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ABSTRACT

Understanding the evolution of communities and the factors that

contribute to their development, stability and disappearance over

time is a fundamental problem in the study of temporal networks.

The concept of 𝑘-core is one of the most popular metrics to detect

communities. Since the 𝑘-core of a temporal network changes

with time, an important question arises: Are there nodes that al-

ways remain within the 𝑘-core? In this paper, we explore this

question by introducing the notion of core-invariant nodes. Given

a temporal window ∆ and a parameter K , the core-invariant

nodes are those that are part of the K -core throughout ∆. Core-

invariant nodes have been shown to dictate the stability of net-

works, while being also useful in detecting anomalous behavior.

The complexity of finding core-invariant nodes is 𝑂(|∆|×|𝐸 |),
which is exorbitantly high for million-scale networks. We over-

come this computational bottleneck by designing an algorithm

called Kwiq. Kwiq efficiently processes the cascading impact

of network updates through a novel data structure called orien-

tation graph. Through extensive experiments on real temporal

networks containing millions of nodes, we establish that the

proposed pruning strategies are more than 5 times faster than

baseline strategies.

1 INTRODUCTION AND RELATEDWORK

Several important real-world settings involve entities interacting

at different points of time for different periods of time, e.g., online

social networks [14], email collections, communication forums

like Stack Exchange [28], call data records (CDR) [16], research

collaboration networks among others. Temporal networks pro-

vide an abstraction to capture the time-varying nature of these

interactions by storing interactions between entities (nodes) as

time-stamped edges. The temporal network abstraction allows

us to study time-varying activity in these settings, especially

transient activity. Of particular interest in recent times is the

formation of transient communities within temporal networks, a

prominent example being Facebook’s recent attempt to define

and combat “coordinated inauthentic behaviour” [13], and the

detection of similar issues on Twitter [27]. In this paper, we focus

on the 𝑘-core [6] of a temporal network. For static networks the

concept of 𝑘-core provides a useful abstraction of a community:
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A 𝑘-core is defined as a set of nodes that induce a largest sub-

graph of minimum degree 𝑘 within the network. We extend this

definition to temporal graphs and show how to efficiently track

nodes that remain in the 𝑘-core over a period of time. We refer

to such nodes as core-invariant nodes. More formally, given a

time window [𝑡𝑠 , 𝑡𝑒 ] and a threshold K , we want to identify all

nodes with a core value of at least K throughout the given time

window. The parameter K allows us to focus only on commu-

nities that have core value above a given threshold. We refer to

this threshold as the cohesiveness of this community.

1.1 Motivating Applications

Identification of core-invariant nodes is important for identifying

coordinated inauthentic behavior in online social networks as

Shao. et. al. [23] showed recently in a study on a Twitter data set

collected during the 2016 US Presidential election. They observed

that the instances of forwarding of inauthentic content went

up sharply for subgraphs with high core values. However, their

experiment flattens six months of data into a single network,

which is not realistic since collusion over particular pieces of

inauthentic content is expected to happen in the timescale of

hours and days. Approximation to the 𝑘-core is defined and

analyzed in [9] for MapReduce and streaming models. We refine

the experiment of Shao. et. al. [23] by creating a temporal graph of

their data set by removing interactions after 15 days and studying

core-invariant nodes for different values of K . Just like Shao et.

al. [23], we find that inauthentic content was being shared at

a much higher rate within core-invariant sets of nodes, with

authentic content basically disappearing at a cohesiveness of 7,

which is much lower than the core value of 20 that Shao et. al. [23]

observe in the 6-month network. This experiment is presented

in detail in §4.5, and we wish to make two points by presenting

it: (1) the core-invariant definition is the correct definition for a

temporal refinement of a real problem that researchers are already

addressing and (2) the fact that our cohesiveness threshold for

inauthentic behaviour is much lower than the core values of the

inauthentic core discovered in the flattened graph shows that our

definition of cohesiveness gives a better handle on the extent of

the time-varying collusion taking place in inauthentic networks.

In a completely different application domain, a recent paper

in Nature showed that core-invariant nodes dictate the stability

of mutualistic ecosystems [20].

1.2 Existing Works and Baselines

Baseline approach: Currently, no algorithm exists to identify

core-invariant nodes efficiently. The process of computing the

core value of all nodes in a graph is called core decomposition[19].

 

 

Series ISSN: 2367-2005 208 10.48786/edbt.2023.17

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.17


WikiTalk StackOverflow #Caravan

Dataset

0

20

40

T
im
e(
s)

KWIQ

OBA

Figure 1: Efficiency comparison of Kwiq with OBA [29].

Core decomposition of a graph 𝐺 = (𝑉 , 𝐸) can be performed

in time linear in the number of edges, i.e., Θ(|𝐸 |). The baseline
approach is therefore to perform core decomposition following

each event within the query time window [𝑡𝑠 , 𝑡𝑒 ] and identify

the core-invariant nodes that remain within the 𝑘-core that is

recomputed at each point. Assuming the size of the graph remains

stable, we consume 𝑂((𝑡𝑒 − 𝑡𝑠 ) × |𝐸 |) time. Both (𝑡𝑒 − 𝑡𝑠 ) and |𝐸 |
can be extremely large. For example, Twitter contains billions of

edges, and the granularity of timestamps is in seconds. Hence,

the baseline algorithm is not scalable.

Core-Maintenance: A better alternative is to perform core

maintenance by treating the events from 𝑡𝑠 to 𝑡𝑒 as a data stream [18,

21, 29]. Core maintenance algorithms track the core values of all

nodes in the time window from 𝑡𝑠 to 𝑡𝑒 and then identify those

that remain above the threshold K throughout [𝑡𝑠 , 𝑡𝑒 ]. However,

even core-maintenance leads to inefficient querying since it is not

specifically tailored for the task of querying core-invariant nodes.

In this paper, we leverage key properties of core-invariant nodes

to develop an efficient algorithm called KWIQ: 𝑘-core Window

Queries on temporal networks. As evidence of the gain in effi-

ciency, in Fig. 1, we show the running time of Kwiq against

the fastest core-maintenance algorithm, OBA[29], for querying

core-invariant nodes in three real datasets (See §4.1 for details).

As visible, Kwiq is ≥ 5 times faster.

Persistent Cores: A recent work identifies persistent cores

in a temporal network[17]. Given a cohesiveness threshold K ,

a specified length 𝜏 of time duration and a positive integer 𝜃 . A

(𝜃, 𝜏)-persistent K -core is the largest induced subgraph which

is K -core projected over a period of length 𝜃 , and total non-

overlapped length of these 𝜃 length intervals is at least 𝜏 . The

vertex set of the persistent core remains fixed. But the edge set

of the persistent core may change as the 𝜃 length interval shifts,

and this edge set consists of all edges being present at any time

point of the 𝜃 length interval. For 𝜃 = 0, the persistent core is a

largest induced subgraph which remains K -core for a minimum

duration 𝜏 . Owing to this formulation, persistent cores will miss

out on identifying those nodes that are always part of the K -

core but the K neighbors that make them part of the K -core

change with time. Thus, the persistent core is a subgraph search

problem, whereas ours is a node search problem. Identifying the

persistent core is NP-hard [17] and the associated techniques do

not apply to identifying the core-invariant nodes. Fig. 3 illustrates

this difference with an actual example. Fig. 2 shows a stream of

edges and Fig. 3 shows the corresponding graph. We assume that

an edge remains “active” for a duration of 5 timestamps after

which it disappears. For example, the 𝑎 − 𝑏 edge at timestamp

𝑡 = 1 remains in the graph till 𝑡 = 5 (i.e., 𝐺5). To give a semantic
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Figure 2: Edges added at different timestamps 𝑡 .
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Figure 3: The structure of the temporal graph correspond-

ing to the edge stream in Fig. 2. 𝐺𝑡 denotes the graph at

timestamp 𝑡 . We assume an edge gets deleted after 5 times-

tamps since its arrival. Nodes in 2-core are in green.

context, two users of a collaboration network may be considered

connected if they have collaborated at least once within a year.

In the temporal graph of Fig. 3, consider the time window

[3, 12]. For cohesiveness threshold K = 2, node 𝑐 remains within

the K -core throughout [3, 12]. For 𝜃 = 0, K = 2, and 𝜏 = 9, the

(𝜃, 𝜏)-persistent K -core is empty because there is no 2-core for

a duration of length 9. For 𝜃 = 0, K = 2, and 𝜏 = 6, the (𝜃, 𝜏)-

persistent K -core is the subgraph induced by {𝑎, 𝑏, 𝑐} because
this set {𝑎, 𝑏, 𝑐} induces a largest subgraph which remains 2-core

during the time windows [3, 5] and [9, 11]. Thus, to summarize,

persistent core tracks persistent communities for a given time

period. In contrast, core-invariant nodes tracks nodes that are

always part of some dense community through the time window.

SpanCores: Galimberti et al. [10, 11] proposed the problem of

identifying span-cores, wherein, given a cohesiveness threshold

K and time interval ∆ = [𝑡𝑠 , 𝑡𝑒 ], the span core is the largest

subgraph inwhich every node has at leastK neighbors formed by

the intersection of all graphs in the temporal interval ∆ = [𝑡𝑠 , 𝑡𝑒 ].

Due to the enforcement of intersection, only those edges matter

that exist throughout ∆, which is not the case in our problem.

In other words, span core problem finds an induced subgraph

which remains k-core throughout the querying time. However,

invariant nodes are nodes which remain part of k-core at each

time step throughout the querying time. Kindly note that the

adjacent nodes, which make an invariant node part of the k-core,

may change over time. However, these adjacent nodes are fixed

in case of span-core throughout the querying time. Therefore,

invariant node set is a superset of span core for given value ofK
and for given querying time. As result, both the span core, and

the techniques used to compute the span core, cannot be used

to solve the proposed problem. For example, consider Fig. 4. We

set K = 3. Graph𝐺𝑡 is obtained from graph𝐺𝑡−1 by addition of

edge (𝑎,𝑔). Similarly, graph 𝐺𝑡+1 is obtained from graph 𝐺𝑡 by

deletion of edge (𝑎, 𝑑). Node 𝑎 is the only invariant node because
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Figure 4: We set K = 3. Graph Gt is obtained from graph

Gt−1 by addition of edge (a, g). Similarly, graph Gt+1 is ob-

tained from graph Gt by deletion of edge (a, d). Then, SNIN

consists of red and pink vertices. SNIN′ consists of pink
vertices. Node a is the only invariant node because this

is the only node whose core value remains 3 for the time

window [t − 1, t + 1], so set of non-invariant nodes (NIN)

consists of all vertices except vertex a. PIN consists of green

nodes. Blue nodes are sandwich nodes (𝑊𝑁 ).

this is the only node whose core value remains 3 for the given

time points 𝑡 − 1, 𝑡, 𝑡 + 1. However, span 3-core for the querying

time [𝑡 − 1, 𝑡 + 1] is empty because there is no induced subgraph

which remains 3-core at all the given time points 𝑡 − 1, 𝑡, 𝑡 + 1.

