Exploration

Steffen Klabe
Actian
IImenau, Germany
steffen.klaebe@actian.com

ABSTRACT

Database systems are no longer used only for the storage of plain
structured data and basic analyses. An increasing role is also
played by the integration of ML models, e.g., neural networks
with specialized frameworks, and their use for classification or
prediction. However, using such models on data stored in a data-
base system might require downloading the data and performing
the computations outside. In this paper, we evaluate approaches
for integrating the ML inference step as a special query operator
- the ModelJoin. We explore several options for this integration
on different abstraction levels: relational representation of the
models as well as SQL queries for inference, the use of UDFs, the
use of APIs to existing ML runtimes and a native implementation
of the ModelJoin as a query operator supporting both CPU and
GPU execution. Our evaluation results show that integrating ML
runtimes over APIs perform similarly to a native operator while
being generic to support arbitrary model types. The solution of
relational representation and SQL queries is most portable and
works well for smaller inputs without any changes needed in the
database engine.

1 INTRODUCTION

Machine Learning (ML) models play a crucial role in modern
data analyses. Besides tasks like model training and model man-
agement, supporting model inference is an important vision for
database systems to handle modern workloads [2, 41]. Typically,
data science tasks are performed using Python. However, com-
pared to pulling data out of the database and executing the model
in the Python environment, pushing the model inference step
into the database system has several advantages:

e Reduced data transfer: Instead of transferring large a-
mounts of data to a client, data remains in the database
system and only query results need to be transferred.

¢ Exploiting server hardware: Client hardware is typi-
cally weaker than server hardware. Hence, pushing query
execution to the database server avoids expensive compu-
tations on a potentially weak client machine.

o Scalability: Database systems are designed to cope with
large volumes of data and are optimized to handle larger-
than-RAM data sets. Therefore, complex computations are
placed best in this environment instead of handcrafting,
e.g., buffering approaches in the Python environment.

¢ Query integration: Once data is materialized to the client
machine’s Python environment for model inference, sub-
sequent operations must also be performed in Python
wasting efficient query processing capabilities of database
systems.

e Accessing sensitive data: In some use cases data is not
allowed to be moved out of the database system and can

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-093-6 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

Stefan Hagedorn
TU Ilmenau
IImenau, Germany
stefan. hagedorn@tu-ilmenau.de

311

O

proceedings

of Approaches for In-Database ML

Kai-Uwe Sattler
TU Ilmenau
Ilmenau, Germany
kus@tu-ilmenau.de

only be accessed under access control. Running model
inference in Python might not even be possible in these
cases. Pushing model inference into the DBMS enables
subsequent operations, e.g., aggregations to only return
aggregated and therefore non-critical inference results.

In this paper, we investigate the topic of in-DBMS batch in-
ference from a performance perspective and evaluate several
approaches to integrate model inference deeper into database
systems by using different levels of abstraction. We envision a
high-level concept like

SELECT * from table MODEL JOIN m

which offers opportunities for representing the model m as a table,
a tuple or a runtime object. We focus on neural networks as a
subclass of ML models that can be useful for relational workloads.
In general, we identify four classes of approaches for in-DBMS
ML inference:

(1) Python UDFs: A naive approach of pushing model in-
ference into the database system is to exploit the recent
upcome of Python user-defined functions (UDFs) in mod-
ern database systems. However, this approach still moves
data outside of the DBMS and performs expensive compu-
tations in the Python interpreter and therefore misses to
make use of the powerful database engine.

Native APIs of ML runtimes: A basic approach of inte-
grating ML runtimes over native APIs is given by Raven[20,
30], which requires the integration of external dependen-
cies and conversions between the columnar data layout of
an analytical database engine and the data layout of the
runtime.

SQL: Model inference can be translated to SQL leading to
a highly portable solution to any SQL compliant database.
This also requires a relational model representation.
Native Operator: Model inference can be implemented
directly as an operator inside the database engine without
the need for external dependencies. The solution can be
taylored to the engine’s data layout.

@

~

3

=

(4

=

The authors of [41] claim that “It is far too tedious for DBMS de-
velopers to reimplement DL algorithms. So, one must preserve the
usability of DL tools such as TensorFlow for specifying complex
DL workloads.” While this might be true from a generalizability
perspective, we scrutinize this claim from a performance per-
spective. Besides the existing approaches (1) and (2), we present
additional approaches for classes (3) and (4) that either reuse
existing database capabilities or integrate ML inference natively
into the engine. Our first approach translates trained models into
a SQL representation using standard relational concepts. On a
different abstraction level, we design a native ModelJoin operator,
which relies on the relational model representation and performs
the inference of neural networks directly on the data. For this
paper we chose the Actian Vector engine as a target DBMS, but
would like to emphasize that the options discussed throughout
this paper can be easily adapted to other systems as we do not

10.48786/edbt.2023.25

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.25

Q/’ Q\

Q\Q/

Figure 1: An example of a multi-layer perceptron showing
the internal building blocks of an artificial neuron.

use any system specific properties besides generally available
concepts. Overall, we propose the following core contributions:

o We classify existing neural network layer types and dis-
cuss their applicability to typical database workloads. (Sec. 2)

e We propose a generic relational representation of neural
networks that is able to handle dense layers as well as
recurrent layers. (Sec. 4)

e Based on the relational representation, we propose the
ML-To-SQL Python framework, which generates standard
SQL code for ML models. ML-To-SQL is a highly portable,
extensible and easy-to-use way to perform model infer-
ence without any database engine changes, but still lever-
ages the DBMS’s capabilities for efficient query processing.
(Sec. 4)

e As an alternative, we propose a native ModelJoin database
operator, which is also based on the relational model rep-
resentation and therefore performs the model inference
independently from any ML runtime environment. The
Modeljoin is implemented as a CPU and a GPU variant.
(Sec. 5)

e We compare candidates for the presented classes of ap-
proaches, including the ML-To-SQL framework and the
ModelJoin operator, against the baseline of moving data
out of the database and using Python for inference in
terms of performance, memory footprint, portability and
generalizability. (Sec. 6)

2 ML LAYER CLASSIFICATION

There are various architectures for artificial neural networks
(ANNS5) that can be used to solve different tasks. In this section, we
discuss the most common architectures currently used and their
typical application scenarios within database system. We thereby
focus on relational data, as non-relational data is typically not
stored directly in a database. Consequently, we only discuss the
applicability of the model architectures for this kind of structured
data, leaving out use cases of the models on unstructured or semi-
structured data.

Perceptron and Feed Forward Networks. The most basic form
of an artificial neuron is the perceptron. It consists of a single
activation function which is applied on the sum of the inputs.
Single perceptrons are used to solve classification problems with
two classes. To solve the limitations of the single perception (e.g.,
the XOR problem), the multi-layer perceptron (MLP) [32] addi-
tionally uses a hidden layer of neurons. The output of a neuron
in the input layer are used as input for the neurons in the hidden

312

Ct-1 X i @ kCt
t-1 t+1
ft i t Otr’
o a tanh a
ht-1 J J | ht
t

Figure 2: The internal gates of an LSTM module.

layer and the outputs of the neurons in the hidden layer are used
as inputs for the neurons in the output layer. Since neurons in
one layer are connected only to neurons in the next layer and
information is passed through the network only in one direction,
this network architecture is called feed forward networks. As each
neuron in one layer is connected to all neurons in the next layer,
such layers are called dense layers. Artificial neurons use acti-
vation functions to filter irrelevant information. The activation
function f takes the sum of the weighted inputs as an argument
and produce an output. State of the art activation functions are,
for example, ReLU, sigmoid, or tanh. Their characteristics and
choice in application scenarios, however, is beyond the scope of
this paper.

Figure 1 shows an example MLP with the internal building
blocks for one of the hidden neurons. Within a layer, all neurons
use the same activation function, but different layers typically
use different functions. Since single perceptrons and MLPs are
mainly used for classification tasks, they mark an important
candidate for pushing the inference step into the DBMS. Most
recent success in machine learning comes from new advances in
Deep Learning technologies, i.e., network architectures that use
more than one hidden layer.

