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ABSTRACT
Many applications track the movements of mobile users, espe-
cially in controlled (e.g., indoor) environments. This information
can be combined with other data (e.g., user transaction records)
for effective promotion marketing or item recommendation. In
this paper, we define the concept of geo-footprint, a concise rep-
resentation of the visits by mobile users in supervised indoor
spaces, which summarizes the potential interest of users in nearby
points of interest. Then, we define similarity measures between
users based on their footprints, inspired by popular models from
Information Retrieval. Finally, we propose and evaluate similarity
search algorithms which can be used as modules in recommender
systems or data mining tasks (e.g., clustering or nearest-neighbor
classifiers).

1 INTRODUCTION
There has been a lot of previous work on managing the locations
and movement of mobile objects. Most of it focuses on handling
(outdoor) user trajectories [23]. This includes trajectory data ana-
lytics systems [9, 18], trajectory cleaning and transformation [5],
trajectory similarity measures [20], trajectory retrieval [17, 25],
and trajectory clustering [24] and classification [2]. Targeted
applications include traffic monitoring and analysis [26], navi-
gation [11], trip recommendation [16]. Location-based services
for indoor spaces are gaining popularity [19], as indoor location
tracking can be achieved with good accuracy, either with the
help of wireless technology (e.g., WiFi, RFID, UWB, BLT devices,
etc.) [27], computer vision [13], or by using the phone’s inertial
sensors [14].

This work focuses on the capturing and use, for each mobile
user, of the locations or regions have been of interest to the user,
such as a visit to the TVs section of a department store. Instead
of storing the entire history of user locations (i.e., the complete
trajectories), we focus on location information, which concisely
captures and implies the interests or habits of users within a given
context (e.g., in a department store). We call this information geo-
footprint.

Example The manager of department store Acme is interested
in tracking, for each registered customer and for each visit of the
customer to Acme, the areas within the store where the customer
spent at least 1 min. These regions may relate the customer
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to products or product categories that are exhibited/promoted
nearby.

Motivation By comparing the geo-footprints of two users, we
can infer whether two users have similar interests, behavior, or
habits. Computing the geo-footprints of users and their similarity
finds application in market analysis and recommender systems.
For instance, customer segmentation divides the customers of a
company into clusters based on the similarity of their features
(characteristics). Geo-footprints can be considered as features.
A clustering algorithm can be used to divide customers into
groups based on the areas of the store they habitually visit. Tar-
geted advertisements and promotions can then be addressed to
each group, based on the exhibited products or services in the
frequently visited areas by the group members. Geo-footprints
can be used together with other features (e.g., age, transaction
records) to define clusters based onmultivariate information. Sim-
ilarly, in recommender systems or advertisement, geo-footprints
can be used as part of the user profiles. This is especially useful
in situations where there is insufficient information about other
feature types of the target user (i.e., cold-start users). Given a
target user 𝑢, to whom a recommendation should be provided,
the recommender system can identify users with the most similar
geo-footprints as𝑢 and recommend the products bought by them
to 𝑢. Another application is link recommendation in geo-social
networks. The profiles of users of such networks include their
location visits and their frequencies, which can be modeled as
geo-footprints. In particular, frequently visited nearby places by a
user 𝑢 can be modeled as regions of interest in the geo-footprint
of 𝑢. Geo-footprint similarity can then be used to model the
probability that two users meet and become socially connected.

Contributions In this paper, we define the concept of geo-
footprint, which finds application in market-analysis and rec-
ommendation. We propose a measure for the similarity between
geo-footprints, which naturally extends document similarity mea-
sures from information retrieval. We propose algorithms for effi-
cient footprint-based similarity computation, which build upon
plane-sweep and spatial join techniques. Finally, we investigate
the indexing of geo-footprints for efficient similarity search.

2 RELATEDWORK
There has been ample work on tracking, managing, and analyzing
mobility data [2, 5, 9, 13, 14, 16–20, 23–27], as discussed in the
introduction. Related to our work is the problem of identifying
hot spots of moving vehicles [15]. Sample objects are used as
“sensors” that track the density of vehicles around them, based
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on their speed. Time-parameterized hot spots and regions are
identified. As opposed to our geo-footprints, these hot spots are
not linked to individual users and cannot be used as user features.

Related to our geo-footprints are the locations associated to
documents or objects in location-based information retrieval [6,
7, 21]. The places mentioned in each document are extracted and
indexed together with the text content, to facilitate location-based
keyword search. (i.e., find documents containing biword “Chinese
restaurant” near my location). The differences between these
regions/locations and our geo-footprints is that, for a single object
(or document), the same location cannot be in the object’s profile
multiple times. Hence, our definitions and similarity function are
essentially different.

Finally, geo-footprints are related to dwell or stay regions,
where moving objects spend significant time [8, 12, 22, 28, 29].
Such regions are points or areas which remain close to the ob-
ject for (at least) a time period [22, 28] and/or where the object
exhibits stable (slow) movement [29]. Their identification can be
done by geometric on-line or off-line algorithms (e.g., clustering
[10]). The regions of interest (RoI) that we define in Sec. 3.1 are
similar, but not identical, to stay/dwell regions. Specifically, for
practical purposes, our regions are rectangular and enclose the lo-
cations relevant to them; this facilitates their efficient extraction,
as we discuss in Sec. 3.2. Note that our definition of footprints
(as sets of regions) and their similarity is orthogonal to how their
constituent regions are defined.

3 GEO-FOOTPRINTS
This section presents definitions and an approach for extracting
geo-footprints from user trajectories. We consider the scenario
that the locations of users (e.g., customers in a department store)
are tracked automatically and regularly and converted to trajec-
tories, linked to the user identifiers. Formally:

Definition 3.1 (user trajectory). A user trajectory𝑇 of length |𝑇 |
is a sequence of locations {𝑙1, 𝑙2, . . . , 𝑙 |𝑇 | }, such that each location
𝑙𝑖 = ⟨𝑙 .𝑝, 𝑙 .𝑡⟩ is characterized by a spatial position 𝑝 (i.e., a pair
of 𝑥,𝑦 coordinates) and a timestamp 𝑡 . For regularly tracked
locations, 𝑙𝑖+1 .𝑡 − 𝑙𝑖 .𝑡 equals a fixed time difference Δ𝑡 , for each
𝑖 ∈ [1, |𝑇 |).

