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ABSTRACT
Locality sensitive hashing (LSH) is one of the widely-used ap-
proaches to approximate nearest neighbor search (ANNS) in
high-dimensional spaces. The first work on LSH for the Euclidean
distance, E2LSH, showed how ANNS can be solved efficiently at
a sublinear query time in the database size with theoretically-
guaranteed accuracy, although it required a large hash index size.
Since then, several LSH variants having much smaller index sizes
have been proposed. Their query time is linear or superlinear,
but they have been shown to run effectively faster because they
require fewer I/Os when the index is stored on hard disk drives
and because they also permit in-memory execution with modern
DRAM capacity.

In this paper, we show that E2LSH is regaining the advan-
tage in query speed with the advent of modern flash storage
devices such as solid-state drives (SSDs). We evaluate E2LSH on
a modern single-node computing environment and analyze its
computational cost and I/O cost, from which we derive storage
performance requirements for its external memory execution.
Our analysis indicates that E2LSH on a single consumer-grade
SSD can run faster than the state-of-the-art small-index methods
executed in-memory. It also indicates that E2LSH with emerging
high-performance storage devices and interfaces can approach
in-memory E2LSH speeds. We implement a simple adaptation of
E2LSH to external memory, E2LSH-on-Storage (E2LSHoS), and
evaluate it for practical large datasets of up to one billion ob-
jects using different combinations of modern storage devices and
interfaces. We demonstrate that our E2LSHoS implementation
runs much faster than small-index methods and can approach
in-memory E2LSH speeds, and also that its query time scales
sublinearly with the database size beyond the index size limit of
in-memory E2LSH.

1 INTRODUCTION
Nearest neighbor search (NNS) in high-dimensional Euclidean
spaces is an important operation in many diverse application
domains, such as databases, text search, multimedia indexing, pat-
tern recognition, and machine learning [1, 6, 31, 36, 39, 43]. NNS
in high-dimensional spaces is known to be computationally ex-
pensive due to the curse of dimensionality [10, 41]. The common
approach to overcoming the high computational cost is to design
efficient approximate nearest neighbor search (ANNS) algorithms,
which find neighbors that are close enough to the query item
instead of the exact nearest neighbors. Locality sensitive hashing
(LSH) is one of the widely used approximate methods among oth-
ers such as graph-based and tree-based approaches [7, 23]. The
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advantages of LSH are its theoretically guaranteed accuracy and
practical speed [19, 20]. The first work on LSH in the Euclidean
space, introduced by Datar et al. [11] and later named E2LSH
[5], showed how ANNS can be solved efficiently with sublinear
query time in the number n of objects in the database. On the
other hand, a large hash index of size superlinear in n has to be
maintained, which has limited its applicability to relatively small
databases. Although one billion ANNS was demonstrated using a
100-node cluster [36], in order to handle such large databases on
a single node, E2LSH would have required external memory for
storing a large hash index. Hence, several LSH variants have been
proposed to reduce the index size [13, 18, 24, 25, 35, 44], which
we collectively refer to as small-index LSH methods. Although
they come at the cost of sublinear query time, meaning their
computational load is linear or superlinear, their good empiri-
cal performance has made them constitute the mainstream of
Euclidean LSH in the recent literature [23].

