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ABSTRACT
This paper studies the publication of multi-dimensional data with

local differential privacy (LDP). This problem raises tremendous

challenges in terms of both computational efficiency and data

utility. The state-of-the-art solution addresses this problem by

first constructing a junction tree (a kind of probabilistic graph-

ical model, PGM) to generate a set of noisy low-dimensional

marginals of the input data and then using them to approximate

the distribution of the input dataset for synthetic data generation.

However, there are two severe limitations in the existing solution,

i.e., calculating a large number of attribute pairs’ marginals to

construct the PGM and not solving well in calculating the mar-

ginal distribution of large cliques in the PGM, which degrade the

quality of synthetic data. To address the above deficiencies, based

on the sparseness of the constructed PGM and the divisibility of

LDP, we first propose an incremental learning-based PGM con-

struction method. In this method, we gradually prune the edges

(attribute pairs) with weak correlation and allocate more data

and privacy budgets to the useful edges, thereby improving the

model’s accuracy. In this method, we introduce a high-precision

data accumulation technique and a low-error edge pruning tech-

nique. Second, based on joint distribution decomposition and

redundancy elimination, we propose a novel marginal calcula-

tion method for the large cliques in the context of LDP. Extensive

experiments on real datasets demonstrate that our solution offers

desirable data utility.

1 INTRODUCTION
Differential privacy (DP) [14, 15] has been increasingly accepted

as the de facto standard for data privacy in the research commu-

nity. Recently, techniques for satisfying differential privacy in the

local setting, which is referred to as LDP, have been deployed. In

the local setting for DP, there are many users and one aggregator.

Unlike the centralized setting, the aggregator does not see the

actual private data of each individual. Instead, each user sends

randomized information to the aggregator, who attempts to infer

the data distribution. LDP techniques enable the gathering of sta-

tistics while preserving the privacy of every user without relying

on trust in a single trusted third party. Previous works on LDP

focus on estimating the frequencies of frequent values the user

possesses [6, 16, 30, 37, 39, 40]. The natural and more general set-

ting is when each user has multiple attributes, and the aggregator

is interested in the joint distribution of these attributes. With

multi-dimensional, a huge amount of potential information and
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patterns behind the data can be mined or extracted to provide

accurate dynamics and reliable predictions for both groups and

individuals[25].

Following the works of publishing multi-dimensional data un-

der differential privacy in the centralized setting (CDP), Ren et al.

[33] proposed the LoPub method to publish multi-dimensional

data under LDP, which first constructs a junction tree (a kind

of probabilistic graphical model, PGM) based on the noisy ag-

gregated information to generate a set of noisy low-dimensional

marginals of the input data, and then use them to approximate

the distribution of the input dataset for synthetic data generation.

However, there are two severe limitations in LoPub: (i) LoPub

needs to calculate a vast amount of attribute pairs’ correlations

under LDP to construct the PGM. This leads to injecting a prohib-

itive amount of noise into the constructed PGM and degrading

the resulting synthetic data quality. (ii) This method does not

solve well in calculating the marginal distribution of large cliques

in the PGM and still faces high dimensionality.

To address the first deficiency, we observe that the constructed

PGM is often sparse, i.e., although there exist a large number of

attribute pairs in the multi-dimensional data, only the attribute

pairs with strong correlations have dependencies in the con-

structed graph. Andwe find that local differential privacy satisfies

divisibility. Specifically, in LDP, the users perturb their data lo-

cally. For a group of users, to estimate some frequencies, (i) in one

way, the aggregate can let all users upload their perturbed data at

the same time, and (ii) in another way, we can divide these users

into multiple batches, let them upload their perturbed data in or-

der by batch, and then accumulate the aggregated results contin-

uously to get the aggregation of all users. On the one hand, both

methods can get the same result. On the other hand, by uploading

users’ perturbed data in order by batch, the aggregate can obtain

some helpful information in advance to guide subsequent esti-

mations (please see more detailed discussion in Subsection 5.2.1).

Based on the sparseness of the constructed PGM and the divisi-

bility of LDP, we propose an incremental learning-based PGM

construction method. This incremental learning-based method

has two obvious advantages. (i) It can gradually prune the edges

(attribute pairs) with weak correlations and allocate more data

and privacy budget to the useful edges. (ii) Based on the divisibil-

ity of the local differential privacy, it will not reduce the accuracy

of the correlations of the valid attribute pairs due to uploading

the users’ perturbed data in batches. Besides, in this method,

we introduce a high-precision data accumulation technique and

a low-error edge pruning technique. For the second deficiency,

based on joint distribution decomposition and redundancy elimi-

nation, we propose a novel marginal calculation method for the

large cliques in the context of LDP. Extensive experiments on

real datasets demonstrate that our solution offers desirable data

utility.

Our key contributions are summarized as follows.
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• Wefirst propose an incremental learning-basedmethod for

constructing the probabilistic graph model in publishing

the multi-dimensional data with LDP.

• To better perform the incremental learning-based PGM

construction method, we introduce a high-precision data

accumulation technique and a low-error edge pruning

technique.

• Based on joint distribution decomposition and redundancy

elimination, we propose a novelmarginal calculationmethod

for the large cliques under LDP.

• Finally, we conduct an extensive experimental study over

several real datasets. The experimental results suggest that

our methods are practical to offer desirable data utility.

Roadmap. The remainder of this paper is organized as follows. In

Section 2, we discuss the related work. In Section 3, we introduce

the problem statement and review the primitives that underlie

our proposed schemes. In Section 4, we review the existing solu-

tion and point out its limitations. In Section 5, we introduce our

PrivIncr solution, including the overview, the key techniques, and

the privacy and complexity analysis. We show our experimental

results in Section 6. Finally, we provide concluding remarks and

future work in Section 7.

2 RELATEDWORK
The research on multi-dimensional data publishing under cen-

tralized differential privacy (CDP) [15] has been fruitful. The

state-of-the-art solution utilizes probabilistic graphical models

to solve this problem. In particular, Zhang et al. [43] propose

PrivBayes, which constructs a differentially private Bayesian

network to approximate the full-dimensional distribution and

then uses it to generate synthetic data. Chen et al. [9] propose

JTree, which builds a junction tree by identifying all attributes’

pairwise independence and then generates synthetic datasets by

a sampling-based algorithm from the noisy marginals generated

from the junction tree algorithm. Mckenna et al. [28] propose

DP-PGM, which shows how to use some measurements over

low-dimensional marginals to construct a Markov network and

then infer any dimensional distribution without privacy bud-

get consumption. However, DP-PGM has not provided an au-

tomatic method to identify low-dimensional marginals [45]. To

solve this problem, following DP-PGM, Cai et al. [8] propose

PrivMRF. It first constructs a junction tree with large cliques

and utilizes CFS to select one marginal for each attribute from

all the cliques’ attribute subsets that satisfy 𝜃 -useful, and then

gradually chooses the items with more additional information

to optimize the model. Zhang et al. [45] propose PrivSyn. It first

selects a set of large numbers of low-degree marginals and gen-

erates a random dataset where each attribute matches one-way

marginals in the set. After that, gradually update the generated

dataset to be consistent with all noisy marginals in the set. Mean-

while, there also exist some other data publishing methods based

on alternative techniques under CDP, including the game based

methods [19, 20, 35], the GAN based methods [2, 7, 18], the GNN

based method [1], and the Copula Functions based method [24].

However, in comparison with the probabilistic graphical-based

methods, the computational efficiency or performance of these

methods are unsatisfactory [45].

In the local setting, one fundamental problem is that all data

is distributed locally, so no user has global statistical informa-

tion. This poses a greater challenge to learning the distribution of

multi-dimensional data. Most existing research [11, 16, 26, 31, 37]

with LDP mainly focuses on frequency (resp. distribution) es-

timation over a single categorical (resp. numerical) attribute.

However, when each user has multiple attributes, the aggregator

is interested in the joint distribution of some of these attributes.

Fanti et al. [17] propose an expectation-maximization (EM) based

method to estimate the joint distribution of any two attributes

under LDP, and then generalize by Ren et al. [32] to handle multi-

ple attributes. However, this method runs slowly and has a large

variance because of privacy budget needs to be split into each

attribute. To publish any 𝑘-way marginals under LDP, Kulkarni

et al. [10] apply the Fourier-Transformation-based method (FT),

which was used in publishing marginals under the centralized

DP setting [4], to the local setting. Zhang et al. propose CALM

[44], which uses the covering design to partition the attribute set

to multiple low-dimensional marginals and then reconstruct any

𝑘-way marginals using the synopsis proposed in [29]. Neverthe-

less, the value of 𝑘 is specified before construction, so we can’t

obtain the distributions above the 𝑘 dimension. Furthermore,

we notice that the methods for range queries can be also used

to answer marginal release. There also exist some other works

focus on specific tasks, e.g., range query and mean estimation. In

particular, [11, 12, 38, 42] provide the privacy-preserving range

query under LDP. [13, 36] focus on the specific task of mean

estimation under LDP. Specifically, Wang et al. [36] propose two

mechanisms, PM and HM, to estimate the mean value of each

attribute in multi-dimensional data. However, in contrast with

the above methods, our goal is to generate a synthetic dataset

that approximates the original dataset with local differential pri-

vacy to support more data analysis tasks. Most relevantly, Ren

et al. propose LoPub [33] to solve the multi-dimensional data

publication problem under LDP. However, two limitations de-

grade the synthetic data quality of LoPub, i.e., calculating a large

number of attribute pairs’ marginals to construct the PGM and

poor performance in calculating the distribution of large cliques.

