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ABSTRACT

Data regulations, such as GDPR, are increasingly being adopted
globally to protect against unsafe data management practices.
Such regulations are, often ambiguous (with multiple valid in-
terpretations) when it comes to defining the expected dynamic
behavior of data processing systems. This paper argues that it is
possible to represent regulations such as GDPR formally as invari-
ants using a (small set of) data processing concepts that capture
system behavior. When such concepts are grounded, i.e., they are
provided with a single unambiguous interpretation, systems can
achieve compliance by demonstrating that the system-actions
they implement maintain the invariants (representing the regula-
tions). To illustrate our vision, we propose Data-CASE, a simple
yet powerful model that (a) captures key data processing con-
cepts (b) a set of invariants that describe regulations in terms of
these concepts. We further illustrate the concept of grounding
using "deletion" as an example and highlight several ways in
which end-users, companies, and software designers/engineers
can use Data-CASE.

1 INTRODUCTION

The rise in organizations collecting and mishandling personal
data has led to the emergence of data regulations across the world.
Examples include the California Consumer ProtectionAct (CCPA)
[15], the Virginia Data Protection Act (VDPA) [78], and Canada’s
Personal Information Protection and Electronic Documents Act
(PIPEDA) [54]. Many countries are in the process of enacting
their own laws. Of these, the most developed, scrutinized, and
used is “The Regulation (EU) 2016/679” also known as the General
Data Protection Regulation (GDPR) [50]. The Data Governance
Act adopted by the EU in 2022 complements the GDPR [49].

Building systems that allow compliant data governance has
been identified as a key challenge in the recent Seattle Report
on Database Research[1]. While GDPR has resulted in tangible
improvements in how organizations handle data [10, 28], it has
nonetheless led to negative economic impacts, one of the causes
for which is the uncertainty companies face in ensuring com-
pliance [14, 16] and the risk of penalty if found non-compliant
[24, 25, 59, 70]. A key reason for such uncertainty is the ambigu-
ity in the legal language used in data regulations when it comes
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to how systems should process data, i.e., which actions should
the system take and when to comply with data regulations. Many
of the concepts listed are open to several valid interpretations.

Consider a company MetaSpace that stores personal data of
individuals, including their location for smart space applications,
using PostgreSQL (PSQL). A user wishes to exercise their right
(GDPR Article 17) to have their data deleted in a reasonable
time. Persistently deleting data, e.g., using VACCUM-DELETE in
PSQL can be extremely expensive. On the other hand, adopting
logical deletes as in Cassandra, a NoSQL distributed database
[42], — inserts a tombstone when data is deleted— can be effi-
cient. Prior work [62] has shown that using delete markers like
tombstones in LSM trees may lead to data being, illegally, physi-
cally retained for a long duration. The impact of the ambiguity is
further highlighted when we consider distributed systems that
may replicate /cache data across different nodes using various
complex protocols [48]. If erasure means removing the data not
just from the primary location, but removing it completely (from
all locations in disk and memory), a technique will have to be
built to track the copies and delete all of them. Thus, due to the
lack of system specifications, ambiguities arise which can expose
the company to legal action.

Ambiguity in interpreting GDPR has been a cause of concern
for the research community as evidenced by the work of the
Article 29 Data ProtectionWorking Party (AWP29) [12] and EDPB
[13], which issues clarifications and recommendations on how
organizations may attain compliance. These reports, however,
clarify only limited aspects of the GDPR regulation. Furthermore,
prior work [19] has shown that, at times, AWP29’s clarifications
and recommendations have been unsound [19, 53] and do not
meet the desired compliance.

To bridge the gap between ambiguous legal specifications
and grounded (system-level) technical specifications that can
serve as a blueprint for compliance in systems, we need a model
with a set of concepts that can be used to translate the data
governing requirements in regulations into a set of well-defined
specifications of dynamic system behavior. Such a model must:
(a) consist of a set of (data processing) concepts to fully describe
data regulations; (b) allow different valid interpretations of the
regulations; (c) allow for unambiguous interpretations of the
concepts to be mapped to system-actions using which they can
be implemented in a system.