For the same user 𝑢, we typically have a sequence of trajec-
tories 𝑢.T = {𝑢.𝑇1, 𝑢.𝑇2, . . . 𝑢.𝑇T }, where for each 𝑖 ∈ [1, |T |),
𝑢.𝑇𝑖 .𝑙 |𝑇𝑖 | .𝑡 < 𝑢.𝑇𝑖+1 .𝑙1 .𝑡 , i.e., the trajectories are temporally dis-
joint. We may also refer to a trajectory in 𝑢.T as a session of
user 𝑢. For example, a trajectory/session in 𝑢.T corresponds to a
continuous time period during which customer 𝑢 visited a store.

3.1 Regions of interest
Instead of the entire trajectories, we are interested in sub-trajectories,
where the user is relatively immobile (e.g., the customer wan-
ders around or stands near specific exhibition items). Two or
more consecutive locations in a user trajectory belong to the
same region of interest, if they are spatially close to each other.
Formally:

Definition 3.2 (region of interest (RoI)). A region of interest for
a given user𝑢 is defined by the 3Dminimum bounding box (MBB)
that encloses the set of consecutive locations 𝑅 = {𝑙𝑠 , 𝑙𝑠+1, . . . , 𝑙𝑒 }
in a trajectory 𝑢.𝑇 of 𝑢.T , where 1 ≤ 𝑠 < 𝑒 ≤ |𝑇 |, such that (i)
|𝑙𝑖 .𝑝 − 𝑙 𝑗 .𝑝 | ≤ 𝜖 for each 𝑖, 𝑗 ∈ [𝑠, 𝑒] and (ii) 𝑒 − 𝑠 > 𝜏 .

Parameter 𝜖 is a spatial extent constraint and 𝜏 is the minimum
duration of a subtrajectory to qualify for a RoI. Quantity |𝑙𝑖 .𝑝 −

𝑙 𝑗 .𝑝 | denotes the spatial distance between locations 𝑙𝑖 .𝑝 and 𝑙 𝑗 .𝑝 ;
typically measured using Euclidean distance (𝐿2). Intuitively, a
RoI 𝑅 includes all consecutive user locations in a trajectory and
their timestamps, the extent of𝑅 does not exceed 𝜖 , and𝑅 includes
a large enough number of locations, corresponding to a large
enough time interval to indicate the user’s high interest to the
region. For example, for a customer in a store who spends a long
time near a particular category of items, we can infer that the
spatial region around the items characterizes the interest of the
customer. Figure 1(a) shows two regions of interest that can be
extracted from a user trajectory 𝑢.𝑇 . For simplicity, we use the
same symbol 𝑅 to denote the sequence of locations that define a
region and their MBB.

3D profiles, examples (period = day)

x

y

time of day

10:00

12:00

user 1

14:00

16:00

18:00 user 2

x

y

time (2022/01/10)

10:00

12:00

u.T

14:00

16:00

18:00

(a) 3D regions

2D (spatial-only) profiles, examples

x

y
user 1
user 2

1

2 3

1

1 2

x

y
user 1
user 2

(b) 2D footprints

Figure 1: Extracted regions and user footprints

3.2 Geo-footprint Extraction
To minimize the number of extracted RoIs from a user trajectory
and at the same time unify temporally consecutive, overlapping
RoIs, we propose Algorithm 1, which computes RoIs that are
temporally maximal and temporally disjoint. Algorithm 1 is a
greedy heuristic, which starts by verifying the conditions of
Definition 3.2 on the first 𝜏 locations of the examined trajectory
𝑇 (i.e., 𝑠 = 1, 𝑒 = 𝜏). If the first 𝜏 locations form a RoI, we keep 𝑠
constant and expand 𝑒 until the maximality condition is violated
and finalize the extracted maximal region. The next candidate to
start searching for a maximal region is [𝑒 + 1, 𝑒 + 𝜏 + 1]. If the
first 𝜏 locations do not form a region of interest, we repeat with
𝑠 = 2, 𝑒 = 𝜏 + 1, and so on, until the condition is satisfied for a
given 𝑠 and 𝑒 . Algorithm 1 also includes an optimization in order
to avoid some redundant checks. Starting from the first location
in the input trajectory𝑇 , the algorithm adds to the current region
𝑅 the next location 𝑙𝑖 , until condition 𝜖 is violated. When this
happens, if 𝑅 has enough locations, it is added to the profile of
the user corresponding to trajectory 𝑅 and a new 𝑅 is initialized
to hold 𝑙𝑖 (Lines 6-8). If 𝑅 does not have enough locations, then a
new region 𝑛𝑒𝑤𝑅 is initialized with just 𝑙𝑖 ; then, we add to 𝑛𝑒𝑤𝑅
as many points from 𝑅 as possible starting from the last point of
𝑅 and going backwards. This guarantees that the maximal region
which includes 𝑙𝑖 will not be missed, while avoiding redundant
operations.

We run Algorithm 1 for all trajectories of a user 𝑢, to extract
all RoIs of the user. If the user has been at the same area multiple
times (e.g., the TV exhibition area of a store), then the weight
of that should be higher in the user’s profile. Based on this, we
define the geo-footprint 𝐹 (𝑢) of a user 𝑢 as the collection of all
RoIs of 𝑢, disregarding their temporal dimension. In other words,
we consider the RoIs in a user footprint to be 2D MBRs, i.e., the
2D projections of the extracted 3D RoIs:

Definition 3.3 (Geo-footprint). The geo-footprint 𝐹 (𝑢) of a user
𝑢 is the spatial projections of the RoIs that are extracted from the
trajectories of 𝑢 using Algorithm 1; i.e., the RoIs that define 𝐹 (𝑢)