Wang et al. [41] aim to improve the performance of LoPub with

copula functions but still face the same limitations.

3 PROBLEM STATEMENT AND
PRELIMINARIES

In this section, we first introduce the problem statement. Then,

we review the primitives that underlie our proposed schemes,

including the local differential privacy definition and protocols,

and the Junction tree.

3.1 Problem Statement
In this paper, the problem of multi-dimensional data publishing
with local differential privacy is defined as follows: assuming that

there exist 𝑁 users and each user has only one record with 𝑑

attributes, the aggregator collects the records of the 𝑁 users in

the context of local differential privacy (LDP) and generates a

synthetic dataset D∗ that has an approximate joint distribution

with D composed of the records of 𝑁 users.

Specifically, given an attribute setA = {𝐴1, . . . , 𝐴𝑑 }. For each
attribute𝐴𝑖 ∈ A, we denote its domain byΩ𝐴𝑖

= {𝜔1, . . . , 𝜔 |Ω𝐴𝑖
|},

where |Ω𝐴𝑖
| is the domain size and 𝜔𝑖 is the 𝑖-th possible value

of 𝐴𝑖 . For any attribute set 𝑆 ⊆ A, the domain Ω𝑆 is defined

by the cartesian product of all items in {Ω𝐴 |𝐴 ∈ 𝑆}, whose size
is |Ω𝑆 | =

∏
𝐴∈𝑆 |Ω𝐴 |. Let dataset D = {𝑋 1, . . . , 𝑋𝑁 } be the col-

lection of records of 𝑁 users, where 𝑋 𝑗 = (𝑥 𝑗
1
, . . . , 𝑥

𝑗

𝑑
) is the

record of the 𝑗-th user. Note that we assume all attributes in A
are categorical attributes, a numerical attribute can be discretized
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into a categorical attribute by discretizing its domain into a fixed

number of equi-width ranges.

3.2 Local Differential Privacy
In the local setting of differential privacy [15], an untrusted ag-

gregator hopes to collect the personal information of users to

complete the corresponding data analysis task. Local differential

privacy (LDP) [21] provides a randomized response algorithmA
to protect the privacy of users while satisfying the aggregator’s

data analysis task. LDP can be defined as follows:

Definition 3.1 (Local Differential Privacy). A randomized al-

gorithmM with domain D and range R is 𝜖-local differential

privacy, where 𝜖 > 0, if and only if for all possible outputs S ⊆ R
and for any two inputs 𝑥1, 𝑥2 ∈ D, have

Pr[M(𝑥1) ∈ S] ≤ 𝑒𝜖 Pr[M(𝑥2) ∈ S] .

3.3 Optimized Unary Encoding
To estimate the frequency for the discrete attribute under 𝜖-LDP,

Wang et al. [37] proposed the Optimized Unary Encoding (OUE)

protocol. The protocol mainly consists of the following parts:

(1) Encoding: For a discrete attributeV with domain [1, 𝑑],
each user encodes the value 𝑣 ∈ V into a binary vector 𝑆

of length 𝑑 like [0, . . . , 0, 1, 0, . . . , 0], where only the 𝑣-th

position is 1, and the others are 0.

(2) Perturbation: Each user perturbs the encoding result 𝑆

bit by bit according to the following perturbation rules:

Pr(𝑆 [𝑖] = 1) =
{
𝑝 = 1

2
, 𝑆 [𝑖] = 1;

𝑞 = 1

𝑒𝜖+1 , 𝑆 [𝑖] = 0,
(1)

where 𝜖 is the privacy budget, 𝑆 [𝑖] and 𝑆 [𝑖] denote the
i-th bit of the encoding result 𝑆 and the perturbation result

𝑆 , respectively.

(3) Aggregation: After collecting all perturbation reports

from 𝑛 users, for any value 𝑣 ∈ V , the aggregator can

estimate its frequency 𝑐 (𝑣) by unbiased estimation as:

𝑐 (𝑣) =
∑

𝑗 1{𝑣 |𝑆 𝑗 [𝑣 ]=1} (𝑣) − 𝑛𝑞
𝑝 − 𝑞 , (2)

where 1𝑋 (𝑥) is the indicator function, and 𝑆 𝑗 represents
the 𝑗-th user’s perturbation report. And the variance for

the estimation is:

𝑉𝑎𝑟 [𝑐 (𝑣)] = 𝑛 · 4𝑒𝜖

(𝑒𝜖 − 1)2
. (3)

3.4 The Junction Tree
To overcome the curse of dimensionality, the key is to find con-

ditional independence from real-world datasets to factorize the

joint probability distribution into modular components. Proba-

bilistic graphical models [23] are an elegant tool for identifying

such a modular structure, and Markov networks are the most

widely used graphical model based on undirected graphs. As

described in [8, 9, 32], the junction tree algorithm [5] provides

a feasible method for inferring the joint probability distribution

accurately from the Markov network. The junction tree is defined

as follows:

Definition 3.2 (Junction Tree). For a given Markov network𝐺 ,

a tree T = (C,S) transformed from 𝐺 is called a junction tree if

any pairwise intersection𝐶𝑖 ∩𝐶 𝑗 of pairs𝐶𝑖 ,𝐶 𝑗 ∈ C is contained

in every node in the unique path in T between𝐶𝑖 and𝐶 𝑗 , where

𝐶𝑖 ∈ C is a clique in T and S𝑖 𝑗 = 𝐶𝑖 ∩𝐶 𝑗 is the intersection of

two adjacent cliques.

Example 3.3. Figure 1(b) shows a junction tree constructed

by the Markov network in Figure 1(a), where oval and rectangle

nodes represent cliques and separators respectively, i,e., C =

{𝐴𝐵𝐷,𝐴𝐷𝐸,𝐴𝐸𝐶} andS = {𝐴𝐷,𝐴𝐸}. Note that the edges linked
by dotted lines (i.e., 𝐴𝐷 and 𝐴𝐸) are introduced by the process

of the junction tree algorithm.

D E

AB C

(a) A markov network

ABD ADEAD AE AEC

(b) A junction tree

Figure 1: A Markov network and its junction tree

For a dataset D with attribute set A = {𝐴1, . . . , 𝐴𝑑 }, given
the structure of the junction tree T , the joint distributions of
the cliques and the separators Pr(𝐶𝑖 ) and Pr(𝑆𝑖 𝑗 ), the full joint
distribution of A can be calculated as:

Pr(A) =
∏

𝐶𝑖 ∈C Pr(𝐶𝑖 )∏
𝑆𝑖 𝑗 ∈S Pr(𝑆𝑖 𝑗 )

. (4)

4 EXISTINGWORK AND LIMITATIONS
Following the works of multi-dimensional data publishing under

centralized differential privacy (CDP) [15], Ren et al. [33] pro-

posed LoPub for multi-dimensional data publishing under local

differential privacy (LDP), which consists of the following four

phases:

(1) Data collection:To support subsequent calculationswhile
satisfying LDP, each user perturbs their records and sends

the perturbed results to the aggregator for aggregation.

(2) Junction tree construction: The aggregator learns the
correlations of all pairwise attributes based on the ag-

gregation (learned in the first phase) and constructs a

dependency graph 𝐺 based on the correlations. Next, the

aggregator transforms the dependency graph 𝐺 into a

junction tree T composed of multiple cliques C.
(3) Joint distribution estimation of cliques: The aggrega-

tor estimates the joint distribution Pr(𝐶) of each clique

𝐶 ∈ C (constructed in the second phase) based on the

aggregation (learned in the first phase).

(4) Data generation: The aggregator generates a synthetic
dataset D∗ according to the structure of the junction tree

T (constructed in the second phase) and the joint distri-

bution Pr(𝐶) of each clique 𝐶 ∈ C (learned in the third

phase).
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Limitation of LoPub. LoPub has two significant limitations: (i)

in the construction of the dependency graph𝐺 , LoPub directly cal-

culates all pairwise correlations to determine the structure of the

dependency graph. However, for multi-dimensional data, there

exist a large number of attribute pairs. Directly calculating all

these pairwise correlations will incur massive noise injected into

the results to achieve LDP. This severely degrades the accuracy

of the dependency graph structure and the synthetic data. (ii) In

the estimation of the marginal Pr(𝐶) of large cliques𝐶 ∈ C, some

cliques in C may contain too many attributes, and LoPub maybe

still face high dimensionality when calculating their marginals.