Several applications of span-cores are outlined in [8], which also

extend to the proposed problem of invariant cores.

1.3 Contributions

The key contributions of our work are as follows:

• We formulate the problem of querying core-invariant nodes on

temporal networks (§2).

• To address scalability challenges we devise an efficient algo-

rithm called Kwiq. The novelty of Kwiq comes from the fact

that it partitions the entire node set into three parts for a

given value of K : (1) nodes that are guaranteed not to be core-

invariant, (2) nodes that are highly likely to be core-invariant

and (3) a set of sandwich nodes that are hard to categorise

easily into the first two classes. Kwiq handles the first two

categories in 𝑂(1) time and applies orientation algorithm on

the sandwich nodes to compute the answer set (§3) using a

novel data structure called the orientation graph.

• Through empirical evaluation on several real-world temporal

networks, withmillions of nodes, hundreds of millions of edges,

and thousands of timestamps, we establish that Kwiq is 5 times

faster than the baseline approaches (§4).

2 PROBLEM FORMULATION

Our problem intakes three inputs: a temporal graph, a time win-

dow, and a cohesiveness threshold K .

Definition 1 (Temporal Graph). A temporal graph 𝐺 =

(𝑉 ,𝑇 , 𝜏) contains a set of nodes 𝑉 , a discrete time domain 𝑇 =

[0, 1, · · · , 𝑡𝑚𝑎𝑥 ] ⊆ 𝑁 , and a function 𝜏 : 𝑉 ×𝑉 ×𝑇 → {0, 1} defining
for each pair of nodes 𝑢, 𝑣 ∈ 𝑉 and each timestamp 𝑡 ∈ 𝑇 whether

edge (𝑢, 𝑣) exists at 𝑡 . Thus, 𝐸𝑡 = {(𝑢, 𝑣, 𝑡 ) | 𝜏(𝑢, 𝑣, 𝑡 ) = 1, 𝑡 ∈ 𝑇 }
denotes the set of edges existing at time 𝑡 and 𝐸 = ∪∀𝑡 ∈𝑇 𝐸𝑡 is the
set of all temporal edges in the network.

We use 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) to denote the static snapshot graph at

time 𝑡 . Furthermore, 𝑑𝑒𝑔(𝑢,𝐺𝑡 ) denotes the degree of node 𝑢

in the static graph 𝐺𝑡 . We assume that the granularity of the

timestamps is small enough to impose a total ordering among all

network events, i.e., all events happen at distinct times. To ease

the notational burden, in our definition of the temporal graph,

the node set 𝑉 remains static but the edge set changes from time

instant to time instant. However, our formulation can easily be

generalized to dynamic node sets.

Edge deletion model: Every interaction (i.e., edge) has an

associated timestamp indicating when it is inserted. However,

the lifespan of an edge is often not explicitly mentioned. For

example, in a collaboration network like DBLP, two users are

connected by an edge if they jointly co-author a paper. How long

should this edge exist? It would be unfair to delete the edge in

the very next timestamp since conferences often happen once

a year. At the same time, the collaboration network should not

keep two users connected if they last collaborated ten years ago.

Similarly, in Twitter, two users may be considered connected

if they have interacted recently (through @mention, @retweet,

etc.). However, how do you quantify “recency”? To capture this

aspect, we assume an interaction is alive for a duration of 𝑋

timestamps after which it gets deleted; 𝑋 is a dataset specific

hyper-parameter and we call this the deletion window. To give

an example, let the deletion window 𝐷𝑊 be 10 minutes. Now,

suppose an interaction 𝐼1 happens between users𝑢 and 𝑣 at time 𝑡 .

To capture this event, we add an edge between 𝑢 and 𝑣 with time

𝑡 . Next, assume these two users interact again at 𝑡 + 3 minutes,

and thus the timestamp of the edge between𝑢 and 𝑣 gets updated

to 𝑡 + 3; note that we do not add a new edge. If no interactions

happen for the next 𝐷𝑊 = 10 minutes, then the edge gets deleted

at time 𝑡 + 13.

Definition 2 (𝑘-core). Given a static graph 𝐺𝑡 = (𝑉 , 𝐸) and

a subset of nodes 𝑈 ⊆ 𝑉 , the induced subgraph, 𝐺𝑡 [𝑈 ] ⊆ 𝐺𝑡 ,

induced by 𝑈 is a subgraph with node set 𝑈 and edges 𝐸[𝑈 ] =

{(𝑢, 𝑣) ∈ 𝐸 : 𝑢, 𝑣 ∈ 𝑈 }. An induced subgraph 𝐺𝑡 [𝑈 ] of 𝐺𝑡 is called

a 𝑘-core, for 𝑘 ≥ 0, if for all 𝑢 ∈ 𝑈 , the degree of 𝑢 in 𝐺𝑡 [𝑈 ] is at

least 𝑘 and𝐺𝑡 [𝑈 ] is the maximal induced subgraph of𝐺𝑡 with this

property.

The core value of a node 𝑢 in a static graph 𝐺 , denoted as

𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ), is the largest 𝑘 for which 𝑢 ∈ 𝑉𝑘 , where 𝑉𝑘 is the

node set of the 𝑘-core of𝐺𝑡 . We next extend the notion of 𝑘-core

to temporal networks through core-invariant nodes.

Definition 3 (Core-Invariant Nodes). Given a temporal

interval ∆ = [𝑡𝑠 , 𝑡𝑒 ] and a positive integer K , the core-invariant

nodes 𝐼K ,∆ ⊆ 𝑉 , of a temporal graph 𝐺 = (𝑉 ,𝑇 , 𝜏) is the set

𝐼K ,∆ = {𝑢 ∈ 𝑉 | ∀𝑡 ∈ ∆, 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) ≥ K }.
We call a node non-invariant if it is not core-invariant.

Example 1. Consider the temporal graph 𝐺 with timestamps

𝑡 = [1, 12] in Fig 3. For 𝑘 = 2 and ∆1 = [3, 12], the set of nodes that

remain in 2-core (highlighted in green color) throughout ∆1 is {𝑐}.
Hence, invariant-core 𝐼2,∆1

is {𝑐}. 𝑐 remains in 2-core throughout ∆1

because node set {𝑎, 𝑏} contributes towards 2-core in time interval

[3, 5], [9, 11] and node set {𝑒, 𝑑} contributes towards 2-core in time

interval [6, 8], [12]. In other words, there may be nodes in the graph

that are not part of the final answer set, but contributes towards

the answer set.

Problem 1 (Temporal Core-Invariant Queries). Given a

temporal graph𝐺 = (𝑉 ,𝑇 , 𝜏), cohesiveness threshold K > 0 and a

temporal span ∆ = [𝑡𝑠 , 𝑡𝑒 ], find the core-invariant nodes 𝐼K ,∆.

Table 1 summarizes the notations used in our paper.
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Table 1: Notations used in the paper.

𝐺𝑡 = (𝑉 , 𝐸𝑡 ) ≜ Graph with vertex set𝑉 and edge set 𝐸𝑡 at time 𝑡
−→
𝐺𝑡 = (𝑉 ,

−→
𝐸𝑡 ) ≜ Directed Graph with edge set

−→
𝐸𝑡 at time 𝑡

(𝑢, 𝑣) ≜ Edge between vertex𝑢 and 𝑣
⟨𝑢, 𝑣⟩ ≜ Directed edge from vertex𝑢 to 𝑣
K ≜ Threshold for cohesiveness

∆ ≜ Temporal window

𝐷𝑊 ≜ Deletion window

[𝑡𝑠 , 𝑡𝑒 ] ≜ 𝑡𝑠 is start time and 𝑡𝑒 is end time of ∆

𝑑𝑒𝑔(𝑢,𝐺𝑡 ) ≜ Degree of vertex𝑢 in graph𝐺𝑡

𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) ≜ Core value of vertex𝑢 in graph𝐺𝑡

𝐼K ,∆ ≜ Core-invariant nodes on givenK and ∆

𝑁𝐼𝑁 ≜ Non-invariant nodes

𝑆𝑁𝐼𝑁 ≜ Strongly non-invariant nodes

𝑃𝐼𝑁 ≜ Potentially invariant nodes

𝑊𝑁 ≜ Sandwich nodes

𝑆𝑁𝐼𝑁
′
≜ Subset of SNIN obtained by using degree bound

𝑁K ,𝑡 (𝑢) ≜ Neighbours of𝑢 with core value aboveK at time 𝑡

𝑉𝑐 ≜ Set of vertices whose core values need to be updated post edge update

𝑉𝑐𝑎𝑛 ≜ Set of vertices whose core values may get updated post edge update

𝑉𝐸
𝑐𝑎𝑛 ≜ 𝑉𝑐𝑎𝑛 set after Expansion stage

𝑉𝑆
𝑐𝑎𝑛 ≜ 𝑉𝑐𝑎𝑛 set after Shrinking stage

𝜋 ≜ Degeneracy order

𝑢 ⪯ 𝑣 ≜ Vertex 𝑣 is reachable from vertex𝑢

3 KWIQ: K -COREWINDOW QUERIES

Kwiq derives its computational efficiency by identifying four sets

of nodes within the search space: non-invariant nodes (𝑁𝐼𝑁 ),

strongly non-invariant nodes (𝑆𝑁𝐼𝑁 ), potential core-invariant

node (𝑃𝐼𝑁 ), and sandwich nodes (𝑊𝑁 ). A toy example for these

four sets is given in Fig. 4. Each edge update within ∆ is processed

based on the specific sets of nodes that it affects.

• Strongly non-invariant nodes (SNIN): 𝑆𝑁𝐼𝑁 contains those

nodeswhose core values remain below the cohesiveness thresh-

old K for the entire duration ∆. We will argue in §3.1 that all

updates that have endpoint in this set can be completely ignored.

While it is clear that 𝑆𝑁𝐼𝑁 is a subset of the non-invariant

nodes 𝑁𝐼𝑁 , there appears to be a circularity here since to iden-

tify 𝑆𝑁𝐼𝑁 we need to know the core value, which is what we

are trying to compute. To get around this we actually identify

a subset of nodes whose degree remains below K since the de-

gree of a node is a natural upper bound on its core value. This

subset can be easily identified in an initial pass over the edge up-

dates and turns out to be a reasonably large fraction of 𝑆𝑁𝐼𝑁 .

