
Data Coverage for Detecting Representation Bias in Image
Datasets: A Crowdsourcing Approach

Melika Mousavi

mmousa7@uic.edu

University of Illinois Chicago

Nima Shahbazi

nshahb3@uic.edu

University of Illinois Chicago

Abolfazl Asudeh

asudeh@uic.edu

University of Illinois Chicago

ABSTRACT

Existing machine learning models have proven to fail when it

comes to their performance for minority groups, mainly due

to biases in data. In particular, datasets, especially social data,

are often not representative of minorities. In this paper, we con-

sider the problem of representation bias identification on image

datasets without explicit attribute values. Using the notion of

data coverage, we develop multiple crowdsourcing approaches.

Our core approach, at a high level, is a divide and conquer algo-

rithm that applies a search space pruning strategy to efficiently

identify if a dataset misses proper coverage for a given group. We

provide a different theoretical analysis of our algorithm, includ-

ing a tight upper bound on its performance which guarantees

its near-optimality. Using this algorithm as the core, we propose

multiple heuristics to reduce the coverage detection cost across

different cases with multiple intersectional/non-intersectional

groups. We demonstrate how the pre-trained predictors are not

reliable and hence not sufficient for detecting representation bias

in the data. Finally, we adjust our core algorithm to utilize existing

models for predicting image group(s) to minimize the coverage

identification cost. We conduct extensive experiments, including

live experiments on Amazon Mechanical Turk to validate our

problem and evaluate our algorithms’ performance.

Artifact Availability:

The source code, data, and/or other artifacts have been made

available at https://github.com/melimou/ImageDataCvgCrwd.

1 INTRODUCTION

Tracing back machine bias to its source, there have been major ef-

forts to identify different types [21, 37, 44] and sources [13, 16, 54]

of bias in data. Representation bias [48], in particular, happens

when a dataset fails to represent some parts of the target popula-

tion [52]. Lack of representation from certain minority groups in

data has caused many instances of machine bias and algorithmic

unfairness in data-driven algorithms. For example, Facebook’s

ad algorithm excluding women from seeing specific jobs [27], or

commercial gender classification systems from Microsoft, IBM,

and Face++ that performed up to 35% worse on dark skin women

compared to light skin men [9]. Similarly, the blink-detection

feature of Nikon Cameras misclassified Asian eyes as being

closed [46] due to a lack of representation for this group. We

shall also demonstrate similar results in our experiments in § 6.4.

Recognizing the potential harms of representation bias, data

coverage [1, 2, 4, 5, 29, 35, 39, 53] has been introduced to ensure

proper representation of minority groups in datasets used for

decision making and building advanced data science tools. At

This project was supported in part by NSF 2107290.

© 2024 Copyright held by the owner/author(s). Published in Proceedings of the

27th International Conference on Extending Database Technology (EDBT), 25th

March-28th March, 2024, ISBN 978-3-89318-091-2 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

a high level, a dataset has proper coverage for a given group

if it contains at least a certain amount of samples belonging to

that group. Despite the extensive work on detecting lack of data

coverage, existing work is limited to the tabular data. On the con-

trary, many of the well-known incidents of representation bias

causing machine bias, including all aforementioned examples,

are in non-tabular contexts, such as multi-media or textual data.

Admitting the wide range of multimedia databases, with at-

tributes of interest being in different forms and cardinalities, as

our first attempt in this project, we consider image data and a
small number of low-cardinality categorical attributes. Our choices
are motivated by image data’s popularity in data science tasks

and the reported unfairness issues in the image application do-

mains. Our assumption of the attributes of interest follows the

fact that sensitive attributes such as race and gender are low-

cardinality and non-ordinal, where each value such as black or

female represents a specific demographic group.

It is common that image datasets lack explicit values for at-

tributes of interest (such as gender or race). An image dataset is

often a collection of images from different domains with little to

no information about their domain and which groups they belong

to. As a result, even studying coverage over low-cardinality and

categorical attributes of interests is challenging in these cases.

There are multiple directions one can seek to overcome such

challenges. Considering a small number of categorical attributes

of interest (such as race and gender), one can use off-the-shelf

automated techniques, such as classifiers, to first label tuples with

their demographic information
1
. Then, relying on the predicted

groups, apply the coverage detection techniques to identify the

lack of coverage in data. However, as observed in our experiments,

this approach fails, mainly due to the following issues:

(1) (Machine Bias): while the objective of identifying lack of

coverage is to minimize machine bias, using (problematic)

off-the-shelf models will transfer their biases into the labeled

data, causing bias in the evaluation of the dataset. For exam-

ple, consider a gender-detection classifier. Due to the inherent

issues in how the classifier has been trained (and the data

it used), it may perform differently across different minor-

ity groups. For instance, in our experiments (Table 2), we

observed that the precision of a gender classifier from a well-

known face recognition framework such as DeepFace [47]

for females can get as low as 8% for a given image dataset.

(2) (Lack of distribution generalizability): Existing tools are trained
using data that may come from a different application domain,

following a different distribution, and hence may not perform

well on the dataset to be evaluated. Let us consider the exam-

ple of a gender-detection classifier once again. Suppose the

classifier has been trained using the standard portray images

with a solid background. One cannot expect the classifier

to perform well on randomly taken images [32]. Note that

applying transfer learning techniques to retrain the model

1
In presence of accurate predictive models, our algorithms utilize them to identify

coverage with minimum cost to verify the correctness of their results (see § 5).

Series ISSN: 2367-2005 47 10.48786/edbt.2024.05

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2024.05

using the dataset to be evaluated is not helpful since we can-

not expect a model to identify the representation biases of

the dataset it is trained on.

Considering the above issues with the existing data-driven tools

and techniques, a promising approach to consider is crowdsourc-

ing: to efficiently use human workers to identify a lack of cover-

age issues. Crowdsourcing is particularly promising for image

data, for the tasks such as image labeling, which while being

challenging for the machine, are considered "easy" for human-

being to conduct with minimal error
2
. Using crowdsourcing for

labeling the images with their attributes of interest can poten-

tially add human bias into the process. Fortunately, accurate

and reliable crowdsourcing that minimizes individual errors and

biases has been studied well in the literature. Aggregating the

responses of multiple crowd workers [6, 15, 28], and profiling the

crowd [55, 57, 58] are some of the known techniques proposed

for this purpose. A baseline solution then can be designed as

a two-step process: first ask the crowd to provide the attribute

values for all images in the dataset. Then apply off-the-shelf

coverage identification techniques [4] to detect the uncovered

groups. Cost-effectiveness, however, is a major requirement in

crowdsourcing frameworks such as Amazon Mechanical Turk

(MTurk) since there usually is a cost associated with each crowd

task. The proposed baseline solution is ineffective in such frame-

works because, depending on the size of datasets, it may require

a significant number of tasks, meaning a considerable cost to

study coverage in a given dataset. Hence, in this paper we study

the problem of identifying the lack of coverage in an image dataset
with the minimum number of crowd tasks. Existing research on

bias detection in image data sets is limited to [26] that proposes

a crowd-sourcing workflow to facilitate discovering attributes

with potential sampling bias (e.g., finding out the airplanes in an

image data set are facing right). The high level idea in this pa-

per is to show random samples of images from an input dataset

to the crowd to identify comon similarities, and then ask the

crowd judge to verify the discovered statements (see § 7 for more

details). In contrast, our objective in this paper is to detect repre-

sentation bias in terms of the data coverage with respect to the

given attributes of interest such as gender, instead of discovering

attributes that may reflect potential sampling bias.

Summary of Contributions. We study coverage identification

in image datasets using crowdsourcing. To the best of our knowl-

edge, our paper is the first to study data coverage in image datasets.
In summary, our contributions are the following:

• We propose a divide-and-conquer (d&c) algorithm to identify

the coverage of a demographic group across an image dataset.

To enable the development of our algorithm, we employ set-

based crowd tasks, which have been utilized in various crowd-

sourcing studies [24, 33, 34, 36]. At a high level, our algorithm

falls in the general class of group testing approaches, wherein

the process of identifying certain objects is divided into tests

on groups of items [17, 18]. While, following the same logic of

the group testing approaches, the design details of our algo-

rithm are problem specific, making its performance close to

the lower bound on the maximum number of tasks. We prove

this by a tight upper bound on the maximum number of tasks

the algorithm generates.

2
We do not make the assumption that human beings are completely reliable but

rather suggest our framework for cases where human labels are more reliable.

• Using our d&c algorithm as the core, we propose efficient algo-

rithms for coverage identification over different scenarios with

multiple non-intersectional and intersectional groups. We fur-

ther introduce practical heuristics for coverage identification

by carefully aggregating the minority groups into the so-called

“super-groups”.

• In presence of pre-trained classification models that predict

the group(s) an image belongs to, we adjust our core algorithm

to utilize their prediction and minimize the coverage identifi-

cation cost. In cases where the models accurately predict the

group labels, our algorithm only generates a small number of

tasks to verify the correctness of the results.

• We evaluate our algorithms using extensive experiments on

real and synthetic settings. We run live experiments on MTurk
with real workers to validate our proposal. Besides, our per-

formance evaluation results verify our theoretical findings,

confirming the effectiveness of our algorithms.

2 PRELIMINARIES

2.1 Data Model

We consider a dataset in form of a collection D of 𝑁 objects,

each being an image. For example, D can be a set of 𝑁 = 10, 000

human face images. We use the notation 𝑡𝑖 to refer to the 𝑖-th

object inD. We consider the no explicit attribute-value model for

the data. That is, D only contains the objects, while the objects

are not annotated.

We assume objects are associated with at least one attribute

of interest considered for identifying representation bias. For-

mally, we use x = {𝑥1, · · · , 𝑥𝑑 } to specify the attributes of inter-

est. Each attribute of interest is a categorical sensitive attribute

such as race, gender, and age-group. Each attribute has a car-

dinality of two or more, specifying different non-overlapping

(demographic) groups. For example, a binary attribute gender

with values {male, female} partitions the individuals into two

non-overlapping groups.

In particular, we consider three different scenarios with at-

tribute and group models: The most simple scenario is the single
binary sensitive attribute case where objects are associated with

only one binary sensitive attribute. Many of the problematic rep-

resentation bias cases that have been reported fall under this

category. Examples of this type of attribute include skin-tone

aggregated into a binary feature of fair and dark skin-tone [10].

Studies showed that the pulse oximeter devices have a question-

able accuracy in measuring arterial oxyhemoglobin saturation in

individuals with dark skin-tone [20], which proves it is impera-

tive that skin-tone feature be taken into account in developing

this type of device.