5 OUR SOLUTION
5.1 Overview of Our Solution.
To address the above deficiencies, we propose PrivIncr, a solution

that (i) also generates a synthetic dataset D∗ according to a con-

structed junction tree T and the joint distribution Pr(𝐶) of each
clique𝐶 contained in T , but (ii) provides an incremental learning-

based dependency graph construction method to construct the

junction tree and a novel marginal calculation method for the

large cliques in the context of LDP. In the following, we will

first introduce the method to construct the dependency graph

(Subsection 5.2) and explain how to estimate the marginals of

the cliques (Subsection 5.3). Then, we introduce the overall work-

flow of our PrivIncr solution (Subsection 5.4) with privacy and

complexity analysis (Subsection 5.5).

5.2 Incremental Learning-based Dependency
Graph Construction

5.2.1 The Key Insights behind the Method.
There are two key insights behind the incremental learning-

based dependency graph construction:

The Sparsity of the Constructed Dependency Graph. Although t-

here exists a large number of attribute pairs in the multiple di-

mensional data, in the constructed graph, only the attribute pairs

with strong correlations are selected in the constructed depen-

dency graph. For example, in our experiments, there exist 15

(resp. 24) attributes in the dataset Adult (resp. TPC-E), and
(
15

2

)
(resp.

(
24

2

)
) attribute pairs. However, the number of edges in the

constructed graph is less than 20, which is much smaller than the

number of attribute pairs. Furthermore, we give another example.

Example 5.1. Suppose that given six binary attributes {𝐴, 𝐵,
𝐶, 𝐷, 𝐸, 𝐹 }, the value of the correlation (i.e., the mutual informa-

tion, which we will describe in Subsection 5.2.3) for each attribute

pair is shown in Figure 2(a). We consider that if the value of corre-

lation is greater than a given threshold (e.g., 0.045, computed by

Equation 15), the attribute pair has a strong correlation, and the

edge will be selected in the constructed graph. Thus, as shown in

Figure 2(b), only four attribute pairs (i.e., {𝐴𝐵,𝐴𝐹, 𝐵𝐷,𝐶𝐸}) have
strong correlations and have been selected as the edges in the

constructed dependency graph.

The Divisibility of the Local Differential Privacy. In LDP, the us-

ers perturb their data locally. For a group of users, to estimate

some frequencies, (i) in one way, the aggregate can let all users

upload their perturbed data at the same time, and (ii) in another

way, we can divide these users into multiple batches, let them up-

load their perturbed data in order by batch, and then accumulate

the aggregated results continuously to get the aggregation of all

users. On the one hand, both methods can get the same result.

On the other hand, by uploading users’ perturbed data in order
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(a) The value of all pairwise correlations
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(b) The selected attribute pairs with strong correlations

Figure 2: The sparsity of the dependency graph

by batch, the aggregate can obtain some helpful information in

advance to guide subsequent estimations.

Property 5.1 (Divisibility of LDP). Suppose that for a given
variable𝑈 with the input domain [𝑢], we would like to estimate the
frequency of the value 𝑣 ∈ [𝑢] over 𝑁 users under 𝜖-local differen-
tial privacy. Thus, one can directly use OUE method to compute the

result, i.e., 𝑐 (𝑣) =
∑

𝑗∈𝑁 1{𝑣 |𝑆 𝑗 [𝑣 ]=1} (𝑣)−𝑁𝑞

𝑝−𝑞 (as shown in Equation 2).
We partition these𝑁 users into𝑚 disjoint groups {𝑁1, . . . , 𝑁𝑚} and
then estimate the frequencies on each group respectively. Thus, we

can obtain𝑚 results
{
𝑐𝑖 (𝑣) =

∑
𝑗∈𝑁𝑖

1{𝑣 |𝑆𝑖
𝑗 [𝑣 ]=1} (𝑣)−𝑁𝑖𝑞

𝑝−𝑞 | 1 ≤ 𝑖 ≤ 𝑚
}
.

By accumulating these results, we can learn that:

𝑐 (𝑣) =

∑
𝑗 ∈𝑁 1{𝑣 |𝑆𝑖

𝑗 [𝑣 ]=1} (𝑣) − 𝑁𝑞

𝑝 − 𝑞

=

∑𝑚
𝑖=1

∑
𝑗 ∈𝑁𝑖

1{𝑣 |𝑆𝑖
𝑗 [𝑣 ]=1} (𝑣) −

∑𝑚
𝑖=1 𝑁𝑖𝑞

𝑝 − 𝑞

=
∑︁𝑚

𝑖=1

∑
𝑗 ∈𝑁𝑖

1{𝑣 |𝑆𝑖
𝑗 [𝑣 ]=1} (𝑣) − 𝑁𝑖𝑞

𝑝 − 𝑞
=

∑︁𝑚

𝑖=1
𝑐𝑖 (𝑣) .

(5)

In particular, this is different from centralized differential pri-

vacy (CDP). In CDP, if the dataset is divided into multiple subsets,

noise needs to be injected into the released count of each sub-

set. We can obtain the count of the whole dataset by summing

these noisy counts. But the result will contain a larger noise scale

than that obtained by directly performing statistics on the overall

dataset and injecting noise.

5.2.2 The Main Idea of the Method.
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Based on the above two insights, we propose an incremental

learning-based dependency graph construction method. In this

method, we divide all users into multiple groups. First (i.e., in

the first round), we let some users upload their data to estimate

the correlations of all attribute pairs and prune those with weak

correlations. And then (i.e., in the next rounds), for the remaining

attribute pairs, we collect some new group of data, accumulate

these data to previous data to re-estimate their correlations, and

continue to prune the attribute pairs with weak correlations until

we construct the dependency graph. This incremental learning-

based method has two obvious advantages. First, it can gradually

prune the edges (attribute pairs) with weak correlations and

allocate more data and privacy budget to the useful edges. Second,

based on the divisibility of the local differential privacy, it will

not reduce the accuracy of the correlations of the valid attribute

pairs due to uploading in batches.

5.2.3 The Key Steps of the Method.
To implement the incremental learning-based dependency

graph construction method, we need to address the following

problems effectively: (i) How to collect users’ data in each round

and accumulate the data collected in different rounds with high

accuracy and efficiency. These data not only include multiple

groups of data of the attribute pairs that have not been pruned,

but also the data of attribute pairs that have been pruned. (ii) How

to prune the useless edges with low error. We use part of the data

to estimate the correlation strength of attribute pairs, and there

will be some sampling errors (especially in the first few rounds).

In addition, in LDP, the smaller the amount of data, the larger

the perturbed error. This may cause us to prune the originally

highly correlated attribute pairs mistakenly. In the following, we

will discuss how to solve the above problems.

Data Aggregation. In our solution, we employ a variant of OUE

method to estimate the distribution of each attribute set A that

has a moderate domain size. That is, we treat A as one attribute

with domain size |ΩA | =
∏

𝐴∈A |Ω𝐴 | and employ OUE method

to estimate the frequency of each value 𝑣 in ΩA ; we call this
process as VOUE. According to OUE, for any value 𝑣 ∈ ΩA , the
variance for its estimation 𝑐 (𝑣) is 𝑉𝑎𝑟 [𝑐 (𝑣)] = 𝑛A · 4𝑒𝜖

(𝑒𝜖−1)2 (as

shown in Equation 3), where 𝜖 denotes the privacy budget and

𝑛A denotes the number of users that upload the perturbation

reports about A.

To evaluate the performance of VOUE, we compare VOUEwith

other three methods: (i) VRAPPOR, this is the variant of the one-

time basic RAPPOR [16]. Similar with VOUE, we treat A as one

attribute with domain size |ΩA | =
∏

𝐴∈A |Ω𝐴 |, and employ the

one-time basic RAPPORmethod to estimate the frequency of each

value 𝑣 in ΩA ; we call this process as VRAPPOR. (ii) OUE+EM
and RAPPOR+EM. In OUE+EM (resp. RAPPOR+EM), we first

divide the privacy budget 𝜖 into |A| parts, i.e., 𝜖𝑖 = 𝜖
|A | . And then,

we employ OUE (resp. one-time basic RAPPOR) to encode and

perturb each attribute 𝐴𝑖 ∈ A under 𝜖𝑖 -LDP, respectively. After

that, we estimate the joint distribution Pr (A) by EM algorithm

[32]. Figure 3 illustrates the performance of these methods as

privacy budget 𝜖 and the number of attributes 𝑑 varying. The

result shows that VOUE can achieve better accuracy than others

in all cases.

Data Accumulation. In the incremental learning-based depen-

dency graph construction, we will continuously collect the data

for the unpruned attribute pairs to recalculate their marginal

distributions. Accumulating these data can get more accurate

results. Besides, for the pruned edge, we have collected some
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Figure 3: Different distribution estimation methods

of its data in the previous rounds. Can we use these data to im-

prove the accuracy of the correlations of the unpruned attribute

pairs? In [44], Zhang et al. proposed an accumulation method.