• Potential Invariant nodes (PIN): 𝑃𝐼𝑁 contains nodes that

are highly likely to be part of the core-invariant nodes. These

are nodes with high core values whose neighbours also have

high core values. If an edge addition or deletion contains both

end points from 𝑃𝐼𝑁 , we show in §3.2 that this edge can be

processed in 𝑂(1) time.

• Sandwich Nodes (WN): 𝑊𝑁 contains non-invariant nodes

that are neither in the strongly non-invariant set nor in the

potential invariant set. More specifically,𝑊𝑁 = 𝑁𝐼𝑁 \ {𝑃𝐼𝑁 ∪
𝑆𝑁𝐼𝑁 }. Updates involving𝑊𝑁 are the hardest to process, and

we track their core values following each edge update.

For example, consider Fig. 4. We set K = 3. Graph 𝐺𝑡 is

obtained from graph 𝐺𝑡−1 by addition of edge (𝑎,𝑔). Similarly,

graph 𝐺𝑡+1 is obtained from graph𝐺𝑡 by deletion of edge (𝑎, 𝑑).

Then, 𝑆𝑁𝐼𝑁 = {ℎ, 𝑖, 𝑗, 𝑘, 𝑙} because core value of these nodes
remains 2 for the given time points 𝑡 − 1, 𝑡, 𝑡 + 1, 𝑆𝑁𝐼𝑁 ′ =

{𝑖, 𝑗, 𝑘, 𝑙} because degree of these nodes remains 2 for the given

time points 𝑡 − 1, 𝑡, 𝑡 + 1. Node 𝑎 is the only invariant node

because this is the only node whose core value remains 3 for the

given time points 𝑡 − 1, 𝑡, 𝑡 + 1, so set of non-invariant nodes is

𝑁𝐼𝑁 = {𝑏, 𝑐, 𝑑, , 𝑒, 𝑓 , 𝑔, ℎ, 𝑖, 𝑗, 𝑘, 𝑙}. We also have 𝑃𝐼𝑁𝑡−1 =

{𝑎, 𝑏, 𝑐, 𝑑}, 𝑃𝐼𝑁𝑡 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔}. 𝑃𝐼𝑁𝑡+1 = {𝑎, 𝑒, 𝑓 , 𝑔}.

Therefore, 𝑊𝑁𝑡−1 = {𝑒, 𝑓 , 𝑔}, 𝑊𝑁𝑡 = 𝜙, 𝑊𝑁𝑡+1 = {𝑏, 𝑐, 𝑑}
because𝑊𝑁 = 𝑁𝐼𝑁 \ {𝑃𝐼𝑁 ∪ 𝑆𝑁𝐼𝑁 }.

With the proposed partitioning scheme, if K is high, then

most nodes fall within 𝑆𝑁𝐼𝑁 , which allows us to ignore majority

of the edge updates, resulting in fast querying times. On the other

hand, ifK is small, majority of nodes go to 𝑃𝐼𝑁 , which facilitates

faster processing of edge updates, and therefore not compromise

on efficiency.

3.1 Identifying a large subset of SNIN

From the definition of 𝑘-core, for a node to have core value

𝑘 , it must have at least 𝑘 neighbors with core value 𝑘 or higher.

Therefore,𝑘-core of a static graph is independent of all nodeswith

core value below 𝑘 . Since node 𝑢 remains below K throughout

∆, it never affects the K -core at any time instant 𝑡 ∈ ∆, which

implies that 𝐼K ,∆ is independent of 𝑢. We state this as a fact.

Fact 1. If ∀𝑡 ∈ ∆, 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) < K for node 𝑢 ∈ 𝑉 , then 𝐼K ,∆
of𝐺(𝑉 ,∆, 𝜏 ) is same as 𝐼K ,∆ on𝐺(𝑉 \{𝑢},∆, 𝜏 ). Note that removing

𝑢 from 𝑉 means ignoring any edge update with one endpoint on 𝑢.

Fact. 1 defines a strongly non-invariant node. The set 𝑆𝑁𝐼𝑁

is therefore 𝑆𝑁𝐼𝑁 = {∀𝑡 ∈ ∆, 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) < K |𝑢 ∈ 𝑉 }. Prop. 1
further implies:

Fact 2. 𝐼K ,∆ of𝐺(𝑉 ,∆, 𝜏 ) is same as 𝐼K ,∆ on𝐺(𝑉 \𝑆𝑁𝐼𝑁,∆, 𝜏 ).

If we can identify 𝑆𝑁𝐼𝑁 quickly, then we can avoid all edge

updates involving these nodes. However, we face a circular de-

pendency. Specifically, we want to avoid computing core values

of all nodes by applying Fact 2. However, Fact 2 itself requires

us to compute the core values of all nodes as Fact 2 is dependent

on computing 𝑆𝑁𝐼𝑁 . To remove this circular dependency, we

compute a subset of SNIN using what we call degree bound.

Fact 3 (Degree Bound). Since 𝑑𝑒𝑔(𝑢,𝐺𝑡 ) ≥ 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ), given

query duration ∆ = [𝑡𝑠 , 𝑡𝑒 ] and threshold K , if ∀𝑡 ∈ ∆, 𝑑𝑒𝑔(𝑢,𝐺𝑡 )

< K then 𝑢 ∈ 𝑆𝑁𝐼𝑁 .

Fact 3 allows us to compute a subset 𝑆𝑁𝐼𝑁 ′ ⊆ 𝑆𝑁𝐼𝑁 based

on just the degree of a node. More specifically, given ∆ = [𝑡𝑠 , 𝑡𝑒 ],

we first extract the static graph 𝐺𝑡𝑠 , which takes 𝑂(|𝐸𝑡𝑠 |) time.

Next, we iterate over each time 𝑡 ∈ ∆ and update the degree of

the affected node based on the edge addition or deletion at time

𝑡 . Updating the degree of a node consumes 𝑂(1) time. Thus, the

total complexity of applying degree bound and computing 𝑆𝑁𝐼𝑁 ′

is 𝑂(|𝐸𝑡𝑠 |+𝑡𝑒 − 𝑡𝑠 ). This running time is drastically smaller than

the brute force approach of computing 𝑘-core at each timestamp,

which takes𝑂(|𝐸𝑡𝑠 |+
∑𝑡𝑒
𝑡=𝑡𝑠
|𝐸𝑡 |) ≈ 𝑂(|𝐸𝑡𝑠 |(𝑡𝑒 − 𝑡𝑠 )) time assuming

the size of the graph remains similar throughout ∆.

3.2 Identifying and Processing PIN

Fact 4. Let 𝑒 = (𝑢, 𝑣) be an edge insertion between two nodes

𝑢 and 𝑣 in graph 𝐺𝑡 such that both 𝑢 and 𝑣 are in the K -core of

𝐺𝑡 . In this scenario, the K -core of𝐺𝑡+1, after 𝑒 is inserted, remains

identical to the K -core of 𝐺𝑡 .

Proof. Since an edge addition can only increase the core value

of a node, nodes in the K -core of 𝐺𝑡 would continue to remain

in the K -core of 𝐺𝑡+1 as well. Now, we need to show that nodes

that are not part of the K -core of 𝐺𝑡 , are not in the K -core of

𝐺𝑡+1 either. Let N = {𝑛 ∈ 𝑉 | 𝑐𝑜𝑟𝑒(𝑛,𝐺𝑡 ) < K } be the nodes not
inK -core of𝐺𝑡 . The core value of a node 𝑛 ∈ N can change from

K − 1 in 𝐺𝑡 to K in 𝐺𝑡+1 in two ways:
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Figure 5: Flowchart to process edge updates in Kwiq where

SNIN′ is the set of nodes whose degree remains below K
throughout the query window, and PINt is the set of nodes
which have at least K neighbors in K -core at time t.

(1) New neighbor: A new edge connects 𝑛 to a node with core

value of at least K
(2) Cascading effect: One of 𝑛’s neighbors’ core value changes

from K − 1 to K and thus it has a cascading effect on 𝑛.

The first option is not possible since 𝑒 connects two nodes with

core values above K . This, in turn, rules out the second possi-

bility since a cascade can initiate only through a new neighbor.

Thus, core value of all nodes not in K -core of 𝐺𝑡 remains the

same in 𝐺𝑡+1. □
To leverage Fact 4, we introduce the notion of K -neighbors,

denoted as 𝑁K ,𝑡 (𝑢). Specifically, 𝑁K ,𝑡 (𝑢) includes all neighbors

of 𝑢 with core value of at least K .

𝑁K ,𝑡 (𝑢) = {𝑣 | 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡 ) ≥ K , 𝜏(𝑢, 𝑣, 𝑡 ) = 1} (1)

Based on 𝑁K ,𝑡 (𝑢), the set of potential core-invariant node at

time 𝑡 is defined as 𝑃𝐼𝑁𝑡 = {𝑢 ∈ 𝑉 | |𝑁K ,𝑡 (𝑢)|≥ K }. All nodes
in 𝑃𝐼𝑁𝑡 are guaranteed to be in the K -core of 𝐺𝑡 . With this

information, an edge update is processed as illustrated in Fig. 5.

• Edge insertion: Let 𝑒 = (𝑢, 𝑣) be an edge that is inserted

at time 𝑡 + 1. If both 𝑢, 𝑣 ∈ 𝑃𝐼𝑁𝑡 , then from Fact 4, the K -

core remains unchanged. Thus, we only update 𝑁K ,𝑡+1
(𝑢) and

𝑁K ,𝑡+1
(𝑣) by adding 𝑣 and 𝑢 to their respective neighborhoods

in 𝑂(1) time.

• Edge deletion: Let 𝑒 = (𝑢, 𝑣) be an edge that is deleted at

time 𝑡 + 1. If both |𝑁K ,𝑡 (𝑢)|> K and |𝑁K ,𝑡 (𝑣)|> K , then we

are guaranteed that theK -core remains unchanged since both

𝑢 and 𝑣 continue to have at least K neighbors of core value

higher than K . Thus, we update 𝑁K ,𝑡+1
(𝑢) and 𝑁K ,𝑡+1

(𝑣) in

𝑂(1) time.

• For updates violating the above criteria, and those specified by

degree bound, we analyze their impact though the orientation

algorithm.

3.3 Orientation Algorithm

The orientation algorithm is powered by the orientation graph.

The orientation graph allows us to prune nodes that are guaran-

teed to not have been affected by an edge update.

3.3.1 The Orientation Graph. The orientation graph of an

undirected graph 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) is a directed graph

−→
𝐺𝑡 = (𝑉 ,

−→
𝐸𝑡 )

with the same vertex set. The direction of the orientation graph’s

edges stores information about the relative core values of the two

endpoints as follows: each edge of

−→
𝐸𝑡 is an edge of 𝐸𝑡 assigned a

𝑘 𝑛 𝑎 𝑑 𝑔 ℎ 𝑗

𝑙 𝑚 𝑏 𝑐 𝑒 𝑓 𝑖

Figure 6: An example graph Gt.