In this paper, we deviate from this trend and show that E2LSH
on a single node for various practical datasets, including billion-
class large databases, can be made faster than small-index meth-
ods through the effective use of modern flash storage devices
such as solid-state drives (SSDs). These devices have dramati-
cally shorter access times than hard disk drives (HDDs) while
providing terabytes of capacity necessary to hold large hash
indices, suggesting that E2LSH may regain its competitiveness
through external memory implementation (which we call E2LSH-
on-Storage or E2LSHoS for short). To examine when this turning
point happens, we evaluate the E2LSH algorithm on a modern
single-node computing environment and analyze its computa-
tional cost and I/O cost. Based on these numbers, we identify the
storage performance requirements in order for E2LSHoS to run
at a given speed. Our analysis indicates that external memory
needs to provide a random read performance of a few hundred
kIOPS (I/O operations per second) in order to compete with the
state-of-the-art small-index methods SRS [35] and QALSH [18]
executed in-memory.While such an IOPS number is hard to come
by with HDDs, it can easily be achieved by a single consumer-
grade NVMe™ SSD if the drive receives multiple read requests
in parallel to take advantage of the multiple flash memory dies
inside the drive. This means that E2LSHoS can be faster than
the small-index methods if we can adapt the algorithm using
asynchronous I/Os. By using the same analysis framework, we
can also study whether E2LSHoS can be as fast as in-memory
E2LSH. The storage requirements turn out to be a random read
performance of a few MIOPS and a CPU I/O overhead of tens
of nanoseconds. This suggests that in-memory-class speeds are
achievable using emerging high-performance storage devices
and I/O interfaces.

To verify our observations, we implement E2LSHoS incorpo-
rating the external memory adaptations including asynchronous
reads. We conduct experiments using several combinations of
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storage devices and interfaces, and show that E2LSHoS indeed
runs faster than the small-index methods even with a single com-
modity NVMe™ SSD providing 350 kIOPS. By placing a large
index on storage, the runtimememory (DRAM) usage of E2LSHoS
is comparable to the small-index methods. We also show that
E2LSHoS approaches in-memory speeds by using high IOPS
drives and a lightweight I/O interface with a small CPU overhead.
Having in-memory-class speeds effectively amounts to relaxing
the index size limit of E2LSH imposed by DRAM without com-
promising its speed or accuracy. One can enjoy the benefit of
sublinear query time of E2LSH (i.e., more speedup gains over
linear time methods as the database size n increases) for larger
databases that were previously possible only on a multi-node
cluster. We experimentally validate the sublinearity of E2LSHoS
query time up to one billion objects.

In summary, our contributions are as follows. (1) We experi-
mentally analyze the computational and I/O cost of the E2LSH
algorithm on a modern single-node hardware environment in
order to identify the storage performance requirements for its
external memory implementation. (2)We implement E2LSHoS us-
ing asynchronous I/Os tomaximize the random read performance
of storage, and evaluate it for practical large datasets of up to one
billion objects using different combinations of modern storage
devices and interfaces on a single node. (3) We demonstrate the
strengths of E2LSHoS: it runs much faster than small-index meth-
ods using commodity NVMe™ SSDs; it can approach in-memory
E2LSH speeds using emerging storage devices and interfaces;
and its query time scales sublinearly with the database size be-
yond the index size limit of in-memory E2LSH. These results
suggest that larger-index LSH methods are once again becoming
increasingly worth exploring.

2 PRELIMINARIES
This section reviews ANNS, LSH, and E2LSH to provide the
background information for our analysis and evaluation.

2.1 Approximate Nearest Neighbor Search
Let D be a database of n objects, each represented by a point in
the d-dimensional space, where the dissimilarity between two
objects o1 and o2 is measured by their Euclidean distance | |o1,o2 | |.
Given a query q ∈ Rd and an approximation ratio c (≥ 1), c-
approximate nearest neighbor search (ANNS) returns an object
o ∈ D satisfying | |q,o | | ≤ c · | |q,o∗ | |, where o∗ ∈ D is the exact
nearest neighbor. Likewise, top-k c-ANNS returns a set of objects
oi ∈ D (1 ≤ i ≤ k) satisfying | |q,oi | | ≤ c · | |q,o∗i | |, where o

∗
i is

the i-th nearest neighbor.