611



Algorithm 1 Regions of interest extraction
Require: trajectory𝑇 ; bounds 𝜖 , 𝜏
1: 𝑅 ← null ⊲ Current region
2: for each 𝑙𝑖 ∈ 𝑇 do
3: if 𝑅 ∪ 𝑙𝑖 .𝑝 does not violate 𝜖 then
4: add 𝑙𝑖 to 𝑅
5: else
6: if |𝑅 | ≥ 𝜏 then ⊲ Current region has enough points
7: add 𝑅 to user profile
8: 𝑅 ← {𝑙𝑖 } ⊲ Initialize current region
9: else
10: 𝑛𝑒𝑤𝑅 ← {𝑙𝑖 } ⊲ Initialize new region
11: while 𝑛𝑒𝑤𝑅 ∪ 𝑅.𝑙𝑎𝑠𝑡 does not violate 𝜖 do
12: 𝑛𝑒𝑤𝑅 ∪ 𝑅.𝑙𝑎𝑠𝑡 ; delete 𝑅.𝑙𝑎𝑠𝑡 ;
13: end while
14: 𝑅 ← 𝑛𝑒𝑤𝑅 ⊲ Initialize current region
15: end if
16: end if
17: end for
18: if |𝑅 | ≥ 𝜏 then ⊲ Last region has enough points
19: add 𝑅 to user profile
20: end if

should be temporally disjoint and each of them cannot be en-
riched with additional locations without violating the constraint
𝜖 in Def. 3.2.

For example, in recommender systems for department stores,
the time when a customer visited an area in the store may not be
important. Examples of such user footprints are shown in Figure
1(b).

4 SIMILARITY BETWEEN GEO-FOOTPRINTS
To define the similarity between users based on their geo-footprints,
we model the preference of a user 𝑢 to a location 𝑙 by the number
of times 𝑙 is in the RoIs of 𝐹 (𝑢), i.e., 𝑢’s geo-footprint. This is
similar to the relevance of a text document to a term defined by
the number of times the term appears in the document. However,
since the spatial domain is continuous and infinite, as opposed to
the domain of possible terms, we use the set of RoIs (instead of
individual locations) in the user footprints to define and measure
similarity.

Specifically, the footprint of a user can also be modeled as a set
of disjoint spatial regions and their frequencies. Figure 2(a) shows
an example of a footprint with three rectangular RoIs (𝑟1, 𝑟2, 𝑟3)
extracted by Algorithm 1. The RoIs divide the space into nine
disjoint regions (𝐴 to 𝐼 ) denoted by different colors. These disjoint
regions are not necessarily rectangular and their union is the
space covered by all three RoIs (𝑟1, 𝑟2, 𝑟3). For each of the disjoint
regions, Figure 2(a) shows in parentheses its frequency, i.e., the
number of times it is included in the RoIs 𝑟1, 𝑟2, 𝑟3 of the footprint.
Hence, the footprint 𝐹 (𝑟 ) of a user 𝑟 can also be modeled as
a set of (𝑋, 𝑓𝑋 ) pairs, where 𝑋 is a continuous spatial region
(not necessarily rectangular) and 𝑓𝑋 is the frequency of 𝑋 . For
example, the frequency of region 𝐶 is 2 because it is included in
𝑟1 and 𝑟2, but not in 𝑟3.

We define the similarity between two users 𝑟 and 𝑠 , based on
their footprints 𝐹 (𝑟 ) and 𝐹 (𝑠), inspired by the popular cosine
similarity in IR, as follows:

𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑠)) =
∑
(𝑋,𝑓𝑋 ) ∈𝐹 (𝑟 ),(𝑌,𝑓𝑌 ) ∈𝐹 (𝑠 ) |𝑋 ∩ 𝑌 | · 𝑓𝑋 · 𝑓𝑌

| |𝐹 (𝑟 ) | | · | |𝐹 (𝑠) | |
(1)

The numerator in Eq. 1 aggregates the common locations in
the footprints 𝐹 (𝑟 ) and 𝐹 (𝑠) and multiplies them with their fre-
quencies in the footprints. That is, for each pair (𝑋,𝑌 ) of regions
that intersect and 𝑋 is in 𝐹 (𝑟 ), 𝑌 is in 𝐹 (𝑠), the area |𝑋 ∩ 𝑌 | of
their intersection𝑋 ∩𝑌 is computed and multiplied by 𝑓𝑋 and 𝑓𝑌 ;
the result is added to the numerator. The numerator is equivalent

to the dot product of two frequency vectors, which include all lo-
cations in space and their frequencies in the footprints of users 𝑟
and 𝑠 . Similarly, the denominator is the product of two quantities
| |𝐹 (𝑟 ) | | and | |𝐹 (𝑠) | | which are equivalent to the Euclidean norms
of the footprints, considering all locations in space. Specifically:

| |𝐹 (𝑟 ) | | =
√︄ ∑︁
(𝑋,𝑓𝑋 ) ∈𝐹 (𝑟 )

|𝑋 | ∗ 𝑓 2
𝑋
, (2)

where |𝑋 | denotes the area of region 𝑋 . The denominator of
Eq. 1 ensures that 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑠)) ranges from 0 to 1; two iden-
tical footprints have a similarity equal to 1 and two entirely
disjoint ones have zero similarity. Figure 2(b) shows an exam-
ple of two geo-footprints from two users 𝑟 and 𝑠 . Footprint
𝐹 (𝑟 ) originally has two overlapping regions 𝑟1 and 𝑟2 which
are modeled by three disjoint regions 𝑟𝐴, 𝑟𝐵, 𝑟𝐶 with their fre-
quencies shown in parentheses, i.e., 𝑟𝐴 = 𝑟1 − 𝑟2, 𝑟𝐵 = 𝑟1 ∩ 𝑟2,
𝑟𝐴 = 𝑟2 − 𝑟1. Hence, 𝐹 (𝑟 ) = {(𝑟𝐴, 1), (𝑟𝐵, 2), (𝑟𝐶 , 1)}. Similarly,
𝐹 (𝑠) = {(𝑠𝐴, 1), (𝑠𝐵, 2), (𝑠𝐶 , 1)}. The footprint similarity between
𝑟 and 𝑠 is:
|𝑟𝐴 ∩ 𝑠𝐴 | · 1 · 1 + |𝑟𝐵 ∩ 𝑠𝐴 | · 2 · 1 + |𝑟𝐵 ∩ 𝑠𝐵 | · 2 · 2 + |𝑟𝐵 ∩ 𝑠𝐶 | · 2 · 1√

52 · 12 + 20 · 22 + 22 · 12 ·
√
7 · 12 + 1 · 22 + 1 · 12

which amounts to 2/
√
77 ≈ 0.228. The numerator sums up the

frequency products for all pairs of overlapping regions.
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Figure 2: Disjoint regions and frequencies

5 SIMILARITY COMPUTATION
Given the footprints 𝐹 (𝑟 ) and 𝐹 (𝑠) of two users 𝑟 and 𝑠 , we inves-
tigate how we can efficiently compute their similarity. We first
study the efficient computation of the norm | |𝐹 (𝑟 ) | | of a footprint
𝐹 (𝑟 ) and then suggest methods for similarity computation.