𝑘 𝑛 𝑎 𝑑 𝑔 ℎ 𝑗

𝑙 𝑚 𝑏 𝑐 𝑒 𝑓 𝑖

Figure 7: Orientation graph of the graph Gt given in Fig. 6.

direction in such a way that if ⟨𝑢, 𝑣⟩ is a directed edge oriented

from 𝑢 to 𝑣 in
−→
𝐸𝑡 then the 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡 ).

The orientation graph is constructed from the output of the

core decomposition algorithm (Alg. 1) [25]. This procedure it-

eratively computes core values of nodes by removing the one

with the minimum degree in each iteration. Since there may

be multiple nodes of minimum degree at every step of the core

decomposition algorithm, the output order in which nodes are

removed is not unique. The degeneracy order of a graph is one of

the possible orders in which nodes may be removed.

Definition 4 (Degeneracy Order). We call a permutation

𝜋 : 𝑉 → [𝑛] of the node set a degeneracy order if it is a possible

output order of the core decomposition algorithm, i.e., 𝜋−1
(1) is

the first node removed, 𝜋−1
(2) is the second and so on. We use the

notation 𝜋 (𝑢), 𝑢 ∈ 𝑉 to denote the order of node 𝑢 and 𝜋−1
(𝑛), 𝑛 ∈

Z to denote the 𝑛𝑡ℎ node in the permutation.

We will use the convention that ⟨𝑢, 𝑣⟩ denotes a directed edge

oriented from 𝑢 to 𝑣 while (𝑢, 𝑣) will be used to denote an undi-

rected edge. Given the degeneracy order 𝜋 of a static graph 𝐺𝑡 ,

we can construct its degeneracy orientation graph.

Definition 5 (Degeneracy Orientation Graph). Given

an undirected graph 𝐺𝑡 = (𝑉 , 𝐸𝑡 ), a directed graph
−→
𝐺 𝑡 = (𝑉 ,

−→
𝐸 𝑡 )

where

−→
𝐸𝑡 is obtained by assigning a direction to each edge of 𝐸𝑡 is

called an orientation of 𝐺𝑡 . An orientation

−→
𝐺 𝑡 is called a degen-

eracy orientation graph (degeneracy orientation for short) of 𝐺𝑡
if there is a degeneracy order 𝜋 such that for every directed edge

⟨𝑢, 𝑣⟩ ∈ −→𝐸𝑡 we have that 𝜋 (𝑢) < 𝜋 (𝑣).

Example 2. Consider graph𝐺 in Fig. 6. The subgraph induced

by {𝑘 ,𝑙 ,𝑚,𝑛} is the 3-core of 𝐺 . There does not exist a 4-core in 𝐺 .

Thus, one degeneracy order 𝜋 of 𝐺 is (𝑖 , 𝑗 ,𝑎,𝑐 ,𝑏,𝑑 ,𝑒 ,𝑓 ,𝑔,ℎ,𝑚,𝑙 ,𝑛,𝑘).

Fig. 7 shows the corresponding orientation graph.

Proposition 1. If

−→
𝐺 𝑡 is a degeneracy orientation of 𝐺𝑡 then

(1)

−→
𝐺 𝑡 is a DAG.

(2) If 𝑢1, 𝑢2, · · · , 𝑢𝑘 is a directed path in

−→
𝐺 𝑡 then 𝑐𝑜𝑟𝑒(𝑢1,𝐺𝑡 ) ≤

𝑐𝑜𝑟𝑒(𝑢2,𝐺𝑡 ) ≤ · · · ≤ 𝑐𝑜𝑟𝑒(𝑢𝑘 ,𝐺𝑡 ).

Proof. Since the orientation of the edges is defined by a to-

tal order 𝜋 ,
−→
𝐺𝑡 = (𝑉 ,

−→
𝐸 ) cannot have cycles, and hence it is a

Algorithm 1 core-decomposition

Require: undirected graph𝐺𝑡

Ensure: Core value of all nodes set.

1: Set 𝑖 = 0,𝐺𝑖
𝑡 = 𝐺𝑡 and 𝑑 = minimum degree of𝐺 .

2: while𝐺𝑖
𝑡 is non-empty do

3: while there is a node 𝑣𝑖 with degree ≤ 𝑑 in𝐺𝑖
𝑡 do

4: Set core value of 𝑣𝑖 to be 𝑑 .

5: Set𝐺𝑖+1

𝑡 to be𝐺𝑖
𝑡 \ {𝑣𝑖 }.

6: increment 𝑖 .

7: increment 𝑑 .
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DAG. The second property can be deduced by observing that the

core decomposition algorithm assigns core values to nodes in

increasing order (lines 4 and 7 in Alg. 1). □

Hereon, we use 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢,
−→
𝐺𝑡 ) to denote the out degree of

node 𝑢 in

−→
𝐺𝑡 . Furthermore, we say node 𝑣 is reachable from

𝑢 if there exists a directed path from 𝑢 to 𝑣 in

−→
𝐺𝑡 . We denote

reachability using the notation 𝑢 ⪯ 𝑣 .

The directionality of edges in the orientation graph of the

original undirected graph contains information on how the cas-

cading effect of an edge update spreads. In the next sections, we

formally derive these properties.

3.3.2 Algorithm for Edge Insertions. Let (𝑢, 𝑣) be the edge in-

serted to𝐺𝑡−1 = (𝑉 , 𝐸𝑡−1) to obtain𝐺𝑡 = (𝑉 , 𝐸𝑡 = 𝐸𝑡−1 ∪ {(𝑢, 𝑣)}).
For simplicity of presentation we assume that 𝐿 = 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) <

𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1). We discuss the small changes that are required if

two nodes have the same core value later in the section.

The following two properties have already been established

in the literature [21]:

• Property 1: Following an edge addition (resp. deletion), the

core value of a node can increase (resp. decrease) by at most 1.

• Property 2: If an edge (𝑢, 𝑣) is inserted (resp. deleted) in

graph 𝐺𝑡 = (𝑉 , 𝐸), such that 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) < 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡 ), a node

𝑤 ’s core value can increase (resp. decrease) only if there exists

a path from 𝑢 to 𝑤 where all nodes have core value equal to

𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ).

We tighten Property 2 further by utilizing the orientation graph.

Theorem 1. If an edge (𝑢, 𝑣) is inserted in graph𝐺𝑡 = (𝑉 , 𝐸),

such that 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) < 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡 ), a node 𝑤 ’s core value can

increase only if there exists a directed path from 𝑢 to 𝑤 in the

degeneracy orientation graph

−→
𝐺𝑡 where all nodes have core value

equal to 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ).

Proof. Let𝑤 be a node whose core value increases when (𝑢, 𝑣)

is inserted into𝐺𝑡 with 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) < 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡 ). Clearly𝑤 must

be reachable from 𝑢 in 𝐺𝑡 . Consider towards contradiction that

𝑤 is not reachable from 𝑢 in

−→
𝐺𝑡 . This means that during core

decomposition (Alg. 1), 𝑤 was removed earlier than 𝑢. This, in

turn, means the addition of edge (𝑢, 𝑣) cannot change the core

value assigned to𝑤 since if 𝑢’s core value changes, then it can

only affect the core values of nodes that are removed after 𝑢. So

we get a contradiction.

We have argued that there must be a directed path from𝑢 to𝑤

in

−→
𝐺𝑡 . Since core values can only increase along a directed path of

−→
𝐺𝑡 the core values of each node on this path is at least 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 )

(c.f Proposition 1). Now, let us assume towards contradiction that

there is a node 𝑧 ̸= 𝑤 on this path whose core value is strictly

greater than 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ). Since, only nodes with core value equal

Algorithm 2 Orientation-Insertion

Require: Degeneracy Orientation Graph

−→
𝐺𝑡 , edge to be inserted (𝑢, 𝑣)

Ensure: Core value of all nodes updated.

1: 𝐿 ← 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ⊲WLOG assume 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1)

2:

−→
𝐸𝑡 ←

−→
𝐸𝑡 ∪ ⟨𝑢, 𝑣⟩;

3: 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢,
−→
𝐺𝑡 )← 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢,

−→
𝐺𝑡 ) + 1;

4: 𝑠𝑎𝑚𝑒𝐿 ← 𝑓 𝑎𝑙𝑠𝑒 ; ⊲ True if core values of𝑢 and 𝑣 are equal.
5: if sameL then

6: correct the direction ⟨𝑢, 𝑣⟩; ⊲ Update corresponding 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒

7: 𝑉𝑐𝑎𝑛 ← ExpansionPhase(

−→
𝐺𝑡 );

8: 𝑉𝑐 ← ShrinkingPhase(

−→
𝐺𝑡 ,𝑉𝑐𝑎𝑛 );

9: for all 𝑤 ∈ 𝑉𝑐 do

10: 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡 )← 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡 ) + 1;

Algorithm 3 ExpansionPhase

Require: Degeneracy Orientation Graph

−→
𝐺𝑡 , expansion root𝑢

Ensure: 𝑉𝑐𝑎𝑛 : potential candidate set;
1: 𝑉𝑐𝑎𝑛 ← an empty set;

2: Initialize an empty queue𝑄 with node𝑢
3: while𝑄 ̸= 𝜙 do

4: 𝑤 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒();

5: if 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺𝑡 ) > 𝐿 then

6: 𝑉𝑐𝑎𝑛 ← 𝑉𝑐𝑎𝑛 ∪ {𝑤 };
7: for all ⟨𝑤, 𝑤′ ⟩ st 𝑐𝑜𝑟𝑒(𝑤′,𝐺𝑡 ) = 𝐿 do

8: 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤′,
−→
𝐺𝑡 )← 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤′,

−→
𝐺𝑡 ) + 1;

9: if 𝑤′ ̸∈ 𝑄 ∧ 𝑤′ ̸∈ 𝑉𝑐𝑎𝑛 then

10: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑤′);
11: return𝑉𝑐𝑎𝑛

to 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡 ) can have their core value increased, core value of

node 𝑧 remains unchanged (Property 2 [21]). Furthermore, if core

value of node 𝑧 remains unchanged, then core value of 𝑤 will

not increase as all the neighbors have same core value as before

insertion. Hence, we get a contradiction. □

Since the orientation graph is a directed version of the original

undirected graph, Thm. 1 is a provably tighter bound than Prop-

erty 2. Hence, the search space is reduced. We further reduce the

computation through the following result.

Theorem 2. If 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢,
−→
𝐺 𝑡 ) ≤ 𝐿, then 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡 ) =

𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡−1) for all𝑤 ∈ 𝑉 .