Recurrent Networks. While in classic feed forward networks a
neuron gets its input only from the previous layer, in recurrent
neural networks (RNNs) [39] the output of a neuron is also used
as input in the next or any later iteration. This delay allows to
include, e.g., in text processing, the context of a word by “re-
membering” previously encountered words, or “remembering”
previous time steps in time series processing and forecasting.
While neurons in classic RNNs are composed of a single activa-
tion function, advanced versions such as Gated Recurrent Units
(GRUs) [9] and Long/Short Term Memory (LSTM) [19] networks
make use of a more sophisticated structure to better include his-
torical information in the learning process. The recurrence in
RNNSs, GRUs, and LSTMs can be depicted by a chain of the LSTM
module, as shown in fig. 2. How often the module appears in the
chain is determined by the number of time steps a network is
supposed to look into the past. Besides transformer models [38],
such recurrent networks and especially the LSTMs are used for
time series analysis or various speech and text processing tasks,
e.g., translation programs or text prediction algorithms. Since
databases often store textual information, e.g., product reviews or
user comments and gather time series data, e.g., from IoT applica-
tions, many use case scenarios would benefit from an in-DBMS
execution of RNNs and LSTMs.

Convolutional Networks. The classes of Convolutional Neural
Networks (CNNs) [24] or Deep Convolutional Networks (DCNs)
consist of another type of layers: kernels and pooling layers.

The convolution kernels process the input data whereas in the
pooling layers the output of the kernels is simplified. In contrast
to the dense layers of MLPs, where output from one neuron is
propagated to all neurons in the next layer, in CNNs a neuron
only considers information within its receptive field. The recep-
tive fields of all neurons finally cover the complete input space.
Convolutional networks resemble the work of the visual cortex
in our brain and are therefore also mainly used for image and au-
dio processing. In databases, images and audio data are typically
stored in BLOB fields. While we believe it would be possible to
also represent CNNs in a relational DBMS, we argue that in most
cases users do not store the actual image/audio files inside their
database, but rather only the paths to the files. Consequently, we
do not consider CNNs any further in the context of this paper
and leave it for future work.

From the above discussion we conclude that RNNs and espe-
cially the more modern LSTMs as well as classical feed forward
networks with dense layers are used to solve problems based
on data stored in databases. Therefore, in the following discus-
sion of integrating model inference, we focus on these two ANN
architectures.

3 RELATED WORK

AI4DB vs. DB4ALI Data Science and Machine Learning have al-
ways been of interest in database research and different solutions
have been proposed to support the required operations inside
DBMSs. Especially technologies that are generally referred to
as Al are more and more used in the database context, leading
to two different fields: AI4DB and DB4AI. AI4DB understands
projects and approaches that leverage Al technologies to improve
database components like cardinality estimators [40], learned in-
dexes [23] or natural language support [37]. Contrary to AI4DB,
DB4AI comprises projects that use database systems to improve
the application of Al technologies on existing data sets. Hence,
this paper falls into the DB4AI category, although we only con-
sider one class of Al: machine learning with neural networks.
DB4AI and AI4DB approaches have been surveyed in [25, 42].
ML on SQL: The MADIib [18] library implements different analyt-
ical operations in SQL, including data mining, machine learning,
and deep learning algorithms. The library is limited to PostgreSQL-
based systems only, heavily using PostgreSQL syntax. Besides
being not portable, MADIib also does not support recurrent mod-
els that we identified as useful in the database context in Section 2.
The PMML standard [17] defines an XML schema that defines
model pipelines to be exchanged between applications and sys-
tems. With Bismarck [12], a unified architecture for analysis
operators (e.g., Linear Regression and Support Vector Machines)
in DBMSs was proposed with the goal to simplify the integration
of new operators and to study performance optimization possibil-
ities. While MASQ [8] translates selected scikit_learn classifiers
and regressors to plain SQL, [33] shows how to build SQL state-
ments for decision trees. In [29] Olteanu shows how to map the
ML training problem to a relational database problem and in [34],
Schiile et al. describe how ML training pipelines can be expressed
over SQL and how in-DBMS training can be accelerated using
GPU implementations.

ML on UDFs or external engines: Many database vendors released
support for model inference like BigQuery ML [14], Redshift
ML [3], Vertica-ML [11] or SQLServer Machine Learning Ser-
vices [27]. They mainly focus on providing an SQL frontend and
performing computations either using UDFs or integrated ML

313

frameworks like Tensorflow [15]. Raven [20, 30] follows this idea
by integrating the ONNX runtime into SQLServer. Inference tasks
consist of a SQL query and a Python program (the model pipeline).
The optimizer shares information, like used attributes and result
sizes, between the SQL operators and the Python code for cross
optimizations like early pruning. Raven also automatically trans-
lates simple models like decision trees into SQL. Another example
for integrating ML models into database systems by using Python
UDFs is presented in [31]. Additionally, [41] presents different
approaches to integrate ML inference with a DBMS using UDFs,
direct file access or Spark, which differs from our approach of
integrating it directly into the database engine. In our work, we
compare both ML on SQL approaches as well as native integra-
tions. We provide the ML-To-SQL framework that generates SQL
statements for neural network inference and a native ModelJoin
operator that is not based on any external runtime, and compare
them against existing approaches.

Language support for ML: With MLearn [35] another declarative
language to define machine learning pipelines was proposed that
can be transpiled to Python or SQL (over UDFs). However, only
HyPer and PostgreSQL are supported. When dealing with large
data sets, an alternative to centralized solutions is Apache Spark.
The Spark MLIib[36] includes numerous machine learning algo-
rithms that are implemented using Spark’s operations. Similarly,
Apache Mahout[4] provides a list of machine learning operations,
but also a Scala-based DSL to express new operations. On the
other hand, SystemML [6] (later renamed to SystemDS[5]) pro-
vides a declarative language to express the ML pipeline which is
then optimized and compiled for platforms like Spark or Hadoop
MapReduce.

Linear algebra extensions: Especially for ANNs implementations
make heavy use of linear algebra operations. MLog [26] or Lev-
elHeaded [1] extends the relational algebra with linear algebra
to support machine learning algorithms.

Conclusion: The above approaches present either languages to ex-
press ML tasks or integrate these tasks into DBMSs using (Python)
UDFs, SQL translations for simple classifiers or decision trees,
or using ML runtime C-APIs. We extend this list of approaches
with our approaches in which we express ANNs and the model
inference step with basic relational primitives only (relations and
plain SQL queries) and a native operator without the usage of
any external runtime. In [10] Du showed the applicability of this
idea for Graph Convolutional Networks with each layer of an
ANN expressed as its own table. During inference many tables
that only store intermediate results are created, leading to many
expensive update operations. While this paper shows that lay-
ers and activation functions can be expressed using relational
features, our approaches follow a generic approach to import ex-
isting models into a single pre-defined relation and to execute the
inference step using (nested) SQL queries that can be optimized
by a database system’s query optimizer. We thereby follow the
goals of not including external runtime engines into the database
engine and avoiding UDFs for performance reasons and compare
our approaches against the baselines of using an external ML
environment or integrating an ML runtime using UDFs or the
respective C-APL

4 ML-TO-SQL DESIGN

As the first approach to achieve our goal of pushing model in-
ference into the database system we use SQL as the standard

interface of a database system. We thereby achieve a highly-
portable approach which might show non-optimal performance
due to using generic query operators instead of a specialized ML
environment. In this section we describe the design of the ML-
To-SQL Python framework!. Using a pre-trained neural network
model and a database connection, our ML-To-SQL framework
offers a simple API to automatically generate model tables and
SQL queries to perform model inference. We first present the
generic relational model representation that handles dense layers
as well as LSTM layers, which were shown in Section 2 to be
the most important layer types for database workloads. Based
on definitions for different function types, we then present the
layer-specific implementations, which can be used as building
blocks to construct SQL code for ML models. Note that based on
stored parameters in the relational table representation and the
approach of having extensible building blocks for SQL code gen-
eration, ML-To-SQL is also applicable for the existing approaches
for decision trees or classifiers presented in Section 3. However,
we focus on neural networks in this section.

We waive the topic of data encoding, as basic approaches like
Min-Max-Encoding or One-Hot-Encoding can be implemented in
SQL in an straight-forward way and are already covered by, e.g.,
MADIib [18]. Similarly, we assume that when having an LSTM
model, the number of input columns is equal to the number of
time steps the LSTM layer considers. Starting from a simple time
series, this can be achieved by self-joining the table n — 1 times
for an LSTM layer considering n time steps, with a join predicate
that lets tuples match with their predecessor in the series (e.g.,
by using a unique identifier or a timestamp).