However, applying it to solve our problem will incur high com-

putational complexity. The reason lies in that when we perform

a new round of collection, the method will re-accumulate the pre-

vious rounds of data. Specifically, we denote the collected data in

the 𝑖𝑡ℎ round as 𝑑𝑎𝑡𝑎𝑖 (1 ≤ 𝑖). In the 𝑡𝑡ℎ round, the accumulation

result is calculate as 𝑎𝑟𝑡 = 𝑎𝑐𝑐𝑢 (𝑑𝑎𝑡𝑎1, . . . , 𝑑𝑎𝑡𝑎𝑡 ). To reduce the
computational complexity, we propose an efficient accumulation

method, which can calculate the accumulation results of the first

𝑡 rounds based on the accumulation results of the first (𝑡 − 1)
rounds, i.e., 𝑎𝑟𝑡 = 𝑎𝑐𝑐𝑢 (𝑎𝑟𝑡−1, 𝑑𝑎𝑡𝑎𝑡 ).

Specifically, to accumulate the distribution of attribute set

A∗, we first consider the attribute sets that contain A∗ in each

round (e.g., the 𝑡𝑡ℎ round). We denote these attribute sets as

A𝑡1, . . . ,A𝑡𝑖𝑡 , andA∗ ⊆ A𝑡 𝑗 , where 1 ≤ 𝑗 ≤ 𝑖𝑡 . Let 𝑛A 𝑗
denote

the number of users that upload the perturbation reports about

A 𝑗 , 𝑇A 𝑗
denote the marginal table of A 𝑗 estimated under LDP,

and 𝑇A 𝑗
(𝑣) denote the item in 𝑇A 𝑗

about 𝑣 ∈ ΩA 𝑗
. Thus, when

the attribute set A has a moderate domain size, we employ the

VOUE method to estimate its distribution. Based on the marginal

tables of A𝑡1, . . . ,A𝑡𝑖𝑡 , according to Maximum Likelihood Esti-

mation (MLE), we can get the aggregated marginal table of A∗
in the 𝑡𝑡ℎ round:

𝑇 𝑡
A∗ (𝑣

∗) =
𝑖𝑡∑︁
𝑗=1

©­«
1

𝐶𝑡 𝑗 ·𝑛A𝑡 𝑗∑𝑖𝑡
𝑘=1

1

𝐶𝑡𝑘 ·𝑛A𝑡𝑘

· A𝑡 𝑗 (𝑣∗)ª®¬ , (6)

where 𝐶𝑡 𝑗 =
∏

𝐴∈A𝑡 𝑗 /A∗ |Ω𝐴 | and A𝑡 𝑗/A∗ denotes the set of
attributes that contained in A𝑡 𝑗 but not in A∗, and A𝑡 𝑗 (𝑣∗) is
the sum of all A𝑡 𝑗 (𝑣) where 𝑣 is the elements in ΩA𝑡 𝑗

and the

value at A∗ is 𝑣∗. The variance of the aggregated result is:

𝑉𝑎𝑟
[
𝑇 𝑡
𝐴∗

(
𝑣∗

) ]
=

1∑𝑖𝑡
𝑗=1

1

𝐶𝑡 𝑗 ·𝑛A𝑡 𝑗

·𝑉𝑎𝑟0, (7)

where 𝑉𝑎𝑟0 =
4𝑒𝜖

(𝑒𝜖−1)2 is the basic variance in Equation 3.

According to Equation 6, we learn that 𝑇 𝑡
A∗ (𝑣

∗) is a weighted
average of

{
A𝑡 𝑗 (𝑣∗) |1 ≤ 𝑗 ≤ 𝑖𝑡

}
. Let T 𝑡

A∗ denote the accumu-

lated marginal table of A∗ of the first 𝑡 rounds. Thus, T 𝑡
A∗ can

be calculated as:

T 𝑡
A∗ (𝑣

∗) = 𝜔𝑡−1 · T 𝑡−1
A∗ (𝑣

∗) + 𝜔𝑡 ·𝑇 𝑡
A∗ (𝑣

∗), (8)

where T 1

A∗ (𝑣
∗) = 𝑇 1

A∗ (𝑣
∗). We have the variance of T 𝑡

A∗ (𝑣
∗) as

follows:

𝑉𝑎𝑟 [T 𝑡
A∗ (𝑣

∗)] = 𝜔2

𝑡−1 ·𝑉𝑎𝑟 [T
𝑡−1
A∗ (𝑣

∗)] + 𝜔2

𝑡 ·𝑉𝑎𝑟 [𝑇 𝑡
A∗ (𝑣

∗)],
(9)
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where

𝑉𝑎𝑟 [T 𝑡−1
A∗ (𝑣

∗)] = 1∑𝑡−1
𝑙=1

∑𝑖𝑙
𝑗=1

1

𝐶𝑙 𝑗 ·𝑛A𝑙 𝑗

·𝑉𝑎𝑟0,

𝑉𝑎𝑟 [𝑇 𝑡
A∗ (𝑣

∗)] = 1∑𝑖𝑡
𝑗=1

1

𝐶𝑡 𝑗 ·𝑛A𝑡 𝑗

·𝑉𝑎𝑟0 .
(10)

To be more clearly, let

�̃�𝑡−1 =
∑︁𝑡−1

𝑙=1

∑︁𝑖𝑙

𝑗=1

1

𝐶𝑙 𝑗 · 𝑛A𝑙 𝑗

𝜇𝑡 =
∑︁𝑖𝑡

𝑗=1

1

𝐶𝑡 𝑗 · 𝑛A𝑡 𝑗

.

(11)

Wewill calculate𝜔𝑡 and𝜔𝑡 tominimum the variance𝑉𝑎𝑟 [T 𝑡
A∗ (𝑣

∗)]
in Equation 9:

minimize 𝜔2

𝑡−1 ·
1

�̃�𝑡−1
+ 𝜔2

𝑡 ·
1

𝜇𝑡

s.t. 𝜔𝑡−1 + 𝜔𝑡 = 1.

One can use the method of Lagrange multipliers to solve the

above optimization problem, we have

𝜔𝑡−1 =
�̃�𝑡−1

�̃�𝑡−1 + 𝜇𝑡
and 𝜔𝑡 =

𝜇𝑡

�̃�𝑡−1 + 𝜇𝑡
. (12)

Thus, we have that:

T 𝑡
A∗ (𝑣

∗) = �̃�𝑡−1
�̃�𝑡−1 + 𝜇𝑡

· T 𝑡−1
A∗ (𝑣

∗) + 𝜇𝑡

�̃�𝑡−1 + 𝜇𝑡
·𝑇 𝑡
A∗ (𝑣

∗). (13)

From the above equation, we can learn the accumulation results

of the first 𝑡 rounds based on the accumulation results of the first

(𝑡 − 1) rounds.
Edge Selection. In each round, we select the edges with strong

correlations according to the accumulated marginals. To decrease

the error caused by sampling and perturbation, and increase the

accuracy of edge selection, we propose a threshold relaxation-

based edge pruning method. In particular, we consider the ran-

domness brought by sampling and perturbation to the attribute

pairs’ correlations and regard the correlations as random vari-

ables. Then in each round of incremental learning, we use the

hypothesis testing method to calculate a lower bound of the

threshold and take the lower bound as a relaxed threshold to

prune the edges.

Specifically, in this paper, we use the attribute pairs’ mutual

information to measure the pairwise correlations. For the given

two attributes 𝐴𝑖 , 𝐴 𝑗 , the mutual information 𝐼𝐴𝑖 ,𝐴 𝑗
is defined:

𝐼𝐴𝑖 ,𝐴 𝑗
=

∑︁
𝑎𝑖 ∈Ω𝐴𝑖

∑︁
𝑎 𝑗 ∈Ω𝐴𝑗

Pr(𝑎𝑖 , 𝑎 𝑗 ) log
Pr(𝑎𝑖 , 𝑎 𝑗 )

Pr(𝑎𝑖 ) · Pr(𝑎 𝑗 )
, (14)

where Pr(𝑎𝑖 , 𝑎 𝑗 ) is short for the joint distribution Pr(𝐴𝑖 = 𝑎𝑖 , 𝐴 𝑗 =

𝑎 𝑗 ). Following [9], we use a threshold 𝜏𝐴𝑖 ,𝐴 𝑗
controlled by the pa-

rameter 𝜙 to determine whether a strong correlation is between

𝐴𝑖 and 𝐴 𝑗 . 𝜏𝐴𝑖 ,𝐴 𝑗
can be calculated:

𝜏𝐴𝑖 ,𝐴𝑗
= min

(
|Ω𝐴𝑖
| − 1, |Ω𝐴 𝑗

| − 1
)
× 𝜙2/2. (15)

𝐴𝑖 and 𝐴 𝑗 are strongly correlated if 𝐼𝐴𝑖 ,𝐴 𝑗
≥ 𝜏𝐴𝑖 ,𝐴𝑗

.