2.2 Locality Sensitive Hashing
Locality sensitive hashing (LSH) is one of the most widely used
ANNS techniques, whose two main advantages are theoretical
guarantees and empirical performance. It uses hashes under
which two objects collide with a higher probability when they
are closer, allowing one to quickly collect candidate neighbors
before checking their actual distances to the query. Such a hash
function that maps a point o ∈ Rd to an integer hash value can
be constructed as [11],

h(o) =

⌊
a · o + b

w

⌋
, (1)

where a ∈ Rd is a random vector whose d elements are drawn
from the standard normal distribution N(0, 1), w is a bucket

width, and b is a uniform random number on [0,w). Intuitively,
the vector dot product a ·o projects the object o onto a randomly-
oriented line a, and the division byw followed by the floor op-
eration splits the line into segments of lengthw , forming hash
buckets. Shifting by b randomizes the bucket boundaries. With
Equation 1, two objects o1 and o2 are likely to fall in the same
bucket when their distance s = | |o1,o2 | | is small. That is, the
probability Pr [h(o1) = h(o2)] of hash collision is a monotonically
decreasing function of the distance s [11]. We denote this func-
tion by pw (s) in what follows. The subscript indicates that it also
depends on the bucket widthw .

2.3 E2LSH
Here we explain the method proposed by Datar et al. that solves
c-ANNS efficiently using LSH [11], which we adapt to external
memory. It is commonly referred to as E2LSH after the software
package based on it [5], although they have some differences. We
use the original algorithm [11], which has a query time guarantee.

Consider the subproblem called (R, c)-near neighbor (NN)
search, where, given a fixed radius R, the task is to determine
whether there is an object within distance R from the query q.
And if there is one, we report any object within distance cR. If
not, we report so. By successively performing (R, c)-NN for in-
creasing radii R = 1, c, c2, c3, · · · until some object is reported,
the reported object is a solution to c2-ANNS [19, 38].

In order to solve (R, c)-NN, LSH functions of Equation 1 can
be used to collect candidate neighbors because we have

Pr [h(q) = h(o)] ≥ p1 for | |q,o | | ≤ R (2)
Pr [h(q) = h(o)] ≤ p2 for | |q,o | | ≥ cR (3)

with p1 > p2 thanks to the monotonically decreasing collision
probability pw (| |q,o | |). Near objects within distance R collide
with the query at a high probability of at least p1 = pw (R),
whereas far objects beyond distance cR collide at a low prob-
ability of at most p2 = pw (cR). E2LSH uses a series of compound
hashes each consisting of multiple LSH functions as

дi (o) = (hi1(o),hi2(o), · · · ,him (o)), (4)

where hi j is the j-th LSH function in the i-th compound hash.
Each compound hash consists ofm hashes with randomly chosen
a andb, andwe consider all of thesem hash values to be combined
together to point to one hash bucket. This more effectively rejects
far objects because the collision probability will be raised to
the m-th power as Pr [дi (q) = дi (o)] ≤ pm2 ≪ 1. As this also
decreases the collision probability for near objects to a lesser
extent, multiple (L) compound hashes are used so at least one of
them catches near objects.

In preprocessing, E2LSH constructs L separate sets of hash
buckets. For each object o ∈ D, it calculates compound hash val-
ues д1(o),д2(o), · · · ,дL(o), and adds the object o to the L buckets
they point to. The mapping from a compound LSH hash value
to the corresponding bucket is maintained using a table or a
standard hash, called a hash table. In the query phase, E2LSH
computes the hash values of the queryq asд1(q),д2(q), · · · ,дL(q),
and searches all of those L buckets. Objects in these buckets are
candidate neighbors. We compute their actual distances to the
query, and report those that are within cR. As the number of
candidate objects may be large, E2LSH stops the search after
examining S candidates.
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By adjusting the parametersm, L, and S , we can control the
probability of successfully finding the (R, c)-NN solutions. With

m = log1/p2
n, L = nρ , S = 2L (5)

where ρ = log(1/p1)/log(1/p2) < 1, the success probability be-
comes 1/2 − 1/e [11].

Since E2LSH calculatesmL hash values for a given query and
computes the distances of up to S objects, the time complexity is
O(dmL + dS) = O(dnρ logn), which is sublinear in the database
size n. On the other hand, it consumes large space. In addition to
the O(dn) database size, each object is stored in L hash buckets,
resulting in O(nL) = O(n1+ρ ) superlinear hash index size.