Proof. From Thm. 1, we know only nodes reachable from 𝑢

in

−→
𝐺𝑡 may have their core values changed. Thus, all nodes with a

lower degeneracy order than 𝑢 have their core values unchanged.

For node 𝑢 to move from 𝐿 to 𝐿 + 1 core, it must have at least

𝐿 + 1 neighbors with a higher degeneracy order. However, this is

not the case as 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑛,
−→
𝐺 𝑡 ) ≤ 𝐿. □

Thm. 2 establishes a stricter condition under which there is no

effect of an edge update on the core values. Empoweredwith these

bounds, we are now ready to design our algorithm to process

edge updates. The orientation algorithm (Alg. 2) works in two

phases:

(1) An expansion phase (Alg. 3), which does a breadth-first search

(BFS) on

−→
𝐺 𝑡 to discover a candidate set of nodes 𝑉𝑐𝑎𝑛 , such

that𝑉𝑐𝑎𝑛 ⊇ 𝑉𝑐 , where𝑉𝑐 is the set of nodes whose core values
will change due to insertion.

(2) A shrinking and reorientation phase (Alg. 4) where the false

positive nodes, i.e., 𝑉𝑐𝑎𝑛 \𝑉𝑐 are discarded and edges of

−→
𝐺 𝑡

are reoriented to ensure that

−→
𝐺 𝑡 is a orientation graph of 𝐺𝑡 .

We now discuss these phases in more detail.

• Initialization. First, we set: −→𝐸𝑡 =

−→
𝐸 𝑡−1 ∪ {⟨𝑢, 𝑣⟩}.

• Expansion Phase. Alg. 3 lists the pseudocode of the expan-

sion phase. Since only nodes reachable from 𝑢 can be in 𝑉𝑐 (c.f.

Lem. 1), the expansion phase expands in breadth-first manner

(BFS ) from 𝑢 in

−→
𝐺𝑡 = (𝑉 ,

−→
𝐸 ∪ ⟨𝑢, 𝑣⟩) and visits only nodes with

core values equal to 𝐿. Since the BFS starts from 𝑢, we call 𝑢 the

root node.

In the first pass inside while loop (line 3),𝑤 will be 𝑢 (line 4).

So, if 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑢,
−→
𝐺𝑡 ) ≤ 𝐿 then no vertices gets its core value

updated (Thm. 2). Hence, the algorithmwill terminate with empty

𝑉𝑐𝑎𝑛 . If 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 (𝑢,
−→
𝐺𝑡 ) > 𝐿, then we initialize a candidate set,

𝑉𝑐𝑎𝑛 to {𝑢} (line 6) and compute the initial incoming candidate

degree of all nodes𝑤 ∈ 𝑉 , defined as:

𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) =

���{⟨𝑤 ′,𝑤⟩ ∈ −→𝐸𝑡 : 𝑤 ′ ∈ 𝑉𝑐𝑎𝑛
}��� .
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Hereon, we start a (directed) BFS from 𝑢 in

−→
𝐺𝑡 to grow the candi-

date set𝑉𝑐𝑎𝑛 . At every step, we retrieve the head node𝑤 from the

BFS queue and check if𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺 𝑡 ) +𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺 𝑡 ) >

𝐿. If the condition is satisfied then𝑤 is added to 𝑉𝑐𝑎𝑛 and all of

𝑤 ’s children (outgoing neighbors) with core value 𝐿, are added to

the BFS queue. This condition is a result of the following lemma.

lemma 1. If 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 )+𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺𝑡 ) ≤ 𝐿 then

𝑤 ̸∈ 𝑉𝑐 .

Proof. For 𝑤 to move from 𝐿-core in 𝐺𝑡−2 to 𝐿 + 1-core

in 𝐺𝑡 , 𝑤 must have at least 𝐿 + 1 neighbors in 𝐺𝑡 with core

value of 𝐿 + 1 or higher. 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) counts all neighbors

with higher degeneracy order and therefore potential outgoing

neighbors with core value 𝐿 + 1. Among the incoming neigh-

bors, 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) counts all incoming neighbors that

could potentially move from 𝐿-core to 𝐿 + 1-core. Therefore,

𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺𝑡 ) is an upper-bound on

the number of neighbors with core value 𝐿 + 1 in 𝐺𝑡 . Hence, if

𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺𝑡 ) ≤ 𝐿, 𝑤 cannot move to

the 𝐿 + 1-core and therefore𝑤 ̸∈ 𝑉𝑐 . □

Observation: It is important to note that at any intermediate

stage of the BFS, the computation of 𝑉𝑐𝑎𝑛 is partially complete.

However, we are still able to apply the degree criterion, since

𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) depends only on the incoming neighbors to

𝑤 . BFS performs a level-wise traversal, and thus all incoming

neighbors of𝑤 are evaluated before𝑤 is accessed for the last time.

Consequently, any possible contributors to 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 )

has already been added to 𝑉𝑐𝑎𝑛 by the time the BFS reaches𝑤 .

• Shrinking and Reorientation Phase. In this phase, our

goal is to (1) eliminate the nodes in 𝑉𝑐𝑎𝑛 \𝑉𝑐 , and (2) ensure

−→
𝐺 𝑡

is a orientation graph of𝐺𝑡 . Toward that, we adopt the following

iterative procedure. Alg. 4 presents the pseudocode.

(1) For every node𝑤 ∈ 𝑉𝑐𝑎𝑛 identify: (line 1-2)

𝑇𝑤 = {𝑣 : ⟨𝑤, 𝑣⟩ ∈ −→𝐸𝑡 , 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1) = 𝐿, 𝑣 ̸∈ 𝑉𝑐𝑎𝑛}.

(2) If 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺 𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺 𝑡 ) − |𝑇𝑤 |≤ 𝐿, (line

3)

• Remove𝑤 from 𝑉𝑐𝑎𝑛 . (line 4)

• For each 𝑣 ∈ 𝑇𝑤 , remove ⟨𝑤, 𝑣⟩ from −→𝐸 𝑡 , and insert ⟨𝑣,𝑤⟩,
i.e., flip each such edge. (line 5-6).

• Delete ⟨𝑢,𝑤⟩ from −→𝐸 𝑡 for every𝑢 ∈ 𝑉𝑐𝑎𝑛 , and insert ⟨𝑤,𝑢⟩.
(3) Since 𝑉𝑐𝑎𝑛 may change with removal of nodes, the

𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺 𝑡 ) of some nodes 𝑤 ∈ 𝑉𝑐𝑎𝑛 may change

as well. Thus, iterate by re-starting the process from Step 1,

till we reach a stage where no nodes are removed from 𝑉𝑐𝑎𝑛 .

(line 7)

Algorithm 4 ShrinkingPhase

Require: Degeneracy Orientation Graph

−→
𝐺𝑡 , potential candidate set𝑉𝑐𝑎𝑛

Ensure: 𝑉𝑐 : set of nodes whose core values need to be changed

1: for all 𝑤 ∈ 𝑉𝑐𝑎𝑛 do

2: 𝑇𝑤 ← {𝑣 : ⟨𝑤, 𝑣⟩ ∈ −→𝐸𝑡 , 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1) = 𝐾, 𝑣 ̸∈ 𝑉𝑐𝑎𝑛 }
3: if 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺 𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺 𝑡 ) − |𝑇𝑤 | ≤ 𝐿 then

4: 𝑉𝑐𝑎𝑛 ← 𝑉𝑐𝑎𝑛 \ {𝑤 }
5: for all 𝑣 ∈ 𝑇𝑤 do

6: Reverse ⟨𝑤, 𝑣⟩ in −→𝐸𝑡 ⊲ update corresponding canInDegree,outDegree

7: Reverse ⟨𝑢, 𝑤 ⟩ in −→𝐸𝑡 for every𝑢 ∈ 𝑉𝑐𝑎𝑛 ⊲ update corresponding
canInDegree,outDegree

8: Repeat line 1-7 till no nodes can be further removed from𝑉𝑐𝑎𝑛
9: return𝑉𝑐𝑎𝑛 ⊲𝑉𝑐𝑎𝑛 = 𝑉𝑐

𝑏 𝑐

𝑎

𝑑

𝑒 𝑓
𝑔

ℎ
𝑖 𝑗
(a) 𝐺𝑡−1

𝑏 𝑐

𝑎

𝑑

𝑒 𝑓
𝑔

ℎ
𝑖 𝑗
(b)

−→
𝐺 𝑡−1

𝑏 𝑐

𝑎

𝑑

𝑒 𝑓
𝑔

ℎ
𝑖 𝑗

(c)

−→
𝐺 𝑡 : expansion phase

𝑏 𝑐

𝑎

𝑑

𝑒 𝑓
𝑔

𝑖 𝑗
ℎ

(d)

−→
𝐺 𝑡 : shrinking phase

𝑏 𝑐

𝑎

𝑑

𝑒 𝑓
𝑔

𝑖 𝑗
ℎ

(e) 𝐺𝑡 : updated core values

Figure 8: We set K = 3. Graph Gt given in sub-figure (e) is

obtained from the graph Gt−1 given in sub-figure (a) by

addition of edge (a, g). The graphs

−→
𝐺 t−1 and

−→
𝐺 t are the

orientation graphs of Gt−1 and Gt respectively. The green
vertices have core value 3, and the remaining vertices have

core value less than 3. The candidate set Vcan consists of yel-

low vertices after expansion phase. The set Vc consists of
blue vertices whose core value is incremented after shrink-

ing phase.

Core Value Updation. Following the completion of shrinking

and reorientation phase, we increment the core value of each

node in 𝑉𝑐 by 1. This follows from Property 1 [18].

For example, consider Fig. 8. We set K = 3. Graph𝐺𝑡 given in

sub-figure 8e is obtained from the graph𝐺𝑡−1 given in sub-figure

8a by addition of edge (𝑎,𝑔). Therefore, 𝐿 = 2 = 𝑐𝑜𝑟𝑒(𝑔,𝐺𝑡−1).

The graphs

−→
𝐺 𝑡−1 and

−→
𝐺 𝑡 are the orientation graphs of𝐺𝑡−1 and

𝐺𝑡 respectively. The green vertices have core value 3, and the

remaining vertices have core value less than 3. The candidate set

𝑉𝑐𝑎𝑛 consists of yellow vertices after expansion phase because

sum of outDegree and canInDegree is greater than 2 for each of

yellow nodes, and no other vertex satisfies this condition. The

vertex ℎ is discarded from 𝑉𝑐𝑎𝑛 to obtain 𝑉𝑐 during shrinking

phase because 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(ℎ,
−→
𝐺 𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(ℎ,

−→
𝐺 𝑡 ) − |𝑇ℎ |=

1 < 𝐿. The direction of some edges of orientation graph is also

reversed during this phase. The set 𝑉𝑐 consists of blue vertices

whose core value is incremented after shrinking phase.