4.1 Relational Model Representation

Conceptually, neural networks can be seen as directed graphs, as
shown in the example model in Figure 3. Nodes perform a layer
type specific computation that aggregate the weighted sum of
its inputs as well as an activation function to produce the output.
For two nodes i and j, an edge (i, j) is annotated with weight
wij and all weights of a layer are collected in the kernel matrix.
Additionally, a constant bias is connected to each node, with the
weights forming a bias vector. Inputs are connected to the first
layer and the output of the last layer is the model output. The
example model would get two inputs and produce a single output.
Recurrent layers have a kernel as well as a recurrent kernel for
each of the blocks in the block diagram. Recurrent kernels are
used to combine the output of the last time step with the current
output.

Based on this, we define a relational representation of a model
by holding information about edges as well as its weights. A node
in the graph is identified by the unique pair (Layer, Node) and
an edge by the tuple (Layer_in, Node_in, Layer, Node), all being
integer values. For each edge we hold kernel weights W;, Wp,
W and W, recurrent kernel weights Uj, Ur, Ue and U, as well
as bias weights b;, br, b and bo, all being 4-Byte floating point
values and representing the computation in the LSTM cell gates
in Figure 2. Hence, the model table is defined to have 16 columns.
Depending on the layer type, weights might be empty which is
efficiently handled by Actian Vector’s columnar storage layout,
offering effective compression and the possibility to scan only
necessary columns.

! Available as open source under https://github.com/dbis-ilm/ML-To-SQL.git

314

LSTM

Dense

o>

Linear

Sigmoid Relu

Figure 3: Example model graph

Our ML-To-SQL framework generates SQL code to automat-
ically load a Python model object into the relational table rep-
resentation by iterating over the model graph and producing
layer type specific insert statements. The layer specific details
are described in Section 4.3. The framework currently supports
Keras models, but can be similarly extended to other ML frame-
works in the future. As we represent models as tables holding a
single tuple per edge in the neural network and not a single tuple
per model, we denote the model inference as a specialized join
operator in further discussions, combining a model table and a
fact table.

4.2 Definitions

We denote a relation as R(ID, Ay, - - - , A;), where R is the rela-
tion identifier and Ay, - - - , A; is a list of attributes. We specify a
column ID as a unique row identifier and assume its existence,
may it be a primary key or a builtin row identifier column. We
use the term Relation in the following to describe either tables
or intermediate results, with the latter residing in memory and
potentially not being materialized. A model is a special relation
with the column definitions described in Section 4.1.

Additionally, we define a set of function types as shown in
Table 1. Intuitively, we aim at keeping track of the model state for
each tuple of a fact table on its way through the neural network
graph in parallel. This is realized by combining the ID with the
(Layer, Node) identifier for each node in the graph. An input
function takes a fact table and a model table and performs the
initial join. For simplicity we assume that all columns Ay, -+, Ap
are input columns for the model, which means that the model
input layer is of size n. With the input layer being a special
model layer, each node i gets a single input value A; and linearly
propagates it to the output. On the contrary, an output function
takes an intermediate model state (which is the result of the last
model layer in most cases) and the fact table and joins the model
inference result with the respective input tuple based on the
unique tuple ID.

The initial assumption that all columns Ay, ---, A, are in-
put columns for the model is not a restriction, as all “payload”
columns are joined to the model result after the inference. In
relational query execution this is similar to the commonly used
optimization rule of “late projection”, which avoids pulling a
potentially large payload that is not used by query operators
through a query tree, but joins it with the result just before re-
turning it to the user.

The layer forward function is the main building block to tra-
verse the model graph. It joins the current intermediate result
with the model by joining the intermediate result’s (Layer, Node)

Table 1: ML-To-SQL function type definitions

Function type Function signature

Input function

Layer forward function
Activation function
Output function

R(ID, A1, -+ ,Ap) X Model — R’(ID, Layer, Node, Output_activated)
R(ID, Layer, Node, Output_activated) x Model — R’(ID, Layer, Node, Output)
R(ID, Layer, Node, Output) — R’(ID, Layer, Node, Output_activated)
R(ID, Layer, Node, Output_activated) x S(ID,Cy,- -

-,C;j) — S’(ID,Cy,- - ,Cm, Prediction)

ModelJoin
2 OQutput (
Activate(Layer_forward(

5 Activate(Layer_forward(

6 Input(R(ID,A_1,...,A_n), model),
model)),

8 P

9 model)),

10 R(ID,C_1,...,C_m))

Listing 1: ModelJoin as nested ML-To-SQL function types

pair with the models (Layer_in, Node_in) pair and this way mov-
ing forward to the next layer in the graph. Afterwards it performs
the layer type specific calculation and aggregates the results to
produce the node output. Again, this is done per node and per
tuple, keeping track of the model state for every tuple in parallel.
An activation function takes the intermediate result of each node
state per tuple and computes the activated output.

Finally, we can now define the ModelJoin as a nested construct
of the above described function types. As shown in Listing 1 the
ModelJoin between a relation R and a model can be described as
a nesting of an input function into a series of layer and activate
functions and a final output function. With these four basic build-
ing blocks defined in a generic way, ML-To-SQL can be easily
extended with different functions for, e.g., different layer types
or different activation functions. Basic approaches for realizing
this building blocks are recursive queries or nested queries. We
decided for the latter as we expect similar performance but better
debugability and observability of the generated query.

4.3 Implementations

Internally, the ML-To-SQL framework transforms the model
graph into a different representation, shown in Figure 4. Similar
to the relational model representation described in Section 4.1,
a vector of weights is attached to each edge instead of a single
weight. This vector holds 12 elements, being the concatenation
of 3 parts: the kernel weights W= (W;, W, W, W,), the recur-
rent kernel weights U = (U;, Uf, U, Up) and the bias weights
b= (bi, bf, be, bo). In Figure 4 we use a variable sized vector of
zeros 0 when its length is clear from the context. The bias nodes
are dropped from the model graph and bias weights are placed
into the weight vector. Although this replicates the same bias
weight to every incoming edge of a node, it later avoids the need
for an additional join. Furthermore, we introduce an artificial
input layer consisting of a single node. In the following, we de-
scribe the layer-specific implementations of representing a layer
in the relational model table and performing the layer-forward-
function.

4.3.1 Input Layer. The input layer is responsible for joining
the fact table with the model table, realizing the input function

315

9

LST™M
(kernel)

LSTM
(reccurent kernel)

O Input A .Dense

(W,

b)

Linear Linear Sigmoid Relu Linear

Figure 4: Internal representation of the example model
graph

SELECT id, layer, node,
value_1 as C1,

FROM INPUT_TABLE as data,

WHERE model.layer_in -1

value_n as CN
MODEL_TABLE as model

Listing 2: LSTM input function template

SELECT
WHEN

id, layer, node, CASE

node=0 then CO

WHEN node=N then CN
END as output_activated FROM
(SELECT data.id as id, COL@ as CoO, ...,
layer, node
FROM INPUT_TABLE as data,
WHERE model.node_in

COLN as CN,

MODEL_TABLE as model
-1) as t

Listing 3: Dense input function template

from Table 1. The layer consists of a single node which is con-
nected to each node of the first layer. Each of these edges has a
weight W; = 1 and subsequent zeros in the weight vector. The
way the input join is performed depends on the type of the first
layer. For LSTM layers, we assume that a tuple consists of n
columns for n timesteps in the time series. All input columns
are passed to the LSTM layer, leading to a simple SQL template
cross-joining the inputs and generically renaming columns like
shown in Listing 2. The activated output is here a list of columns
instead of a single column.

For dense layers, performing the inference for an input tuple
conceptually requires transposing the tuple and attaching the
i-th input column to node i of the first layer. As transposition
is difficult in SQL, the fact table is cross-joined with the input
layer instead and input columns are generically renamed. As now
all input columns are attached to each node of the first layer, a
switch statement selects the i-th column as an input for the i-th
node, shown in Listing 3. Due to the weight W; = 1, the input is
equal to the output of the artificial input layer.

4.3.2 Dense Layer. Transforming a dense layer into the re-
lational representation inserts a tuple for each incoming edge
into the model table. Dense layers only have a single weight and

SELECT id, node, layer, s + bias as output FROM

(SELECT id, model.node as node,
model.layer as layer,
SUM(input.output_activated * model.W_i) as s,
model.b_i as bias

FROM (QUERY) as input, MODEL_TABLE as model

WHERE input.node = model.node_in

and input.layer = model.layer_in

GROUP BY id, model.node, model.layer, model.b_i) t

Listing 4: Dense layer forward template

bias for their layer forward calculation, so we set the weight at
the position of W; and the bias at the position of b; in the weight
vector, with the remaining positions being zeros. Thus, for the
last layer of the example model in Figure 4, we insert two tuples
into the model table, and each weight vector only contains two
non-zero values.