The immediate generalization is themultiple non-intersectional
groups case where each object is associated with one sensitive

attribute with cardinality larger than two. A non-binary attribute

race with values {White, Black, Hispanic, Asian, Others},

or a multi-valued attribute gender with values {male, female,

non-binary} are examples of this case.

The next level of generalization is the intersection of multiple

attributes where each object is associated with more than one

sensitive attribute that can be either binary or non-binary. An

example of this case can be the intersection of race and gender,

where each individual can be associated with one value from

each of these attributes such as Asian female or Hispanic male.

48

Figure 1: An example of point query to label a race attribute

2.2 Data Coverage

We use the notion of data coverage [4] to identify representation

bias in a dataset D. In particular, consider a dataset D with 𝑑

attributes of interest x, a count threshold 𝜏 (e.g. 𝜏 = 50), and a

subgroup g (e.g. {gender=male, race=white}) defined over x. The
dataset satisfies coverage over g, if there are at least 𝜏 objects in

D, matching the subgroup g (e.g. there are more than 50 objects

with gender=male AND race=white).

For datasets with more than one attribute of interest (𝑑 > 1),

patterns are used to specify the subgroups. A pattern 𝑃 is a string

of 𝑑 values, where 𝑃 [𝑖] is either a value from the domain of 𝑥𝑖 ,

or it is “unspecified”, specified with 𝑋 . For example, consider a

dataset with three binary attributes of interest x = {𝑥1, 𝑥2, 𝑥3}.
The pattern 𝑃 = 𝑋01 specifies all the tuples for which 𝑥2 = 0

and 𝑥3 = 1 (𝑥1 can have any value). Consider the universe of all

patterns over a set of attributes x. We say a pattern 𝑃 is a parent

of another pattern 𝑃 ′ if (a) there exists exactly one attribute 𝑥𝑖
on which 𝑃 and 𝑃 ′ are different, while (b) 𝑃 [𝑖] = 𝑋 (unspecified).

Note that 𝑃 in this case is a more general subgroup than 𝑃 ′, since
all the objects matching 𝑃 ′ also match 𝑃 , but the vice-versa is not

valid. A pattern 𝑃 is a maximal uncovered pattern (MUP) if there

are less than 𝜏 objects in D matching it, while all of its parents

are covered. The lack of coverage in a dataset is identified by

discovering all of its MUPs.

2.3 Crowdsourcing Model

A major challenge in studying coverage over multimedia data

is that the objects are not annotated and we do not know the

values on x beforehand. We use crowdsourcing to overcome

this challenge. In crowdsourcing platforms such as MTurk or

Crowdflower, a microtask or a Human Intelligence Task (HIT) is a
simple task that usually requires no domain-specific knowledge

or expertise, has a clear description and a price whichworkers can

accept and complete and get paid given their result is approved

by the requester of the task.

Quality control and aggregation model. Quality of answers is

a well-studied crowdsourcing challenge. One popular approach is

to employ a redundancy-based strategy in which a single HIT is

assigned to multiple workers and the correct answer (the truth) is
inferred by aggregating the multiple answers. There are several

studies on truth inference methods. The proposed techniques

in this paper are agnostic to the choice of the crowdsourcing

framework, quality control, and HIT aggregation model. In our

experiments, we adopt the popular majority vote strategy [61]

to get the truth and Qualification and Rating [14] as individual

assessments to ensure a higher quality of answers from the crowd.

Query/ HIT model. We consider two types of queries:

(1) Point queries: A point query is a request to provide a piece

of information (attribute value) about a single object. The

Figure 2: An example of set query about gender attribute

query itself can be either a yes-no question or providing one

or more labels associated with the attributes of interest. In

Figure 1 an example of a point query is demonstrated, where

the worker is asked to provide the race of an individual.

(2) Set queries: While a point query asks the crowd to provide

specific attribute values for specific objects, the set queries

are for the purpose of verification. A set query is a simple yes-

no question about a given set of multimedia objects (image,

video, etc.). That is to ask if the set contains at least one object

belonging to a specific (sub-)group. For example, Figure 2

shows a set query asking the crowd to verify if the set contains

any females. In practice, one may need to consider an upper

bound on the number of objects in a set query for the query

to be reasonable and the answers more accurate.

Pricing model. Pricing and incentive models for crowdsourcing

frameworks have been extensively studied. Examples of such

methods are fixed price models, bidding models [50], and posted
price models [51]. Here, we adopt the fixed pricing model, that is

all tasks have an equal cost. Therefore, our objective is to mini-

mize the number of tasks required to finish the task of detecting

coverage which in turn is in line with minimizing the total cost.

2.4 Problem Definition

Having explained the data model, data coverage, and the crowd-

sourcing model, we now define our problem as follows:

Problem Formulation: Given an image dataset D, the
attributes of interest x, and the coverage count threshold 𝜏 , identify
the lack of coverage on D while minimizing the number of tasks
required.

In particular, we study this problem under three settings: (1)

single (minority) group, (2) multiple non-intersectional groups,

and (3) intersectional groups, proposing efficient solutions tai-

lored for each setting. At a high level, our main idea is to divide

the dataset into subsets of a specified size, ask the crowd a ques-

tion about the attributes of interest, and based on the crowd’s

answer to the question, decide to divide that particular subset

into two halves or prune it. Modeling each algorithm’s flow into

a binary tree, we analyze the efficiency of our proposal, partic-

ularly when the dataset size is very large. We also study the

49

problem in the presence of predictive tools for labeling the data,

utilizing them to effectively form the tasks, and minimizing the

interaction with the crowd.

3 EFFICIENT COVERAGE IDENTIFICATION

We start our technical sections by designing a general algorithm

that can be used for detecting coverage over different settings of

sensitive attributes. In particular, given a demographic (sub)group
g, our goal in this section is to identify if g is uncovered.

Before proposing the algorithm, however, let us consider the

single binary sensitive attribute case to observe a challenge we

need to address in our algorithm. In such a setting, the binary

attribute partitions the data into two groups: the majority group

(to which most of the objects belong) and the minority group.

Let g1 and g2 be the majority (e.g. gender=male) and minority (e.g.

gender=female) group, respectively.

Challenge. We observe that verifying that g1 is covered can be

done efficiently. To see why, suppose the coverage threshold is

𝜏 = 100, i.e., a group is covered if there are at least 100 instances

of it in the dataset. Assume the (majority) group g1 contains

𝑛1 ≫ 100 objects in the dataset. In order to verify that g1 is not
uncovered, it is enough for the crowd to discover 100 of those

objects, not the entire 𝑛1. Following this, Θ(𝜏) provides a lower
bound on the number of crowd tasks required for verifying the

coverage for a given group. Still, this lower bound only holds

for the groups that are covered, i.e. there at least 𝜏 of those in

the dataset. Surprisingly, unlike the majority group, verifying

that a minority group is indeed uncovered is cumbersome. This

is because even though discovering 𝜏 objects from a group is

enough for verifying that it is covered, one cannot verify a group

is uncovered until there is a chance that the dataset might still

have enough objects from that group. Thus, assuming a non-zero

probability for each unlabeled object to belong to each group,

one might need to ask the crowd to label the entire dataset before
one can confirm that a specific group is uncovered.

3.1 Coverage Identification for a Given Group

Verifying that a minority group is uncovered is challenging. Our

idea is to design a divide and conquer algorithm that, instead of

point queries, uses set queries to iteratively eliminate subsets of

data that does not include any object from the given group. At a high
level, the algorithm asks a set query from the crowd, inquiring

whether the selected set contains at least one object from the

given group g (Figure 2). The user may provide two responses

(yes/no). Interestingly, in either case, the response provides useful
information that helps in the efficient study of the coverage:

• The answer is “No”: If the answer to a set query is no, it means

the set does not include any object from the given group g.
As a result, the algorithm can safely prune the set, asking no

further questions about it. In particular, for a group that is not

covered, one can expect to see no answers on large set queries

helping to quickly prune a large portion of the dataset.

• The answer is “Yes”: A yes answer to a set query means that the

set contains one or more objects from the group g. Therefore,
the algorithm cannot prune the subset since it can have any

number (larger than zero) of the objects in g. At the first glance,
the queries with yes answers do not provide useful information

as the algorithm cannot prune the subset (it needs to divide it

to smaller subsets). However, a key observation is that, since

the sets are disjoint, the algorithm will require observing only a

Algorithm 1 Group-Coverage

Input: Dataset D, dataset size 𝑁 , subset size upper bound 𝑛,

coverage threshold 𝜏 , target group g
Output: Coverage of group g, the count lower-bound 𝑐𝑛𝑡
1: 𝑐𝑛𝑡 ← 0; Let 𝑄 = an empty queue

2: for 𝑖 ← 0 to𝑁 with step size𝑛 do: // init roots of subtrees

3: root← node(𝑖, 𝑖 + 𝑛); 𝑄.𝑎𝑑𝑑 (𝑟𝑜𝑜𝑡)
4: while 𝑄 is not empty do

5: 𝑇 ← 𝑄.𝑑𝑒𝑙_𝑡𝑜𝑝 ()
6: (𝑖, 𝑗) ← (𝑇 .𝑏_𝑖𝑛𝑑𝑒𝑥,𝑇 .𝑒_𝑖𝑛𝑑𝑒𝑥)
7: ans←AskQuestion({𝑡𝑖 , · · · , 𝑡 𝑗 }, g) // set query

8: if 𝑇 .parent is null then

9: if ans=yes then 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1 else continue
10: else

11: if ans=no then // prune

12: if T = T.parent.left then
13: 𝑇 ← 𝑄.𝑑𝑒𝑙 (𝑇 .parent.right) // observe from

Line 21 that left nodes are added first

14: elsecontinue

15: if 𝑇 .parent.checked then 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
16: else 𝑇 .parent.checked← true

17: if 𝑐𝑛𝑡 = 𝜏 then return true // covered

18: if 𝑗 > 𝑖 then //if setsize>1

19: 𝑇 .left← node(𝑖, ⌊ 𝑖+𝑗
2
⌋); 𝑇 .right← node(⌊ 𝑖+𝑗

2
⌋ + 1, 𝑗)

20: 𝑇 .left.parent← 𝑇 .right.parent← 𝑇

21: 𝑄.𝑎𝑑𝑑 (𝑇 .left); 𝑄.𝑎𝑑𝑑 (𝑇 .right)
22: return false, 𝑐𝑛𝑡 //uncovered

limited number of yes answers before it stops. That is because
the number of such queries provides a lower-bound on the

number of objects from g in the dataset. Hence, as soon as the

lower-bound reaches to 𝜏 , the algorithm can stop, knowing

that g is covered.