In one round of incremental learning, for an edge (𝐴𝑖 , 𝐴 𝑗 ) in
the dependency graph 𝐺 , we assume that there are 𝑛 records

containing attributes 𝐴𝑖 and 𝐴 𝑗 among the records currently

collected. We denote the joint distribution over these 𝑛 records

as Pr
𝑛 (𝐴𝑖 , 𝐴 𝑗 ) and the mutual information as 𝐼𝑛

𝐴𝑖 ,𝐴 𝑗
. Because of

the randomness caused by sampling and perturbation, 𝐼𝑛
𝐴𝑖 ,𝐴𝑗

can

be treated as a random variable. According to Stefani et al.[34],

we can determine the probability distribution of 𝐼𝑛
𝐴𝑖 ,𝐴𝑗

as shown

in Theorem 5.2.

Theorem 5.2. For any 𝛼 ∈ (0, 1] and any two attributes 𝐴𝑖 , 𝐴 𝑗

with domain size𝑀𝑖 =
��Ω𝐴𝑖

�� , 𝑀𝑗 =

���Ω𝐴 𝑗

��� where𝑀𝑖 ≤ 𝑀𝑗 , let

𝜂 =

(
2

𝑛
ln

2
𝑀𝑖 ·𝑀𝑗 − 2

𝛼

) 1

2

,

If 𝜂 ≤ 2 − 2

𝑀𝑖
,

Δ𝐼 (𝜂) = 𝜂

2

log

[ (
𝑀𝑖𝑀𝑗 − 1

)
(𝑀𝑖 − 1)

(
𝑀𝑗 − 1

) ]
+ 3H

(𝜂
2

)
,

otherwise,
Δ𝐼 (𝜂) = log (𝑀𝑖 ) ,

where H (𝑥) denotes the binary entropy function, and H (𝑥) =
− (𝑥 · log𝑥 + (1 − 𝑥) · log(1 − 𝑥)). Then, for the true mutual in-
formation 𝐼𝐴𝑖 ,𝐴𝑗

and empirical mutual information 𝐼𝑛
𝐴𝑖 ,𝐴𝑗

over 𝑛
records, it holds that

Pr

(���𝐼𝐴𝑖 ,𝐴𝑗
− 𝐼𝑛𝐴𝑖 ,𝐴𝑗

��� ≤ Δ𝐼 (𝜂)
)
≥ 1 − 𝛼. (16)

For a given significance level 1− 𝛼 , the relaxed threshold ℓ for
𝐼𝐴𝑖 ,𝐴𝑗

satisfies:

Pr(𝐼𝐴𝑖 ,𝐴𝑗
≥ ℓ) ≥ 1 − 𝛼. (17)

Combining Equations 16 and 17, we can calculate ℓ as follows:

ℓ = 𝜏𝐴𝑖 ,𝐴 𝑗
− Δ𝐼 ©­«

(
2

𝑛
ln

2
|Ω𝐴𝑖

| |Ω𝐴𝑗
| − 2

2 · 𝛼

) 1

2 ª®¬ . (18)

If 𝐼𝑛
𝐴𝑖 ,𝐴𝑗

≥ ℓ , it means that𝐴𝑖 and𝐴 𝑗 are strongly correlated with

high probability, we keep edge

(
𝐴𝑖 , 𝐴 𝑗

)
in the graph. Otherwise,

we prune this edge.

Note that, according to Equation 18, ℓ will gradually increase

with the increase of 𝑛, i.e., the relaxed threshold becomes closer

to the actual threshold.

5.2.4 Details of Incremental Learning-based Method.
Based on the proposed data accumulation and edge selection

techniques, we introduce the incremental learning-based depen-

dency graph construction method. Algorithm 1 gives the details

of this method.

In the beginning of the algorithm (Line 1), we initialize a

dependency graph 𝐺 with 𝑑 vertices and let any two vertices

have an edge connected. Let 𝐸 be the edge set of𝐺 (i.e., the set of

attribute pairs). As a next step, the algorithm partition the users

𝑁 into𝑇 parts and each part 𝑁𝑡 is used for the 𝑡-th iteration (Line

3). The rest of the algorithm consists of 𝑇 iterations (Lines 4-14).

In each iteration, we collect some new group of data for each

remaining attribute pair in 𝐸 and re-estimate the correlations to

prune the attribute pairs with weak correlations. In particular, we

judge whether to prune the edge 𝑒 = (𝑖, 𝑗) ∈ 𝐸 in 𝑡-th iteration

following the steps below: (i) estimate 𝑃𝑡 (𝐴𝑖 , 𝐴 𝑗 ) over 𝑁𝑡,𝑒 users

(Lines 7-9), and then (ii) accumulate 𝑃𝑡 (𝐴𝑖 , 𝐴 𝑗 ) to the result that

obtained in the previous rounds (discussed in section 6.1.2) and

recalculate the mutual information 𝐼𝐴𝑖 ,𝐴 𝑗
(Lines 10-11), after that

(iii) we calculate relaxed threshold ℓ (discussed in section 6.1.1)

and decide whether to prune the edge 𝑒 (Lines 13-14). Once the

structure of the dependency graph 𝐺 is decided, the algorithm

terminates and returns the dependency graph 𝐺 (Line 15).
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Algorithm 1: Incremental Learning-based Method for

Constructing Dependency Graph

Input: Dataset D with 𝑑 attributes, number of users 𝑁 , privacy

budget 𝜖 , dependency degree 𝜙 , number of iterations𝑇 ,

significance level 𝛼

Output: Dependency graph𝐺

1 Initialize graph𝐺 with 𝑑 nodes and the edge set

𝐸 = {(𝑖, 𝑗) |0 ≤ 𝑖 ≠ 𝑗 < 𝑑 };
2 Initialize F to store the computed 2-way marginals, and matrix 𝑛

to record the number of users used in each edge;

3 Partition 𝑁 =
∑𝑇

𝑡=1 𝑁𝑡 ;

4 for the 𝑡 -th iteration where 𝑡 ∈ [1,𝑇 ] do
5 Partition 𝑁𝑡 =

∑
𝑒∈𝐸 𝑁𝑡,𝑒 , where

𝑁𝑡,𝑒 =
|Ω𝑒 |∑

(𝑖,𝑗 )∈𝐸 |Ω𝑖 |× |Ω 𝑗 | · 𝑁𝑡 ;

6 for each edge 𝑒 = (𝑖, 𝑗) in 𝐸 do
7 𝐷𝑡,𝑒 ← Randomly select 𝑁𝑡,𝑒 users from Dataset D;

8 𝑃𝑡 (𝐴𝑖 , 𝐴𝑗 ) ← Estimate by VOUE
(
𝐷𝑡,𝑒 , 𝑒, 𝜖

)
;

9 𝑛 [𝑖 ] [ 𝑗 ]+ = 𝑁𝑡,𝑒 ;

10 F [𝑒 ] = DataAccumulation
(
F [𝑒 ] , 𝑃𝑡 (𝐴𝑖 , 𝐴𝑗 )

)
;

11 Calculate mutual information 𝐼𝐴𝑖 ,𝐴𝑗
by Equation 14

with F [𝑒 ];
12 Calculate threshold 𝜏𝐴𝑖 ,𝐴𝑗

by Equation 15 with 𝜙 ;

13 Calculate relaxed threshold ℓ by Equation 18 with(
𝜏𝐴𝑖 ,𝐴𝑗

, 𝑛 [𝑖 ] [ 𝑗 ], 𝛼
)
;

14 If 𝐼𝐴𝑖 ,𝐴𝑗
< ℓ , remove edge (𝑖, 𝑗) from 𝐸;

15 return𝐺 ;

5.3 Estimate the Joint Distribution of the
Cliques

After constructing the dependency graph 𝐺 by Algorithm 1, the

aggregator transforms the dependency graph 𝐺 into a junction

tree T with clique set C = {𝐶1, . . . ,𝐶𝑘 }. To generate a synthetic

dataset, we need to estimate the joint distribution of each clique

in C. It is relatively straightforward to calculate the joint distri-

bution of the small cliques, but it is highly nontrivial to calculate

the joint distribution of the large cliques due to the curse of di-

mensionality. Recently, Cai et al. [8] propose PrivMRF, which

calculates the joint distribution of the large cliques in the central-

ized setting. However, extending this method to the local setting

will incur a high communication complexity. Thus, it urgently

needs to design a new method for the local setting.

To solve this problem, based on joint distribution decomposi-

tion and redundancy elimination, we propose a novel marginal

calculation method for the large cliques in the context of LDP.

In particular, given a clique 𝐶 contains
ˆ𝑑 attributes

{
𝐴1, . . . , 𝐴 ˆ𝑑

}
,

we first factorize the full joint distribution into the product of

multiple conditional probabilities, e.g.,

Pr

(
𝐴1, . . . , 𝐴 ˆ𝑑

)
=

∏ ˆ𝑑

𝑖=1
Pr (𝐴𝑖 |𝐴1, . . . , 𝐴𝑖−1)

=
∏ ˆ𝑑

𝑖=1
Pr (𝐴𝑖 |Π𝑖 ) ,

(19)

where Π𝑖 denotes the set of conditions of 𝐴𝑖 , i.e., 𝐴1, . . . , 𝐴𝑖−1.
There may exist some redundancy in Π𝑖 , i.e., given some at-

tributes in Π𝑖 , the other attributes in Π𝑖 and 𝐴𝑖 are conditionally

independent. Then, we eliminate the redundancy in Π𝑖 to get Π̂𝑖 .