In order to realize the layer forward function from Table 1 for
dense layers, we need to join the intermediate result with the
model, multiply the inputs with their weights, add their biases
and aggregate the results for each node and each tuple, as we
keep track of the model state for each input tuple. This can be per-
formed by the SQL template shown in Listing 4. We traverse the

the layer forward function by joining the (Layer — 2, Node) key
with (Layer_in, Node_in) and this way stepping two layers back.

4.3.4 Output layer. In the relational model representation
we do not hold an explicit output layer. When the last layer is
reached during query generation, we apply the output function as
described in Table 1. For each ouput layer node, the original fact
table is joined with the inference result on the unique identifier
column in order to add the prediction result to the respective
tuples. This way we perform the “late projection” as described
in Section 4.2. If there is a single output node, meaning that we
have only one result per ID value ((Layer, Node) pairs are equal
for all results), a single join and column renaming is sufficient.
Otherwise we perform multiple joins, each with a filter on the
Node column of the inference result.

4.3.5 Activation Functions. As implied by the function sig-
natures in Table 1, an activation function can be applied after
every layer forward function. The activation function thereby
only consists of a projection on the ID, Layer and Node column
and a function call applied on the output column, with the re-
sult being renamed to output_activated. ML-To-SQL currently
supports the basic activation functions linear, ReLU, sigmoid and

model and follow the edges by joining on (Layer, Node)/(Layer_in, Nodtaiih)

pairs and nest the query for layer i into the generated query for
layer i + 1.

4.3.3 LSTM Layer. In order to transform an LSTM layer to
the relational model representation, we need to consider the
different shapes of the kernel matrix and the recurrent kernel
matrix. With n being the dimension of the LSTM layer and m
being the dimension of the preceding layer, the kernel matrix is of
size m X n, while the recurrent kernel is of size n X n. To represent
this behaviour in the relational representation, we split the LSTM
layer into two separate types of sublayers. The computation of
the layer forward function is also separated into two building
blocks and based on the Keras implementation?. The “kernel”
sublayers take the (initial empty) inner cell state and the series
of inputs. If there is an input in the series left, it performs the
kernel multiplication and bias addition on the first input value
and drops it from the series. Then, it passes the result back to the
previous “recurrent kernel” sublayer, which is the equivalent of
the recurrence in the LSTM computation. If no input is left, the
output is passed to the next layer. The “recurrent kernel” sublayer
takes the the output from the “kernel” sublayer and performs the
recurrent kernel multiplication. In the example in Figure 4, the
backward edge would not exist if the LSTM layer only considered
two timesteps, as each element of the input series is consumed by
a “kernel” sublayer. Additionally, only the last “kernel” sublayer
has an activation function. Each “kernel” sublayer produces the
output type of the layer forward function in Table 1, potentially
with an additional cell state that does not exist in the result of
the last sublayer.

In the relational model representation, we also consider both,
kernel and recurrent kernel sublayers with their respective edges.
However, we store each of them only once, because weight matri-
ces are equal for every time step. In the example in Figure 4, we
would drop the second “kernel” sublayer with its outgoing (back-
ward) edges. When initially passing a model object to ML-To-SQL,
the number of time steps the LSTM layer considers is determined.
This allows us to automatically generate the backward edges in

Zhttps://github.com/keras-team/keras/blob/master/keras/layers/recurrent.py

316

4.4 Optimizations

Advancing from the basic ML-To-SQL workflow described so far,
we made a set of optimizations in order to improve performance
of the generated ModelJoin queries.

First, we replace the (Layer, Node) pair that uniquely iden-
tifies a node in the model graph with a unique node identifier.
This node ID is an incrementing integer value that is assigned by
traversing the model graph, i.e., first layer of dimension n; has
IDs 0 to n; — 1, second layer of dimension nj gets IDs from n; to
ni1 + nz — 1, and so on. The artificial input node gets a node ID
of -1. As a result, the storage size of the model table decreases
and the join predicate in the layer forward functions reduce from
two columns to one column and a offset calculation, i.e.:

WHERE intermediate.node = model.node - offset

and the offset being a running sum over the layer dimensions.
As layer dimensions are maintained by ML-To-SQL, the offset
can be determined during query generation.

Second, we introduce filter predicates on the Layer column of
the model table for each join in the layer forward function. Here,
we want to traverse the model graph from the current layer to
the next layer. Thus, we only need to join with tuples of that
subsequent layer. Applying the filter before joining reduces the
hash table size of the hash join while also enabling block pruning
of the model table and therefore reducing I/O effort. The latter
is achieved in Actian Vector by the use of Small Materialized
Aggregates [28] (also known as MinMax indexes or Zone Maps),
but can also be realized by the use of any index structure in other
database systems. With the optimization of a unique node ID,
the filter predicate on the Layer column is replaced by a range
predicate on the Node column.

Actian Vector is a parallel database system that exploits parti-
tioning for parallelism. Model inference is a task that is indepen-
dent between tuples, as it results in a prediction for each tuple.
To achieve parallelism for inference, we can partition the fact
table on the unique identifier, resulting the parallel execution
of the ModelJoin. The model table is shared between the execu-
tion threads. Similarly, in a distributed environment this could

be achieved by replicating the model table between nodes. A
unique partition key will lead to a balanced partitioning, and as
the grouping key (ID, Node) for summing up inputs of a node
per tuple can be derived from a partitioning based on ID, no
repartitioning is necessary.

Besides partitioning and parallelism, another key to achieve
scalability is exploiting vectorized execution and pipelining, mean-
ing that it is not necessary to collect a whole intermediate result
at some point during query execution. The main problem with
pipelining are the aggregations. However, defining a sort order
on both the model table and the fact table will lead to a fully
pipelined execution. The cross join as well as the join with a
sorted model table is order-preserving, leading to an aggregation
input flow that is sorted on the grouping keys. Thus, a hash-based
aggregation can be replaced by an order-based aggregation, gen-
erating an output tuple whenever a value in the grouping key
changes since it is ensured by the order that no additional tuples
will occur for the group. Consequently, the aggregation does
not need the full dataset, leading to a low memory footprint
and pipelined execution. Additionally, the output of an order-
based aggregation is still ordered, so the criterion remains valid
for subsequent operations. This also holds when having a parti-
tioned fact table, as we stated above that no sort order destroying
repartitioning is necessary.

5 NATIVE MODELJOIN OPERATOR

The ML-To-SQL framework presented in Section 4 offers porta-
bility by generating plain SQL queries to realize the ModelJoin.
However, mapping calculations to generic relational operations
leads to runtime overhead, e.g., by the need to realize a sum by
a hash aggregation. In this section we describe the design of a
native ModelJoin database engine operator®. Compared to ML-To-
SQL, this requires changes in the database engine, offering better
performance due to the direct execution of operations needed for
model inference. The operator is independent from framework-
specific libraries like Tensorflow and the need for a respective
C-API but rather works on the generic model representation.
Similar to ML-To-SQL this decision limits generizability to only
the implemented functionalities. However, we assume to achieve
better performance by keeping data in their columnar layout in
CPU caches instead of converting them to the input format of an
ML runtime integrated over its C-APL

The ModelJoin operator is integrated into Actian Vector’s x100
analytical query engine [7]. X100 is a parallel query engine that
relies on a columnar storage layout and vectorized query execu-
tion. Being based on relational algebra, it does not offer support
for linear algebra operations and consequently the ModelJoin
can not be composed of these. The major challenge to consider
in the operator design is the fact that model inference follows
a row-wise access pattern. For a column store this means that
conceptually each column needs to be touched once for every tu-
ple inference, which contradicts to the cache-friendly vectorized
execution model. In our operator design we carefully consider
this fact by providing a vectorized model inference that works
on vector of column values and performs the inference once for
a set of column vectors.