Based on the above observations, we design our divide and

conquer algorithm as follows. We use a binary tree data structure
to efficiently implement the algorithm. Each node in the binary

tree has the following structure:

struct node:
b_index // the beginning index of the range
e_index // the end index of the range
parent=null, // link to the parent node
left=null, // link to the left child
right=null, // link to the right child
checked=false, // true if at least one of its

// child nodes has returned a yes answer

Each node in the tree is associated with a set query containing

the objects {𝑡𝑏_𝑖𝑛𝑑𝑒𝑥 , · · · , 𝑡𝑒_𝑖𝑛𝑑𝑒𝑥 } ∈ D. In addition, every node

in the tree has pointers to its parent and children. Finally, every

node contains a boolean variable “checked” (with the default

value false) that is used for maintaining a lower-bound on the

number of objects discovered from the target group g.
Using the tree data structure, Algorithm 1 shows the pseudo-

code of our proposed algorithm for the single binary sensitive

attribute case. The algorithm uses the variable cnt to maintain

the lower-bound number of objects discovered from the target

group g. Considering a maximum size of 𝑛 for the set queries,

the algorithm starts by partitioning the data into ⌊𝑁 /𝑛⌋ subsets,
allocating each to a binary tree. Adding the roots of the trees to

50

the queues, the algorithm then iteratively removes a tree node

from the queue until a lower-bound count of 𝜏 is achieved for

the minority group g or it verifies that g is uncovered.

For every node 𝑇 removed from the queue, the algorithm

asks the crowd to verify if its corresponding set contains at least

one instance belonging to g. Depending on the answer from the

crowd, multiple situations can happen. If the node stands for the

root of a binary tree and the response is yes, the algorithm has

found at least one more object from g; but if the response is no
(Line 11), it can safely prune the entire set from the search space

and continue with other sets. On the other hand, if 𝑇 is not a

root node, if the answer is no, it means the answer for the other

child of its parent should be yes. That is because the parent node

contained at least one object from g. Since𝑇 does not contain any

such object, the other child of its parent should contain at least

one. As a result, in Line 13, the algorithm replaces 𝑇 with the

other child of its parent, safely knowing the answer to a query

to the new 𝑇 is yes.

When the answer to a non-root node query is yes, the algo-

rithm may or may not be able to increase the lower-bound 𝑐𝑛𝑡 .

Note that the algorithm has already associated at least one object

from g to the parent of each non-root node (the nodes with no

answers have been pruned). As a result, the lower bound on g
gets increased if the answer to both children of a parent node

is yes. We use the variable checked for this purpose. checked is

true, if the answer to one of the children of a node is yes. Using

this, when receiving a yes response, the algorithm increases the

lower bound (Line 15) only if the checked variable of the parent

of 𝑇 is true. At any moment that the lower-bound reached the

threshold 𝜏 , the algorithm stops marking g as covered. Finally,

the algorithm breaks the yes nodes with set sizes larger than one

in two halves, adding them to the queue. If after checking all

nodes in the queue the threshold 𝜏 is not reached, g is uncovered.

Running Example. To better demonstrate Group-Coverage,

let us consider a toy example with 16 images, where each image

belongs to either group □ or group △. Suppose we would like

to check if △ is covered, while 𝜏 = 3. Figure ?? shows the The

binary tree representation of the Group-Coverage algorithms’

flow, while the root of the tree shows the entire image set. The

answer to first query on the root is yes so the lower-bound value

𝑐𝑛𝑡 gets updated to 1 and the images gets divided in two halves.

The answer to both children of the root are also yes, so 𝑐𝑛𝑡 gets

updated to 2, while each set gets divided by half. The next level

of the tree contains four set queries, each containing four images.

Moving from left to right, the answer to the left-most query is no,

therefore, (i) this set gets pruned and (ii) the algorithm without
issuing a new task knows the answer to the second-from-left

query is yes (otherwise its parent query could not be yes). The

same situation happens for the two right nodes. Next, in the

fourth level, the algorithm issues the first two queries from left

and since the answer to both is yes, 𝑐𝑛𝑡 gets updated to 3 and the

algorithm stops since it reaches the coverage threshold 𝜏 . Note

that in this example, the algorithm issues seven queries to the

crowd before it stops.

3.2 Algorithm Analysis

Lemma 3.1. (Correctness) The Group-Coverage algorithm suc-
cessfully identifies if a group g is covered or not, i.e., if there are at
least 𝜏 instances of g in the dataset D.3

3
Due to the space limitations, the proofs are provided in the technical report [40].

After correctness, let us now study the number of tasksGroup-

Coverage generate. Before studying the performance in general

cases, let us consider two extreme cases, while assuming 𝑁 = 𝑛,

where (Case I) the answer to all questions is yes, and (Case II)

there exists only one object in g.
Case I: Consider the cases where the answer to all set questions

is yes, meaning that all set queries contain at least one object

belonging to g. In this case, the set queries do not help prune the

search space. As a result, the execution tree is a complete binary

tree shown in Figure 3b. Note that the number of leaf nodes in this

tree shows the value of 𝑐𝑛𝑡 , knowing that the answers to those

set queries are yes. On the other hand, the Group-Coverage

algorithm stops when 𝑐𝑛𝑡 = 𝜏 . Therefore, the number of leaf

nodes in the tree is at most 𝜏 . In a complete binary tree with

𝜏 leaves, there are 𝜏 − 1 non-leaf nodes. As a result, the total

number of tasks generated by the Group-Coverage algorithm,

in this case, is 2𝜏 − 1 = Θ(𝜏).
Case II: Suppose there exists only one object from g in D. In

this case (Figure 3c), every level of the execution tree contains

exactly one node while one of its children is no, while the other

one is yes. Given that the root of the tree corresponds to a set of 𝑛

objects, the leaf yes node (containing one object) is at depth log𝑛

in the tree. Hence, since every intermediate node has exactly two

children, the number of tasks generated in this case is Θ(log𝑛).

Theorem 3.2. Assuming the dataset size is 𝑁 = 𝑛, or when
there is no limit on the set query size, (i) the maximum number
of tasks generated by the Group-Coverage algorithm is Θ(𝜏 log𝑛),
(ii) the upper bound is tight.

Lemma 3.3. (Cost Analysis) The maximum number of tasks
generated by the Group-Coverage algorithm is Θ(𝑁𝑛 + 𝜏 log𝑛).

Before concluding this section we would like to note that

lower-bound on themaximumnumber of set queries an algorithm

need to issue for deciding if g is covered is
𝑁
𝑛 . That simply is

because
𝑁
𝑛 queries are needed to include each object in D in at

least one set query. In cases where g is uncovered, all objects

should be queried to verify g is indeed uncovered. Comparing

this lower-bound with the maximum number of tasks generated

by the Group-Coverage algorithm, one can verify that Group-

Coverage has only a small additive overhead of Θ(𝜏 log𝑛) from
the lower-bound.

3.3 Coverage Identification using Group-Coverage

Recall that the algorithm presented so far considered the sin-

gle binary attribute case. Particularly, given a group g, Group-
Coverage efficiently interacts with the crowd to identify if g is

covered. This algorithm can be applied for coverage identification

for different scenarios of sensitive attributes, as followed:

3.3.1 Multiple Non-intersectional Groups. In a case where

there is one attribute-of-interest 𝑥 , let 𝑐 be the cardinality of 𝑥 . In

this case, each value of 𝑥 specifies a group g𝑖 . To study coverage in
this case, one needs to identify if each of the groups g𝑖 is covered
inD. This can simply be done by running the Group-Coverage

algorithm 𝑐 times, where the 𝑖-th run checks if the group g𝑖 is
covered. As a result, following Lemma 3.3, the maximum number

of tasks generated for this case is then 𝑇ℎ𝑒𝑡𝑎
(
𝑐 (𝑁𝑛 + 𝜏 log𝑛)

)
.

3.3.2 Intersectional Groups. For caseswith intersectional groups,
the intersections of attribute values on x = {𝑥1, · · · , 𝑥𝑑 } specify
different subgroups, while the objective is to identify the uncov-

ered region in form of maximal uncovered patterns (MUPs) [4].

51

yes

yes

yes no

yes

... ... yes

yes yes

no

(a) The binary tree representation of the al-

gorithms’ flow

yes

yes

yes

yes yes

yes

yes yes

yes

yes

yes yes

yes

yes yes

(b) At least one object belonging to g in all

set queries

yes

yes

yes

yes

yes

no

no

no

(c) Only one object belonging to g in D

Figure 3: Various outcomes of the binary tree of the generated tasks

□□□□ △ □□ △ □□□□ △ △□△

□□□□ △ □□△
yes

□□□□
no

△□□△
yes

△□
yes

□△
yes

□□□□ △ △□△
yes

□□□□
no

△ △ □△
yes

Figure 4: Group-Coverage: Running Example

X-X

Female-X X-Asian X-Black
X-

Hispanic
X-White Male-X

Female-

Asian

Female-

Black

Female-

Hispanic

Female-

White
Male-Asian Male-Black

Male-

Hispanic
Male-White

Figure 5: The pattern graph for x1=gender and x2=race

Consider the graph representation of patterns associated with

the attributes x. A real-life example of this case is represented

with gender and race attributes in Figure 5. The first level of the

graph contains patterns, such as female-X or X-black with one

attribute-value specified for them. A child of a node at level ℓ

is a node at level ℓ + 1 with one more attribute-value specified

than its parent(s). For example, the level-2 pattern female-black

(representing the subgroup of female black individuals) is a child

of patterns female-X and X-black. An MUP is a pattern that is

uncovered itself but all of its parents are covered. For example,

female-black is an MUP if it is uncovered but both its parents

female-X and X-black are covered.