5.1 Norm computation
Algorithm 2 is a plane-sweep algorithm that computes the norm
| |𝐹 (𝑟 ) | | of a footprint 𝐹 (𝑟 ). Algorithm 2 can be used in a prepro-
cessing phase, where the norms of all user footprints are computed
and stored, so that they can readily be used in Eq. 1 whenever
we need to compute the similarity between two footprints.

Algorithm 2 computes from the set of rectangular RoIs 𝑟1, 𝑟2, . . .
of 𝐹 (𝑟 ) a set of disjoint regions and their frequencies, i.e., the
(𝑋, 𝑓𝑋 ) pairs discussed in Sec. 4. While doing so, it incrementally
constructs the norm by summing the contribution of each such
region 𝑋 . Initially, we pick a sorting dimension (e.g., the x-axis)
and take the projection of each RoI 𝑟𝑖 ∈ 𝐹 (𝑟 ) on that dimension,
which is an interval [𝑎, 𝑏]; we create two triples ⟨𝑎, 𝑟𝑖 .𝑖𝑑, 𝑆𝑡𝑎𝑟𝑡⟩
and ⟨𝑏, 𝑟𝑖 .𝑖𝑑, 𝐸𝑛𝑑⟩. All triples are then sorted using the first col-
umn. The algorithm then accesses the triples in order, which
model the stops of a plane-sweep line. We initialize a data struc-
ture 𝐷 , which manages the disjoint regions at each stop of the
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sweep line. 𝐷 divides the line into intervals; each interval cor-
responds to a continuous empty space or occupied space by a
disjoint region. 𝐷 keeps a set of (𝑠𝑡𝑎𝑟𝑡, 𝑐𝑜𝑢𝑛𝑡) pairs ordered by
𝑠𝑡𝑎𝑟𝑡 . For the first entry in 𝐷 , 𝑠𝑡𝑎𝑟𝑡 is the smallest value of the
non-sweep axis (e.g., y-axis). The 𝑠𝑡𝑎𝑟𝑡 value of each subsequent
entry in 𝐷 defines the end value of the interval of the previous
entry. When the sweep line moves from one position to the next
one, 𝐷 is used to compute the areas of the disjoint regions and
their contribution to the norm (lines 4-6); we keep in a variable
𝑠𝑠𝑞 the sum of squares computed as the line progresses. We also
keep in variable 𝑝𝑟𝑒𝑣 the previous position of the sweep line (to
compute the areas of the regions between the previous position
of the line to the next one).

When the line moves from value 𝑝𝑟𝑒𝑣 to 𝑣 (i.e., the currently
accessed projection endpoint is ⟨𝑣, 𝑟𝑖 .𝑖𝑑, 𝑡𝑦𝑝𝑒⟩), the first thing to
do is to compute the contribution of the disjoint regions in the
stripe from x=𝑝𝑟𝑒𝑣 to x=𝑣 (lines 4-6). For this, we scan the entries
of 𝐷 in ascending 𝑠𝑡𝑎𝑟𝑡 order and, for each 𝑒 ∈ 𝐷 , compute the
area of the region defined by y-range [𝑒.𝑠𝑡𝑎𝑟𝑡, 𝑒 .𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡] and
x-range [𝑝𝑟𝑒𝑣, 𝑣] and multiply them with 𝑒.𝑐𝑜𝑢𝑛𝑡2. The result is
added to 𝑛𝑞𝑜 . 𝑒.𝑛𝑒𝑥𝑡 is the next entry to 𝑒 in 𝐷 (if there is no
𝑒.𝑛𝑒𝑥𝑡 , then 𝑒.𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡 = ∞ and 𝑒.𝑐𝑜𝑢𝑛𝑡 should be 0).

After updating 𝑠𝑠𝑞, the algorithm updates 𝐷 to include the cor-
rect intervals and their counts. Specifically, if the line stops to the
beginning of a RoI 𝑟𝑖 , two new entries are added to 𝐷 , otherwise
(𝑟𝑖 ends), two entries that correspond to 𝑟𝑖 are removed from 𝐷 ,
updating the corresponding counters. In the end, Algorithm 2
returns the √𝑠𝑠𝑞 which is the norm of the input set of RoIs.

