie Coffee and Cigarettes.

Methods Runtime (sec); Number of Random Accesses (×1000)
K=1 K=5 K=9 K=11 K=13 K=15

FA 246; 39 282; 50 293; 51 293; 51 349; 54 349; 54
RVAQ-noSkip 130; 24 180; 27 184; 27 185; 27 192; 27 195; 27
𝑃𝑞 -Traverse 56; - 56; - 56; - 56; - 56; - 56; -
RVAQ 14; 3.6 24; 3.7 34; 4.0 38; 5.2 42; 5.6 48; 6.0

Table 7: Performance on YouTube dataset (K=5).

Queries Runtime (sec); # of Random Accesses (×1000)
FA RVAQ-noSkip 𝑃𝑞 -Traverse RVAQ

𝑞1 218; 33.2 63; 7.2 9.8; - 3.2; 0.62
𝑞2 96; 15.1 65; 7.3 32; - 2.6; 0.55

Table 8: Speedup of RVAQ against 𝑃𝑞-Traverse on 3 movies.

Datasets K=1 K=3 K=5 K=7 K=9 K=11 max K
Iron Man 3.70x 3.03x 2.86x 2.78x 2.70x 2.33x 1.05x
Star Wars 3 3.23x 2.94x 2.78x 2.63x 2.63x 2.63x 1.03x
Titanic 2.78x 2.78x 2.78x 2.78x 2.78x 2.38x 1.11x

runtime and the number of random disk accesses is a constant ir-
respective of the value of 𝐾 and proportional to the total number
of clips contained in the result sequences. Overall, our proposed
RVAQ is the most efficient and progressively its performance ap-
proaches closely that of 𝑃𝑞-Traverse when all result sequences
are requested, as expected (this video has 21 ground truth result
sequences). Since the performance of FA and RVAQ-noSkip is al-
most an order of magnitude worse than that of RVAQ for small
values of 𝐾 we do not consider these algorithms further.

Table 8 presents the speedup of RVAQ against 𝑃𝑞-Traverse for
three popular movies as the number 𝐾 of highest ranking results
varies. The associated queries we issue are depicted in Table 2.
We observe that RVAQ is 2.7 to 3.7 times faster compared to 𝑝𝑞-
Traverse for a small number of results𝐾 . As𝐾 increases gradually,
since the query requires accessing all the clips of top-𝐾 sequences
to obtain their exact scores, the number of accesses required by
RVAQ increases to reach progressively that of 𝑃𝑞-Traverse, when
all the results sequences in the video are required in the final
answer. Note that the last column depicts the largest value of 𝐾
which contains all the results sequences for the query in each
video.

In terms of accuracy for all these results, since the movies in
our evaluation were not annotated by a third party, we manually
annotated the results for the queries considered and inspected
the ranked result sequences of RVAQ. In all cases for all sequences
returned by RVAQ, the precision is above 81.0% and the associated
F1 score is above 82.9%. These results are in line with the accu-
racy of SVAQD presented in the previous section (as compared
to annotated ground truth in benchmark datasets). Moreover, in
all cases, when 𝐾=10, that is for the top-10 sequences ranked by
Equation 10, the precision and F1 score are both 1, attesting to
the superior accuracy (and associated performance) attainable
by our proposals.

6 RELATEDWORK
Action Recognition and Object Detection. Emerging solutions

for object detection can be roughly divided into two main cate-
gories: one-stage methods (such as YOLO [37] and SSD [32]) and
two stage-methods (such as Faster R-CNN [39] and Mask R-CNN
[24]). Mask R-CNN [24] is proposed to tackle pixel-wise object
instance segmentation by extending Faster R-CNN. Several re-
cent works address the problem of recognizing actions in videos

[8, 17, 20, 53]. I3D [8] extends the network structure from two
to three dimensions and proposes a two-stream inflated 3D Con-
vNet for action recognition. These works primarily train deep
architectures of varying complexities end to end yielding models
to classify actions in video frame sequences. Our work readily
utilizes action recognition, object detection and tracking models
[48, 55] in an online or offline manner to enable declarative query
processing scenarios.

Automated Video Analytics in Data Management Community.
In the data management community, several recent works [9, 10,
12, 13, 30, 51] have introduced declarative query interfaces that
utilize frame content (objects, spatial locations in the frame, etc)
as first class citizens, aiming to enhance the execution accuracy
and speed, while enabling users to query without concerning
the exact execution process. NoScope and BlazeIt [28, 29] utilize
special-purpose-build neural networks (NNs) to detect objects
accelerating queries via inference-optimized model search. Focus
[26] implements low-latency search over large video datasets aim-
ing to balance precision and query speed. SVQ [31, 49] provides a
series of filters to accelerate video monitoring queries involving
count and spatial constraints on objects present in the frames.
[11, 50] present declarative query processing on video streams
involving objects and their interactions. Our work follows this
research thread proposing a framework to incorporate object
detection and action recognition in a declarative framework for
both streaming and offline videos.

Content-based Image Retrieval. The history of content-based
image retrieval (CBIR) research in the multimedia context can be
dated back to more than 20 years [33, 41, 43]. CBIR aims at search-
ing for visual (or semantic) similar images given a query image
according to their visual contents. Bartolini et al. [1–3] develop
retrieval systems compositing multimedia retrieval models with
multimedia databases. Recently, image representations based on
CNN have attracted increasing interest in the community and
demonstrated impressive performance [34, 54]. The CNNs with
hashing approaches have also been adopted in the CBIR task for
obtaining more compact image features to compute the similar-
ity of pairwise images [34]. The scope of our research diverges
from CBIR. In this paper, our approach centers on leveraging the
outputs of pre-existing CV models to answer SQL-like queries
involving actions and objects, where our system enhances query
accuracy and reduces time expenditure by minimizing model
invocations. Conversely, CBIR is dedicated to constructing repre-
sentations of video content and addressing the searching through
similarity computations [2].

7 CONCLUSIONS

We treated online and offline queries on videos incorporating
objects and actions as first-class citizens for query processing. As
off-the-shelf deep learning models for action recognition focus
on the action itself and do not incorporate object constraints,
we proposed a framework based on scan statistics to identify
sequences of frames that contain all query-specified objects and
actions in a statistically sound manner. We demonstrated our
approaches’ accuracy and performance benefits using real-world
videos. This work raises a few avenues for follow-up work. First,
adding other action detectionmodels (like group action detection)
to our framework should be investigated. Also, queries involving
interactions between objects and actions in the video feed are
worth investigating.
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