Theorem 3 (Insertion Correctness). Given a graph𝐺𝑡−1 =

(𝑉 , 𝐸𝑡−1) and two vertices 𝑢, 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ̸∈ 𝐸𝑡−1 and

𝐿 = 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1), the Insertion Algorithm has the

following properties:

(1) The vertices that remain in 𝑉𝑐𝑎𝑛 at the beginning of the Core

Value Update Phase is precisely the set𝑉𝑐 of vertices whose core

value is to be incremented, and

(2) the directed graph

−→
𝐺 𝑡 = (𝑉 ,

−→
𝐸 𝑡 ) obtained at the end of the

algorithm is a orientation graph of 𝐺𝑡 .

Insertion when 𝐿 = 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) = 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1)

When the core values are the same, we do not know apriori

which way to orient the edge (𝑢, 𝑣). Since there should not be a

cycle in

−→
𝐺 𝑡 , we make this decision by checking if 𝑢 is reachable

from 𝑣 in
−→
𝐺 𝑡−1 or vice versa, and orienting the edge accordingly
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to ensure no cycle is created. From property 2 of Prop. 1, we are

guaranteed that if at all the added edge induces a cycle in the

orientation graph, this cycle must exist in the induced subgraph

formed by nodes in 𝑉 𝐿
𝑡−1

changed from 𝑣𝑐 to this. Thus, we can

limit the cycle checking exploration to a much smaller subgraph

of the entire graph. This property indeed holds on real datasets,

where we find that cycle-checking is performed only on 5%, 2.7%,

and 4.2% of the edge updates in WikiTalk, StackOverflow, and

#Caravan respectively.

Proof of Theorem 3

Proof. We establish this theorem through following lemmas.

lemma 2 (Pruning correctness). If we denote by 𝑉 𝑆𝑐𝑎𝑛 the

set of vertices left in 𝑉𝑐𝑎𝑛 after the Shrinking and Reorientation

Phase, then 𝑉 𝑆𝑐𝑎𝑛 = 𝑉𝑐 .

Proof. Let𝑉 ≥𝐿+1

𝑡−1
be the set of nodes in the 𝐿 + 1-core of𝐺𝑡−1.

Now, consider the subgraph induced by𝑉 ≥𝐿+1

𝑡−1
∪𝑉𝑐𝑎𝑛 . Since∀𝑤 ∈

𝑉𝑐𝑎𝑛, 𝑇𝑤 = ∅, and 𝑜𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,
−→
𝐺𝑡 ) + 𝑐𝑎𝑛𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒(𝑤,

−→
𝐺𝑡 ) > 𝐿,

every node in 𝑉𝑐𝑎𝑛 has at least 𝐿 + 1 neighbors from either 𝑉𝑐𝑎𝑛

or𝑉 ≥𝐿+1

𝑡−1
. Thus, all nodes in𝑉𝑐𝑎𝑛 are part of 𝐿 + 1𝑐𝑜𝑟𝑒 . Therefore,

𝑉𝑐𝑎𝑛 = 𝑉𝑐 since all nodes in 𝑉𝑐𝑎𝑛 were in 𝐿-core in 𝐺𝑡−1. □

We next prove the second part of Theorem 3, i.e., orientation

graph is correctly maintained.

lemma 3 (Reorientation Correctness).

−→
𝐺 𝑡 = (𝑉 ,

−→
𝐸 𝑡 ) at

the end of the Insertion algorithm is a orientation graph of 𝐺𝑡 .

Proof. Let us consider running Alg. 1 on𝐺𝑡 . Till the variable

𝑑 reaches core value 𝐿, everything remains unchanged. Further,

if 𝑢 was removed in iteration 𝑖 , everything remains the same till

iteration 𝑖 − 1 as we have argued above. Now note that there

are some nodes with core value 𝐿 that were included in 𝑉𝑐𝑎𝑛 in

the Expansion Phase and removed in the Shrinking Phase. Their

removal happened because their degree among candidates and

higher core value nodes was not 𝐿 + 1. Clearly these nodes will

be removed before any node of 𝑉𝑐 is removed. But these nodes

were discovered because there were edges oriented towards them

from 𝑉𝑐𝑎𝑛 . These edges, therefore, must be reversed otherwise

−→
𝐸 𝑡 will not satisfy the property that it is produced by a core

decomposition algorithm. Finally, once we dispense with these

nodes the rest of the trace of Alg. 1 can follow the same order as

it did for 𝐺𝑡−1, except that the value of 𝑑 will be incremented to

𝐿 + 1 before we do so. □
This completes the proof of Thm 3. □

Time Complexity. The insertion algorithm involves a BFS in

the forward direction and then a shrinking phase which goes

backwards over the BFS tree constructed. To bound the run-

ning we note that the BFS stays within the set of nodes whose

core value is 𝐿. Hence, the running time is O
(∑

𝑣∈𝑉 𝐿
𝑡
𝑑𝑒𝑔(𝑣,𝐺𝑡 )

)
,

where 𝑉 𝐿𝑡 is the set of nodes with core value 𝐿 in 𝐺𝑡 .

3.3.3 Algorithm for Edge Deletions. Let (𝑢, 𝑣) be the edge

deleted to 𝐺𝑡−1 = (𝑉 , 𝐸𝑡−1) to obtain 𝐺𝑡 = (𝑉 , 𝐸𝑡 = 𝐸𝑡−1 \
{(𝑢, 𝑣)}). Consistent with the previous discussion, we assume

𝐿 = 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1).

Deletion algorithm overview: Core maintenance, when an

edge is deleted, is similar in spirit to the Shrinking Phase of our

insertion algorithm as it involves: (1) identifying nodes that do

not have the support to qualify for core value of 𝐿, and (2) ensur-

ing that the orientation graph

−→
𝐺 𝑡 that we get after deleting and

Algorithm 5 Orientation-Deletion

Require: undirected graph𝐺𝑡 , Degeneracy Orientation Graph

−→
𝐺𝑡 , edge to be deleted (𝑢, 𝑣)

Ensure: Core values of all nodes updated.

1: 𝐿 ← 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ⊲WLOG assume 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1)

2: 𝑉𝑐 ← an empty set

3: Initialize an empty queue𝑄 with node𝑢
4: if 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1) = 𝐿 then

5: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑣)

6: while𝑄 ̸= 𝜙 do

7: 𝑤 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒();

8: if no. of neighbors of 𝑤 in𝑉 ≥𝐿
𝑡−1

< 𝐿 then

9: for all ⟨𝑤′, 𝑤 ⟩ ∈ −→𝐺𝑡 st 𝑤′ ∈ 𝑉 ≥𝐿
𝑡−1
\𝑉𝑐 do

10: Reverse ⟨𝑤′, 𝑤 ⟩ in −→𝐸𝑡 ; ⊲ update corresponding outDegree

11: 𝑉𝑐 ← 𝑉𝑐 ∪ {𝑤 }
12: for all neighbors 𝑤′ of 𝑤 where 𝑐𝑜𝑟𝑒(𝑤′,𝐺𝑡−1) = 𝐿 ∧ 𝑤′ ̸∈ 𝑉𝑐 do

13: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑤′)
14: for all 𝑤 ∈ 𝑉𝑐 do

15: 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡 )← 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡−1) − 1

changing the core values is a orientation graph of the updated

graph 𝐺𝑡 .

As in the case of insertion, we package both these activities,

identifying 𝑉𝑐 and reorienting edges together in a single phase.

We now discuss the algorithm in greater detail, using the notation

that 𝑉 ≥𝐿
𝑡−1

is the set of nodes with core value at least 𝐿 in 𝐺𝑡−1.

Alg. 5 outlines the pseudocode.

Initialization. First we set:

−→
𝐸𝑡 =

−→
𝐸 𝑡−1 \ {⟨𝑢, 𝑣⟩}, and 𝐸𝑡 =

𝐸𝑡−1 \ {(𝑢, 𝑣)}. Initialize 𝑉𝑐 = ∅. (line 2)
Undirected Shrinking and Directed Reorientation. We it-

erate over each node𝑤 ∈ 𝑉 with 𝑐𝑜𝑟𝑒(𝑤,𝐺𝑡−1) = 𝐿 such that𝑤

has less than 𝐿 (undirected) neighbours in 𝑉 ≥𝐿
𝑡−1
\𝑉𝑐 (line 8). For

each such node, we perform the following actions.

• Place𝑤 in 𝑉𝑐 (line 11).

• If there is any edge of the form ⟨𝑤 ′,𝑤⟩ ∈ −→𝐸 𝑡 s.t.𝑤 ′ ∈ 𝑉 ≥𝐿𝑡−1
\𝑉𝑐 ,

flip it, i.e. remove it and insert ⟨𝑤,𝑤 ′⟩ in its place (line 9-10).

• Since 𝑉𝑐 is changed with addition of𝑤 , some more nodes can

be eligible for 𝑉𝑐 . Hence, iterate by re-starting the process.

Note that above process can be easily converted to undirected

BFS as outlined in Alg. 5.

Core Value Update Phase. We decrement the core value of all

vertices in 𝑉𝑐 by 1. (line 14-15)

Theorem 4 (Deletion Correctness). Given a graph

𝐺𝑡−1 = (𝑉 , 𝐸𝑡−1) and two vertices 𝑢, 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝐸𝑡−1

and 𝐿 = 𝑐𝑜𝑟𝑒(𝑢,𝐺𝑡−1) ≤ 𝑐𝑜𝑟𝑒(𝑣,𝐺𝑡−1), the Deletion Algorithm

described above has the properties that

(1) The vertices placed in 𝑉𝑐 are precisely the set 𝑉𝑐 of vertices

whose core value is to be decremented by 1, and

(2) the directed graph

−→
𝐺 𝑡 = (𝑉 ,

−→
𝐸 𝑡 ) obtained at the end of the

algorithm is a orientation graph for 𝐺𝑡 .