In performing (R, c)-NN for increasing radii, the maximum ra-
dius Rmax we need to look at is given as Rmax = 2xmax

√
d , where

xmax is the maximum absolute value of the object coordinates.
The number r of radii to be searched is thus r = ⌈logc Rmax⌉.
This depends on the extent of the object coordinates, but not on
the database size.

2.4 Other LSH methods
Manymethods have been proposed to address the large index size
of E2LSH. Multi-Probe LSH collects more candidate neighbors
by probing multiple nearby hash buckets, resulting in near linear
index sizes [26]. It builds upon the entropy-based theory [30]
while improving on the practical performance, but its theoretical
guarantees are yet to be established [27]. LSB-Forest converts
m hash values into a Z-order value and indexes it using a B-
tree [38]. Different lengths of leading bits of the Z-order values
correspond to different search radii, eliminating the need for
preparing hash indices for different radii, although this limits
the approximation ratio c to an integer. The query time and
index size remain sublinear and superlinear, respectively. C2LSH
introduced collision counting and virtual rehashing techniques to
achieve O(n logn) query time and index space [13]. Albeit still
superlinear, this is a significant reduction in the index size, but
the query time also became superlinear. Subsequent work further
improved performance using query-aware bucketing (QALSH
[18]) and query-centered incremental search (I-LSH [24]), with
the same space and time complexities. Other methods use LSH to
project objects onto a low-dimensional space, where they collect
candidate neighbors using an R-tree (SRS [35]) and a PM-tree
(PM-LSH [44]), which leads to linear space and time complexities.
R2LSH [25] combines two LSH functions to construct multiple
2D projections, and candidates are searched within query-centric
balls. The space and time complexities are both linear.

Although the query time of these small-indexmethods is either
linear or superlinear, the reduced I/O cost for external memory
has had a large impact, allowing them to run faster than large-
index methods. Moreover, even if they initially assumed external
memory execution, the typical DRAM capacity has increased
since then, permitting even faster in-memory execution. How-
ever, the storage performance has also increased in the meantime,
likely more so than DRAM. We are interested in seeing if large-
index methods can be faster again even if they still need to resort
to external memory execution, for which we take the seminal
sublinear time E2LSH as a first-step example. The idea of running
E2LSH-like methods on external memory dates back to 1999 [14],
and this paper is by no means new in that respect. However, pre-
vious HDD-based studies had to deal with costly I/Os. There has
been an attempt to minimize I/Os aggressively by using only a
small number of hashes and avoiding distance checking [22], but
this deviates from the original E2LSH formulation, compromising

its theoretical guarantees. With the advent of modern storage
devices, reports on their use in ANNS are emerging [15, 21]. Our
intention is to push this trend and provide insights into the im-
pact of storage on the E2LSH query time, which we hope will
help the community to further explore this direction.

2.5 Other ANNS Methods
While the focus of this paper is LSH, there are many other ap-
proaches to ANNS [1, 6]. Recent benchmarks [7, 23] compare
methods from three major categories among others: graph-, tree-,
and LSH-based. Graph-based methods [2, 12, 28, 33] construct
graphs whose vertices representing objects are connected by
edges when they are close to each other, so that NNs can be
searched efficiently by traversing the edges. Tree-based methods
partition the search space into a hierarchy using tree structures
such as randomized k-d trees [29] and random projection trees
[9]. Neither graph- nor tree-based method has theoretical guar-
antees, but they are considered to generally achieve higher em-
pirical speeds [7, 23]. The major advantages of LSH over these
approaches include theoretical guarantees as well as relatively
simple index structures based on hashing, which are easy to main-
tain and update. We believe our work is a step forward toward
accelerating the LSH-based approach without losing its theoreti-
cal footing, so that it will continue to be one of ANNS algorithms
from which practitioners can choose.