5.1 Operator Design

The ModelJoin operator is based on the relational model rep-
resentation described in Section 4.1. Conceptually, it follows a

3 Available standalone under https://github.com/dbis-ilm/ModelJoin_Operator.git

317

Modelloin

Scan(Model)

Figure 5: Conceptual view of the ModelJoin operator

typical two-phase-join pattern shown in Figure 5, which is simi-
lar to, e.g., a hash join. The build phase is necessary here as we
do not want to hold each model in memory but rather read it
from storage (if not cached). Additionally, it is based on the Vol-
cano iterator model [16], providing an open(), next() and close()
API. While open() and close() are responsible for allocating and
freeing memory, especially for weight and bias matrices of the
model, next() triggers the execution and returns a set of vectors
of input columns and additional vectors for the inference results.
On the first next() call, the ModelJoin starts the build phase by
repeatedly calling next on the model side until it is exhausted
and performing the parallel model build (see Section 5.2). After
finishing the build phase, we call next() on the input flow side
and perform the model inference (Section 5.4) for every next()
call on the ModelJoin operator. As the ModelJoin is designed as a
regular operator, it can be used in arbitrary queries also further
processing the inference result.

The operations required in the inference phase are based on
the Basic Linear Algebra Subprograms (BLAS) library*, offering
the necessary matrix representations and operations. We uti-
lize the Intel Math Kernel Library (MKL) to realize the BLAS
interface. Naturally database operators are executed on the CPU.
Some modern (server-) CPUs comprise more than 100 logical
threads allowing massive intra- and inter-operator execution. As
especially the linear algebra operations for the inference can be
parallelized, the ModelJoin operator will benefit from the many
cores and threads.

Although the degree of parallelization achievable with these
modern CPUs is enormous, GPUs provide even more parallel
units. Thus, besides the CPU variant of the ModelJoin operator,
the operator can also be implemented for GPUs. In order to
perform the linear algebra operations on the GPU, the cuBLAS?
library can be used. Although a GPU implementation requires
to move data from the host RAM to the GPU’s device memory,
we expect the GPU variant to be superior to the CPU variant for
large models where many matrix multiplications are required.

5.2 Parallel Model Building

Achieving parallelism in x100 is based on data partitioning, which
can be done explicitly during table creation or implicitly during
runtime by the scan operator that splits tables on-the-fly. Thus,
we can assume that our model table is arbitrarily partitioned.
Additionally, each execution thread gets a private query-plan,
which leads to separate and independent physical operator in-
stances. With our parallel model building phase we follow the
aim of avoiding independent model instances for each thread,

“http://www.netlib.org/blas/
Shttps://developer.nvidia.com/cublas

WI[0]

03)

~Nwi|.| / / |[teyverin | Node_in | Layer
e
) e e -1 1 0 3 1

03l |7 0 3 1] o0

Layer_in Layer
1 0 0 0
-1 0 0 1
0 2 1 1

Node_in

0.7,

0.2} 0 [} 1|1

Model table partition 0 Model table partition n

Figure 6: Parallel ModelJoin build phase

which would lead to a huge memory overhead depending on
the model size. Instead, all threads build a shared model in par-
allel. As the actual model inference only needs read access to
the model, synchronization only needs to be performed in the
building phase.

Conceptually, the model building phase is equal for the CPU
and GPU variant, as described below: First, memory allocation
for layer weight matrices and bias vectors is performed single-
threaded to a shared memory location known by all execution
threads. Depending on the implementation variant, this memory
is either allocated on the host memory (RAM) or device memory
(GPU). Afterwards, each thread parses the relational model rep-
resentation and fills the weight matrices indicated by the Layer
column at the position indicated by the (Node_in, Node) pair, as
shown in Figure 6. In the GPU variant, this invokes data trans-
port to the device. As partitioning is arbitrary but distinct, it is
guaranteed that there is no concurrent access to memory during
this phase, making synchronization obsolete and providing true
parallelism. Depending on the layer type, we have a different
set of weight matrices. While we hold a single weight matrix
and a bias vector for dense layers, we maintain a set of kernel
weight matrices, recurrent kernel matrices and biases for each
block of the LSTM layer as shown in Figure 2. Before the build
phase can be finished and the inference phase is started, we need
to introduce a single synchronization point to ensure that the
whole model table is consumed. This is realized by a barrier
before leaving the build phase.

We experienced that fine-grained data movement to GPU mem-
ory introduces a large overhead. As an optimization, we therefore
always perform the parallel model build phase on the host mem-
ory and move the model to GPU memory once building is finished.

5.3 Input and Output Data Conversion

When calling next() on the input flow join side, we get a set of
vectors with column values of the intermediate result as the input
for model inference. In contrary to ML-To-SQL, we can use a sub-
set of the input columns as prediction columns if necessary and
avoid the “late projection” of payload columns. This is possible
because we can leave columns untouched in a native operator
introducing no overhead, while in ML-To-SQL columns need to
be processed through multiple joins and aggregations. Similar to
joins, prediction columns are listed in the ModelJoin call.
Before performing the model inference, we need to convert
the input into a layout that fits the model. While we have a set
of vectors each of length vectorsize, the model accepts an input
vector of the length n, which is the number of input columns.
This is caused by the fact that the weight matrix of the first

318

layer in the model is of size n X m and dimensions must match
to perform multiplication. In order to avoid iterating over the
vectors and forming vectors of size n by copying a single value
from each column vector, we allocate a matrix of size vectorsize X
n (either on host or device memory) and copy the input column
vectors into the matrix as shown in the first step of Figure 7,
touching them only once. If input vectors would be placed in
consecutive memory regions, one could only cast the pointer
and avoid copying for the CPU variant. We do not consider this
optimization as we can not guarantee this requirement.

After the model inference as described in Section 5.4 finished,
the result matrix is broken up into vectors again and moved to
the result column vectors. For p prediction columns, this matrix
would be of size p X vectorsize, holding the p prediction results
for each of the input tuples.

5.4 Vectorized Model Inference

Converting the columnar input data into an input matrix as
described in the previous Section enables vectorized model infer-
ence, performing a single inference for a vector of inputs. For the
inference, we now iterate over the model layers and perform the
model specific layer forward function using the BLAS interface.

The dense layer forward function consists of a single matrix
multiplication and bias addition. The LSTM layer forward func-
tion is again based on the Keras implementation, translated to a
BLAS implementation and shown in Listing 5. Note that as we
rely on the BLAS interface, we can find implementations of each
function either in Intel MKL for the CPU variant or in cuBLAS
for the GPU variant, making Listing 5 generically applicable for
both when assuming the existence of respective memory manip-
ulation functions. The LSTM layer forward function additionally
reuses the generic activation functions that are also used for the
activation of layer outputs.

One part of each layer forward function is the addition of
the bias vector. Having a weight matrix of size n X m, the bias
vector has length m. As shown in Figure 7, an input matrix of
size vectorsize X n would result in a intermediate result of size
vectorsize X m, so we would need to add the bias vector once
for each of the vectorsize input tuples on the intermediate result
(with a respective offset). In order to avoid these fine-grained
additions, we invest additional memory in the ModelJoin build
phase after building finished to reallocate each bias vector once to
the size vectorsizexm and replicate the vector in the matrix. With
this one time effort, bias addition now incorporates a single, large
addition that can be efficiently parallelized by MKL/cuBLAS. As
an implementation specific detail, the BLAS matrix multiplication
sgemm calculates y := Ax +y, which has two consequences. First,
we can copy the bias matrix containing the repeated bias vectors
once to the result matrix and get the bias addition automatically.
Second, we can not perform xA = y, but need to perform ATx” =
yT. We therefore fill the weight matrices already in a transposed
way in the build phase and transpose the input matrix once
before the first layer forward function. All intermediate results
are then automatically transposed and we also consider this
when converting the model inference result back to the column
vectors. After performing a layer forward function, the layer
activation function is applied on the intermediate result matrix.
This can be done in parallel by, e.g., using handcrafted CUDA
kernel implementations for different types of activation functions.
Our implementation features a set of commonly used activation
functions as CPU and GPU implementations.