Proof. Property 1 of Thm. 4 has been established by Saríyüce

et. al. in [21]. So we focus on the second property, i.e., reorienta-

tion correctness. Let us compare a trace of the core decomposition

algorithmAlg. 1 on𝐺𝑡−1 to a trace on𝐺𝑡 . Till the value of𝑑 = 𝐿−1

the algorithm proceeds exactly the same. After these, nodes with

core value 𝐿 start being pulled out from𝐺𝑡−1. However, in𝐺𝑡 , be-

cause of𝑉𝑐 being correctly selected, we begin to pull out vertices

from 𝑉𝑐 . Edges from these vertices should be oriented towards

vertices in𝑉 ≥𝐿𝑡 . Furthermore, since, at any stage in the algorithm

𝑉 ≥𝐿
𝑡−1
\𝑉𝑐 ⊇ 𝑉 ≥𝐿𝑡 (by property 1), orienting edges from the ver-

tices of𝑉𝑐 to the vertices of𝑉
≥𝐿
𝑡−1
\𝑉𝑐 as (𝑉 ≥𝐿

𝑡−1
\𝑉𝑐 ) \𝑉 ≥𝐿𝑡 , i.e., the

vertices with core value 𝐿 in 𝐺𝑡−1 that will enter 𝑉𝑐 after𝑤 will

also have the same core value as𝑤 . Thus, the edge is correctly

oriented as long as we extract the vertices of 𝑉𝑐 in the trace of
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Table 2: Temporal graphs used in the experiments.

Dataset |V| |E| Average Degree Date Range Granularity

WikiTalk 1.14𝑀 7.8𝑀 13.68 10/2001 − 1/2008 seconds

StackOverflow 2.6𝑀 63.5𝑀 48.84 8/2008 − 3/2016 seconds

Twitter 15𝑀 257𝑀 34.26 6/2009 − 12/2009 seconds

#Caravan 2.4𝑀 2.94𝑀 2.45 10/2018 − 11/2018 seconds

Table 3: Temporal graphs used for applications.

Dataset |V| |E| Average Degree Date Range Granularity

Election 346, 573 2.13𝑀 12.29 05/2016 − 11/2016 seconds

DBLP 217312 631283 5.81 1952 − 2012 years

Alg 1 on 𝐺𝑡 in the same order as they were encountered in the

trace of the algorithm on 𝐺𝑡−1. □

Time complexity: The algorithm takes time proportional to

the number of edges incident on 𝑉𝑐 . Thus, the time complexity

is O
(∑

𝑣∈𝑉𝑐 𝑑𝑒𝑔(𝑣,𝐺𝑡 )
)
which is at most O

(∑
𝑣∈𝑉 𝐿

𝑡
𝑑𝑒𝑔(𝑣,𝐺𝑡 )

)
,

where 𝑉 𝐿𝑡 is the set of nodes with core value 𝐿 in 𝐺𝑡 .

3.3.4 Technical differences with OBA [29] . Following an edge

update, let𝑉𝑐 be the set of vertices whose core values will change.

To perform core maintenance, OBA [29] uses the following frame-

work, which we also follow: (1) Use a helper data structure to

efficiently compute the set 𝑉𝑐 , (2) update core values by process-

ing the identified set and (3) update the helper data structure

efficiently. We differ from OBA in the choice of the helper data

structure. OBA uses the degeneracy order of the graph, whereas

we work with the degeneracy orientation graph. The key differen-

tiating factor is that multiple degeneracy orders may map to the

same degeneracy graph.

lemma 4. Multiple degeneracy orders may map to the same

degeneracy graph.

Proof. The degeneracy order 𝜋 is a topological sort of

−→
𝐺𝑡 ,

which implies that one orientation graph corresponds to multiple

degeneracy orders. □

Lemma 4 indicates that the orientation graph is a more precise

way of storing core value information, and it is this that helps

us improve on the order-based algorithm. As a consequence,

when an edge update happens, the degeneracy order may need

to be changed but the degeneracy orientation graph may remain

unaffected, which in turn, leads to faster performance. Our con-

tribution, therefore, lies in (1) proposing the orientation graph

data structure, (2) developing new algorithms on the platform

provided by orientation graph to prune the search space, and (3)

maintaining the orientation graph while handling a stream of

edge updates.

4 EXPERIMENTS

In this section, we benchmark Kwiq and establish that:

• Efficiency :Kwiq is 5 times faster, on average, than performing

core-maintenance [29] within the query window.

• Scalability: The proposed pruning algorithms are effective

and allows Kwiq to scale to million-sized networks.

Our implementation can be downloaded from https://github.com/

idea-iitd/KWIQ.

4.1 Datasets

Table 2 summarizes the temporal networks used for empirical

evaluation. Table 3 summarizes the temporal networks used for

applications. The semantics are as follows:

• WikiTalk [5]: Wikipedia is a free encyclopedia written

collaboratively by volunteers around the world. Each registered

user (node) has a talk page, that other users can edit. A directed

edge from node 𝑢 to node 𝑣 represents that user 𝑢 edited a talk

page of user 𝑣 .

• StackOverflow [3]: StackOverflow is a temporal network

containing interactions on the stack exchange web site Stack

Overflow. Each edge (𝑢, 𝑣, 𝑡 ), denotes an interaction between user

(node) 𝑢 and 𝑣 at time 𝑡 .

• Twitter [4]: In this dataset, each node represents a twitter

handle (entity), and an edge between (𝑢, 𝑣, 𝑡 ) denotes an interac-

tion between 𝑢 and 𝑣 where one of them has either “retweeted”

or “mentioned” the other person in a tweet.

• #Caravan [1]: This is also a twitter dataset, but only con-

tains tweets that contain the “#Caravan” hashtag related to the

Central American migrant caravans [2]. We use this dataset to

see if tweets pertaining to this viral hashtag has any different

property than a more diverse set of tweets.

• Election: This dataset was collected by Shao et al. [23]

during the 2016 US Presidential election from Twitter. In this

network, each node is a user and each edge corresponds to a

retweet that contains an URL. In addition, each edge is classified

as either “authentic” or “inauthentic”. This labeling is done by

Shao et al. based on URL contained in the retweet. Specifically, if

the URL is authentic, the retweet is classified as authentic and

vice versa. We use this dataset to demonstrate an application of

tracking core-invariant nodes.

• DBLP: This dataset is created from DBLP [26]. An edge

(𝑢, 𝑣, 𝑡 ) exists between papers 𝑢 and 𝑣 if paper 𝑢 cites paper 𝑣 at

time 𝑡 . We use this dataset to demonstrate that span core is empty

while invariant node set is non-empty.

We set the deletion window (Recall our deletion model from

Sec 2) to 15 days for all datasets except #Caravan (See Table 4).

Since the Caravan hashtag became viral for a short duration and

then slowly disappeared from social media after a month, the

deletion window is set to 1 day.

4.2 Experimental Setup

All our implementations including baselines are in Java (OpenJDK

version “11.0.14”). The experiments are performed on a machine

equipped with Intel(R) Xeon(R) Platinum CPU 2.1GHz having

256 GB Ram running Ubuntu 18.04. All experiments are repeated

5 times for consistency and we plot the average across five runs.

4.2.1 Baseline Algorithms. We compare against performing

core-maintenance within the query window ∆ = [𝑡𝑠 , 𝑡𝑒 ] using

the state-of-the-art Order-based Algorithm (OBA)[29]. While per-

forming core-maintenance with OBA, we keep track of all nodes

that have never fallen below the core-value threshold K till the

current timestamp within ∆. If at any time, this set becomes

empty, OBA terminates. Otherwise, OBA terminates at the end-

ing timestamp and returns the core-invariant nodes.

4.2.2 Default Parameter Values. The default values of these

parameters are set as follows.

Table 4: Default parameter values

Dataset K DW (days) ∆ (days)

WikiTalk 4 15 30

StackOverflow 8 15 30

Twitter 11 15 30

#Caravan 3 1 2
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Figure 9: Impact of the size of the query window on the

querying time.

• Cohesiveness threshold K : We set K in each dataset to the

95% percentile value, where 5% of the nodes in the network have

a core-value at least as high as K . The 95% percentile K values

for each dataset is shown in Table 4.

• Temporal Window ∆ = [𝑡𝑠 , 𝑡𝑒 ]: ∆ is set to 2 times the deletion

window starting from a randomly chosen 𝑡𝑠 .

Table 4 lists the default parameter values across all datasets.

For those experiments where the cohesiveness threshold K is

varied we have increased the value ofK up to the point where the

answer set is non-empty, i.e., for each data set beyond the largest

value of K plotted on the 𝑥-axis the invariant core size is 0.

Table 5 shows the average temporal degree per node per time

stamp. The dataset Twitter has highest temporal average degree.

This is the reason why querying time is highest for Twitter as

shown in Figures 9, 10, 11, and 13. The dataset StackOverflow

has higher static average degree as compared to Twitter, whereas

Twitter has higher value for temporal average degree in compar-

ision with StackOverflow. Therefore, temporal average degree

has better corelation with coreness.

4.3 Efficiency and Scalability

4.3.1 Impact of Query Window Size. First, we study the im-

pact of the query window size, i.e., ∆ on the querying time. Fig. 9

presents the querying times of Kwiq and OBA as the size of the

query window is varied. As visible, across all datasets, Kwiq is

significantly faster than OBA, which validates the efficacy of the

proposed pruning strategies. On average, Kwiq is 6 times faster

than OBA. The highest speed-up is observed in the #Caravan

dataset where Kwiq is 10 times faster. As expected, with increase

in the window size, we observe an increase in querying time

since the number of edge updates we need to process is larger.

4.3.2 Impact of Deletion Window. In this experiment, we vary

the length of the deletion window, while keeping the query win-

dow size and K fixed to their default values, and observe its

Table 5: Average Temporal Degree

Average Degree

Dataset |V | DW per node

per time stamp

WikiTalk 1.14𝑀 15 days 0.29

StackOverflow 2.6𝑀 15 days 0.57

Twitter 15𝑀 15 days 2.65

#Caravan 2.4𝑀 1 day 0.80
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Figure 10: Impact of Deletion Window (DW) length on the

querying time.
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Figure 11: Impact of cohesiveness thresholdK on querying

time.

impact on the querying time. Note that since popular social net-

works like Twitter measure active users in the scale ranging from

one day to one month [15], we work with deletion window in

this time scale. Figure 10 presents the results. Similar to previous

experiments, Kwiq is significantly faster than OBA across all

three datasets regardless of the deletion window length. We de-

rive two key observations from this experiment. First, as deletion

window increases, there is a mild increase in the running times

of Kwiq as well as OBA. Increase in deletion window implies

increase in density of the graph since each edge gets more time

to remain active. When density is high, the cascading effect of an

edge update reaches a larger number of nodes, and consequently,

the average processing time of updates increases. The second

important observation is that the increase in deletion window

affects OBA more adversely. This trend is a manifestation of the

fact that the edge density increases more intensely among the

highly active nodes. These highly active nodes often fall within

PIN, and all edge updates among nodes in PIN, regardless of the

density, get processed in 𝑂(1) time.

4.3.3 Impact of K . Fig. 11 presents the querying times of

Kwiq and OBA across all four datasets as K is varied. As can

be seen, across all four datasets, Kwiq is significantly faster.