3 EXPERIMENTAL SETUP
This section explains the experimental setup used both for an-
alyzing the E2LSH algorithm in Sec. 4 and for evaluating its
external memory implementation, E2LSHoS, in Sec. 6. We focus
on the case where the hash index (both hash tables and buckets)
is placed on external memory while the database itself is kept
on DRAM, as the hash index is by far the most space-consuming
data structure.

3.1 LSH Methods
We use three LSH methods, E2LSH, SRS [35], and QALSH [18].
E2LSHhas in-memory and externalmemory versions. In-memory
E2LSH is implemented by modifying the E2LSH package [5] so it
performs c-ANNS. The external memory version, E2LSHoS, will
be presented in Sec. 5. To compare E2LSH(oS) with small-index
methods, we select SRS and QALSH as representative bench-
marks. They are among the state-of-the-art LSH-based methods
with quality guarantees, and are used as benchmarks by previous
reports [23–25, 44]. Since their index size is small, we use their
in-memory implementations [17, 34] posted by the respective
authors of the methods, and thus the entire index is stored in
the main memory. While more recent methods such as PM-LSH
[44] and I-LSH [24] are published, they do not come with open
implementations. PM-LSH has the same linear time complexity
as SRS and the paper reports 30% faster query than SRS. I-LSH
has the same superlinear time complexity as QALSH. It reduces
I/Os at the cost of more computation [20] and thus in the in-
memory settings, it is likely to perform similarly to QALSH. As
they should perform similarly to SRS and QALSH, respectively,
we believe we can provide more grounded evaluation using the
open implementations of SRS and QALSH.

3.2 Evaluation Metrics
We compare methods by their query times required to achieve the
same level of accuracy. We often present speedup gains by taking
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the query time ratio to show how many times one method is
faster than the other. We use the overall ratio metric for accuracy.
For top-k ANNS, it is defined as 1

k
∑k
i=1 | |oi ,q | |/| |o

∗
i ,q | |, where

oi is the i-th ANN returned by a given method, and o∗i is the exact
i-th NN. A smaller value means higher accuracy, It becomes 1 if
exact NNs are returned. An overall ratio of 1.05 is used as our
default target.

3.3 Parameter Settings
Different methods have different algorithmic parameters that
affect their performance. The E2LSH parameters (m,L, S) are
calculated by Equation 5. Given the approximation ratio c (we
use c = 2), the value of ρ can be adjusted by varying the bucket
width w . When ρ is small, both of the index size O(n1+ρ ) and
query time O(dnρ logn) become smaller, but this generally leads
to lower empirical accuracy. Therefore, we set ρ large enough to
achieve the desired range of accuracy, and fine tune the accuracy
by introducing a scaling parameter γ to modify m such that
m = γ log1/p2

n. This scaling is useful as it does not affect the
index size once ρ, hence L, is fixed for a given dataset. The scaling
also modifies the success probability, but that can be compensated
for by the choice of S , and it does not change the sublinear query
time complexity as long as γ > ρ.

For SRS, we set c = 4 (equivalent to c = 2 in E2LSH) and
the success probability to 1/2 − 1/e . SRS projects objects in D

onto a low dimensional space. After experimenting with various
values for the projection dimension (denoted bym in [35]), we
foundm = 8 works well for all of our evaluations. We control
the accuracy by varying the maximum number of data points to
be checked (denoted by T ′).

For QALSH, we set the success probability to 1/2−1/e . For lack
of other tweakable parameters, we adjust the accuracy through
c .

3.4 Datasets
We use eight widely-used datasets in Table 1, covering a broad
range of data types. Relative Contrast (RC) [16] and Local Intrin-
sic Dimensionality (LID) [4] are shown as proxies for the hardness
of the datasets. Smaller RC and larger LID imply harder datasets.
We conduct experiments using the queries accompanying each
dataset.