Input column vector

Device Memory

Bias vector ®
Result vector = P W
®
n
| oo |
Load § Activate Activate
§ | | ’ '
HiN. NI |
Wx + bias |
Write back

Figure 7: ModelJoin inference phase for dense layer network

i Input: vectorsize, layer_dim, num_recurrence, data,
2 weight matrices of layer (W.x, U.x, b_x)

5 Output: Layer output

4 float *h = NULL, "¢ = NULL; // LSTM cell states

5 int mat_size = vectorsize*layerfdim*sizcof(l'loat);
¢ float “z_x = ALLOCATE(mat_size);
round ++)

s for (int round = 0; round < num_recurrrence,

{
9 COPY(z_x,bias_x);

10 z_x = sger (W x,data,z x); // Dot product + z x

1 if (h) {

12 z_x = sgemm(U_x,h,z_x); // Matrix multiplication
+ Z_X

13 }

14 SIGMOID(z_i);

15 SIGMOID (z_f) ;

16 TANH(z_c) ;
vsMul(z_i,z_c); /

1 z_c = Elementwise multiplication

19 if (c) {

20 ¢ = vsMul(z_f,c); // Elementwise multiplication

21 ¢ = vsAdd(z_c,c); // Elementwise addition
22 } oelse {

23 ¢ = ALLOCATE(mat_size);

24 COPY(c,z_c);

5o}

2 SIGMOID(z_c);

8 if ('h) h = ALLOCATE(mat_size);
COPY(h,c);

30 TANH(h) ;

31 h = vsMul(z_o, h); /
2}

33 FREE(z_x);

32 if (c¢) FREE(c);

Elementwise product

3 return h;

Listing 5: LSTM layer forward BLAS implementation. Lines

containing an "x" are replicated for x in {i,f,c,o}

Model inference is an independent operation for every input
tuple. Consequently, we can again exploit partitioning to per-
form the inference phase of the ModelJoin in a parallel way on
partitions of the input flow. Furthermore, the inference phase
supports pipelined execution, which means that we return an

319

inference result for each set of input column vectors without the
need to touch the whole dataset. Thus, the ModelJoin operator
is not a pipeline breaker like sorts or aggregations, leading to a
low memory footprint, besides the fact that the model needs to
fit into memory. Especially in the GPU variant, where we offload
the execution to a different device, this maintains the cache effi-
ciency of a vectorized execution engine. In summary, pipelining
in combination with partition support leads to a highly scalable
operator.

5.5 Using semantics in the table creation

Currently, calling the ModelJoin requires passing meta informa-
tion about the model, i.e. the layer dimensions, the layer types
and the layer activation functions. In the future, one could think
about introducing semantics in the model table definition similar
to dimension tables in Oracle®. This way, one could fix the model
table schema and maintain a model’s meta information in the
database catalog. Making the DBMS aware that a table is a model
additionally enables custom query optimizations, sanity checks
and also potential model lifetime cycle management.

6 EVALUATION

We compare the approaches of the ML-To-SQL framework as
a portable frontend ModelJoin solution and a native ModelJoin
database operator against the baselines of using Tensorflow in
the Python environment, using a Python UDF or integrating
a ML runtime over native APIs. We follow the goal to show
scalability for different data sizes as well as model sizes in terms
of runtime and memory consumption. Please note that we forego
a comparison to MADIib, as this would lead to a comparsion
between DBMS performance. We investigate the performance of
different general concepts while keeping the underlying database
system fixed.

6.1 Setup

The experiments were run on a server consisting of an AMD
EPYC 7272 2,9 GHz CPU, 512 GB RAM and a NVIDIA A100 GPU
with 40 GB device memory connected over PCle. The server

Ohttps://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_5006.htm

runs Actian Vector 6.2, in which we integrated our ModelJoin
operator implementation described in Section 5 and a Raven-like
operator that relies on the Tensorflow C-API. We evaluate the
approaches on a low abstraction level, i.e. we evaluate perfor-
mance for different shapes of models instead of focussing on use
cases. Consequently, we evaluate the building blocks to build
different applications like classifications, regressions and similar.
We designed separate experiments for dense layer networks
and LSTM networks. The dense layer experiment is based on
the Iris dataset [13] that is replicated to mimic varying fact ta-
ble sizes. The dataset consists of four feature columns that are
used to predict a class attribute and is a commonly used real-
world example for machine learning. In order to evaluate the
scalability for different ML model sizes, we use dense layer net-
works with all combinations of model_widths € {32,128,512}
and model_depths € {2, 4, 8}, 1.e. a model of width 128 and depth
4 has 4 dense layers of width 32 and an output layer of size 1. For
the LSTM layer experiment we generated a time series based on
a sinus function and used 3 time steps for each forecast. In our
evaluation we focus on prediction runtime, which is independent
from the actual mathematical function the neural network rep-
resents. Consequently, a generated sinus function leads to the
same runtime results as real-world examples, but is easier under-
standable and reproducible. As typically a single LSTM layer is
used, we do not use different model_depths in this experiment,
but varied the LSTM layer width, followed by a single neuron
output layer. For all experiments the batch size is equal to the
database engine’s vector size of 1024. Tables are partitioned into
12 partitions and the engine runs with a parallelism level of 12.
Based on these setups we measured the runtime to apply the
respective model on a varying number of tuples. We thereby
compare our approach of a native ModelJoin operator, both as a
CPU and GPU variant, and the ML-To-SQL framework against
Tensorflow running either in Python, integrated over the C-API
both on CPU and GPU or by using a Python UDF. For Tensor-
flow in Python, data is moved from the database to the Python
environment using ODBC and classified using Tensorflow. Here
measurements include data movement and classification runtime.
Using the C-API, data does not need to be moved, but converted
to the expected input format of the Tensorflow API This requires
moving data from a columnar format into a row-major matrix,
and results back to columnar layout. In the Python UDF, we load
the saved model, apply it to the data using Tensorflow on the CPU
and return the predictions. Additionally, we optimize the UDF
by using Actian Vector’s parallel and vectorized UDFs [21], i.e.
calling the UDF once per vector instead of once per tuple. Note
that in the experiments we do not examine typical ML metrics
like model precision, but purely focus on prediction runtime. We
use the same model for each implementation variant and ensure
consistent results.

6.2 Results

6.2.1 Model inference runtimes. The model inference run-
times for the dense experiment are shown in Figure 8. As ex-
pected, the ML-To-SQL variant scales worse than the other ap-
proaches as it uses generic constructs query operators for very
specific computations. Using the native C-API of Tensorflow is
the best alternative in terms of runtime and scalability for all
evaluated cases, being either on-par with the native ModelJoin
operator in the GPU variant or even better in the CPU vari-
ant. Consequently having a native integration of the ModelJoin

320

operator does not bring any benefits compared to integrating
Tensorflow over the C-API Both approaches are about an order
of magnitude faster than the Tensorflow variant in Python and
the UDF variant. Comparing the latter two, it shows that the
native Python variant using Tensorflow is slightly better than the
UDF variant, which is caused by context switches between the
database engine and the Python environment as well as data con-
versions and data transport between the engine and the Python
environment. However, this is also an effect of the used queries,
as only performing the ModelJoin is in favor of the Tensorflow
variant. In more complex analytic pipelines, the inference results
are typically further processed by, e.g., aggregations. As using
UDFs data remains inside the database kernel, these further op-
erations are significantly faster inside the DBMS compared to
Python [22]. Tensorflow in Python mainly suffers from the over-
head of data transport over ODBC. As Tensorflow inference takes
place on the same machine that runs the database instance, the
setup is still in favor of Tensorflow by minimizing data transport
costs. Moving large datasets from a database server to a separate
machine for running the inference would further decrease the
performance of the Tensorflow variant. For large models we can
observe that GPU variants perform at least equal (for Tensorflow
in Python) or even better (for ModelJoin and Tensorflow using
the C-API) than their respective CPU implementations. Compar-
ing different model sizes, inference runtime slightly increases
in both directions of model width and model depth. However,
the dominating part of the execution time for the small models
is data transport, so inference runtime does not double when
doubling the model size. The number of model parameters does
not scale linearly but quadratically, i.e., the model with width 512
and depth 8 having 4 - 512+ 7 - 5122 + 512 ~ 1,8 - 10° parameters,
while a model of same depth but 128 neurons per layer only has
around 115.000 parameters. Consequently, the size of intermedi-
ate results in the ML-To-SQL variant also increases quadratically,
leading to bad scalability.

The inference runtimes for the LSTM experiment are shown
in Figure 9. Compared to the dense experiment, increasing the
width of the LSTM layer has a higher impact on runtime for all
ModelJoin alternatives, as the computation of a LSTM layer is
more complex than a dense layer. Using the ML-To-SQL frame-
work for performing the ModelJoin performs significantly better
in this case compared to the dense experiment due to only a single
layer being processed, which leads to significantly smaller inter-
mediate results. However, the ML-To-SQL variant scales worse
than the other alternatives with increasing model size, caused
by the quadratic increase in intermediate result size. Again, the
native ModelJoin operator and using Tensorflow over the C-API
show the best runtimes and scalability both comparing CPU or
GPU variants, with the GPU variant being the better choice due
to the increased complexity of the LSTM layer compared to the
dense layer.