The performance improvement of Kwiq is most pronounced in

#Caravan, where Kwiq is more than 200 times faster. On average,

Kwiq is 5 times faster than 𝑂𝐵𝐴. The range of cohesiveness
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(x-axis) for each dataset in Fig. 11 is chosen such that it gives

non-empty core-invariant nodes.

In Kwiq, as K increases, most node gets pruned out due to

degree bound, which allows us to process a large percentage

of edge updates in 𝑂(1) time. OBA, in general, is independent

of K . The only exception is the situation where at a particular

time point, all nodes become non-core invariant, and hence OBA

terminates. This event happens with a higher frequency whenK
is large. In our experiment, this situation arises only in WikiTalk.

4.3.4 Comparison of Kwiq and OBA on dynamic synthetic

datasets. Fig. 14 depicts the querying times of Kwiq and OBA on

dynamic synthetic datasets. The dynamic graph generator which

we use to create synthetic graphs is given in [22]. This bench-

mark generator generates graphs with overlapping communities

in such a way that several crucial properties of the graph are

maintained over time. For example, community sizes vary accord-

ing to power law distribution. We create 400 dynamic datasets

with different densities using the benchmark generator given in

[22]. Each of these datasets consists of one hundred thousand

nodes. For each dataset, we execute Kwiq and OBA 5 times. We

plot the mean execution time versus average degree per node

for Kwiq and OBA in fig. 14. Fig. 14b compares mean execution

time of Kwiq and OBA on synthetic datasets for K = 10. Simi-

larly, fig. 14c compares mean execution time of Kwiq and OBA

on synthetic datasets for K = 50. We do smoothing for better

demonstration by plotting the average of all values in a neigh-

borhood of the point under consideration. We observe that Kwiq

performs better than OBA on all generated synthetic datasets.

4.4 Efficacy of Pruning Strategies

Kwiq relies on three pruning strategies: degree bound to approx-

imate strong non-invariant nodes (DB), potential core-invariant

node (PIN), and orientation algorithm (OA). We investigate the

impact of each of these strategies.

In Figs. 13a-13d, we individually turn off each of the pruning

strategies and see how they affect the querying time. In #Caravan,

we observe that degree bound imparts a higher speed-up to the

querying time when compared to PIN for most of cohesiveness

(x-axis) range. On the other hand, in StackOverflow, PIN plays

a more important role in keeping the querying time down for

most of cohesiveness (x-axis) range. A closer inspection reveals

that StackOverflow is mostly dominated by interactions among

highly frequent users and thus PIN is crucial to efficiency. On the

other hand, in #Caravan, there are a large number of dormant

users, and therefore, degree bound plays a higher role in pruning

out nodes from the search space.
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Figure 13: The efficacy of the various pruning strategies

against cohesiveness threshold K .

2 4 6 8
Cohesiveness

0

10

20

30

40

50
A
ut
he
ti
ci
ty

(%
)

Within Core

All interactions

Average

(a) Authenticity

200 400
average degree per node

0

500

1000

tim
e 

(s
)

OBA
KWIQ

(b) K = 10

200 400
average degree per node

0

500

1000

tim
e 

(s
)

OBA
KWIQ

(c) K = 50

Figure 14: (a) Relationship of core-invariant nodes with
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As visible in Fig. 13c, Twitter is the only dataset where both

DB and PIN are needed to reduce the running time; in all other

datasets, as the cohesiveness threshold increases, either DB or

PIN alone is enough to provide speed-up. To understand why

this happens in Twitter, recall that DB is effective if most nodes

have a degree less than the cohesiveness threshold. On the other

hand, PIN is effective if most interactions are among nodes that

are already in the k-core. Twitter has the highest temporal degree

(See Table 5). Hence, DB is not as effective. On the other hand, we

observe a large number of interactions in Twitter between nodes

where one of them is not in PIN. In other words, the number of

dormant users in Twitter is less compared to other social net-

works and hence, PIN is not as effective as in the other networks.

To further gain a deeper understanding behind the intricacies

of the pruning strategies, in Fig. 12a, we study the distribution of

edge updates based on how they are processed. We present the

results in StackOverflow. We observe that regardless of the cohe-

siveness threshold, around 25% of the edge updates are processed

through orientation algorithm. Among DB and PIN, cohesiveness

has a big impact. As K increases, a larger portion of the updates

get pruned out through degree bound (DB). On the other hand,

for smaller K , majority of the edges are pruned through PIN.

Overall, this experiment clearly established that all three pruning

strategies are important to obtain fast querying times.

Finally, we compute the portion of the strongly non-invariant

nodes that is identified by degree bound. As shown in Fig. 12b,

degree bound identifies more than 90% of the nodes in SNIN.
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4.5 Applications

In this section, we showcase two concrete applications of tracking

invariant cores in temporal networks.

4.5.1 Identification of Inauthentic Behavior. Several studies

have found correlation of high core value nodes with inauthentic

behavior [23, 24]. For example, Shao et. al. [23] had shown on

the Election dataset that nodes with a high core value have a

high affinity towards spreading fraudulent information. However,

these studies do not take temporality into account. In this sec-

tion, we bring in the temporal aspect and study the relationship

between core-invariant nodes and the affinity towards spreading

fraudulent information.

As described in §4.1, in the Election dataset, each edge is

classified with a label of being either “authentic” or “inauthentic”.

To analyze the relationship between core-invariant nodes and

inauthentic behavior, we vary the cohesiveness threshold K and

measure the average authenticity of core-invariant nodes. The

authenticity of a node is quantified using two different measures.

The “All interactions” authenticity of a node 𝑢 is defined as:

∥{𝑒 = (𝑢, 𝑣) ∈ 𝐸 | 𝑒 is authentic}∥
∥{𝑒 = (𝑢, 𝑣) ∈ 𝐸}∥ × 100

where 𝐸 is the set of all edges in the temporal network. The

second authenticity measure, called “Within core” authenticity

is defined as:

∥{𝑒 = (𝑢, 𝑣) ∈ 𝐸 | 𝑒 is authentic, 𝑣 is core-invariant}∥
∥{𝑒 = (𝑢, 𝑣) ∈ 𝐸 | 𝑣 is core-invariant∥ × 100

While the “All interactions” authenticity measures the propor-

tion of authentic tweets by a node, the “Within core” authenticity

measures the authenticity only among interactions with other

core-invariant nodes. In Fig. 14a, we plot these authenticity met-

rics against the cohesiveness threshold K . The dashed line in

Fig. 14a denotes the average proportion of authentic edges across

all edges, which is ≈ 26%. Since the average is independent ofK ,

it is a straight line. If all nodes behave independently of whether

they are core-invariant, we expect the authenticity to remain

constant with cohesiveness threshold K . However, we clearly

see that with K , the authenticity drastically reduces. In fact,

authenticity goes to ≈ 0 as we move towards the innermost core-

invariant nodes. Even more interestingly, the “All interactions”

authenticity is always higher than the ‘Within core” authenticity

indicating that the more coordinated the interaction, the higher

is the chance of inauthentic behavior. This experiment shows

that our definition of core invariant nodes is useful in tracking

coordinated inauthentic behavior that has been observed on Face-

book [13] and Twitter [27] and it is widely considered to have

very dangerous social and political consequences.

4.5.2 Mining Influential Papers. Finding hot topics and influ-

ential papers has been a topic of interest to the Scientometric

community for a long time. Moving on from studies based on

keywords, there have been attempts to use the network struc-

ture of the citation network to identify influential papers, e.g.,

by using metrics such as PageRank [12]. The concept of 𝑘-cores

has also been applied to this effort [7]. Both these lines of work

neglect temporality which is a key concept when it comes to the

evolution of research. In this section, we briefly illustrate that in-

variant cores are a good mechanism to recognize the emergence

of a hot topic while simultaneously identifying the key papers

within the topic.

Table 6: Invariant core for K = 4, ∆ = 1998-2004

SN Paper

1.
Park, Jong Soo, Ming-Syan Chen, and Philip S. Yu. "An effective

hash-based algorithm for mining association rules."

Acm sigmod record 24, no. 2 (1995): 175-186.

2.
Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for

mining association rules." In Proc. 20th int. conf. very large

data bases, VLDB, vol. 1215, pp. 487-499. 1994.

3.

Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. "Mining

association rules between sets of items in large databases."

In Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, pp. 207-216. 1993.

4.
Savasere, Ashok, Edward Robert Omiecinski, and Shamkant B. Navathe.

An efficient algorithm for mining association rules in large databases.

Georgia Institute of Technology, 1995.

5.
Han, Jiawei, and Yongjian Fu. "Discovery of multiple-level

association rules from large databases." In VLDB, vol. 95, pp. 420-431. 1995.

6.
Toivonen, Hannu. "Sampling large databases for association rules.

" In Vldb, vol. 96, pp. 134-145. 1996.

7.
Agrawal, Rakesh, and Ramakrishnan Srikant. "Mining

sequential patterns." In Proceedings of the 11TH International Conference on Data

Engineering, pp. 3-14. IEEE, 1995.

We find the invariant core for the DBLP dataset forK = 4 and

temporal span 1998-2004 (Table 6). Note that these 7 papers do

not form a span-core [10, 11] during 1998-2004 since the most

recent paper was published in 1996 and the deletion window

is 2 years. Thus, the 7 papers induce a subgraph that becomes

disconnected after 1998. Further, we compute top ten degree

nodes during 1998-2004, and we found that only one out of these

7 papers is in the top ten most cited papers during 1998-2004.

Therefore, invariant nodes reveal a pattern that neither a simple

notion like number of citations nor a more sophisticated concept

like span-core could reveal. The way this result can be interpreted

is that these 7 papers form the most influential papers of a hot

research topic related to association rule mining that was a hot

topic in the time period we queried.

A fuller investigation is required to determine how well the

invariant core definition is able to capture subjective notions of

influence and “hotness.” We postpone this to future work.

5 CONCLUSION

In this paper, we introduced the notion of core-invariant nodes on

temporal networks. Invariant cores identify dense substructures

that remain together for a significant duration of time. Invariant

cores has been shown to be a key indicator of network stability.

Querying core-invariant nodes on temporal networks is a com-

putationally intensive task and therefore not scalable to large

datasets. To overcome this computational bottleneck, we devel-

oped a technique called Kwiq, which strategically partitions the

search space intro three disjoint sets such that edges belong

to two of those sets can be processed in 𝑂(1) time. To process

edges from the third set, we propose orientation algorithm to

efficiently compute the cascading effect of an edge update. To

demonstrate the efficacy of the proposed pruning strategies, we

performed extensive empirical analysis on real million-scale tem-

poral networks and established that Kwiq is 5 times faster than

the baseline strategy of performing core-maintenance using the

state-of-the-art order-based algorithm.
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