Table 1: Datasets

Name n (×103) d Data RC LID Type
MSONG 983 420 float 4.04 23.8 Audio
SIFT 1,000 128 byte 3.20 21.7 Image
GIST 1,000 960 float 2.14 47.3 Image
RAND 1,000 100 float 1.42 49.6 Synthetic
GLOVE 1,183 100 float 2.20 22.1 Text
GAUSS 2,000 512 float 1.14 147.1 Synthetic
MNIST 8,000 784 byte 3.00 20.4 Image
BIGANN 1,000,000 128 byte 3.55 25.4 Image

3.5 Execution Environment
Our experimental machine is equipped with two Intel® Xeon®
Gold 5218 2.3GHz 32-core CPUs and DDR4 DRAM 768 GB (32 GB
× 24), running Linux (Ubuntu 18.04 and kernel 5.3.0). For all the
LSH methods we compare, hash value and distance computations
are accelerated using AVX-512. Unless otherwise noted, we use a

single core to preclude performance variability due to multi-core
execution. The reason for the high capacity DRAM is to be able
to run in-memory E2LSH for as large databases as possible. It
allows us to deal with up to 100 million objects, although it falls
far short of the index size for one billion objects. By using external
memory, we do not need this DRAM capacity: with BIGANN
dataset, E2LSHoS consumes 140 GB in total, of which 130 GB is
the database size.

3.6 Storage Devices
As external memory for E2LSH, we use three types of flash-
based storage devices: consumer-grade NVMe™ SSDs (cSSD),
enterprise-grade NVMe™ SSDs (eSSDs), and prototype device
XLFDDs [32]. Their measured random read performances are
shown in Table 2. These IOPS numbers play a key role as hash
buckets will be read randomly. Flash storage offers orders of
magnitude higher IOPS than HDDs, especially when I/O requests
are fed in parallel and the number of concurrent I/Os being pro-
cessed, called the queue depth, is large. eSSDs are equipped with
low-latency flash memory chips and provide higher IOPS than
cSSDs. The reason why we include XLFDDs in our evaluation is
not because of their even higher IOPS, but of their lightweight
I/O interface as explained next.

Table 2: Storage devices and their random read perfor-
mance

kIOPS†
Type Storage model Queue depth

1 128

cSSD KIOXIA BiCS FLASH™ XG5, 7.2 2732 TB, NVMe™ 1.4, PCIe® 3.0

eSSD KIOXIA XL-FLASH™ FL6, 27.6 1,400800 GB, NVMe™ 1.4, PCIe® 4.0∗

XLFDD KIOXIA XL-FLASH™ Demo Drive 132.3 3,860520 GB, PCIe® 3.0

HDD‡ Seagate IronWolf 0.21 0.5410 TB, 7200rpm
* Our evaluation is limited to the performance of PCIe® 3.0 supported by the CPU.
† Measured at 512 bytes rather than 4 kB in order not to be bandwidth-limited.
‡ Listed here for reference only.

3.7 Storage Access Interfaces
Issuing I/O requests to storage consumes some CPU time. This
overhead can have a non-negligible impact on the query time
of E2LSHoS issuing a large number of I/Os. The CPU overhead
depends on the storage access interfaces, and conventional in-
terfaces often consume a lot of CPU time going through system
calls and interruption handlers to access external devices.

Recently, more lightweight interfaces are becoming available
including io_uring [8] and SPDK [42]. In addition, XLFDD is
designed to permit a more lightweight interface than NVMe™
SSDs [37]. We use these three interfaces in our evaluation. Table 3
shows their measured CPU overheads expressed in terms of the
time a CPU core spends in issuing one I/O request, as well as its
reciprocal indicating the maximum IOPS one core may be able
to draw from storage. These numbers depend on our execution
environment and may be different from benchmarks reported
elsewhere. Our aim is to assess the impact of the CPU overhead
on E2LSHoS and not to decide which interface is better: faster
versions are already emerging.
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Table 3: Storage interfaces and their CPU overhead

Interface CPU time per I/O Max IOPS/core
io_uring (version 2.0) 1.0 µsec 1.0 MIOPS
SPDK (version 21.10) 350 nsec 2.9 MIOPS
XLFDD interface 50 nsec 20 MIOPS

4 EXPERIMENTAL ANALYSIS OF E2LSH
In this section, we experimentally analyze the characteristics of
the E2LSH algorithm. The purposes of the study is to identify
the storage performance requirements for its external memory
implementation, E2LSHoS, to do the following:

• To run faster than small-index LSH methods SRS and
QALSH

• To approach in-memory E2LSH speeds
For clarity and simplicity, we first analyze the case of top-1

ANNS (k = 1), and then examine the influence of k (> 1) in top-k
ANNS.