Algorithm 2 Norm computation algorithm
Require: set of RoIs (footprint) 𝐹 (𝑟 ) ;
1: Sort endpoints ⟨𝑣, 𝑟𝑖 .𝑖𝑑, 𝑡𝑦𝑝𝑒 ⟩ of RoIs projections on the x-axis
2: 𝐷 ← [(0, 0) ]; 𝑠𝑠𝑞 ← 0; 𝑝𝑟𝑒𝑣 ← min x-value;
3: for each ⟨𝑣, 𝑟𝑖 .𝑖𝑑, 𝑡𝑦𝑝𝑒 ⟩ in 𝑣-order do
4: for each entry 𝑒 in 𝐷 in 𝑠𝑡𝑎𝑟𝑡 -order do ⊲ update norm square
5: 𝑠𝑠𝑞 ← 𝑠𝑠𝑞 + (𝑒.𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡 − 𝑒.𝑠𝑡𝑎𝑟𝑡 ) · (𝑣 − 𝑝𝑟𝑒𝑣) · 𝑒.𝑐𝑜𝑢𝑛𝑡2
6: end for
7: if 𝑡𝑦𝑝𝑒 = 𝑆𝑡𝑎𝑟𝑡 then ⊲ add entries to 𝐷
8: 𝑒 ← 𝑒 ∈ 𝐷 with largest 𝑠𝑡𝑎𝑟𝑡 , such that 𝑒.𝑠𝑡𝑎𝑟𝑡 ≤ 𝑟𝑖 .𝑦𝑙𝑜𝑤
9: 𝑒 ← (𝑟𝑖 .𝑦𝑙𝑜𝑤 , 𝑒 .𝑐𝑜𝑢𝑛𝑡 + 1) ; 𝐷.𝑎𝑑𝑑 (𝑒 )
10: while 𝑒.𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡 < 𝑟𝑖 .𝑦𝑢𝑝 do
11: 𝑒.𝑛𝑒𝑥𝑡 .𝑐𝑜𝑢𝑛𝑡 ← 𝑒.𝑛𝑒𝑥𝑡 .𝑐𝑜𝑢𝑛𝑡 + 1
12: 𝑒 ← 𝑒.𝑛𝑒𝑥𝑡
13: end while
14: 𝐷.𝑎𝑑𝑑 ( (𝑟𝑖 .𝑦𝑢𝑝 , 𝑒 .𝑐𝑜𝑢𝑛𝑡 − 1) ) ;
15: else ⊲ 𝑡𝑦𝑝𝑒 = 𝐸𝑛𝑑 : remove entries from 𝐷
16: 𝑒 ← 𝑒 ∈ 𝐷 with 𝑠𝑡𝑎𝑟𝑡 = 𝑟𝑖 .𝑦𝑙𝑜𝑤
17: 𝐷.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑒 )
18: while 𝑒.𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡 < 𝑟𝑖 .𝑦𝑢𝑝 do
19: 𝑒.𝑛𝑒𝑥𝑡 .𝑐𝑜𝑢𝑛𝑡 ← 𝑒.𝑛𝑒𝑥𝑡 .𝑐𝑜𝑢𝑛𝑡 − 1
20: 𝑒 ← 𝑒.𝑛𝑒𝑥𝑡
21: end while
22: 𝐷.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑒.𝑛𝑒𝑥𝑡 ) ⊲ entry for 𝑟𝑖 .𝑦𝑢𝑝
23: end if
24: 𝑝𝑟𝑒𝑣 = 𝑣
25: end for
26: return

√
𝑠𝑠𝑞

Complexity Analysis If there are 𝑛 RoIs in 𝐹 (𝑟 ), the algorithm
needs 2𝑛 steps. Each step scans 𝐷 to update 𝑠𝑠𝑞 and 𝐷 contains
at most 2𝑛 entries. In addition, each step, updates 𝐷 to add or
remove 2 entries and these changes require a scan of 𝐷 in the
worst case. Hence, the time complexity is𝑂 (𝑛2). Regarding space,
the algorithm has to maintain 𝐷 , which is 𝑂 (𝑛).
Extraction of Disjoint Regions Algorithm 2 can directly be
used to extract a set of disjoint regions and their frequencies,
which can be used as an alternative (to the set of RoIs) for repre-
senting a footprint. Specifically, when we update 𝑠𝑠𝑞 (line 5), we
can output each of the regions that contribute to 𝑠𝑠𝑞 together with

its frequency (equal to 𝑒.𝑐𝑜𝑢𝑛𝑡 ). This will give us a set of disjoint
rectangular regions that can be used to model the footprint.

5.2 Similarity computation
Algorithm 3 is a variant of Algorithm 2 that computes the simi-
larity between two footprints 𝐹 (𝑟 ) and 𝐹 (𝑠). Besides them, Al-
gorithm 3 takes as input their norms (assumed to have been
pre-computed by Algorithm 2). Algorithm 3 sorts the endpoints
of all RoI projections on a selected dimension (e.g., the x-axis) and
accesses them in order, simulating a plane sweep line that stops
at each endpoint. At each stop of the line it maintains in two
data structures 𝐷𝑟 and 𝐷𝑠 the active intervals and their counts
from 𝐹 (𝑟 ) and 𝐹 (𝑠). The main difference to Algorithm 2 is lines
5-17, where a routine merges the (ordered) contents of 𝐷𝑟 and
𝐷𝑠 to compute the contribution of a stripe (i.e., the area between
the current line position 𝑣 and the previous one 𝑝𝑟𝑒𝑣) to the
numerator 𝑠𝑖𝑚𝑛 of the similarity function (Eq. 1). This routine
computes the weighted-intersection between the disjoint regions
for 𝐹 (𝑟 ) and 𝐹 (𝑠) in the stripe. After the merge-join routine, 𝐷𝑟

or𝐷𝑠 is updated depending on the source of the current endpoint,
indicated by flag 𝑠𝑟𝑐 in the representation of endpoints. After
completing all stops, the algorithm divides 𝑠𝑖𝑚𝑛 by the product
of the two norms and returns the similarity.

Algorithm 3 Similarity computation algorithm
Require: sets of RoIs (footprints) 𝐹 (𝑟 ) , 𝐹 (𝑠 ) ; 𝑛𝑜𝑟𝑚𝑟 , 𝑛𝑜𝑟𝑚𝑠
1: Sort endpoints ⟨𝑣, 𝑟𝑖 .𝑖𝑑, 𝑠𝑟𝑐, 𝑡𝑦𝑝𝑒 ⟩ of RoIs projections on the x-axis
2: 𝐷𝑟 ← [(0, 0) ]; 𝐷𝑠 ← [(0, 0) ]
3: 𝑝𝑟𝑒𝑣 ← min x-value; 𝑠𝑖𝑚𝑛 ← 0
4: for each ⟨𝑣, 𝑟𝑖 .𝑖𝑑, 𝑠𝑟𝑐, 𝑡𝑦𝑝𝑒 ⟩ in 𝑣-order do
5: 𝑒𝑟 ←first entry in 𝐷𝑟