In practice, the size of Π̂𝑖 is usually much smaller than that of

Π𝑖 , especially in the last few terms of the factorization, where

Algorithm 2: The Joint Distribution Estimation Method

for Large Cliques

Input: A large clique𝐶 with
ˆ𝑑 attributes, number of users 𝑁 ,

the mutual information matrix 𝐼 , privacy budget 𝜖 , clique

size threshold 𝜎

Output: The joint distribution of the large clique𝐶

1 Initialize𝑄 = {𝐴1, . . . , 𝐴 ˆ𝑑
}, Ψ to store the factorization results,

andM be the set of factors needed to estimate the distribution;

2 for 𝑖 = ˆ𝑑 to 1 do
3 if |𝑄 | < 𝜎 then
4 Random select an attribute from𝑄 as 𝐴ℎ , and let

𝑆𝐴ℎ
= 𝑄 \𝐴ℎ ;

5 else
6 for each attribute 𝐴𝑗 ∈ 𝑄 do
7 𝑆𝐴𝑗

← RedundancyEliminate
(
𝐴𝑗 ,𝑄 \𝐴𝑗 , 𝐼

)
;

8 Var(𝐴𝑗 ) ←
��𝑆𝐴𝑗

∪𝐴𝑗

��
;

9 Let 𝐴ℎ be the attribute in𝑄 that minimize Var(𝐴ℎ) ;
10 Insert

(
𝐴ℎ, 𝑆𝐴ℎ

)
into Ψ, insert 𝑆𝐴ℎ

∪𝐴ℎ intoM;

11 Remove 𝐴ℎ from𝑄 ;

12 Estimate the distribution of items inM with 𝑁 ;

13 𝑃 (𝐶) = ∏
(𝑘𝑖 ,𝑣𝑖 )∈Ψ 𝑃 (𝑘𝑖 |𝑣𝑖 ) , where 𝑃 (𝑘𝑖 |𝑣𝑖 ) is derived from

𝑃 (𝑘𝑖 , 𝑣𝑖 ) ;
14 return 𝑃 (𝐶) ;

Π̂𝑖 contains multiple attributes. Finally, calculate the joint distri-

bution Pr(𝐴𝑖 , Π̂𝑖 ) by collecting the perturbed data of remaining

users and derive Pr(𝐴𝑖 |Π̂𝑖 ) to achieve a more accurate distri-

bution of 𝐶 . The keys of this method are how to determine an

optimal factorization order and make full use of the aggregations

obtained in the graph construction phase to eliminate the redun-

dancy without invoking additional users’ data. However, finding

the optimal factorization result is NP-hard, which requires us to

choose the optimal solution from all possible factorization results,

leading to substantial computational complexity. Thus, we de-

sign a heuristic algorithm to achieve a balance between accuracy

and efficiency. In this algorithm, based on the observation that

more redundancy will generally exist in the factorization items

containing more attributes, we consider performing the forward

selection strategy to achieve a better result (i.e., eliminate more

redundancy). The details are shown in Algorithm 2.

In the beginning, we initialize the candidate attribute set 𝑄

to be

{
𝐴1, . . . , 𝐴 ˆ𝑑

}
and list Φ and M to be empty (Line 1). Φ

andM are used to store the factorization results and the factors

needed to estimate the distribution, respectively. Next, we employ

a forward-selection strategy to find an approximate factorization

result (i.e., we first determine the last item of the factorization

Pr

(
𝑥
ˆ𝑑
|𝑥

ˆ𝑑−1, . . . , 𝑥1
)
, 𝑥

ˆ𝑑
∈ 𝑄 , and then determine the forward

items in turn). More specifically, the strategy consists of
ˆ𝑑 iter-

ations (Lines 2-11), in each of which we divide into two cases

according to |𝑄 | = ∏
𝐴 𝑗 ∈𝑄

���Ω𝐴 𝑗

��� which is the domain size of 𝑄 :

(1) If |𝑄 | > 𝜎 , for each attribute 𝐴 𝑗 ∈ 𝑄 , let 𝐴 𝑗 be the tar-

get attribute and use the minimal-redundancy-maximal-

relevance feature selection method [27] to eliminate re-

dundancy from 𝑄 \𝐴 𝑗 (Line 7). The result of redundancy

elimination is 𝑆𝐴 𝑗
. After that, we can obtain |𝑄 | results{

𝑆𝐴1
, . . . , 𝑆𝐴|𝑄 |

}
. Let 𝐴ℎ ∈ 𝑄 which brings the minimum

variance

��𝑆𝐴ℎ
∪𝐴ℎ

��
be the selected attribute (Line 9).
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Algorithm 3: PrivIncr
Input: Number of users 𝑁 , privacy budget 𝜖 , partition

coefficient 𝜔

Output: A synthetic dataset 𝐷∗

1 Partition the users: 𝑁1 = 𝜔 · 𝑁 , and 𝑁2 = (1 −𝜔) · 𝑁 ;

2 (𝐺, F, 𝐼 ) ← Construct the dependency graph, obtain any

attribute pairs’ distribution and mutual information by

Algorithm 1 in Subsection 5.2 with 𝑁1 users;

3 Transform𝐺 to junction tree and obtain clique set C;
4 for each small clique𝐶 ∈ C do
5 Pr(𝐶) ← Obtain the distribution from F;
6 for each large clique𝐶 ∈ C do
7 Pr(𝐶) ← Estimate by Algorithm 2 in Subsection 5.3 with

(𝑁2, 𝐼 ) ;
8 Generating the synthetic datasets 𝐷∗ according to all cliques’

distribution;

9 return 𝐷∗;

(2) Otherwise, we randomly select an attribute 𝐴ℎ ∈ 𝑄 as the

selected attribute and let 𝑆𝐴ℎ
= 𝑄 \𝐴ℎ (Line 4).

Then, add

(
𝐴ℎ, 𝑆𝐴ℎ

)
into Ψ and 𝑆𝐴ℎ

∪ 𝐴ℎ intoM, and remove

𝐴ℎ from𝑄 (Lines 10-11). Repeat the above steps until𝑄 is empty,

we obtain the factorization results Φ. Finally, we estimate the

distribution of each item (i.e., factor) inM (Line 12) and then

calculate the overall distribution of clique 𝐶 by multiplying the

factorization results in Φ (Line 13).

We can get an approximate factorization result with Algo-

rithm 2 without bringing substantial computational complexity.

Furthermore, we can also try to find the optimal factorization

results by searching all possible factorization results when the

clique has an acceptable dimension.

5.4 Putting Things Together: PrivIncr
Algorithm 3 illustrates the overall workflow of our solution,

which can be referred to as PrivIncr. In the first phase (Line

1), we divide all the users into two groups 𝑁1 and 𝑁2 with the

partition coefficient 𝜔 , where 𝑁1 is used to construct the de-

pendency graph 𝐺 and 𝑁2 is used to estimate the marginals of

all cliques. The setting of 𝜔 will be discussed in Section 6.2.1.

In the second phase, we construct the dependency graph 𝐺 by

algorithm 1 with 𝑁1 users (Line 2), and then transform the de-

pendency graph 𝐺 into a junction tree T composed of multiple

cliques C (Line 3). In the third phase (Lines 4-7), we estimate the

distribution Pr (𝐶) of each clique 𝐶 ∈ C, respectively. Finally,
according to the structure of the junction tree and all cliques’

distribution, we can generate the synthetic dataset 𝐷∗ (Line 8).

5.5 Privacy and Complexity Analysis
5.5.1 Privacy Guarantee.
In PrivIncr, each participant uploads their records only once

under 𝜖-local differential privacy protection. Thus, the whole

solution satisfies 𝜖-local differential privacy.

Theorem 5.3. PrivIncr satisfies 𝜖-local differential privacy.

5.5.2 Complexity Analysis.
We analyze the time complexity of our solution by discussing

the time complexity of the key steps of our solutions as follows.

We first suppose that (i) the average attribute domain size |Ω𝑖 |
as 𝑣 , (ii) the average number of users used to re-estimate the

distribute for each edge in each iteration as 𝑛𝑒 , (iii) the average

Table 1: Dataset information description

Dataset Original
Tuples Attributes Domain

Size
Sampled
Tuples

Adult 45222 15 ≈ 2
52

1.5 × 106
TPC-E 40000 24 ≈ 2

77
2 × 106

number of attributes in large cliques as
ˆ𝑑 , and (iv) the average

number of users used to estimate the distribution of each item in

the factorization result of the large clique as 𝑛𝑐 .