Using such a model, organizations working along with regula-
tory bodies can agree upon possible desirable interpretations of
concepts/properties and attain demonstrable compliance.
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Disclosure: I Keep data subjects 
informed when collecting data. 
[13,14]

Storage II : Store data such that data 
subjects can exercise their rights.
[12,15-18,20-21,23]

Sharing and Processing IV: Do not 
process data indiscriminately. 
[5-11,22, 26-29, 44-45]

Erasure  V: Do not store  
data eternally.  [17]

Obligations and Accountability    VIII: Inform the user of changes and unauthorized access to their data. [19, 33-34] IX: Demonstrate compliance. [24,31]
Record Keeping VII: Keep records of all data-operations. [30]

Pre-processing III: Consult and asses 
prior to processing data. [35-36]

Design and Security VI : Build and design data protective systems. [25, 32]

Figure 1: The GDPR requirements for data governance stated as informal invariants and the grouped articles.
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Figure 2: Schematic representation of Data-CASE

Towards the goal of developing such a model, we propose
Data-CASE which stands for Data Collection, Access, Sharing, and
Erasure model. Data-CASE consists of a small set of key system
concepts (e.g., erasure, encryption, policies), referred to as Data-
CASE concepts. Concepts in Data-CASE are chosen such that
the specifications in regulations that relate to the requirements
of systems can be expressed formally using these concepts as
invariants in a logic framework. Each Data-CASE concept may
have several possible interpretations, e.g., deletion/erasure may
have different interpretations as discussed earlier. Data-CASE
allows for such interpretations to be formally defined ( 1○, Figure
2). Furthermore, the system developers/deployers can choose the
specific interpretation of the concepts they wish to support in
their system ( 2○, Fig. 2). Such an interpretation is then finally
mapped to system-level actions — system-actions — ( 3○, Fig. 2)
to achieve the specified concept interpretation. We refer to this
process of choosing a specific interpretation for a given concept
and formally specifying the chosen interpretation as the process
of grounding and refer to the formally defined concepts as the
grounded interpretations. Note that the system-action to which
the grounded concept is mapped is system dependent. In cases
where a system-action is not supported to exactly implement the
chosen interpretation, the system might need to be retrofitted
or changed to support the necessary system-actions. Examples
of system-actions include DELETE and VACUUM in PSQL; dele-
teOne and remove in MongoDB. System-actions may also include
user defined functions. Note that Data-CASE is neither a system
nor system-dependent. It is a formal framework that can be used
for reasoning about compliance in any system by creating map-
pings between grounded concepts and system-actions.

Organization. In Section (§) 2, we propose a basic model for
Data-CASE focusing on only key concepts we think such a model
must contain. In §3, we show how concepts defined in §2 can be
grounded to remove ambiguity by demonstrating, as an example,
how valid interpretations of data erasure can be formally stated
using Data-CASE. In §4 we show some use cases of Data-CASE.
§5 discusses related work. §6 highlights the challenges towards
the goal of a fully specified model that can abstract compliance
for data processing system development and deployment.

2 DATA-CASE MODEL

Data regulations specify the kind of data that falls under their
domain and legislate how such data is handled as it flows through

a data processing system and the responsibilities of entities pro-
cessing such data. So, Data-CASE groups the requirements of a
given data regulation under the following eight categories (the
first five corresponding to the data life cycle and the remain-
ing three to system properties) —(1) Disclosure, (2) Storage, (3)
Pre-processing, (4) Sharing and Processing, and (6) Erasure, (7)
record keeping, and (8) obligations and accountability. We il-
lustrate this schematically in Figure 1 where we also group the
articles of GDPR (only those that legislate data processing and
impact system design [68]) under these categories.

To capture the data governing principles in a data regulation,
the first step is to logically differentiate personal data from other
kinds of data. In addition, it is essential to capture the provenance
between various kinds of data in a system. Since data regulations
grant rights to owners of personal data, there is a need to support
user policies, track their evolution over time, and validate them.
Finally, when data is accessed/used, it is done so for specific
purposes by specific entities which are restricted by policies set
by the owner of such data or the regulation. Below, we develop a
simple set of concepts that capture the above.

2.1 Data Processing Concepts in Data-CASE

As data flows through the data-life cycle, it is collected from the
data-subject by the controller who might share it with processors.
Auditors verify and certify compliance. In Data-CASE, these roles
are referred to as entities. We denote them with 𝑒 . As a running
example, consider Netflix collects the credit card information of
its subscribers and stores it on the AWS cloud.

The concept of data unit refers to the finest granularity at
which we refer to data in Data-CASE. The granularity depends
on the system, application, as well as data regulation. E.g., in a
website collecting info about click-stream, a specific user’s data
might be a data unit. In a sensor such as a camera, the unit might
correspond to all data (irrespective of who is in it) of a camera
within a certain interval. For a service provider like Netflix, credit
card information can be considered a data unit.