6: 𝑒𝑠 ←second entry in 𝐷𝑠

7: while 𝑒𝑟 ≠ null and 𝑒𝑠 ≠ null do
8: if 𝑒𝑟 .𝑠𝑡𝑎𝑟𝑡 < 𝑒𝑠 .𝑠𝑡𝑎𝑟𝑡 then
9: 𝑢𝑝 ← min{𝑒𝑟 .𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡, 𝑒𝑠 .𝑠𝑡𝑎𝑟𝑡 }
10: 𝑠𝑖𝑚𝑛 ← 𝑠𝑖𝑚𝑛+ (𝑢𝑝 −𝑒𝑟 .𝑠𝑡𝑎𝑟𝑡 ) · (𝑣 −𝑝𝑟𝑒𝑣) ·𝑒𝑟 .𝑐𝑜𝑢𝑛𝑡 ·𝑒𝑠 .𝑝𝑟𝑒𝑣.𝑐𝑜𝑢𝑛𝑡
11: 𝑒𝑟 ← 𝑒𝑟 .𝑛𝑒𝑥𝑡
12: else ⊲ 𝑒𝑟 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑒𝑠 .𝑠𝑡𝑎𝑟𝑡
13: 𝑢𝑝 ← min{𝑒𝑠 .𝑛𝑒𝑥𝑡 .𝑠𝑡𝑎𝑟𝑡, 𝑒𝑟 .𝑠𝑡𝑎𝑟𝑡 }
14: 𝑠𝑖𝑚𝑛 ← 𝑠𝑖𝑚𝑛+ (𝑢𝑝 −𝑒𝑠 .𝑠𝑡𝑎𝑟𝑡 ) · (𝑣 −𝑝𝑟𝑒𝑣) ·𝑒𝑠 .𝑐𝑜𝑢𝑛𝑡 ·𝑒𝑟 .𝑝𝑟𝑒𝑣.𝑐𝑜𝑢𝑛𝑡
15: 𝑒𝑠 ← 𝑒𝑠 .𝑛𝑒𝑥𝑡
16: end if
17: end while
18: if 𝑠𝑟𝑐 = 0 then ⊲ endpoint from an 𝐹 (𝑟 ) RoI
19: update 𝐷𝑟 by running lines 7-23 of Alg. 2, for 𝐷 = 𝐷𝑟

20: else ⊲ endpoint from an 𝐹 (𝑠 ) RoI
21: update 𝐷𝑠 by running lines 7-23 of Alg. 2, for 𝐷 = 𝐷𝑠

22: end if
23: 𝑝𝑟𝑒𝑣 = 𝑣
24: end for
25: return 𝑠𝑖𝑚𝑛/(𝑛𝑜𝑟𝑚𝑟 · 𝑛𝑜𝑟𝑚𝑠 )

Complexity Analysis If there are 𝑛 RoIs 𝐹 (𝑟 ) and𝑚 RoIs 𝐹 (𝑠),
the algorithm needs 2(𝑛 +𝑚) steps. Each step performs a concur-
rent scan to 𝐷𝑟 and 𝐷𝑠 to compute their contribution to 𝑠𝑖𝑚𝑛; 𝐷𝑟

and 𝐷𝑠 may include up to 2(𝑛 +𝑚) entries. The update of eiher
𝐷𝑟 or 𝐷𝑠 takes at most 𝑂 (𝑛) and 𝑂 (𝑚), respectively. Hence, the
overall time complexity is 𝑂 ((𝑛 +𝑚)2). The space complexity is
𝑂 (𝑛 +𝑚) as we only have to maintain the state of 𝐷𝑟 and 𝐷𝑠 at
each step.

Computing Norms and Similarity SimultaneouslyWith a
minor modification, Algorithm 3 can also compute the norms of
𝐹 (𝑟 ) and 𝐹 (𝑠), in case they have not been precomputed. For this,
we have to apply lines 4-6 of Algorithm 2 for 𝐷𝑟 or 𝐷𝑠 before
the set is updated and also keep track of the previous stops in
𝐷𝑟 and 𝐷𝑠 (in place of 𝑝𝑟𝑒𝑣 of Algorithm 2), to update 𝑛𝑜𝑟𝑚𝑟 or
𝑛𝑜𝑟𝑚𝑠 at each step. Overall, (modified) Algorithm 3 is a general
method that can compute the similarity between two sets of RoIs,
regardless of whether their norms have been precomputed or
not.
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5.3 Computation based on spatial join
Interestingly, we can employ any spatial intersection join al-
gorithm [1, 3] to compute 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑠)), provided that the
norms | |𝐹 (𝑟 ) | | and | |𝐹 (𝑠) | | are available. Each pair (𝑟𝑖 , 𝑠 𝑗 ) of RoIs,
𝑟𝑖 ∈ 𝐹 (𝑟 ), 𝑠 𝑗 ∈ 𝐹 (𝑠) that intersect contribute to the numerator
𝑠𝑖𝑚𝑛 of Eq. 1 as much as the area of their intersection. Algorithm
4 describes a similarity computation algorithm based on this.
Note that, unlike Algorithm 3, Algorithm 4 cannot be extended
to compute the norms | |𝐹 (𝑟 ) | | and | |𝐹 (𝑠) | |, so, it cannot compute
similarity if the norms are not given.

Algorithm 4 Join-based similarity computation
Require: sets of RoIs (footprints) 𝐹 (𝑟 ) , 𝐹 (𝑠 ) ; 𝑛𝑜𝑟𝑚𝑟 , 𝑛𝑜𝑟𝑚𝑠
1: 𝑠𝑖𝑚𝑛 ← 0
2: for each pair (𝑟𝑖 , 𝑠 𝑗 ) , 𝑟𝑖 ∈ 𝐹 (𝑟 ) , 𝑠 𝑗 ∈ 𝐹 (𝑠 ) that intersect do
3: 𝑠𝑖𝑚𝑛 ← 𝑠𝑖𝑚𝑛 + |𝑟𝑖 ∩ 𝑠 𝑗 | ⊲ add intersection area of pair
4: end for
5: return 𝑠𝑖𝑚𝑛/(𝑛𝑜𝑟𝑚𝑟 · 𝑛𝑜𝑟𝑚𝑠 )

Correctness Proof (sketch) According to Eq. 1, the intersecting
area |𝑋 ∩ 𝑌 | of each pair of disjoint regions 𝑋 of 𝐹 (𝑟 ) and 𝑌
of 𝐹 (𝑠) contributes |𝑋 ∩ 𝑌 | · 𝑓𝑋 · 𝑓𝑌 to the similarity. Since 𝑋
is part of 𝑓𝑋 original RoIs in 𝐹 (𝑟 ) and 𝑌 is part of 𝑓𝑌 original
RoIs in 𝐹 (𝑠), the intersecting area |𝑋 ∩ 𝑌 | will be part of 𝑓𝑋 · 𝑓𝑌
spatial join pairs found by Algorithm 4, which totally contribute
|𝑋 ∩ 𝑌 | · 𝑓𝑋 · 𝑓𝑌 to 𝑠𝑖𝑚𝑛.