Note that we do not use storage devices for any of the experi-
ments in this section. We run in-memory E2LSH to characterize
the algorithm without relying on particular storage devices or
external memory implementations. The analysis in this section
guides our external memory implementation in Sec. 5, whose
performance will be evaluated in Sec. 6 using actual storage
devices.

4.1 Query Time Model of E2LSHoS
We use query time models to analyze the E2LSHoS speed without
relying on actual implementations. We consider decomposing
the query time into a computational part (hash value calculation
and distance checking) and I/O part (hash bucket reads). Note
that distance checking does not require I/Os as we keep object
coordinates on DRAM as described in Sec. 3.

Figure 1: Query time models of E2LSHoS

We first consider an adaptation to external memory using a
simpler, synchronous I/O interface as shown in Figure 1(A). To
fetch buckets, the CPU issues an I/O (read) request and waits for
the requested data to arrive from the storage before proceeding
with a next operation. The query time is modeled as follows.

TE2LSHoS,sync = Tcompute + NI/O · (Trequest +Tread), (6)

where Tcompute is the total time spent for computation (of hash
values and distances), NI/O is the number of I/Os (four in the
figure), Trequest is the CPU overhead time per I/O request, and
Tread is the time for the storage to return requested data (i.e.,

latency). Note that the lengths of these operations are not to
scale in the figure.

As the synchronous implementation leaves both the CPU and
storage idle for some time, one can minimize the idle times by
using an asynchronous I/O interface as shown in Figure 1(B), such
that the CPU issues I/O requests for multiple buckets without
blocking, allowing the storage to process requests in parallel. The
figure shows only one unit of processing from hash calculation
to distance checking corresponding to one search radius for one
query, but multiple radii and queries can be interleaved, so that
the computation and I/O times will mostly overlap. What we are
interested here is the average processing time per query, which
is determined by the longer of the CPU time and the storage read
time. Hence, the query time can be expressed as

TE2LSHoS,async = max{Tcompute + NI/O ·Trequest, NI/O ·Tread}.
(7)

While it is unlikely that the computation and I/O times over-
lap perfectly in practice, this simplified cost model is useful for
making our analysis tractable. Note that, in the asynchronous
case, Tread is shorter than the storage latency, as shown in the
figure. In either case,Tread represents the time the storage spends
per I/O. In other words, its reciprocal T−1

read is the random read
performance of the storage device measured in IOPS, as buckets
are accessed in no particular order. The performance depends on
the queue depth, the number of requests that are fed in parallel,
as mentioned in Sec. 3.6. A queue depth of 1 corresponds to the
synchronous case, whereas it is over 1 in the asynchronous case,
leading to better performance.

The dependencies of the variables in Equations 6 and 7 are:
• Tcompute depends on the dataset, query, and machine.
• NI/O depends on the dataset and query.
• Trequest depends on the storage interface and machine.
• Tread depends on the storage device and queue depth.

Using the setup described in Sec. 3, we experimentally evaluate
the computational cost Tcompute and the number NI/O of I/Os of
E2LSH in Secs. 4.2 and 4.3, respectively. Based on these numbers,
we can identify the storage requirements Trequest and Tread for
the E2LSHoS query time to reach a given value.