We denote a data unit as a tuple𝑋 = (𝑆,𝑂,𝑉 , 𝑃) where 𝑆 is the
data-subject—the entity whom the data identifies;𝑂 is the origin—
where the data was collected from;𝑉 is a set {(𝑣1, 𝑡1), (𝑣2, 𝑡2), . . .}
of values where 𝑣𝑖 is the value at time 𝑡𝑖 , and 𝑃 is the set of
associated policies. A collection of data units is denoted as ®𝑋 .

Data-CASE classifies data units into three categories — (1)
base data, which is directly or indirectly collected, (2) derived
data, which is obtained from base data, and (3)metadata, which
includes data-subject, policies, etc. A derived data unit has the
same four aspects as base data except that data-subject (and
origin) are possibly varying sets of the data-subjects (and origins)
of the base data from which it was derived. The aspects of the
derived data unit are aggregated over the aspects of the base data.

A task or service, for which collected data is used, identifies its
purpose of data processing. Collected base data can have more
than one purpose. E.g., Netflix collects credit card information
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for billing; saves view-history for targeted advertisements, etc.
The flow of data units through various stages of processing in a
system is controlled using policies. A policy on a data unit 𝑋 is
a tuple ⟨𝑝, 𝑒, 𝑡𝑏 , 𝑡𝑓 ⟩ is a constraint specifying that an entity 𝑒 can
access the data unit for purpose 𝑝 from time 𝑡𝑏 to 𝑡𝑓 .
Example: The policy 𝜋1 = ⟨billing, 𝑁𝑒𝑡 𝑓 𝑙𝑖𝑥, 010123, 01012024⟩
for a data unit 𝑋 = 𝑐𝑟𝑒𝑑𝑖𝑡_𝑐𝑎𝑟𝑑 of user 1234 states that Netflix
has access to 𝑋 for the purpose of billing from 01/01/23 through
01/01/24. The policy 𝜋2 = ⟨retention, 𝐴𝑊𝑆,010123, 010124⟩ on
𝑋 states that AWS can retain this data from 01/01/23 through
01/01/24. For a data unit 𝑋 , we write 𝑉 (𝑡) to denote its value at
time 𝑡 and 𝑃 (𝑡) := {(𝑝, 𝑒, 𝑡𝑏 , 𝑡𝑓 ) ∈ 𝑃 | 𝑡𝑏 ≤ 𝑡 ≤ 𝑡𝑓 } to denote the
set of policies on𝑋 at time 𝑡 . The state of a data unit𝑋 at a given
time are the values of its aspect at that time and are denoted
as 𝑋 (𝑡) = (𝑆 (𝑡),𝑂 (𝑡),𝑉 (𝑡), 𝑃 (𝑡)). The state of a database is the
collection of the states of all data units in the database.
Example: The state of𝑋 in the previous example at time 𝑡 = 00:10
on 02/26/23 is 𝑋 (𝑡) = (1234, 0, 𝑐𝑟𝑒𝑑𝑖𝑡_𝑐𝑎𝑟𝑑_𝑖𝑛𝑓 𝑜, {𝜋1, 𝜋2, . . .}) .

We refer to any operation that changes the state of data units
as an action. Actions include the creation and deletion of data
units, changes to the value of a data unit, and reads and writes
on any aspect of a data unit. An action can influence one or
more data units. For an action 𝜏 on data unit 𝑋 , we denote the
changed state of𝑋 with 𝜏 (𝑋 ) . Actions on data units in a database
𝐷 give rise to a series of states D1,D2, . . . . Actions can produce
derived data. A derived data unit 𝑌 = (𝑆𝑌 ,𝑂𝑌 ,𝑉𝑌 , 𝑃𝑌 ) produced
by action 𝜏 from a collection of base data units ®𝑋 has 𝑆𝑌 and 𝑂𝑌

as the union of all the data-subjects and origins of data units ®𝑋 ,
respectively. The set of policies 𝑃𝑌 is generally a restriction of
the policies of the data units in ®𝑋 .