Complexity Analysis Algorithm 4 is expected to be faster than
Algorithm 3, as plane-sweep based spatial intersection join has a
cost of 𝑂 (𝑛 log𝑛) +𝑂 (𝑚 log𝑚) +𝑂 (𝑛 +𝑚 + 𝐾), where 𝐾 is the
size of the join output [3]. For each join pair, we only have to
compute the intersection area which takes 𝑂 (1) per pair.

6 INDEXING AND SIMILARITY SEARCH
Given the footprint of a query user 𝑞, we investigate methods for
finding the 𝑘 users with the highest footprint-based similarity to
𝑞.

6.1 Using an R-tree
An intuitive approach is to index the rectangular RoIs in the
geo-footprints of all users by an R-tree; each index entry is a (RoI,
ID) pair, where ID identifies the user whose footprint contains
RoI.

6.1.1 Iterative search. The first (baseline) algorithm searches
the R-tree for each RoI 𝑞 𝑗 of the query user 𝑞, to find users 𝑟 who
have regions in their footprints 𝐹 (𝑟 ) that overlap with 𝑞 𝑗 . For
each such region 𝑟𝑖 , the algorithm updates the similarity of 𝑟 w.r.t.
𝑞 by adding to the numerator of 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑞)) the area of the
spatial intersection 𝑟𝑖 ∩ 𝑞 𝑗 . The denominator of 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑞))
can be computed once, given that we have access to | |𝐹 (𝑟 ) | | and
that | |𝐹 (𝑞) | | is computed in the beginning of query processing,
using Algorithm 2. While finding users whose footprints overlap
with 𝑞 𝑗 , we keep track of the set of 𝑘 most similar users to 𝑞 so
far. After finishing this iterative search (i.e., one spatial search
for each 𝑞 𝑗 ∈ 𝐹 (𝑞)), the 𝑘 most similar users become the query
result.

6.1.2 Batch search. An improved approach is to perform search
for all𝑞 𝑗 ∈ 𝐹 (𝑞) simultaneously. Specifically, we access the R-tree
in search for the R-tree leaf nodes that have non-zero spatial over-
lap with 𝐹 (𝑞). For this, we use the MBR of 𝐹 (𝑞) to guide search.
Whenever we visit a leaf node 𝐿 of the tree, we conduct a spatial
join between 𝐹 (𝑞) and the contents of 𝐿. For each pair (𝑟𝑖 , 𝑞 𝑗 )

of intersecting RoIs, where 𝑟𝑖 ∈ 𝐿 and 𝑞 𝑗 ∈ 𝐹 (𝑞), we update
𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑞)). The 𝐿 Z 𝐹 (𝑞) join is optimized as follows [3].
Before the join, we access all contents of 𝐿 and remove from con-
sideration all 𝑟𝑖 ∈ 𝐿 which do not intersect with𝑀𝐵𝑅(𝐹 (𝑞)). In
addition, we ignore all 𝑞 𝑗 ∈ 𝐹 (𝑞) which do not intersect𝑀𝐵𝑅(𝐿).
Then, we do a plane-sweep join between the non-eliminated
RoIs in 𝐿 and 𝐹 (𝑞). We expect this batch search approach to be
significantly faster than the iterative baseline because it avoids
accessing the same R-tree nodes more than once per query.

6.2 User-centric R-tree
Another way to organize the data is to index by an R-tree, for
each user 𝑟 , the MBR of 𝐹 (𝑟 ) and the ID of 𝑟 , which can be used
to access 𝐹 (𝑟 ). That is, the RoIs in a user footprint 𝐹 (𝑟 ) are not
stored/indexed independently, but as a single entry. We denote
this user-centric R-tree index by 𝑅𝑈 . We use the tree to find the
user footprint MBRs that intersect the query footprint 𝐹 (𝑞). For
each such footprint 𝐹 (𝑟 ), in a refinement step, we use Alg. 4 to
compute 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑞)). 𝑅𝑈 indexes the regions of each user
together and computes the similarity of each accessed user in
one step, instead of accumulating it during search (as in Sec. 6.1);
hence, it has an advantage if the RoIs in each geo-footprint are
close to each other.

7 EXPERIMENTS
In this section we present our experimental analysis by first
describing our setup and then presenting our experiments, which
evaluate the efficiency and effectiveness of footprint extraction,
norm computation, similarity computation, and similarity search.

Setup We compiled all codes in g++ 9.4.0 with flag -O3 and ran
experiments on a 32GB Ubuntu 20.04.3 LTS machine with Intel
Core i9-10900K CPU @3.70GHz.

Datasets. We used with the publicly available ATC shopping
center dataset [4], which includes user trajectories which are
exported from raw sensor measurements. The dataset is divided
in different parts, each of which corresponds to a 8-10 day period
of continuous recordings of user movements. The spatial coor-
dinates of trajectory points were normalized to take values in
[0,1]. In our experiments, we used four of the available parts as
different datasets, denoted by Part A, B, C, D, respectively; Table
1 summarizes their statistics.