In order to specify MUPs using the Group-Coverage algo-

rithm, we consider the fully-specified subgroups (at maximum

level), each being the intersection of 𝑑 attribute values. The

Cartesian product of the values of 𝑥1 to 𝑥𝑑 determine these sub-

groups. For example, in Figure 5 the nodes at level 2 of the graph

(e.g. female-asian) show the fully-specified subgroups. Using

𝑐1, · · · , 𝑐𝑑 as the cardinality of the attributes 𝑥1, · · · , 𝑥𝑑 , the num-

ber of fully-specified subgroups is 𝑚 = 𝑐1 × 𝑐2 × · · · × 𝑐𝑑 . Let
g1, · · · , g𝑚 be the set of these subgroups. Finding the MUPs is

then possible by combing the Pattern-combiner algorithm [4]

with the algorithmGroup-Coverage. At a high level, the pattern-

combiner starts from the bottom of the pattern graph (fully-

specified subgroups), and counts the coverage for each of those,

eliminating the covered nodes (with all of their parents). Then

moving up in the graph, for the nodes that have not been pruned,

it uses the counts of their children to check if those are covered,

pruning the covered nodes and their parents while identifying

the MUPs (uncovered nodes that all of their parents are pruned).

Algorithm 1 enables running pattern-combiner noting that

Group-Coverage finds the exact count for an uncovered group.

In such cases the lower-bound variable (𝑐𝑛𝑡 in Algorithm 1) con-

tains the number of items belonging to the uncovered group.

Additionally, pattern-combiner only needs the counts for the

fully-specified subgroups that are uncovered as it already prunes

the covered nodes.

4 PRACTICAL OPTIMIZATIONS BASED ON

GROUP AGGREGATION

So far in previous sections, we designed an efficient algorithm to

detect if a certain group is covered in D. We further explained

how this algorithm enables coverage identification for different

cases of attributes of interest. In this section, we propose prac-

tical heuristics for cases with multiple non-intersectional and

intersectional groups. In particular, we note that independently

running the Group-Coverage algorithm for different groups

specified by x to identify coverage, misses the opportunity to

reuse the information collected during each run.

First, to avoid labeling objects multiple times we move the

labeled objects from the unlabeled set D to the labeled set L.
Our main idea, however, is to form set queries that combine

multiple demographic groups in one task – instead of one group.

Specifically, consider a case where two or more demographic

groups in the dataset are uncovered and there are very few items

corresponding to them such that after combining them to one

“super-group”, the result is still uncovered. For example, suppose

the races Native American, Asian, and Middle Eastern are on the

absolute minority that the summation of counts for all these three

groups is less than the coverage threshold. In this case, instead of

running the Group-Coverage algorithm once for each of them,

we can run it for the super-group once. To do so, we change the

set query to combine the individual groups with OR predicate.

Nevertheless, the challenge is that we do not have prior knowl-

edge about the dataset D to form the super-groups. In order to

obtain such information, we consider estimating the counts using
sampling. To do so, we add a sampling phase at the beginning

of our method, in which a small random subset of the dataset is

presented to the crowd as point queries, with their task being to

label the items. The results from this step gives us an estimation

52

Algorithm 2Multiple-Coverage

Input: Dataset D, dataset size 𝑁 , subset size upper bound 𝑛,

coverage threshold 𝜏 , target groupsG, sample-size parameter

𝑐 = 2

Output: Coverage of all groups in G
1: D,L ← LabelSamples (D, 𝜏, 𝑐) //obtain 𝑐𝜏 random labels

2: G𝑎𝑔𝑔 ←Aggregate(L, 𝜏,G) //form the super-group

3: 𝑐𝑜𝑣 ← empty set

4: for G ∈ G𝑎𝑔𝑔 do:

5: 𝜏 ′ ← 𝜏 −∑g∈G L .count(g)
6: 𝑐𝑣𝑔, 𝑐𝑛𝑡 ←Group-Coverage (D, 𝑁 , 𝑛, 𝜏 ′,G)
7: if |G| = 1 then 𝑐𝑜𝑣 .add (⟨G, 𝑐𝑣𝑔, 𝑐𝑛𝑡⟩); continue
8: if 𝑐𝑣𝑔 = true then //if the super-group G is covered

9: for g ∈ G do:

10: 𝜏 ′ ← 𝜏 − L .count(g)
11: 𝑐𝑣𝑔, 𝑐𝑛𝑡 ← Group-Coverage (D, 𝑁 , 𝑛, 𝜏 ′, g)
12: 𝑐𝑜𝑣 .add (⟨g, 𝑐𝑣𝑔, 𝑐𝑛𝑡⟩)
13: else for g ∈ G do: 𝑐𝑜𝑣 .add (⟨g, false, 𝑐𝑛𝑡⟩)
14: return 𝑐𝑜𝑣

of the demographic groups frequencies in the dataset. Based on

this estimation, the algorithm will decide which groups to aggre-

gate as super-groups. Next, we need to determine the sample-set

size. Our intuition is that point queries are efficient for verifying

the coverage of the majority group, since we expect to discover

enough of those after Θ(𝜏) point queries. Therefore, we can first

issue the point queries to identify the majority group, while at

the same time, we piggyback on the point query results to collect

information about minorities and form the super-groups. Follow-

ing this idea, we consider labeling a random subset of size 𝑐𝜏 of

D at the beginning of the algorithm, where 𝑐 is a small constant

(we found 𝑐 = 2 as a good choice in our experiments). Note that

in cases where initial point queries do not find at least 𝜏 objects

from the majority group(s), the algorithm effectively identifies a

subset of these instances and needs fewer queries to get to the

coverage threshold. As a result, Group-Coverage rapidly stops

detecting them as covered. One drawback of forming the super-

groups is when the result for a set of super-groups is covered. In
this case, we could not know whether one, two, or all groups are

covered, and thus, we need to examine each separately. In other

words, the aggregation strategy will incur a penalty cost when

the super-groups are covered.

aggregate function.
4
(Line 2 of Algorithm 2) Let G be the list

of groups in one attribute or the set of fully-specified subgroups

in the intersection of multiple attributes. The count estimations

based on the samples collected in the labeled set L are utilized

to set up the super-groups for G. We calculate the expected

number of instances corresponding to each group in the dataset

based on their occurrence in the sample. Let L .count(g) return
the number of objects in group g that belong to L. Since point
queries are selected randomly,L is a random sample ofD. Hence,

the expected size of g is E[|g|] = 𝑁 (L .count(g))/|L|. If the
expected number is less than the coverage threshold, it is likely

that this particular group is uncovered in the dataset and vice

versa. Similarly, if the summation of the expected numbers for

a set of groups is still less than 𝜏 , the super-group formed by

merging them is expected to be uncovered. To use this idea for

4
The pseudo codes of the functions are provided in the technical report [40].

forming the super-groups, we first sort the groups based on their

count values in L ascending. This helps to put the minority

groups nearby and merge them as super-groups. Then we makes

a pass over the sorted groups while maintaining the sum over

their expected coverage. So far as the expected sums are less than

𝜏 , the algorithm keeps merging the groups into a super-group,

and then it moves to the next super-group. It finally returns the

list G𝑎𝑔𝑔 of the super-groups.

Multiple and Intersectional Groups Coverage. Using the

idea of merging minority groups into super-groups, Algorithm 2

specifies the uncovered groups for the cases where there ex-

ist multiple, non-intersectional groups in a single attribute. In

particular, for every group G in the set of aggregated groups

G𝑎𝑔𝑔 , the algorithm first specifies the number 𝜏 ′ of instances it
needs to observe before it can conclude G is covered. Next it runs

the Group-Coverage algorithm for identifying the coverage of

G in D. If G is not a super-group, the algorithm directly adds

the coverage result of G to the output. For cases where G is a

super-group, if G is covered, the algorithm fails to conclude if

groups g ∈ G are covered or not. Therefore, it reruns the Group-

Coverage algorithm for all of such individual groups g. On the

other hand, for cases where the super-group G is uncovered, the

algorithm concludes that all groups in G are uncovered.

We can take advantage of the above technique for multiple

attributes, where we are interested in identifying the coverage

of each of the individual and the intersectional groups. Figure

5 demonstrates the pattern graph for two attributes of gender

and race. To solve the problem for this case, we take on a simi-

lar idea to the Pattern-Combiner algorithm[4]. The objective

of the Pattern-Combiner algorithm is to find MUPs (maximal

uncovered patterns) in a dataset. As mentioned before, an MUP

is a pattern that is uncovered but all of its parents are covered.

Consequently, all of the children of MUP are uncovered as well.

For example, in the race and gender attributes case with 𝜏 = 50,

assuming that we find 15 instances of Asian-Female and 20 in-

stances of Asian-Male, we can conclude that Asian group with

total instances of 35 is uncovered as well. On the other hand, if

there were 28 Asian-Female and 32 instances of Asian-Male, we

could conclude that Asian group is covered, without any addi-

tional crowdsourced tasks.

We use this idea to reduce the problem of identifying the

coverage of multiple attributes to identifying the coverage of the

fully-specified subgroups at the maximum level. We can see that

this problem can be easily transformed into solving it for multiple,

non-intersectional groups. It is noteworthy that the aggregation

process for this special case requires that only the nodes with

the same parent be aggregated with each other. To this end, we

used a flag (multi) in our aggregation algorithm to distinguish

between the two cases. Having identified the coverage of the

subgroups using the Multiple-Coverage algorithm, we then

proceed to identify the coverage of all other patterns in the upper

levels. Algorithm 3 describes the details of the discussed method.

5 UTILIZING EXISTING PREDICTORS

While solely relying on ML models for coverage identification

might be a problematic, in presence of accurate andwell-developed

models, we should be able to utilize them in order to reduce the

coverage identification cost – i.e., the number of crowdsourc-

ing tasks. In this section, we adjust our core algorithm for this

purpose. In such settings, instead of calling Group-Coverage

53

Algorithm 3 Intersectional-Coverage

Input: Dataset D, dataset size 𝑁 , subset size upper bound 𝑛,

coverage threshold 𝜏 , set of attributes 𝑥

Output: Coverage for all individual and intersecting groups in

𝑥

1: L ←LabelSamples(D, 𝜏)
2: LetG be the set of fully-specified sub-groups at the max level

3: G𝑎𝑔𝑔 ←Aggregate(L, 𝜏,G,𝑚𝑢𝑙𝑡𝑖 = 𝑡𝑟𝑢𝑒)
4: 𝑐𝑜𝑣 ←Multiple-Coverage (D, 𝑁 , 𝑛, 𝜏,G𝑎𝑔𝑔)
5: Let 𝑄 = an empty queue

6: for ⟨g, 𝑐𝑣𝑔, 𝑐𝑛𝑡⟩ ∈ 𝑐𝑜𝑣 do 𝑄.add(⟨g, 𝑐𝑣𝑔, 𝑐𝑛𝑡⟩)
7: while 𝑄 is not empty do

8: 𝑇 ← 𝑄.𝑑𝑒𝑙_𝑡𝑜𝑝 ()
9: if 𝑇 .𝑐𝑣𝑔 =true then

10: foreach 𝑝 in 𝑇 .ancestors do: 𝑄.add(⟨𝑝,true,𝑇 .𝑐𝑛𝑡⟩)
11: else

12: 𝑐𝑛𝑡 ← 0

13: for ∀𝑃 ∈ 𝑇 .𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 −𝑇 do

14: 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 𝑃 .𝑐𝑛𝑡 ; 𝑄.𝑝𝑜𝑝 (𝑃)
15: if 𝑐𝑛𝑡 ≥ 𝜏 then 𝑄.add(⟨𝑇 .𝑝𝑎𝑟𝑒𝑛𝑡,true,𝑇 .𝑐𝑛𝑡⟩)
16: else 𝑄.add(⟨𝑇 .𝑝𝑎𝑟𝑒𝑛𝑡,false,𝑇 .𝑐𝑛𝑡⟩)

in subsequent algorithms, one should call our classifier-aware

algorithm (Classifier-Coverage – Algorithm 4).