Data regulations often require monitoring how data is pro-
cessed or changes over time. Each action on a data unit is denoted
as an action-history tuple. A collection of action-history tuples
is called an action-history. For a data unit 𝑋 , and a database 𝐷 ,
• an action-history tuple is given by (𝑋, 𝑝, 𝑒, 𝜏 (𝑋 ), 𝑡) denoting
that entity 𝑒 performed action 𝜏 on 𝑋 for purpose 𝑝 at time 𝑡 .
• action-history of 𝑋 denoted,H(𝑋 ), is the set of all actions on
𝑋 , i.e., H(𝑋 ) = {(𝑋, 𝑝, 𝑒, 𝜏𝑖 (𝑋 ), 𝑡)𝑖 }𝑛𝑖=1 .
Example:The action-history tuple (1234, comp, 𝑁𝑒𝑡 𝑓 𝑙𝑖𝑥, CtrC1234,
010223) records that on 01/02/23, Netflix made a contract to col-
lect data of user 1234. Such a contract gets the consent of the
user to set policies 𝜋1 and 𝜋2 in previous examples. Similarly, the
tuple (𝑋, billing, 𝑁𝑒𝑡 𝑓 𝑙𝑖𝑥, read(𝑐𝑟𝑒𝑑𝑖𝑡_𝑐𝑎𝑟𝑑), 0010 − 022623)
records that Netflix accessed the credit card information of 1234
for billing at 00:10 on 02/26/23.

Data regulations specify what constitutes lawful data pro-
cessing. Data-CASE abstracts lawful data processing as policy-
consistent data processing. For a data unit 𝑋 = (𝑆,𝑂,𝑉 , 𝑃), ac-
tion 𝜏 on𝑋 for purpose 𝑝 at time 𝑡 , we say that the action-history
tuple (𝑋, 𝑝, 𝑒, 𝜏 (𝑋 ), 𝑡) on data unit 𝑋 is policy-consistent if there
exists a policy ⟨𝑝, 𝑒, 𝑡𝑏 , 𝑡𝑓 ⟩ in 𝑃 (𝑡) in the state (𝑆,𝑂,𝑉 (𝑡), 𝑃 (𝑡))
of data unit 𝑋 or the action in the tuple is required by a data reg-
ulation. We say that actions on 𝑋 are policy-consistent if every
action-history tuple inH(𝑋 ) is policy-consistent.

2.2 Formal Invariants For Compliance

Having described the set of concepts above (data unit, policy-
consistent action, etc.), we can now specify data regulations
formally in the form of invariances. We provide two examples.

GDPR Article (denoted G) 6 defines when processing per-
sonal data is lawful. Data-CASE abstracts this notion using the

concept of policy-consistent data processing. It can be stated as:
For all data units 𝑋, and for all actions 𝜏 on 𝑋, it holds that 𝜏
is policy-consistent. The legally permissible grounds and data-
subject’s consent for processing data can be encoded as specific
purposes through policies in Data-CASE.

Consider G17. It requires that personal data be not retained
longer than necessary for the purpose they were collected and
they be deleted without undue delay. Formally, this can be speci-
fied as follows. For all data units 𝑋 = (𝑆,𝑂,𝑉 , 𝑃), there exists a
policy 𝜋 ∈ 𝑃 such that 𝜋 = ⟨compliance-erase, 𝑒, 𝑡𝑏 , 𝑡𝑓 ⟩ and the
last access tuple on 𝑋 is (𝑞, compliance-erase, 𝑒, erase(𝑋 ), 𝑡)
s.t. 𝑡 ≤ 𝑡𝑓 . The above statement states that every data unit 𝑋
has a policy associated with it, which states that the data unit
has to be erased due to compliance requirements at a specified
time. Moreover, the last action on the data unit 𝑋 is erase(X) at
a time earlier than the time within which the policy requires the
data unit to be deleted.

Observe that the above invariants capture G6 and G17 for-
mally. However, the Data-CASE concepts erasure and policies are
still open to multiple valid interpretations. In the next section,
we discuss the process of grounding such concepts so that they
can be mapped to specific implementations in systems.

3 GROUNDING CONCEPTS

The process of grounding consists of mapping a concept to a
unique interpretation and formalizing it in Data-CASE. We il-
lustrate the process through erasure. Recent work [60–62] has
shown that many complexities arise when interpreting and im-
plementing erasure and can have a significant impact on system
performance. Besides, erasure is a requirement of most regula-
tions, and has received considerable attention recently [75, 76].