For both experiments we can observe that the size of the fact
table has the highest impact on the model inference runtime. For
use cases where the fact table is large, a native integration either
using a native ModelJoin operator or a ML runtime’s API is the
best choice, with the GPU implementations showing better scala-
bility and should therefore be used whenever possible. Especially
in cloud environments instance types can almost arbitrarily be
chosen, so we argue that the existence of a GPU on a database
deployment can be easily realized.

Execution time in s Execution time in's

Execution time in s

Execution time in s

—e— Modeljoin_CPU
—e— Modeljoin_GPU

Model depth = 2

—x— TF_CAPI_CPU
—x— TF_CAPI_GPU

Model depth = 4

—e— TF_CPU
~4— TF_GPU

—s— UDF
—m— ML-To-SQL

Model depth = 8

30 1 b 7
25 - : 1 =
a
20 A b 1 A O
A A Y —_
15 1 e = = g
A/ o—¢ A% ¢ x _—n =
10 - _~ . P . . I
A & /0 A / /a /\ /. * /’ w
51 e I A —e— K
P et T .
0 - v———? 2 : X év . ey X X -}2’ . _gg%
30 - - , -
||
25 4 E - =
20 '/ . &
b b A =
-/ - : /) ’A‘/ £
15 - x { A ; ~ 3
./ e— A/ /) 1
10 A E E o |
s e e Aéo —" A e e
5 - ,4’/’/’ . i Aé:/’/ i o ’/0 8
0 éz/i x:"’l‘__/_" _’és/l e ‘FZQ/-_—-:_——_—;?:g
30 1 b 7
pd
25 - T /‘ 1 / . §
A
20 - 1 6 A . o)
15 1 O o ' s
N * / ‘/ e / . 2
10 1 / / _—* & _— g & |
" * / * /V °
5 p . %3/ i P :/ e i ‘ / /.ﬁ —% E
@ 23
0 = :‘s_-f_gzg _I g_{_ezg_/g_:_—g | éﬁ?/,_.,—_g
0 200000 400000 0 200000 400000 0 200000 400000
Fact tuples Fact tuples Fact tuples

Figure 8: Runtime results for dense layer networks

Model width = 32

200000
Fact tuples

400000

Figure 9: Runtime results for LSTM layer networks

Model width = 128

200000
Fact tuples

400000

321

Model width = 512

200000
Fact tuples

400000

Table 2: Qualitative comparison of ML inference approaches

ML-To-SQL Native ModelJoin TF(Python) TF(C-API) UDF
Performance (Small Models) Good Good Medium Good Medium
Performance (Large Models) Bad Good Bad Good Bad
Memory Consumption Medium Good Bad Good Bad
Portability Good Bad Good Bad Medium
Generalizability Bad Bad Good Good Good

Table 3: Peak memory for model inference of 100K tuples

Model ModelJoin TF(C-API) TF(Python) ML-To-SQL
Dense(32,4) 109.5MB 1539 MB 2.8 GB 1.4 GB
Dense(128,4) 121.7 MB 154.8 MB 34 GB 2.4 GB
Dense(512,4) 194.9 MB 185.4 MB 10.5 GB 6.6 GB
LSTM(128) 123.5 MB 192.2 MB 3.4 GB 411 MB

6.2.2 Memory usage. Besides performance, we compared the
approaches in terms of memory consumption. We measured peak
memory of the database engine for the ModelJoin operator, the
Tensorflow C-API approach and ML-To-SQL while measuring
peak memory of the Python process for Tensorflow using Python.
This way we captured the model memory itself and the size of
intermediate results. The results for a representative subset of
the models and a fact table of 100K tuples are shown in Table 3.
Due to the models themselves being quite small in size and being
shared by all threads, the ModelJoin operator has a very low
memory consumption. Tensorflow using the C-API has a similar
memory consumption with a slightly higher fixed memory. Ten-
sorflow in Python shows a significantly higher memory usage
due to the Python environment and parallelism. ML-To-SQL’s
memory consumption is above the ModelJoin operator, caused
by the use of more generic operators. However, it is below Ten-
sorflow(Python)’s memory consumption due to the pipelined
execution described in Section 4.4. For the LSTM experiment,
memory consumption is only slightly higher than the ModelJoin
operator, again caused by more generic operators. It is also lower
than in the dense experiments, as the model only consists of
a single layer whose computation is however more complex.
The memory consumption of the UDF variant is not included in
Table 3, as it can be seen as a wrapper around the Tensorflow
variant and therefore has similar memory requirements. During
the design of the ModelJoin operator’s GPU implementation we
assumed that the model fits into GPU memory. Comparing the
memory consumption of the ModelJoin operator from Table 3
to the device memory of our GPU (40 GB) or similar devices, we
argue that this is no limitation for typical model sizes.

6.3 Resume

We evaluated model inference using candidates of the classes
of approaches introduced in Section 1 for models of different
widths and depths. A qualitative comparison of the results is
given in Table 2. We observed that the native integration using
a specialized ModelJoin operator or using the native API of ML
runtimes significantly outperforms the alternatives for all models
and data sizes by an order of magnitude and has a low memory
footprint. Enabling the GPU variant further leads to better scal-
ability, which is especially useful for large models or large fact
tables and should be used if respective hardware is available. ML-
To-SQL showed to scale worse, but is still a reasonable choice

322

for small models or small data, e.g., to classify periodical inserts
or IoT data, as here the advantages of a portable solution pre-
dominate the scalability issues. ML-To-SQL can be ported to any
SQL-compliant database system without requiring any changes
in the engine code, neither any UDF support or a ML runtime,
but uses the existing capabilities of database engines for efficient
query processing. Comparing the native integration approaches,
the native operator performes nearly as good as the integration
of a highly specialized ML runtime using the C-API. Coming back
to the quote of [41] questioned in Section 1, reimplementing ML
algorithms is consequently not reasonable and the drawbacks of
limited generalizability to only the reimplemented layer types
dominate.

7 CONCLUSION

Machine learning models play an important role in modern data
analytics. Pushing ML model inference into database systems
offers great possibilities for performance, scalability and data
privacy. We evaluated different ways to exploit the capabilities
of database engines for ML model inference and focused on neu-
ral networks as a subclass of ML models. Based on a generic
relational model representation that is able to hold dense lay-
ers as well as LSTM layers, we first described the design of the
ML-To-SQL framework. ML-To-SQL offers an easy-to-use API
to transform ML models into tables and to perform the model
inference using standard SQL. As the opposite direction, we dis-
cussed the design of a native ModelJoin database operator, which
offers a parallel model building phase and a vectorized inference
phase. The ModelJoin operator is realized as a CPU and a GPU
variant. Our evaluation based on the Actian Vector database sys-
tem showed that ML-To-SQL is a reasonable choice for small
data sizes or small model sizes, but shows poor scalability as
the price for using generic database operators and therefore be-
ing highly portable. The native ModelJoin operator integrated
into the Vector engine however outperforms the alternatives of
using Python/Tensorflow or a Python UDF by an order of mag-
nitude and shows a significantly lower memory footprint for
different model and data sizes. The GPU variant further increases
performance and scalability and is therefore the best choice if
respective hardware is available. However, it did not outperform
a native operator built on the C-API of existing ML runtimes
both in CPU and GPU variants. Consequently, reimplementing
functionality for ML inference does not ammortize for the lack
in generalizability.

All evaluated approaches can be nested into arbitrary queries.
In order to optimize queries containing such a model inference, a
cost model is an important missing factor that should be investi-
gated in the future. The cost for inference could thereby be based
on an investigation of the model structure, as our evaluation
showed that costs increase linearly with model size.

REFERENCES

(1]

~
[

[10]

(11

[12

[13

[14]

[15

[16

[17

(18]

[19

[20

[21

[22

[23]

Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher Ré.
2018. LevelHeaded: A Unified Engine for Business Intelligence and Linear
Algebra Querying. In 34th IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018. IEEE Computer Society, 449-460.
https://doi.org/10.1109/ICDE.2018.00048

Ashvin Agrawal, Rony Chatterjee, Carlo Curino, et al. 2020. Cloudy with
high chance of DBMS: a 10-year prediction for Enterprise-Grade ML. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The
Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org. http:
//cidrdb.org/cidr2020/papers/p8-agrawal-cidr20.pdf

Amazon. 2022. Amazon Redshift ML. https://aws.amazon.com/de/
blogs/big-data/create-train-and-deploy-machine-learning-models-in-
amazon-redshift-using-sql-with-amazon-redshift-ml/. [Online; accessed
03-February-2022].