Using pre-trained classifiers on the dataset gives us the pre-

diction groups. The predicted labels can be used in order to re-

duce the prediction cost. However, we still need to validate the
correctness of the results obtained by the classifier in order to

determine the coverage of a given group. Suppose a gender clas-

sifier is applied to a dataset to return a set f as females. In order

to identify the coverage for the female group, the main idea is to

eliminate the falsely identified females (false positives), namely

males, from f . To this end, we apply a similar idea to what we

did in Group-Coverage algorithm: we create a crowdsourcing

task with all the points in set f , and ask a reverse question: “Is
there any individual in this set that is NOT female?”. If the

answer is yes, it means there are some false positives in this set.

Therefore, we take the divide-and-conquer approach by dividing

the set into two halves and repeating the question until all false

positive instances are eliminated.

A performance issue with this strategy, however, happens

when the false positive rate of the classifier for the given group

is high. In such settings the divide and conquer strategy keeps

dividing the sets into fine granularity, resulting in many small set

queries to ask. In such cases, labeling the data points in the female

set using point queries to verify the classifier’s label might be

more efficient. Following this observation, we propose a sampling

phase to estimate the precision of the classifier on the positive

group, i.e., the group on which we would like to verify coverage

(females in this example). Similar to our proposed method in §4,

we choose a small, random sample from the identified females set

(in our experiments, we found that a sample size of 10% of the set

classified as the given group would be a good choice). In the next

step, we ask the crowd to label the sample using point queries and

estimate the precision of the classifier, comparing the classifier

label and the true label. We experimentally found that if 25% of

the sample are false positives, it is safe to say that the precision of

the classifier on the positive group is sub-optimal for the group

coverage identification task. Based on the estimated precision of

the classifier on the target group, our algorithm decides whether

Algorithm 4 Classifier-Coverage

Input: Dataset D, dataset size 𝑁 , subset size upper bound 𝑛,

coverage threshold 𝜏 , target group g
Output: Coverage of g
1: Let 𝐺 be the set of tuples in D with predicted label g
2: Let 𝑆 be a sample of 𝐺

3: for 𝑡 ∈ 𝑆 do L.add(⟨𝑡,PointQuery(𝑡)⟩)
4: if L .count(g) > 0.25|𝐺 | then G ←Partition(D,𝐺, 𝑛)
5: else G ←Label(D,𝐺, 𝜏)
6: if |G| ≥ 𝜏 then return true

7: else return Group-Coverage (D −𝐺, 𝑁, 𝑛, 𝜏 − |𝐺 |, g)

to eliminate the false positive objects using either partitioning

or labeling strategies.

At the end of this process, we will have a set containing only

objects associated with the queried group g (female in this exam-

ple). If we already have at least 𝜏 instances of a group g, we can
determine the coverage and stop the process. However, assuming

that the number of discovered instances 𝑐′ is less than 𝜏 , now we

have to find at least 𝜏 − 𝑐′, false negative instances of g, i.e., the
instances that belong to g but are classified as not belonging to g
before we can conclude g is covered (or to verify the number of

false positive is less than 𝜏 − 𝑐′ and hence g is uncovered). This

can be done by applying the algorithm Group-Coverage on the

set of objects classified as not g with the threshold 𝜏 − 𝑐′. The
details of the proposed method can be found in Algorithm 4.

Our experiments in § 6.3.2, utilizing various pre-trained clas-

sifiers show that our optimization for coverage identification for

classified datasets can achieve remarkable performance.

6 EXPERIMENTS

In this section, we evaluate the performance of our methods

for coverage identification of single and multiple demographic

groups. Additionally, we explore our heuristic of coverage detec-

tion for a single demographic group (gender) on pre-processed

image data with pre-trained classifiers. Finally, we deploy our

system on a real crowdsourcing platform, MTurk, to explore the

performance of the discussed methods with real workers.

6.1 Experiment Setup

The experiments were conducted using both synthetic and real

datasets. The algorithms were implemented in Python.

• Synthetic datasets: To thoroughly assess our algorithms,

we create synthetic data with a variety of distributions.

As an example, in a single demographic group problem

setting for gender, a data point can be either {’F’, ’M’}.

In these experiments, we simulate the behavior of the

crowdworkers in answering queries.

• Image datasets:We use slices of FERET DB [43] and UTK-

Face [60] image datasets for the purpose of experiments

on MTurk and applying pre-trained classifiers on the data.

FERET DB is a dataset of 14,126 images of 1199 individuals

taken from a variety of angles. UTKFace is also an image

dataset consisting of over 20,000 annotated facial images.

EvaluationPlan:We evaluate the performance ofGroup-Coverage

and the optimizations for multiple non-intersectional and inter-

sectional groups as well as classified data using pre-trained classi-

fiers. We report the number of tasks required for each experiment

setting. We use a straightforward baseline, called Base-Coverage,

to identify group coverage as a baseline method to compare our

54

algorithm’s results to. In this method, each task is created contain-

ing only one single data point and is asked about. Two outcomes

are possible for this algorithm: either at some point, 𝜏 instances

of objects associated with the group are identified and hence, the

group is covered, or the algorithm goes through all the data and

determines that the group is uncovered.

Default Values: To evaluate the performance of our algorithms,

we fix the value of some of the introduced parameters in §3-5. The

default value of 𝑐 is 2, and we fix 𝜏 and 𝑛 as 50 in all experiments

except their respective parameter analysis experiments.

6.2 Summary of Results

Our proposed Group-Coverage algorithm achieved remarkable

results in group coverage identification in our experiments. Even

at the worst possible case (where the number of instances as-

sociated with the group in the dataset is close to the coverage

threshold), both the synthetic and MTurk experiments with the

real crowdworkers showed that our algorithm needs a signifi-

cantly small number of tasks compared to the size of the dataset

in order to achieve results. We also show that the upper bound

discussed in § 3.2 is in fact tight. Our optimizations on multiple

group cases (both intersectional and non-intersectional) proved

to be effective in most cases compared to a brute force approach

utilizing theGroup-Coverage algorithm to identify the coverage

of multiple groups. Additionally, the optimization of classified

data using pre-trained classifiers achieved notable results in most

cases, decreasing the number of required tasks by approximately

80% in some.

6.3 Proof of Concept

6.3.1 Amazon Mechanical Turk. In this experiment, we evalu-

ate our proposed method and the crowd’s performance on a live

crowdsourcing platform. We defined a female coverage identifi-

cation task and published our HITs on Amazon Mechanical Turk.

Each HIT contained a set of initial 𝑛 = 50 images to present a

reasonable workload to the crowd, with a maximum assignment

to 3 workers for quality control. The layout of the HITs was de-

signed as Figure 2. The crowd was asked to answer the questions

with yes or no.

To examine how each method affects the final outcomes, we

use three quality control techniques: Majority Vote, Qualification

Test, and Rating [14]. We adopt the off-the-shelf Majority Vote as
a group assessment to control the quality of outputs, in which we

assigned the same HIT to 3 workers and took the majority vote

as the truth. We also experiment with Rating and Qualification
Test as two types of individual assessments to further verify that

our workers have the appropriate skills for the tasks. For the

rating assessment, we measure the workers’ performance using

NumberHITsApproved and PercentAssignmentsApproved in MTurk

and only allowworkers whomeet a certain criterion for approved

HITs and assignments to perform our tasks. Additionally, we

designed a qualification test to verify the workers’ competence

before granting them access to our HITs as another method for

quality control. This test has a similar layout to the original HITs,

which also served the purpose of familiarizing the workers with

the tasks. One interesting observation that was made is that

despite the relatively low number of assignments per HIT, only

1.36% of the total 660 answers from the crowd in all experiments

(in 220 HITs) were incorrect which did not affect the final result in

each experiment run. Additionally, we did not detect a significant

difference between the experiments with or without individual

FERET DB (females=215,

males=1307)

Group-

Coverage

#HITs

base-

coverage

#HITs

upper-

bound

#HITs

QC: Majority Vote 74 342 115

QC: Qualification Test,

Majority Vote

75 386 115

QC: Rating (PercentAssign-

mentsApproved >= 95,

NumberHITsApproved >=

100), Majority Vote

71 284 115

Table 1: Coverage identification for female on MTurk

assessments which further supports our idea about the tasks

being relatively easy and straight-forward for the crowd and

fault-proof to an extent.

We employed the fixed price model as our pricing strategy. In

our first set of experiments, each HIT price was set to $0.1. In

the next experiments, we decreased the reward for each HIT to

$0.05. Interestingly, this did not discourage the workers to accept

and complete our tasks. Overall, we paid a total of $44.1 to the

workers and $8.82 to Amazon MTurk as service charges.

We used two different subsets of the FERET dataset. With

𝜏 = 50, the results from each experiment setting can be found in

Table 1 with a comparison to the baseline Base-Coverage method

and our theoretical upper bound (
𝑁
𝑛 + 𝜏 log(𝑛)).

6.3.2 Existing predictors. To investigate the performance of

the existing predictors on image datasets and our strategy to

detect the coverage of a dataset utilizing these models, we ran a

number of experiments using DeepFace [47] and another CNN-

based facial demographic classifier [30] to predict the gender of

the individual in datasets. We used a subset of images of unique

individuals from the FERET dataset [43], and two 3,000-point

subsets of UTKFace [60] with different distribution of females to

evaluate the results for both covered and uncovered cases. We

applied DeepFace with opencv and retinaface as the underlying

face detectors. Next, we passed the predicted labels and the fe-

males set detected by the classifier as the input to our Classifier-

Coverage algorithm. Our algorithm chooses between "partition-

ing" and "labeling" to eliminate false positives in the identified

female set. It picks "partitioning" if the classifier is at least 25%

precise on a sample of the set, and "labeling" otherwise. The

results are reported in Table 2. We also include the coverage

detection results using Group-Coverage to compare them with

those of Classifier-Coverage.