3.1 Data erasure

In a system, erasure can be interpreted in various ways. We
consider four interpretations - inaccessibility, deletion, strong
deletion, and permanent deletion.
•We say that data is reversibly inaccessible in a system when it
cannot be read by any data-subjects in the system but remains
accessible to the controller or processor. Often, in such cases, it
can be accessed by the data-subject after a specific action.
• We say that data has been deleted when the data and all its
copies have been physically erased.
• We say that data has been strongly deleted when it has been
deleted and all dependent data, where the data-subject is identifi-
able, has been deleted.
•We say that data has been permanently deleted when it has been
strongly deleted, and some advanced physical drive sanitation
technique has been used.

Observe that these interpretations can be ordered based on
their restrictiveness. For example, strongly delete implies delete.
This gives rise to the notion of strictness of interpretation of
compliance. Figure 3 depicts the temporal relationship between
the different interpretations. While some notions of erasure are
arguably better than others when privacy and security of per-
sonal data are considered, these deletion methods have different
overheads and may or may not be considered practical or feasible.
To ground these interpretations, we identify three properties.
• Erasure-inconsistent read: (Illegal Reads-IR) We say that there
is an erasure-inconsistent read on data unit 𝑋 if there exists
the tuple (𝑋,𝑞, 𝑝, 𝑒, read(𝑋 ), 𝑡 𝑗 ) ∈ H (𝑋 ) and in 𝑋 (𝑡 𝑗 ) we have
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Table 1: Interpretations of erasure and their characteristics.

✓ indicates feasibility and × indicates not.

Erasure IR II Inv PSQL System-Action(s)

reversibly accessible × ✓ ✓ Add new attribute
delete × ✓ × DELETE+VACUUM
strong delete × × × DELETE+VACUUM FULL
permanently delete × × × Not supported

Collection and storage Reversibly inaccessible Deleted Strongly deleted

Time To (TT) Live TT Delete TT Strong Delete 

Permanently deleted

TT Permanent Delete 

Figure 3: Data Erasure Timeline

𝑃 (𝑡 𝑗 ) = ∅, i.e., 𝑋 was read although there were no policies autho-
rizing it.
• Erasure-inconsistent inference:(Illegal Inference-II) We say that
there is an erasure-inconsistent inference on data unit 𝑋 if there
exists the tuple (𝑋,𝑞, 𝑝, 𝑒, erase(𝑋 ), 𝑡 𝑗 ) ∈ H (𝑋 ) and 𝑋 = 𝑓 (𝑌 )
where 𝑌 is other data units and 𝑓 is some dependency that can
be used to reconstruct 𝑋 from 𝑌 . i.e., although 𝑋 has been erased,
it can still be inferred using dependent data, provenance data, or
from other data units in the database.
• Transformation invertibility:(Invertibility-Inv.) A data unit 𝑋 is
usually transformed to some 𝑓 (𝑋 ) (e.g., an encryption function,
a function that rewrites 𝑋 with 0 bits, etc.) to prevent illegal
reads and illegal inferences. The transformation (function) may
be invertible, i.e., recoverable, or non-invertible.

We can formally ground the four different deletion notions.
Table 1 characterizes the different notions of erasure in terms
of the actions introduced earlier. Observe that although strong
delete and permanent delete have the same properties, the latter
entails the additional step of advanced data sanitization like [21].

3.2 Other Concepts

Other Data-CASE concepts such as purpose, histories, and poli-
cies also need to be grounded when reasoning with systems
being compliant with a given data regulation. Grounding con-
cepts require a careful analysis of actions different systems use
for these concepts, as well as, interactions between the actions.
For example, to ground histories, one has to consider various
logs a system maintains, their granularity, and uses — logs may
be temporary or kept for a long duration to not only recover
data but also to support the rights of data-subjects. Furthermore,
logs directly impact requirements like demonstrating compliance,
system recovery, and data erasure. Similarly, purposes need to
be grounded to specific actions. A purpose typically calls for a
set of authorized actions. E.g. the purpose of billing only allows
the credit card information to be read and processed with the
bank and not share it with a third party. This, in turn, directly
impacts policy-consistent data processing. Finally, each grounded
concept needs to be mapped to system-actions.

Thus, grounding all concepts which enable study interactions
between them in a given system is a complex task and is fun-
damental to defining what compliance means for that system.

4 USING DATA-CASE

We illustrate how we envision Data-CASE to be used using some
experiments. We classify the uses based on the end-user. All our
implementations were run on Oracle VM VirtualBox with a 6-
cores (12 threads) AMD Ryzen 5 5600x 3.7GHz processor, 16GB
RAM (DDR4-3200), and 50GB of disk space.