Theorem 5.4. The worst-case time complexity of constructing
the dependency graph (i.e., Algorithm 1) is 𝑂

(
𝑇𝑑2

(
𝑛𝑒𝑣

2 + 𝑣2
) )
.

Proof. According to Algorithm 1, the time overhead for re-

select one edge in each iteration consists of four parts, (i) collect

more data for estimating the distribution, (ii) accumulate with

previous data, (iii) recalculate the mutual information, and (iv)

calculate the relaxed threshold. The corresponding time overhead

are 𝑂
(
𝑛𝑒𝑣

2
)
, 𝑂

(
𝑣2

)
, 𝑂

(
𝑣2

)
and 𝑂 (1), respectively. There exist

at most
𝑑 (𝑑−1)

2
edges and 𝑇 iterations. Thus, in the worst case,

the time complexity (i.e., no edges are pruned in each iteration)

is 𝑂
(
𝑇𝑑2

(
𝑛𝑒𝑣

2 + 𝑣2
) )
.

In fact, in the process of incremental learning-based graph

construction, many edges are pruned. Thus, the complexity will

be significantly reduced.

Theorem 5.5. The worst-case time complexity of estimating the
joint distribution of one large clique (i.e., Algorithm 2 in Subsection

5.3) is 𝑂
(
ˆ𝑑2 + 𝑛𝑐 ·

∑ ˆ𝑑
𝑖=1 𝑣

𝑖 + ˆ𝑑𝑣
ˆ𝑑
)
.

Proof. According to Algorithm 2, the time overhead for esti-

mating the distribution of a large clique consists of three parts,

(i) determine the factorization result, (ii) estimate the distribu-

tions of each item in factorization result, and (iii) calculate the

distribution of the clique. The corresponding time overhead are

𝑂

(
ˆ𝑑2
)
, 𝑂

(
𝑛𝑐 ·

∑ ˆ𝑑
𝑖=1 𝑣

𝑖
)
and 𝑂

(
ˆ𝑑𝑣

ˆ𝑑
)
, respectively. Thus, in the

worst-case the time complexity is 𝑂

(
ˆ𝑑2 + 𝑛𝑐 ·

∑ ˆ𝑑
𝑖=1 𝑣

𝑖 + ˆ𝑑𝑣
ˆ𝑑
)
.

In practice, by employing redundancy elimination, the size

of the factorization results can be significantly reduced. Thus,

Algorithm 2 can always achieve high efficiency.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Datasets. In our experiments, we use two real datasets: Adult

[22], which contains census data from the 1994 US census of

1.5 million users and 15 attributes; TPC-E
∗
contains information

of “Trade”, “Security”, “Security status” and “Trade type” tables

in the TPC-E benchmark, around two million records, and 23

attributes. Note that both Adult and TPC-E contain continuous

and categorical attributes, so we discretized the continuous at-

tributes to categorical attributes. For each continuous attribute,

we discretize its domain into a fixed number 𝑏 of equi-width

ranges (we use 𝑏 = 16). Meanwhile, to better evaluate the perfor-

mance of methods, we increase the amount of Adult and TPC-E

by sampling from their true distribution. Table 1 illustrates the

properties of the datasets.

∗
TPC-E is available at http://www.tpc.org/.
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Tasks and Metrics. Following [9, 43], we evaluate the perfor-

mance of the published synthetic dataset on two types of tasks,

the linear query task (e.g. 𝑘-way marginals) and the non-linear

analysis task (e.g. SVM classification). For the first task, we eval-

uate the accuracy of 𝑘-way marginals of the synthetic dataset.

Identical to [9, 33, 43], we use the total variant distance (referred

to as 𝑇𝑉𝐷) to measure the accuracy between two distributions,

which is as follows:

∥𝑃 −𝑄 ∥𝑇𝑉𝐷 =
1

2

∑︁
𝜔 ∈Ω
|𝑃 (𝜔) −𝑄 (𝜔) | , (20)

where 𝑃 denotes one 𝑘-way marginal over the synthetic dataset

and 𝑄 denotes its real distribution. We report the average of all

total variant distances as the final metric. The second task is to

use the synthetic dataset to train the SVM classification models

and use the classification rate to measure the performance. For

each task, we repeat the experiment 100 times and report the

average.

Competitors. We evaluate our PrivIncr by comparing it with

the following methods:

• LoPub [33]: It is the existing work for multi-dimensional

data publication with LDP, and its implementation details

and limitations have been described in Section 4.

• NoIncremental: It is a baseline method. This approach

constructs the probabilistic graph model without employ-

ing the incremental learning-based method. Specifically,

NoIncremental directly selects edges from all

(𝑑
2

)
edges at

once to construct the dependency graph. Note that, NoIn-

cremental plays two roles in the following experiments.

On the one hand, it is the no-incremental version of Priv-

Incr. This helps us to understand the effectiveness of our

incremental-based approach. On the other hand, it is an

improved version of LoPub with two main modifications:

(i) replacing the privacy budget split strategy with the data

split strategy to improve the result utility. As described in

[3], it has been proved that the latter strategy can often

provide higher data utility than the former. (ii) changing

the data perturbation method, i.e., replacing the combina-

tion of RAPPOR [16] and EM [17] algorithm with the OUE

[37] method, to improve the accuracy and efficiency of the

distribution estimation. By comparing NoIncremental (as

the improved version of LoPub) with our solution PrivIncr,

it helps us to demonstrate the superiority of our solution

PrivIncr over the related work LoPub.

• NoPrivJTree: We directly construct the junction tree and

calculate the distribution of cliques on the original dataset

to generate a synthetic dataset without privacy protection,

i.e., it does not enforce 𝜖-local differential privacy. This

can help us better understand how much inaccuracy is

inherent in the underlying Junction tree model.

• CALM [44] and FT [10]: These are two approaches to con-

struct 𝑘-way marginals for multi-dimensional attributes

under LDP. CALM first partitions the attribute set with the

optimal CoverDesign parameters and then reconstructs

any 𝑘-way marginals from these marginals of the parti-

tioned attribute set. FT is a Fourier-Transformation-based

method. Note that FT is unable to deal with the non-binary

attributes. Following [44], we encode each non-binary at-

tribute into several binary attributes to implement the

non-binary version of FT.

Parameters. For PrivIncr and NoIncremental, we set 𝜙 = 0.3 to

control the dependency level between pairwise attributes. Mean-

while, we allocate half of the dataset on the construction of PGM

model and the other half on estimating the ditributions of all

cliques in junction tree (i.e., the data partition coefficient 𝜔 in

algorithm 3 is 0.5). In particular, we set the number of iterations

𝑇 = 6 for PrivIncr in algorithm 1. These values are chosen based

on our experimental results in Subsection 6.2.1.

Computing Environment Setup. All algorithms are imple-

mented in Python 3.6, and all the experiments are run on a server

with Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 251GB

memory and Nvidia RTX 2080Ti GPU.

6.2 Experimental Results
6.2.1 Parameter Tuning.
In our first set of experiments, we evaluate the performance

of PrivIncr on Adult while varying its two internal parameters:

(i) the number of iterations 𝑇 used in Algorithm 1; (ii) the data

partition coefficient𝜔 in Algorithm 3; (iii) the dependency degree

𝜙 in Algorithm 1.

Figure 4(a) shows the average total variation distance of the

3-way marginals generated from PrivIncr’s output as 𝑇 and 𝜖

varying.We observe that the average variation distance decreases

with the increase of𝑇 . Meanwhile, when𝑇 > 4, the performance

improves slowly. Therefore, we infer that an appropriate value

for𝑇 should be in the range of [4, 8], so we set𝑇 = 6 for PrivIncr

to balance the performance in the following experiments.

Figure 4(b) illustrates the performance of PrivIncr for 3-way

marginal, when 𝜔 and 𝜖 varies. We can observe that changing

the data partition coefficient 𝜔 almost does not affect the perfor-

mance. This is because PrivIncr can already select the correct

edges accurately under a small 𝜔 . Recall that the coefficient 𝜔

controls the number of users assigned to participate in the con-

struction of the dependency graph and the estimation of the

distribution of the cliques. On the one hand, when 𝜔 is small,

a small number of users are used to construct the dependency

graph, which compromises its ability to identify the correlations.

On the other hand, when 𝜔 is large, although we can accurately

model the dependency graph, in which case the estimation of

the cliques’ distributions will become error-prone and degrade

the utility of the synthetic dataset. Based on these results, we set

𝜔 = 0.5 as the default for all subsequent experiments.

Figure 4(c) plots the total variant distance of 3-way marginals

when 𝜙 and 𝜖 vary. Observe that the overall performance of Priv-

Incr is optimized when 𝜙 is not too large or too small. This lies

in that, in the construction of the dependency graph, a large

𝜙 means stricter correlation requirements, which makes some

important correlation information lost. As the decrease of 𝜙 ,

these information losses are recaptured, and the performance is

improved. However, when 𝜙 is further reduced, a lot of unneces-

sary information will be captured, and more noise needs to be

injected to protect this information to meet privacy protection

requirements. This results in performance degradation. Based on

these observations, we set 𝜙 = 0.3 for PrivIncr to achieve high

performance.