For each experiment, the accuracy and the precision of the

classifier on the dataset are calculated separately. As discussed

before, the accuracy of some classifiers can vary by a large margin

on different data. Moreover, a high level of accuracy does not

necessarily guarantee reasonable precision in predicting the class

of data points. More specifically, both of the classifiers had a

relatively high accuracy in the classification task on the UTKFace

dataset, but both also had a low precision in their prediction for

the female demographic group, which further proves the fact that

the performance of the existing predictor for sensitive groups is

questionable in many cases.

In addition, the results show that our heuristics make the right

decision for which false positive elimination strategy to use in

most cases, leading to significantly fewer necessary tasks to get

the result. Compared to our Group-Coverage algorithm used

standalone, the proposed techniques can produce significantly

better results in most cases and still competitive results in others.

55

Existing classifiers’ performance Classifier-Coverage Group-Coverage

dataset classifier accuracy precision on

female group

false positive

elimination strategy

Classifier-

Coverage

#HITs

#HITs

FERET DB (females=403, males=591) DeepFace (opencv) 79.57 99.5 Partition 14 80

DeepFace (Retinaface) 84.1 100.0 Partition 17 80

BaseCNN 64.48 59.19 Label 84 80

UTKFace (females=200, males=2800) DeepFace (opencv) 93.56 52.02 Label 97 51

DeepFace (retinaface) 94.16 56.15 Label 89 51

BaseCNN 97.6 74.8 Label 69 51

UTKFace (females=20, males=2980) DeepFace (opencv) 96.53 8.0 Label 134 221

DeepFace (retinaface) 96.43 10.09 Label 143 221

BaseCNN 97.6 21.59 Label 122 221

Table 2: The results of female group coverage detection on gender classified datasets

Before concluding this section, we would like to remind that

our algorithms for coveragemultiple non-intersectional and inter-

sectional sensitive attributes run theGroup-Coverage algorithm

in their core. In other words, those algorithms can be viewed as

issuing Group-Coverage multiple times. So we expect similar

results for those cases, using the real crowd.

6.4 Downstream Tasks Consequences

In this experiment, we show how the lack of coverage may cause

model performance disparity (unfairness) in the downstream

tasks. In particular, using two computer vision tasks we observe

that (a) lack of coverage may cause model performance disparity

for an uncovered group, and (b) resolving the lack of coverage

reduces the performance disparity for the uncovered groups.

6.4.1 Drowsiness Detection. Drowsiness detection systems

are used to prevent accidents that are caused by drivers who fell

asleep while driving. MRL eye dataset [22] is a large-scale human

eye dataset containing infrared images captured in a variety of

lighting conditions from 37 people. While some of the subjects

in the dataset wear glasses, we intentionally disregarded the

images of such subjects to make them uncovered and created

a sample of size 26480 images belonging to two classes of open
(14279 images) and closed eyes (12201 images). Following the

same procedure, we generated 10 datasets and repeated each

experiment 10 times, using different datasets. Using this as the

training data, we built a CNN model, and evaluating the model,

we observed that while it has an average overall accuracy of

91.5%, the average accuracy for the spectacled subjects is only

81%. Next, in order to confirm that the issue was due to the lack

of coverage, we gradually added 20, 40, 60, 80, and 100 images

from the uncovered region back to each of the classes of open
and closed in the training data, and retrained and evaluated the

model. The results are illustrated in Figure 6a. With an increase

in the number of samples taken from the uncovered group, we

observed a reduction in the accuracy/loss disparity of the model

between a randomly sampled test set and a sample consisting

exclusively of spectacled subjects.

6.4.2 Gender Detection. To further verify our proposal, we

repeat a similar procedure, using UTKFace dataset. We extract

a sample comprising 7055 face images from UTKFace such that

each image belonged to a class of either male (3834 images) or

female (3221 images). While extracting the sample, we intention-

ally picked the subjects only if they were Caucasian. Using this as

the training data, we trained a CNN model to predict the gender

of the subjects. We repeated this procedure on 10 different sam-

ples and observed that on average, there is a 1% disparity in the

overall accuracy of the model versus the accuracy for the Black

0 20 40 60 80 100
Number of Spectacled Samples

0.05

0.1

0.15

A
cc

u
ra

cy
 D

is
p

ar
it

y

0

0.2

0.4

0.6

0.8

1

L
o

ss
 D

is
p

ar
it

y

(a) drowsiness detection

0 20 40 60 80 100
Number of Black Samples

0

0.005

0.01

0.015

0.02

A
cc

u
ra

cy
 D

is
p

ar
it

y

0

0.01

0.02

0.03

0.04

0.05

L
o

ss
 D

is
p

ar
it

y

(b) gender detection

Figure 6: Effect of lack of coverage in the downstream tasks

subjects. Similar to the previous experiment, gradually increasing

the number of Black subjects in the training data reduces the

aforementioned disparity close to zero as seen in Figure 6b.

6.5 Performance Evaluation

In the following sections, we present the results of our exper-

iments using the stated settings. First, we evaluate the perfor-

mance of the Group-Coverage algorithm with varying param-

eters 𝜏, 𝑛, 𝑁 in §6.5.1. Next, we evaluate the optimizations for

multiple non-intersectional and intersectional groups in §6.5.2.

6.5.1 Group-Coverage. To evaluate the performance of the

Group-Coverage algorithm, we designed a simulation to reflect

the procedure that the crowd would be presented with to carry

out the tasks. The objective of the simulation is to first identify

whether the dataset is covered with respect to a demographic

group and determine the total number of tasks required to iden-

tify the coverage of a given group. For this purpose, assuming we

are interested in identifying the coverage of female, we generate

a dataset containing males and females and shuffle it randomly

to prepare for the experiment. Each experiment with particular

variables is run multiple times to better capture the effect of the

dataset’s underlying distribution on the results. In these sets of

experiments, we study the impact of the scope of parameters on

the end results.

Varying 𝜏 . First, we analyze the relationship between the cov-

erage threshold and the number of females in the dataset and

its impact on the number of necessary tasks to get the results.

Figure 7a illustrates the number of required tasks when there

exist [0, 2𝜏] items of the demographic group in the dataset. We

have a dataset of size 100K, and we select the coverage threshold

as 50. It can be observed that the largest number of queries is

needed when the number of females (𝑓) is close to 𝜏 . Conversely,

the farther 𝑓 gets from 𝜏 , the fewer tasks are required to get to a

conclusion. This observation is consistent with the discussion in

56

0 50 100
Number of Females (f)

10 2

10 4

10 6

A
vg

. N
o

. o
f

T
as

ks
 -

-
lo

g
sc

al
e

Group-Coverage
Base-Coverage
UpperBound

(a) varying #females

0 50 100
Coverage Threshold ()

10 2

10 4

10 6

A
vg

. N
o

. o
f

T
as

ks
 -

-
lo

g
sc

al
e

Group-Coverage
Base-Coverage
UpperBound

(b) Varying coverage threshold

0 100 200 300 400
Subset Size Upper Bound (n)

10 2

10 4

10 6

A
vg

. N
o

. o
f

T
as

ks
 -

-
lo

g
sc

al
e

Group-Coverage
Base-Coverage
UpperBound

(c) Varying subset size

2 4 6 8 10
Dataset Size (N) 10 5

10 2

10 4

10 6

A
vg

. N
o

. o
f

T
as

ks
 -

-
lo

g
sc

al
e

Group-Coverage
Base-Coverage
UpperBound

(d) Varying dataset size

effe
ctive 1

effe
ctive 2

ineffe
ctive

adversaria
l

0

500

1000

1500

N
o

. o
f

T
as

ks

Multi-Coverage
Group-Coverage

(e) Multiple non-intersectional

groups optimization (𝜎 = 4) vs.

Group-Coverage

effe
ctive 1

effe
ctive 2

ineffe
ctive

adversaria
l

0

500

1000

1500

2000

2500

N
o

. o
f

T
as

ks

Intersectional-Coverage
Group-Coverage

(f) Intersectional groups opti-

mization (𝜎1 = 2, 𝜎2 = 2, 𝜎3 = 2)

vs. Group-Coverage

=3 =4 =5 =6
0

500

1000

1500

N
o

. o
f

T
as

ks

Multi-Coverage
Group-Coverage

(g) Multiple groups in one at-

tribute with 𝜎 = 3, 4, 5, 6

1
=2,

2
=2,

3
=2

1
=2,

2
=4

0

500

1000

1500

2000

N
o

. o
f

T
as

ks

Intersectional-Coverage
Group-Coverage

(h) Multiple groups in two at-

tributes with 𝜎1 = 2, 𝜎2 = 4 and

𝜎1 = 2, 𝜎2 = 2, 𝜎3 = 2

Figure 7: Performance evaluation for Group-Coverage, Multiple-Coverage, and Intersectional-Coverage algorithms

§3.2; with too few or too large quantities of 𝑓 in the dataset, our

algorithm’s results appear to be further from the upper bound.

Figure 7b shows the results of running the algorithm with dif-

ferent coverage thresholds. The coverage threshold is varied from

1 to 100 (0.001% to 0.1% of the dataset size) and there are exactly

𝜏 females at each run. Naturally, when the coverage threshold

increases, the algorithm needs to cover more grounds to produce

results. This also shows that the relationship between the cover-

age threshold and the cost is linear as discussed in §3.2. Note that

the results in this figure demonstrate the case where 𝑓 = 𝜏 , which

is the situation that requires the maximum number of tasks to

get to a decision and is very close to the theoretical upper bound.

Varying 𝑛. This experiment is designed to study the impact of

the subsets size upper bound on the algorithm’s outcome. We set

the coverage threshold to 50 in a dataset of size 100, 000 while

maintaining 50 instances of females in the dataset. In Figure

7c, we can see a substantial jump in the number of tasks when

the subset size increases from around 10 to 20. Moreover, the

result does not change significantly after that even with a notable

increase in the subsets size. This confirms the logarithmic nature

of the subsets size upper bound parameter in the algorithm.