4.1 Service Providers & App. Developers

Service providers and application developers often have their
own system requirements which influence which database engine
they use. Data-CASE offers a principled approach for them to
identify desirable database properties and the corresponding data
governance principles. This helps in choosing an appropriate data
service provider which meets the desired requirements.
Case Study 1: Continuing our example, suppose MetaSpace,
a service provider, wants to offer strong semantics of erasure
to its customer to satisfy the requirements of G17. They want
to analyze which interpretations of erase can be supported by
their database, PSQL, and their associated costs. To that end,
they ground erase in Data-CASE (see Section 3) and identify
system-actions [56] offered by PSQL [55] that can implement
the groundings. We map the grounded erasure interpretations
to system-actions supported by PSQL in Table 1. To assess how
the implementation of each grounding impact system perfor-
mance, they are benchmarked using the customer workload (20%
deletes on data, rest are reads.) in GDPRbench [68]. The results
are summarized in Figure 4(a). VACUUM+DELETE surprisingly
takes less time than only DELETE for the GDPRBench workload.
VACUUM reclaims storage occupied deleted tuples that are not
physically removed when only DELETE is used. The extra time
taken by VACUUM in the deletion operations (20%) is offset by
the improved performance of the other operations (80%) in the
workload. Note that the expected performance is observed for a
workload composed only of deletions.

4.2 Database providers

Database providers like Oracle are often faced with the challenge
of how to design databases that are compliant with data regu-
lations or how to retrofit existing deployments to make them
compliant. In Data-CASE, database providers can express con-
cepts and actions supported in their existing deployments in
terms of fundamental system properties or the effects the actions
have on personal data. This fixes the interpretations of the con-
cepts defined in Data-CASE. Now, a set of invariants is obtained
that express the requirements for data governance. The system
can then be retrofitted to meet those requirements it initially
didn’t. When building new systems, Data-CASE lets the designer
consider a wide range of interpretations, analyze their possible
overheads, impacts on data- and control- paths, and expenses.
Case Study 2: Consider RelDB, which offers its services to
various service providers. System designers at RelDB want to
determine how to make their system, which runs on PSQL, GDPR
compliant efficiently — minimize costs and impact on system per-
formance and at the same time offer meaningful interpretations
useful for its clients. We show Data-CASE supports this.

Three interpretations of GDPR-compliance are implemented
using associated groundings of concepts and by extending PSQL
to support these groundings using system-actions. These are:
1) P_Base: The system implements role-based access control us-
ing roles, role attributes, and role memberships. It implements
histories using native csv logging and setting up security policy
to record query responses at row-level and the data is encrypted
using AES-256 [2]. It implements deletes (see Table 1 for ground-
ing) to erase data using DELETE + VACUUM. The first interpre-
tation of compliance is the least restrictive, and thus, is expected
to have the least impact on system performance.
2) P_GBench: The system stores policies and other metadata in a
table separate from the one containing personal data. Thus, all
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Figure 4: (a) Impact of different interpretations of data erasure on PSQL. (b) Completion time. (c) Scalability.

queries must perform joins to implement appropriate policies.
Histories are implemented by logging all queries and responses
(no csv logs). Data is encrypted using LUKS(SHA 256) [45, 67].
Erasure is implemented using DELETE in PSQL.
3) P_SYS: The system implements fine-grained access control
(FGAC) [11]. Since PSQL does not support FGAC, it is retrofit-
ted with a middleware that comprises Sieve [51] and associated
metadata which implements FGAC by exploiting a variety of its
features such as UDFs, index usage hints, etc. to scale to a large
number of policies. Data units and logs are encrypted using AES-
128 [2] and erasure is implemented using DELETE + VACUUM
FULL as well as deleting logs of the data units being deleted.

Evidently, the three systems have different interpretations
of GDPR-compliance which changes the code and design. To
validate and measure the expected varying amount of impact
of the interpretations on the performance of these three sys-
tems, they are evaluated using the GDPRBench [68] and the
industry-standard Yahoo Cloud Servicing Benchmark (YCSB)
[20] (Workload-C). GDPRBench has three workloads namely
Controller[WCon] (25% create, 25% deletes, and 50% updates to
metadata), Processor[WPro] (80% reads of data using keys, and
20% reads of data using metadata), and Customer[WCus] (20%
each of reads, updates, and deletes of data, and reads and up-
dates of metadata). We enriched the data records in GDPRBench
with the Mall dataset from [51] comprising simulated data gener-
ated from personal devices in a shopping complex. Each record
consists of a personal data-id and the recorded date and time
generated using the SmartBench simulator [35].