6.2.2 Comparison with LoPub.
In the second set of experiments, we compare PrivIncr with

LoPub on Adult by evaluating the accuracy of 2-way marginals

of their synthetic datasets.

Table 2 illustrate the comparison results. We observe that the

performance of LoPub is significantly worse than that of our
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Figure 4: Parameter tuning on Adult

Table 2: The Comparison with LoPub

TVD

Privacy budget 𝜀

1 4 8 30 165 442

Methods

LoPub 0.721 0.68 0.633 0.43 0.17 0.065

NoIncremental 0.46 0.166 0.044 0.036 0.034 0.033

PrivIncr 0.162 0.073 0.04 0.033 0.033 0.033

solution PrivIncr. Specifically, when the privacy budget is within

a reasonable range, i.e., 𝜖 ∈ [1, 8], our method can achieve high

performance while the error of LoPub is substantial. For LoPub,

even with a privacy budget of 8, the error is still 0.633, which

cannot meet the requirements of data utility for practical appli-

cations. To make LoPub achieve better performance, the privacy

budget is set according to the privacy budget settings in [32] (i.e.,

𝜖 = 30, 165, 442, the corresponding perturbation probability 𝑓 of

each attribute is equal to 0.1, 0.5, and 0.9, respectively). At this

time, the error of our solution PrivIncr can achieve 0.033, which

is close to the error of the methods without considering privacy.

While the error of LoPub can only achieve 0.065. Seriously, for

LoPub, such large privacy budgets can hardly meet the privacy

requirements of practical applications. For the poor performance

of LoPub, besides the need to calculate marginal distributions

of a large number of attribute pairs and large cliques will bring

a large amount of noise (these challenges are also the focus of

our work), there are also the following two reasons: (i) adopt the

privacy budget split strategy. (ii) use the combination of RAP-

POR [16] and EM [17] algorithm to perturb the data and estimate

the distributions. These result in a large perturbation for each

attribute (the details have been discussed in Section 4).

To better demonstrate the superiority of our solution, we de-

sign a new baseline method NoIncremental and compare it with

our solution PrivIncr in the following experiments. NoIncremen-

tal can be seen as an improved version of LoPub with two main

modifications: (i) replacing the privacy budget split strategy with

the data split strategy. (ii) replacing the combination of RAP-

POR and EM algorithm with the OUE [37] method. Please see

more details in Section 6.1. Even so, our solution PrivIncr can

consistently outperform NoIncremental.

6.2.3 Results of 𝑘-way Marginals.
In the third set of experiments, we compare PrivIncr with NoIn-

cremental, NoPrivJTree, CALM and, FT on both two datasets.

Figure 5 shows the average total variation distance of each

method for all 𝑘-way marginals under different privacy budgets

𝜖 . As can be observed, PrivIncr consistently outperforms other

methods in almost all cases, and the difference becomes more

apparent as the privacy budget decreases. Obverse that when

𝜖 = 4, the average total variation distance of PrivIncr is half

of that of NoIncremental (even one-third on TPC-E). Especially,

when 𝜖 < 4, NoIncremnetal cannot provide valid data accuracy.

The reason is that the low privacy budget leads NoIncremnetal to

calculate the pairwise correlations with a large amount of noise

and select some wrong edges in the dependency graph. However,

PrivIncr can prune most useless edges and allocate more data

and privacy budget to the useful edges, improving the accuracy

of the calculated correlations. With the increase of the privacy

budget, the accuracy of PrivIncr is close to that of NoPrivJTree.

The bad performance of FT is due to the binary encoding dra-

matically increasing the number of Fourier coefficients required

to reconstruct marginals, and the results are consistent with the

conclusion in [44].

6.2.4 Results of SVM Classification.
In the fourth set of experiments, we compare PrivIncr with

NoIncremental, NoPrivJTree, and NoPrivacy for the SVM clas-

sification rate. NoPrivacy constructs classifiers directly on the

input data without any privacy protection (let 80% of the records

be the training set, and the remaining 20% are the testing set).

We report the experimental results on Adult with three different

attributes (two binary attributes and one Non-binary attribute)

as labels: (i) salary, (ii) gender, and (iii) education. Meanwhile,

on TPC-E, we construct three classifiers to predict (i) the trade

type, (ii) the transaction type, and (iii) the security status type,

respectively.

Figure 6 illustrates the SVM classification rate in each exper-

iment. We can observe that PrivIncr consistently outperforms

NoIncremental on both two datasets. Due to the small privacy

budget will make it difficult for NoIncrement to identify the

strong correlations, the performance of NoIncrement is much

lower than PrivIncr. As the privacy budget grows, the accuracy

of PrivIncr is close to that of NoPrivJTree. This is consistent with

the results in Figure 5. Note that the accuracy of PrivIncr is better

than that of NoPrivJTree when 𝜖 ≥ 7 in Figure 6(e), we interpret

this phenomenon as reasonable because it is robust against noise

injection when the number of tuples in the training set is large.

6.2.5 Results of Computation Cost.
In the last set of experiments, we evaluate the computation

cost of PrivIncr, NoIncremental, and LoPub on both two datasets.

LoPub employs the EM algorithm to estimate the marginal dis-

tributions, and there exist some large cliques in the constructed

dependency graph, which incurs a tremendous amount of com-

putation cost. The running time of LoPub will be at least 20 hours.

While PrivIncr and NoIncremental take no more than 30 minutes

in all tested cases. The running time of LoPub is not in the same

order of magnitude as the overhead of PrivIncr and NoIncremen-

tal. To more intuitively display the difference in the running time

of PrivIncr and NoIncremental, we didn’t show the results of

LoPub in Figure 7.
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Figure 5: Average total variation distance of 𝑘-way
marginals

Figure 7(a) shows the running time of PrivIncr and NoIncre-

mental in seconds under different numbers of iterations𝑇 , where

the privacy budget 𝜖 = 4 and the dependency degree 𝜙 = 0.3.

Because there is no parameter 𝑇 in NoIncremental, its running

time remains the same when 𝑇 varies. We can observe that the

running time of PrivIncr becomes smaller as the number of itera-

tions increases and is always smaller than NoIncremental when

the number of iterations is within a reasonable range. But ex-

cessive iterations will lead to increased runtime. The reason is

as follows. In the incremental learning-based method PrivIncr,

on the one hand, attribute pair (edge) pruning can reduce the

computational complexity. On the other hand, data accumulation

increases computational complexity. To reduce the computational

complexity caused by the latter, we propose an efficient data ac-

cumulation method based on the divisibility of local differential

privacy. Specifically, according to Equation 13 (please see more

details in Section 5.2.3), we can calculate the results of the first 𝑇

rounds based on the calculation results of the first (𝑇 − 1) rounds
with a low computation cost. In this case, when the number of

iterations is within a reasonable range, the benefits brought by

pruning are more significant. However, when 𝑇 is too large, the

last few pruning rounds have little effect and only bring accumu-

lation computation cost.

Figure 7(b) shows the running time of PrivIncr and Incremen-

tal in seconds under different parameters 𝜙 , where the privacy

budget 𝜖 = 4 and number of iterations 𝑇 = 6. Generally speak-

ing, the running time tends to decrease when the parameter 𝜙

increases in both of PrivIncr and NoIncremental. The reason lies
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Figure 6: SVM classification rates
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Figure 7: Computation Cost of PrivIncr and NoIncremental

in that, the parameter 𝜙 controls the threshold 𝜏 that is used

to determine whether a pair of attributes have a strong corre-

lation. According to Equation 15, the larger 𝜙 is, the larger 𝜏 is.

Then, fewer edges are selected and contained in the constructed

dependency graph. Such that, when calculating the marginal

distribution of the clique, the amount of calculation is smaller.

However, to achieve a high data utility of the synthetic dataset,

we usually set 𝜙 = 0.3.

7 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of multi-dimensional data

publishing with local differential privacy (LDP). Based on the

sparseness of PGM and the divisibility of LDP, we proposed an

incremental learning-based method for constructing the junction
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tree. In addition, based on joint distribution decomposition and as-

sociated attribute selection, we proposed a marginal distribution

calculation method for the large cliques in the PGM in the context

of LDP. We presented a practical solution for multi-dimensional

data publishing under LDP with the above techniques. Exten-

sive experiments on real datasets demonstrated that our solution

offers desirable data utility.

For future work, we plan to investigate the following two

aspects. On the one hand, we will consider solving the problem

of multiple dimensional data publishing with local differential

privacy under the case where some tuples have missing values on

some attributes. A feasible solution is to learn prior knowledge

with the tuples that have no missing values to make inferences

for the missing values, and then use these padded tuples to learn

more accurate distribution information. On the other hand, our

incremental learning-basedmethod is a generic framework and of

independent interest for other applications in the context of local

differential privacy. We will consider using this method to solve

the problems of extracting data features from a large number of

candidates while guaranteeing local differential privacy.
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