When determining the set size, one must consider the crowd’s

ability to identify the subject of the task at hand. While selecting

larger 𝑛 might lead to fewer required tasks, it is likely that we

obtain less reliable answers from the crowd due to the large

number of items presented all at once. further, increasing the

initial subset size will not significantly impact on the end results.

Varying 𝑁 . To assess our algorithm’s performance in a variety

of datasets, we ran experiments for datasets of size 1K to 1M.

Figure 7d illustrates the results of the algorithm for varying

dataset sizes. As expected, the number of required tasks to de-

termine the results grows linearly with the size of the dataset,

but never exceeds 6%. In other words, our results show that in

practice, we can determine the group coverage for a dataset with

tasks no more than 6% of the dataset size at the very worst case.

6.5.2 Optimizations for multiple groups. To evaluate the per-

formance of our proposed method in identifying the coverage

for multiple groups, we take a similar approach as the previous

section. We create a synthetic dataset comprising of data points

that can correspond to 𝜎 = 3, 4, 5, 6 distinct demographic groups

for the non-intersectional case, and two datasets, one with 2 at-

tributes with cardinalities 𝜎1 = 2, 𝜎2 = 4 and the other with 3

binary attributes (𝜎1 = 2, 𝜎2 = 2, 𝜎3 = 2) for the intersectional

case. In a dataset of 10K points, with a threshold of 50 and a

subset size of 50, we vary the number of items for each group

in the dataset to simulate different combinations of settings and

run the algorithm for each variation. Additionally, we run the

Group-Coverage algorithm for each group independently to

compare our results. In our experiments, we found out that while

our heuristics on multiple groups can perform very well in some

cases, it can also appear to be ineffective or worse than the brute

force in some other. The results of the experiments for these cases

are shown in Figures 7e and 7f.

Each of the bars defined as effective 1, effective 2, ... repre-

sent a different setting with respect to the number of instances

associated with each group which is further described in Table 3.

The adversarial case, in which there are multiple uncovered

groups with summation of items greater than 𝜏 in the dataset, it

is likely that our heuristic fails in aggregating these groups into

a super-group since the probability of having instances of these

groups in the sample is significantly low. Thus, the super-group is

covered and the algorithm needs to run for each of the subgroups

individually. This imposes a penalty on the total number of tasks

and makes it an adversarial case for our heuristic. To conclude,

we can expect that our method works well or with little difference

compared to brute force in some cases while failing in others.

Figure 7g shows the results for the Multiple-Coverage al-

gorithm for attributes with various cardinalities. Considering

cases where our heuristic is effective, as the cardinality of the at-

tribute increases, the total required tasks inMultiple-Coverage

grows more slowly than the brute force, resulting in a larger gap

between the two methods as the cardinality increases.

57

Setting Description

effective 1

3 uncovered minorities; their aggregated super-

group is uncovered

effective 2 3 covered minorities

ineffective 2 uncovered and one covered minority

adversarial

3 uncovered minorities; their aggregated super-

group is covered

Table 3: Experiment settings for multiple groups

Figure 7h represents the results of the Intersectional-Coverage

algorithm for two cases, one with 2 attributes with cardinal-

ities 𝜎1 = 2, 𝜎2 = 4 and the other with 3 binary attributes

(𝜎1 = 2, 𝜎2 = 2, 𝜎3 = 2). As expected, with the same settings,

the results for each of these cases are similar, with the num-

ber of fully-specified subgroups at the maximum level for both

cases being equal. In other words, in the case of intersectional

groups with multiple attributes, the only important feature is the

cardinality of the attributes rather than the number of attributes.

7 RELATEDWORKS

Crowd-sourcing for Bias Detection. [26] proposes a crowd-sourcing
workflow to facilitate sampling bias discovery in visual datasets

with the help of human-in-the-loop. This workflow takes a visual

data set as an input and outputs a list of potential biases of the

data set. There are three steps in this workflow. The first step

is Question Generation and the crowd inspects random samples

of images from the input dataset and describes their similarity

using a question-answer pair. The next step is Answer Collec-
tion in which the crowd review separates random samples of

images from the input dataset and provides answers to questions

solicited from the previous step. Finally, in the third step called

Bias Judgement the crowd judge whether statements of the visual

dataset that are automatically generated using the questions and

answers collected accurately reflect the real world.

Set queries. Set-based HITs, similar to our set queries, have

been used in various crowdsourcing studies, including crowd

powered data mining [33, 34]. [45] first introduced the idea of

filtering a set of data based on a particular property using humans.

Another example is [8], where for the purpose of top-k and group-

by queries, the crowd is asked to answer type set question which

has “yes” or “no” answer based on whether the data points in

a set have the same type, which is similar to our notion of set

queries on a target demographic group. Set queries have also

been used in the crowd-sourced “count” operation: For instance,

Marcus et al. [36] show a small batch of objects (images) to the

crowd, asking them to estimate the number of items satisfying a

specific constraint (e.g., photos with a car in them). Set queries

are also popular in crowd-sourced clustering. For example, in

[24] each worker views a small set of images as a HIT, where they

are asked to provide a partial clustering of the set. Set queries

have also been used for tasks such as crowd-sourced median

finding [25], crowd-sourced planning [31], etc.

Group testing. Our approach in the Group-Coverage algo-

rithm falls under the general category of group testing methods,

where a task of identifying certain objects is broken up into

tests on groups of items [18]. First proposed by Dorfman [17],

group testing has been widely used across different domains [18],

with early applications such as detecting broken electrical cir-

cuits [11] with more recent applications in graphs [12], web

databases [7], and even in Covid-19 detection [23]. Related work

includes [19], which explores ways to perform efficient combi-

natorial group testing to identify up to 𝑑 defective items from a

set of 𝑛 items using a reduced number of tests for practical set

sizes. More generally, the class of divide and conquer (d&c) algo-

rithms are popular in crowdsourcing. For example, [59] proposes

a crowd-sourced d&c approach for sorting. Similarly, [42] pro-

poses a crowdsourcing d&c approach for creating cross-lingual

textual entailment corpora. Related work also includes crowd-

sourcing d&c approaches for mobile platforms [3], paired com-

parisons [56], etc.

Coverage. The notion of data coverage has been studied across

different settings [1, 2, 4, 5, 29, 35, 38, 48, 53]. With many an-

gles to tackle, data coverage has been studied for datasets with

discrete [4] and continuous [5] attributes populated in single or

multiple [35] relations. Additionally, [1, 2, 49] (resp. [41]) use

query rewriting (resp. data integration) to resolve representation

bias. Existing works in data coverage have so far only focused

on tabular data.

8 CONCLUSION

In this paper, we studied the problem of coverage identification

in image data. This problem is motivated by the historical rep-

resentation bias in various forms of data, and specifically the

inefficiency of the existing supervised or unsupervised learning

methods in performing equally well for minority groups on image

data. We proposed an efficient algorithm to identify the coverage

of a demographic group across the dataset and showed that the

number of required tasks is optimal and close to the theoretical

lower bound, and introduced practical heuristics to expand our

solution for multiple non-intersectional or intersectional groups.

We also presented an optimization method for detecting group

coverage in datasets labeled by the existing predictors.

In this work, we focused on image data as a specific form of

multimedia data. We hope to find equally efficient methods to

identify data coverage in other forms of multimedia data such as

video in our future work. In addition, our goal in this paper was

mainly to minimize the cost of crowdsourcing by minimizing

the total number of required tasks. We consider extending our

techniques to support various pricing models as part of our future

work.

9 RESEARCH ETHICS REVIEW STATEMENT

The research conducted in this study involving participants from

MTurk ensured adherence to ethical principles and guidelines.

Participants were provided with clear and comprehensive infor-

mation such as the purpose, procedures, the type of the task,

the compensation amount, and the expected time to complete

the task. The participants were informed about the qualification

screening. Informed consent was obtained from all participants

before their engagement in the study. In addition to the plat-

forms anonymization of MTurk workers, we further ensured the

privacy of participants by not collecting personal information.

58

REFERENCES

[1] Chiara Accinelli, Barbara Catania, Giovanna Guerrini, and SimoneMinisi. 2021.

The impact of rewriting on coverage constraint satisfaction.. In EDBT/ICDT
Workshops.

[2] Chiara Accinelli, Simone Minisi, and Barbara Catania. 2020. Coverage-based

Rewriting for Data Preparation.. In EDBT/ICDT Workshops.
[3] Ariel Amato, Angel D Sappa, Alicia Fornés, Felipe Lumbreras, and Josep

Lladós. 2013. Divide and conquer: atomizing and parallelizing a task in a

mobile crowdsourcing platform. In Proceedings of the 2nd ACM International
Workshop on Crowdsourcing for Multimedia. 21–22.

[4] Abolfazl Asudeh, Zhongjun Jin, and HV Jagadish. 2019. Assessing and reme-

dying coverage for a given dataset. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE). IEEE, 554–565.

[5] Abolfazl Asudeh, Nima Shahbazi, Zhongjun Jin, and H. V. Jagadish. 2021. Iden-

tifying Insufficient Data Coverage for Ordinal Continuous-Valued Attributes.

In SIGMOD. ACM.

[6] Abolfazl Asudeh, Gensheng Zhang, Naeemul Hassan, Chengkai Li, and

Gergely V. Zaruba. 2015. Crowdsourcing Pareto-Optimal Object Finding

By Pairwise Comparisons. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management (CIKM ’15). Asso-
ciation for Computing Machinery, New York, NY, USA, 753–762. https:

//doi.org/10.1145/2806416.2806451

[7] Abolfazl Asudeh, Nan Zhang, and Gautam Das. 2016. Query Reranking As A

Service. Proceedings of the VLDB Endowment 9, 11 (2016).
[8] Rubi Boim, Ohad Greenshpan, TovaMilo, Slava Novgorodov, Neoklis Polyzotis,

and Wang-Chiew Tan. 2012. Asking the Right Questions in Crowd Data

Sourcing. In 2012 IEEE 28th International Conference on Data Engineering.
1261–1264. https://doi.org/10.1109/ICDE.2012.122

[9] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-

racy disparities in commercial gender classification. In Conference on fairness,
accountability and transparency. PMLR, 77–91.

[10] L Elisa Celis and Vijay Keswani. 2020. Implicit diversity in image summa-

rization. Proceedings of the ACM on Human-Computer Interaction 4, CSCW2

(2020), 1–28.

[11] CC Chen and FK Hwang. 1989. Detecting and locating electrical shorts using

group testing. IEEE transactions on circuits and systems 36, 8 (1989), 1113–1116.
[12] Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, and Venkatesh Saligrama.