Metrics. We analyzed completion time, i.e., the total time taken
to complete all the queries for each workload. To evaluate the
“Metadata explosion” [69] associated with each grounding/ im-
plementation, we define space factor as the ratio of the total size
of the database to the total size of personal data in it.

Summary of experiments and evaluation. Figure 4(b) shows
the overhead of implementations P_Base, P_GBench, and P_SYS
across the four workloads (each with 100k records and 10k trans-
actions). In each case, the overhead of P_SYS is higher compared
to P_GBench which is higher than P_Base. This is expected since
the implementations use increasingly restrictive notions of com-
pliance. The overheads in P_GBench are small in comparison to
those in P_Base in WPro which consists of read queries. This
small overhead is due to a slight increase in the information being
logged. In contrast, since P_SYS requires fine-grained policies
to be checked, it incurs significant overhead. The difference be-
tween the completion times for P_Base and P_GBench inWCon is
larger compared to that in WCus and WPro due to a larger share
of create, delete, and updates WCon. Such operations require
more metadata access and logging. Likewise, the slowdown due

to policies is more profound in WPro in P_SYS since it contains
a larger number of read queries (100% compared to others that
are 50% percent). For WCon, P_SYS still has a higher completion
time compared to P_Bench and P_Base even though the workload
is comprised of create, delete, and update and no reads which
invoke expensive policy checks. However, all policies are logged
at the time of all the operations to implement demonstrable ac-
countability for logging requirements.

The YCSBWorkload-C takes the least time to complete in each
implementation since it does not require any associated metadata
operations thereby highlighting the impact of changes required
for compliance is small on non-GDPR operations.

Scalability was explored by increasing the volume of data but
keeping the number of total transactions the same. Fig. 4(c) plots
the completion time for the three systems running the WCus
workload with an increasing number of data records and 10k
transactions. As observed in earlier experiments, P_Base takes the
least time to complete the workload and P_SYS takes the longest.
As expected, P_SYS is impacted the most by the increase in the
size of data whereas the effect in P_Base is the least. Groundings
Table 2: Storage space overhead corresponding to Figure

4(b). The total size of P_GBench and P_SYS include indices.

System Personal Metadata Total DB Space

data size (MB) size (MB) size (MB) factor

P_Base 7 14 21 3×
P_GBench 7 10 26 3.7×
P_SYS 7 111 120 17.1×

and their corresponding implementations impact database size.
The size of PID remains the same (7 MB) but that of the metadata
changes across interpretations (see Table 2). P_GBench and P_SYS
use indices that occupy additional space. Recall that P_SYS uses
Sieve [51] which uses additional metadata.

In summary, for entities like RelDB, our model provides a sys-
tematic approach to fix an interpretation of a data regulation and
identify system-actions required to implement the interpretation
and make design choices such as adding components, plugins, etc.
to support chosen interpretations and study their characteristics.
This paves the way to achieving demonstrable compliance.

4.3 Multinational organizations

These often need to comply with conflicting and varying princi-
ples of data governance. GDPR itself allows EU member states to
define their own data processing principles. Moreover, countries
around the world have different data regulations. Entities are not
ready to deal with the resulting complexities [32]. Data-CASE
supports varying interpretations of data regulations and makes
the process of mapping data regulation requirements to precise
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system-actions transparent and unambiguous. Thus, it can help
make decisions such as data geo-location, processors to use, and
the consequences on services and features offered to its clients.

4.4 Other Uses

Privacy Impact Assessment (PIA): GDPR (G35) imposes the
burden of a PIA on controllers prior to starting data processing.
Such pre-deployment assessments of new, potentially high risk
to the privacy and security of personal data, are often required
by data regulations. Data-CASE supports impact assessments by
providing system designers with system-actions (to implement
specific groundings of the concepts) corresponding to each step
in the data processing pipeline and their properties and interac-
tions with each other. Once the risks have been identified and
assessed, Data-CASE supports in implementing specific system-
actions to mitigate those risks.
Regulatory Agencies: All data regulations establish regu-
latory agencies (e.g. see G 31) which certify that a data process-
ing system is, indeed, compliant with that data regulation. For
example, GDPR is enforced by Individual data protection au-
thorities (DPAs) from the 27 EU member states. These agencies
often have conflicting, non-transparent certifying processes and
have repeatedly expressed frustrations with data regulations [29].
Data-CASE provides such agencies to identify groundings of con-
cepts that are required, at minimum, to be in compliance with a
data regulation. Conversely, agencies may require entities to use
frameworks like Data-CASE to demonstrate the groundings of
data processing adopted in a system and the system-actions that
implement them.