Apache. 2022. Mahout. https://mahout.apache.org/.
21-February-2022].

Apache. 2022. SystemDS. http://systemds.apache.org/. [Online; accessed
21-February-2022].

Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-
erick R Reiss, Prithviraj Sen, Arvind C Surve, and Shirish Tatikonda. 2016.
SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13
(sep 2016), 1425-1436. https://doi.org/10.14778/3007263.3007279

Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution. In Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online
Proceedings. www.cidrdb.org, 225-237. http://cidrdb.org/cidr2005/papers/
P19.pdf

Francesco Del Buono, Matteo Paganelli, Paolo Sottovia, Matteo Interlandi,
and Francesco Guerra. 2021. Transforming ML Predictive Pipelines into
SQL with MASQ. In SIGMOD °21: International Conference on Management
of Data, Virtual Event, China, June 20-25, 2021. ACM, 2696-2700. https:
//doi.org/10.1145/3448016.3452771

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

Len Du. 2020. In-Machine-Learning Database: Reimagining Deep Learning with
Old-School SQL. Technical Report. arXiv:2004.05366 http://arxiv.org/abs/
2004.05366

Arash Fard, Anh Le, George Larionov, Waqas Dhillon, and Chuck Bear. 2020.
Vertica-ML: Distributed Machine Learning in Vertica Database. In Proceed-
ings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020. ACM,
755-768. https://doi.org/10.1145/3318464.3386137

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. To-
wards a Unified Architecture for In-RDBMS Analytics. In Proc. 2012 ACM SIG-
MOD Int. Conf. Manag. Data (SIGMOD ’12). Association for Computing Machin-
ery, New York, NY, USA, 325-336. https://doi.org/lO.l145/2213836.2213874
Rory A. Fisher. 1936. THE USE OF MULTIPLE MEASUREMENTS IN TAXO-
NOMIC PROBLEMS. Annals of Human Genetics 7 (1936), 179-188.

Google. 2022. BigQuery ML. https://cloud.google.com/bigquery-ml/docs.
[Online; accessed 03-February-2022].

Google. 2022. BigQuery ML Tensorflow support. https://cloud.google.com/
bigquery-ml/docs. [Online; accessed 03-February-2022].

Goetz Graefe. 1994. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. Knowl. Data Eng. 6, 1 (1994), 120-135. https://doi.org/
10.1109/69.273032

Alex Guazzelli, Michael Zeller, Wen Ching Lin, and Graham Williams. 2009.
PMML: An open standard for sharing models. R 7. 1, 1 (2009), 60-65. https:
//doi.org/10.32614/rj-2009-010

Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan
Feng, Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library or MAD
Skills, the SQL. CoRR abs/1208.4165 (2012). http://arxiv.org/abs/1208.4165
Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Mem-
ory. Neural Computation 9, 8 (1997), 1735-1780. https://doi.org/10.1162/
neco.1997.9.8.1735

Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, et al. 2020. Ex-
tending Relational Query Processing with ML Inference. In 10th Conference
on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org. http://cidrdb.org/
cidr2020/papers/p24-karanasos-cidr20.pdf

Steffen Kldbe, Robert DeSantis, Stefan Hagedorn, and Kai-Uwe Sattler. 2022.
Accelerating Python UDFs in Vectorized Query Execution. In 12th Conference
on Innovative Data Systems Research, CIDR, Chaminade, CA, January 9-12, 2022.
www.cidrdb.org.

Steffen Klibe and Stefan Hagedorn. 2021. Applying Machine Learning Models
to Scalable DataFrames with Grizzly. In BTW 2021. Gesellschaft fir Informatik,
Bonn, 195-214. https://doi.org/10.18420/btw2021-10

Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis.
2018. The Case for Learned Index Structures. In Proceedings of the 2018
International Conference on Management of Data (Houston, TX, USA) (SIGMOD
’18). Association for Computing Machinery, New York, NY, USA, 489-504.

[Online; accessed

323

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

(38]

[39]

[40

[41]

[42]

https://doi.org/10.1145/3183713.3196909

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation
applied to handwritten zip code recognition. Neural computation 1, 4 (1989),
541-551.

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI Meets Database: AI4DB
and DB4AI. Proc. ACM SIGMOD Int. Conf. Manag. Data (2021), 2859-2866.
https://doi.org/10.1145/3448016.3457542

Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. MLog:
Towards declarative in-database machine learning. In Proc. VLDB Endow.,
Vol. 10. 1933-1936. https://doi.org/10.14778/3137765.3137812

Microsoft. 2022. SQL Server Machine Learning Services. https:
//docs.microsoft.com/en-us/sql/machine-learning/sql-server-machine-
learning-services?view=sql-server-2017. [Online; accessed 03-February-
2022).

Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB 98, Proceedings of 24rd International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA. Morgan Kaufmann, 476-487. http://www.vldb.org/conf/1998/
p476.pdf

Dan Olteanu. 2020. The Relational Data Borg is Learning. Proc. VLDB Endow.
13, 12 (aug 2020), 3502-3515. https://doi.org/10.14778/3415478.3415572
Kwanghyun Park, Karla Saur, Dalitso Banda, Rathijit Sen, Matteo Interlandi,
and Konstantinos Karanasos. 2022. End-to-End Optimization of Machine
Learning Prediction Queries. In Proceedings of the 2022 International Conference
on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association
for Computing Machinery, New York, NY, USA, 587-601. https://doi.org/
10.1145/3514221.3526141

Mark Raasveldt, Pedro Holanda, Hannes Miihleisen, and Stefan Manegold.
2018. Deep Integration of Machine Learning Into Column Stores. In Proceedings
of the 21st International Conference on Extending Database Technology, EDBT
2018, Vienna, Austria, March 26-29, 2018. OpenProceedings.org, 473-476. https:
//doi.org/10.5441/002/edbt.2018.50

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958), 386.
Kai-Uwe Sattler and Oliver Dunemann. 2001. SQL Database Primitives for
Decision Tree Classifiers. In Proceedings of the 2001 ACM CIKM International
Conference on Information and Knowledge Management, Atlanta, Georgia, USA,
November 5-10, 2001. ACM, 379-386. https://doi.org/10.1145/502585.502650
Maximilian E. Schiile, Harald Lang, Maximilian Springer, Alfons Kemper,
Thomas Neumann, and Stephan Glinnemann. 2021. In-Database Machine
Learning with SQL on GPUs. In SSDBM 2021: 33rd International Conference on
Scientific and Statistical Database Management, Tampa, FL, USA, July 6-7, 2021.
ACM, 25-36. https://doi.org/10.1145/3468791.3468840

Maximilian E. Schiile, Matthias Bungeroth, Dimitri Vorona, Alfons Kemper,
Stephan Ginnemann, and Thomas Neumann. 2019. ML2SQL - Compiling a
Declarative Machine Learning Language to SQL and Python. In Advances in
Database Technology - 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26-29, 2019. OpenProceed-
ings.org, 562-565. https://doi.org/10.5441/002/edbt.2019.56

Apache Spark. 2022. MLIib. https://spark.apache.org/mllib/. [Online; accessed
21-February-2022].

James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian
Riedel, and Alon Y. Levy. 2021. From Natural Language Processing to Neural
Databases. Proc. VLDB Endow. 14, 6 (2021), 1033-1039. http://www.vldb.org/
pvldb/vol14/p1033-thorne.pdf

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Paul] Werbos. 1990. Backpropagation through time: what it does and how to
do it. Proc. IEEE 78, 10 (1990), 1550-1560.

Lucas Woltmann, Dominik Olwig, Claudio Hartmann, Dirk Habich, and Wolf-
gang Lehner. 2021. PostCENN : PostgreSQL with Machine Learning Models
for Cardinality Estimation. In PVLDB. 2715-2718. https://doi.org/10.14778/
3476311.3476327

Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna,
Orhan Kislal, Domino Valdano, and Arun Kumar. 2021. Distributed Deep
Learning on Data Systems: A Comparative Analysis of Approaches. Proc.
VLDB Endow. 14, 10 (2021), 1769-1782. http://www.vldb.org/pvldb/vol14/
p1769-zhang.pdf

Xuanhe Zhou, Chengliang Chai, Guoliang Li, and Ji Sun. 2020. Database Meets
Al A Survey. (2020), 20.