2012. Graph-constrained group testing. IEEE Transactions on Information
Theory 58, 1 (2012), 248–262.

[13] Kate Crawford. 2013. The hidden biases in big data. Harvard business review
1, 4 (2013).

[14] Florian Daniel, Pavel Kucherbaev, Cinzia Cappiello, Boualem Benatallah, and

Mohammad Allahbakhsh. 2018. Quality control in crowdsourcing: A survey

of quality attributes, assessment techniques, and assurance actions. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–40.

[15] Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood

estimation of observer error-rates using the EM algorithm. Journal of the
Royal Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20–28.

[16] Nicholas Diakopoulos. 2015. Algorithmic accountability: Journalistic inves-

tigation of computational power structures. Digital journalism 3, 3 (2015),

398–415.

[17] Robert Dorfman. 1943. The detection of defective members of large popula-

tions. The Annals of mathematical statistics 14, 4 (1943), 436–440.
[18] Dingzhu Du, Frank K Hwang, and Frank Hwang. 2000. Combinatorial group

testing and its applications. Vol. 12. World Scientific.

[19] David Eppstein, Michael T Goodrich, and Daniel S Hirschberg. 2007. Improved

combinatorial group testing algorithms for real-world problem sizes. SIAM J.
Comput. 36, 5 (2007), 1360–1375.

[20] John R Feiner, John W Severinghaus, and Philip E Bickler. 2007. Dark skin

decreases the accuracy of pulse oximeters at low oxygen saturation: the effects

of oximeter probe type and gender. Anesthesia & Analgesia 105, 6 (2007), S18–
S23.

[21] Batya Friedman and Helen Nissenbaum. 1996. Bias in computer systems. ACM
Transactions on Information Systems (TOIS) 14, 3 (1996), 330–347.

[22] R. Fusek. 2018. Pupil localization using geodesic distance. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 11241 LNCS (2018), 433–444. https:

//doi.org/10.1007/978-3-030-03801-4_38

[23] Christian Gollier and Olivier Gossner. 2020. Group testing against Covid-19.
Technical Report. EconPol Policy Brief.

[24] Ryan Gomes, PeterWelinder, Andreas Krause, and Pietro Perona. 2011. Crowd-

clustering. Advances in neural information processing systems 24 (2011).
[25] Hannes Heikinheimo and Antti Ukkonen. 2013. The crowd-median algo-

rithm. In Proceedings of the AAAI Conference on Human Computation and
Crowdsourcing, Vol. 1. 69–77.

[26] Xiao Hu, Haobo Wang, Anirudh Vegesana, Somesh Dube, Kaiwen Yu, Gore

Kao, Shuo-Han Chen, Yung-Hsiang Lu, George K Thiruvathukal, and Ming

Yin. 2020. Crowdsourcing Detection of Sampling Biases in Image Datasets. In

Proceedings of The Web Conference 2020. 2955–2961.
[27] Basileal Imana, Aleksandra Korolova, and John Heidemann. 2021. Auditing

for discrimination in algorithms delivering job ads. In Proceedings of the Web
Conference 2021. 3767–3778.

[28] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality man-

agement on amazon mechanical turk. In Proceedings of the ACM SIGKDD

workshop on human computation. 64–67.
[29] Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish.

2020. MithraCoverage: A System for Investigating Population Bias for In-

tersectional Fairness. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2721–2724.

[30] Shreyansh Joshi. 2020. Age and Gender Prediction from Facial Images. https:

//github.com/ShreyanshJoshi/Facial-Demographics-using-CNN.

[31] Haim Kaplan, Ilia Lotosh, Tova Milo, and Slava Novgorodov. 2013. Answering

planning queries with the crowd. Proceedings of the VLDB Endowment 6, 9
(2013), 697–708.

[32] Bogdan Kulynych, Yao-Yuan Yang, Yaodong Yu, Jarosław Błasiok, and Preetum

Nakkiran. 2022. What You See is What You Get: Distributional Generalization

for Algorithm Design in Deep Learning. arXiv preprint arXiv:2204.03230
(2022).

[33] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J Franklin. 2016.

Crowdsourced data management: A survey. IEEE Transactions on Knowledge
and Data Engineering 28, 9 (2016), 2296–2319.

[34] Guoliang Li, Yudian Zheng, Ju Fan, Jiannan Wang, and Reynold Cheng. 2017.

Crowdsourced data management: Overview and challenges. In Proceedings of
the 2017 ACM International Conference on Management of Data. 1711–1716.

[35] Yin Lin, Yifan Guan, Abolfazl Asudeh, and HV Jagadish. 2020. Identifying

insufficient data coverage in databases with multiple relations. Proceedings of
the VLDB Endowment 13, 12 (2020), 2229–2242.

[36] Adam Marcus, David Karger, Samuel Madden, Robert Miller, and Sewoong

Oh. 2012. Counting with the crowd. Proceedings of the VLDB Endowment 6, 2
(2012), 109–120.

[37] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and

Aram Galstyan. 2021. A survey on bias and fairness in machine learning. ACM
Computing Surveys (CSUR) 54, 6 (2021), 1–35.

[38] Yuval Moskovitch and HV Jagadish. 2020. Countata: dataset labeling using

pattern counts. Proceedings of the VLDB Endowment 13, 12 (2020), 2829–2832.
[39] Yuval Moskovitch and H. V. Jagadish. 2020. COUNTATA: Dataset Labeling

Using Pattern Counts. PVLDB 13, 12 (2020), 2829–2832.

[40] MelikaMousavi, Nima Shahbazi, andAbolfazl Asudeh. 2023. Data Coverage for

Detecting Representation Bias in Image Datasets: A Crowdsourcing Approach.

CoRR, abs/2306.13868, https://arxiv.org/abs/2306.13868.

[41] Fatemeh Nargesian, Abolfazl Asudeh, and HV Jagadish. 2021. Tailoring data

source distributions for fairness-aware data integration. Proceedings of the
VLDB Endowment 14, 11 (2021), 2519–2532.

[42] Matteo Negri, Luisa Bentivogli, Yashar Mehdad, Danilo Giampiccolo, and

Alessandro Marchetti. 2011. Divide and conquer: Crowdsourcing the cre-

ation of cross-lingual textual entailment corpora. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing. 670–679.

[43] National Institute of Standards and Technology. 2011. Face Recog-

nition Technology Database (FERET DB). https://www.nist.gov/itl/

products-and-services/color-feret-database.

[44] Alexandra Olteanu, Carlos Castillo, Fernando Diaz, and Emre Kıcıman. 2019.

Social data: Biases, methodological pitfalls, and ethical boundaries. Frontiers
in Big Data 2 (2019), 13.

[45] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis

Polyzotis, Aditya Ramesh, and Jennifer Widom. 2012. CrowdScreen: Al-

gorithms for Filtering Data with Humans. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’12). As-
sociation for Computing Machinery, New York, NY, USA, 361–372. https:

//doi.org/10.1145/2213836.2213878

[46] Adam Rose. 2010. Are Face-Detection Cameras Racist? Time Business.

[47] Sefik Ilkin Serengil and Alper Ozpinar. 2020. LightFace: A Hybrid Deep Face

Recognition Framework. In 2020 Innovations in Intelligent Systems and Appli-
cations Conference (ASYU). IEEE, 23–27. https://doi.org/10.1109/ASYU50717.

2020.9259802

[48] Nima Shahbazi, Yin Lin, Abolfazl Asudeh, and HV Jagadish. 2023. Represen-

tation Bias in Data: A Survey on Identification and Resolution Techniques.

Comput. Surveys (2023).
[49] Suraj Shetiya, Ian P Swift, Abolfazl Asudeh, and Gautam Das. 2022. Fairness-

aware range queries for selecting unbiased data. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 1423–1436.

[50] Yaron Singer and Manas Mittal. 2013. Pricing Mechanisms for Crowdsourcing

Markets. In Proceedings of the 22nd International Conference on World Wide
Web (WWW ’13). Association for Computing Machinery, New York, NY, USA,

1157–1166. https://doi.org/10.1145/2488388.2488489

[51] Adish Singla and Andreas Krause. 2013. Truthful Incentives in Crowdsourcing

Tasks Using Regret Minimization Mechanisms. In Proceedings of the 22nd
International Conference on World Wide Web (WWW ’13). Association for

Computing Machinery, New York, NY, USA, 1167–1178. https://doi.org/10.

1145/2488388.2488490

[52] Harini Suresh and John Guttag. 2021. A framework for understanding sources

of harm throughout the machine learning life cycle. In Equity and Access in
Algorithms, Mechanisms, and Optimization. 1–9.

[53] Ki Hyun Tae and Steven Euijong Whang. 2021. Slice tuner: A selective data

acquisition framework for accurate and fair machine learning models. In

Proceedings of the 2021 International Conference on Management of Data. 1771–
1783.

[54] Antonio Torralba and Alexei A Efros. 2011. Unbiased look at dataset bias. In

CVPR 2011. IEEE, 1521–1528.

59

[55] Jing Wang, Panagiotis G Ipeirotis, and Foster Provost. 2011. Managing crowd-

sourcing workers. In The 2011 winter conference on business intelligence. Cite-
seer, 10–12.

[56] Ming-Hung Wang, Chia-Yuan Zhang, and Jia-Ru Song. 2023. CrowDC: A

Divide-and-Conquer Approach for Paired Comparisons in Crowdsourcing.

arXiv preprint arXiv:2302.11722 (2023).
[57] Peter Welinder, Steve Branson, Pietro Perona, and Serge Belongie. 2010. The

multidimensional wisdom of crowds. Advances in neural information processing
systems 23 (2010).

[58] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul

Ruvolo. 2009. Whose vote should count more: Optimal integration of labels

from labelers of unknown expertise. Advances in neural information processing
systems 22 (2009).

[59] Haoqi Zhang, Eric Horvitz, Rob C Miller, and David C Parkes. 2011. Crowd-

sourcing general computation. In ACM CHI 2011 Workshop on Crowdsourcing
and Human Computation. Citeseer, 1–5.

[60] Zhifei Zhang, Yang Song, and Hairong Qi. 2017. Age Progression/Regression

by Conditional Adversarial Autoencoder. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.

[61] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng.

2017. Truth Inference in Crowdsourcing: Is the Problem Solved? Proc. VLDB
Endow. 10, 5 (jan 2017), 541–552. https://doi.org/10.14778/3055540.3055547

60