5 RELATEDWORK

Conflicting priorities of data regulations and prevalent database
systems [70, 71], motivated preliminary studies in [68] which
showed that GDPR-compliance severely impacts the performance
of databases. Domain-specific work like [39, 77] explores the
consequence of GDPR in named data networking and Healthcare
Systems, respectively. The consequences on policy and privacy
management have been investigated in [9, 34, 79].

Retrofitting databases to make them compliant has been ex-
plored in [3, 23, 44, 68] and new, compliant-by-construction,
systems have been proposed in [41, 46, 64]. Frameworks to im-
plement GDPR compliance have been explored in several prior
works, especially in the context of data retention/erasure [60–
62, 66] and policies. The work in [47] explores privacy policies
in large-scale cloud systems, [27] explores policy compliance in
web frameworks, [73] explores compliance in operating systems,
[44] builds a visual tool for managing data flow in systems, while
[43] explores auditing and retention policies in databases. A mid-
dleware layer to implement consent management [22] and access
control [51, 52] in databases have also been explored.

Unlike such frameworks, our goal in this paper is to develop a
simple model for data and data processing that can be used to
define GDPR/data regulation requirements formally such that
designers of systems such as the above can precisely define their
interpretation of regulations and establish compliance by illustrat-
ing that their software techniques indeedmeet the formal require-
ments. In this sense, our vision is more related to prior approaches
such as [40, 57, 58] that have explored formal logic-based GDPR
specifications that support verification of compliance through
model checking, such as in [7, 17]. But these logic-based speci-
fications at the level of broad data processing concepts remain

vague from a system-compliance perspective. Unlike Data-CASE,
these frameworks do not support the specification of how the con-
cepts are interpreted or implemented in the system being verified.
Such work complements Data-CASE with formal specifications
potentially serving as invariants in Data-CASE.

A rich line of work exists on modeling, specifying, implement-
ing policies, and auditing [4–6, 17, 26, 36, 65]. These can be a part
of Data-CASE and the middlewares to audit such policies can
support system-actions to maintain related invariants in Data-
CASE. Privacy frameworks such as contextual integrity [8, 72]
and origin privacy are related but orthogonal to our contributions.
Our goal is not to create a new way of specifying what privacy
should mean. Instead, given what privacy should mean, and data
processing concepts grounded based on it, our framework’s goal
is to provide ways to reason about whether a given system is
compliant. Some compliance guidelines, specific to data regu-
lations, are available from Governmental organizations, white
papers, and blog posts [31, 33, 37, 74, 80] and offer some insights.

6 CHALLENGES AHEAD

GDPR violations (tracked by [30]) related to non-compliant sys-
tems continue to rise exponentially [18, 30, 38]; the latest being
that by Meta in May 2023 [63] which incurred the largest fine
till date. Our paper makes a case that designing, deploying, and
reasoning about the compliance of systems to data regulations
like GDPR and others requires a formal framework to express
data processing concepts. The paper proposes such a formal
framework entitled Data CASE and shows how data governing
principles of data regulations can be formalized in the form of
grounding concepts defined into concrete system-actions and by
defining invariants using these concepts. A full realization of our
vision of a formal framework to support the development and
deployment of compliant systems opens up several challenges:
• Completeness and correctness: Demonstrating the correct-
ness of a formal framework like Data-CASE and to what degree it
can capture the system requirements of a data regulation remain
unexplored. This is an important step towards compliance.
• Grounding concepts: We focused on erasure and its possi-
ble interpretations in systems. Other concepts which capture
the requirements of data regulations need to be defined. Once
defined, special attention needs to be given to the interactions
between and compatibility of different possible interpretations
of the concepts.
• From a formal framework of compliance to a system to

support compliance: Data-CASE supports compliance-related
decision-making. Automating this process will enable us to build
a comprehensive tool that can be retrofitted on any non-compliant
system to make it compliant with a given data regulation. Tradi-
tionally, retrofitting for compliance requires multiple tools and
often complicates data flow [23].

In summary, we believe Data-CASE opens up a new direction
of exciting research possibilities.
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