Table 1: Statistics of data and extracted RoIs
ATC Shopping

Center #users avg. #regions avg. relative
𝑥-extent 𝑦-extent

Part A 278K 16 0.020145 0.017232
Part B 236K 18 0.019387 0.016651
Part C 317K 20 0.019247 0.016606
Part D 377K 17 0.025416 0.022551

Footprint extraction.We implemented the footprint extraction
algorithm we proposed in Sec. 3. We tuned the value of 𝜖 to 0.02
and the value of 𝜏 to 30 which correspond to 2 meters and 3 sec.,
respectively. For this, we experimented with different values and
used the ones that led to a resonable number of RoIs for each
user. Table 1 summarizes, for each dataset, the average number of
RoIs per user footprint and the average extent of the RoIs in each
dimension. As Table 2 shows, Algorithm 1 is fast and scalable,
extracting about 4.5K footprints per second.

Norm computation. After extracting the footprints for each of
the four parts, we applied the norm computation algorithm (Alg.
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Table 2: Times for footprint extraction & norm computa-
tion

Preprocessing Time (s) Part A Part B Part C Part D
Footprint extraction 60.09 56.9 82.15 90.33
Norm computation 6.91 7.84 7.97 11.98

Table 3: Times for similarity computation
Avg. cost (𝜇s) Part A Part B Part C Part D
Algorithm 3 46.24 59.5 52.7 16.39
Algorithm 4 1.08 1.28 1.46 0.53

Table 4: Indexing time for R-tree methods
Indexing Time (s) Part A Part B Part C Part D

R-tree 3.54 3.68 5.64 5.57
User-centric R-tree 0.25 0.22 0.31 0.35

2) on each part, to compute the norms of all footprints in it, which
are to be used in similarity computations. The computation of
norms for all parts (also reported in Table 2) is very efficient.

Similarity computation.Next, we investigated the performance
of the user similarity algorithms we proposed in Sections 5.2 and
5.3. For each part, we picked 200 random user footprints from it
and computed the similarity between these users and all other
users in the part. Then, we took the average cost of each sim-
ilarity computation using Alg. 3 and Alg. 4. Table 3 shows the
results. On average, Alg. 4 is 1-2 orders of magnitude faster than
Alg. 3, because it aggregates the similarity from each pair of
intersecting RoIs instead of doing so by first decomposing them
to disjoint regions. Hence, Alg. 4 is the best option, provided
that the norms have been pre-computed and they are available,
which is consistent to our complexity analysis.

Similarity search. Next, we compare the three indexing and
search approaches suggested in Sec. 6; namely, (i) using an R-tree
and performing iterative search for each region in the query user
footprint (Sec. 6.1.1) or (ii) performing batch search (Sec. 6.1.2),
or (iii) using a user-centric R-tree, which indexes footprint MBRs
(Sec. 6.2). Figure 3(a) shows the total runtime for 1000 random
top-𝐾 similarity queries (sampled from the data) on each part,
for 𝐾 = 5 (time is not affected by 𝐾). The user-centric R-tree
approach typically outperforms the other methods, because it
uses a smaller tree, which is fast to search and construct (as
shown in Table 4). However, we observed that for queries having
very large MBRs, the user-centric approach can become slower
than the other methods, because it computes 𝑠𝑖𝑚(𝐹 (𝑟 ), 𝐹 (𝑞)) for
numerous users 𝑟 , although their RoIs do not actually overlap
with the RoIs of 𝑞.

Utility. To assess the utility of our geo-footprints, we applied
agglomerative clustering to the footprints of a sample of 4000
users from Part A, using the average-link approach for merging
clusters. For each of the nine produced clusters, Figure 3(b) shows
in different colors, one for each cluster, characteristic regions on
the map which were in the footprints of users of one cluster and
not in the footprints of users in other clusters. This experiment in-
dicates that our geo-footprints can be used to identify effectively
groups of users that visit different areas; this information can be
used for marketing purposes, as discussed in the introduction.

8 EXTENDABILITY
In this work, we have considered 3D RoIs and 2D spatial projec-
tions of them; still, our work can directly be applied for the case
where objects move in the 3D space. In this case, the original

PartA PartB PartC PartD
0

200

400

600

Q
ue
ry

Ti
m
e
(s
)

Iterative
Batch
User Centric

(a) Similarity search performance (b) Char. regions of clusters

Figure 3: Similarity search and footprint effectiveness

RoIs are 4D (i.e., 3 dimensions for space and one for time) and
the footprints comprise the 3D spatial projections of RoIs. Our
similarity measure algorithms and search techniques are still
applicable; however, the time complexity of Algorithms 2 and 3
increases to 𝑂 (𝑛3), as the “active intervals” at each stop of the
sweep line (now sweep plane) become rectangles and we need
to find their intersections by a spatial join algorithm that has
quadratic cost in the worst case.

In addition, note that by keeping only the spatial projections
of RoIs in each footprint, as per Def. 3.3, we neglect the temporal
durations of extracted RoIs. However, in some applications it
may make sense to use the duration of visits at each region as
an importance weight. For example, if user 𝑢1 spends double
the time at the TVs section compared to user 𝑢2 on a particular
day, this might mean that 𝑢1 is more interested in TVs than 𝑢2.
Our approach can easily consider duration of each region in the
footprint as a weight. That is, the 2D regions of interest (RoIs) that
a user footprint includes can be weighted based on the duration
of the user’s stay there. Similarity and norm computation can be
easily adapted to accomodate durationweights: (i) each frequency
𝑓𝑋 (or 𝑓𝑌 ) in Eq.1 and Eq. 2 is replaced by the sum of duration
weights in the individual visits, (ii) in Alg. 4, the intersection of
two regions is weighted by the product of their weights in the
corresponding foorprints, and (iii) the weights can be included
in the spatial index (R-tree) together with the MBRs of the RoIs
to facilitate top-k similarity retrieval.

9 CONCLUSIONS
In this work, we defined the concept of geo-footprints, which com-
prise the spatial regions in indoor spaces whereabout users stay
for long time periods andmodel the user interests to nearby items.
In addition, we defined the similarity between geo-footprints of
different users which can be used in location-based market anal-
ysis and recommendations (e.g., in e-commerce). We presented
efficient algorithms for similarity computation and for similarity-
based search, based on geo-footprints. In the future, we plan to
investigate the enrichment of footprints with temporal informa-
tion (i.e., duration) and the adaptation of similarity definition
and computation, accordingly. In addition, we plan to investi-
gate the effectiveness of geo-footprints when used as features by
recommenders.
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