Let Ttarget denote the target query time. In order for E2LSHoS
to reach it, we need to have TE2LSHoS,sync ≤ Ttarget in the syn-
chronous case. By rearranging Equation 6, we obtain

Trequest +Tread ≤
Ttarget −Tcompute

NI/O
. (8)

In the synchronous case, the latency Tread dominates, being at
least tens of microseconds with typical SSDs while the CPU
overhead Trequest is at most 1 µsec as in Table 3. Therefore, we
omit Trequest from the inequality and take the reciprocal as

T−1
read ≥

NI/O
Ttarget −Tcompute

. (9)

This inequality provides the required IOPS value for the random
read performance T−1

read of the storage.
In the asynchronous case, from TE2LSHoS,async ≤ Ttarget and

Equation 7, we can derive

T−1
request ≥

NI/O
Ttarget −Tcompute

, (10)

T−1
read ≥

NI/O
Ttarget

. (11)
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Figure 2: Speedup gains of E2LSH over SRS and QALSH

The first inequality provides the requirement for the CPU over-
headT−1

request, while the second inequality determines the required
random read performance T−1

read of the storage. In addition to the
fact that random read performance of flash storage is orders of
magnitude higher with asynchronous I/Os as shown in Table 2,
the IOPS requirement in Equation 11 is relaxed by having a larger
denominator than the synchronous case in Equation 9. There-
fore, we will use Equations 10 and 11 to identify the storage
performance needed for E2LSHoS to run faster than small-index
methods in Sec. 4.4 and to approach in-memory E2LSH speeds
in Sec. 4.5.

4.2 Computational Cost of E2LSH
First, we evaluate the computational cost Tcompute of the E2LSH
algorithm and reconfirm that it is significantly smaller than that
of SRS and QALSH.We run all of the three algorithms in-memory,
and hence there is no storage I/O: we can simply measure the
query time of each method to evaluate its computational cost.

The speedup gains of E2LSH over SRS and QALSH are shown
in Figure 2. We had to take a subset (100 million objects) of BI-
GANN dataset for E2LSH to run in-memory due to the DRAM
capacity limit as described in Sec. 3.5. The speedup is consis-
tently well over 1. In many cases, E2LSH is faster by an order of
magnitude or two.
Observation 1. The computational cost of E2LSH is generally
much less expensive than that of SRS and QALSH.

In addition, we found that SRS is consistently faster than
QALSH. Thus, we use SRS as the sole baseline representing
small-index methods in what follows. The speed differences be-
tween E2LSH, SRS, and QALSH can be explained by their query
time complexities (sublinear, linear, and superlinear, respectively).
To gain further insight, we examined the behaviors of E2LSH
and SRS and found that, on average in our experiments, E2LSH
checkes hundreds of hash buckets to find thousands of candidates
to answer one query, whereas SRS visits tens of thousands of
R-tree nodes to find thousands of candidates. Hence, the speed
difference primarily comes from the number of search index ele-
ments (buckets or tree nodes) they need to visit before finding
candidates.

4.3 I/O Cost of E2LSH
Next, we analyze the I/O cost of E2LSH. As we treat the storage-
related variables Trequest and Tread as unknowns in Equations 6
and 7, what we analyze here is the average number NI/O of I/Os
required to answer a query.

To do this, we recall that the E2LSH algorithm reads L buckets
for each search radius and repeats this up to r times for increas-
ing radii until an answer is found. Thus, E2LSHoS will read up
to Lr buckets per query, but oftentimes the search ends before
exhausting all the radii. By running in-memory E2LSH, we can
experimentally calculate the average number r̄ of radii (averaged
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Figure 3: Average number of I/Os required to answer a
query in SIFT dataset for varying block size B

over queries) to be searched for each dataset, which is summa-
rized in Table 4.

Table 4: Average number of hash bucket reads per query

Dataset # hashes Total # Avg. # Avg. # I/Os
L radii r radii r̄ NI/O,∞

MSONG 16 11 5.76 133.6
SIFT 25 11 9.08 347.5
GIST 32 4 1.70 48.7
RAND 48 4 3.00 196.5
GLOVE 51 5 3.82 317.2
GAUSS 19 8 6.00 190.8
MNIST 18 13 11.60 393.7
BIGANN(100M) 48 11 9.03 791.0

In order to calculate the number of I/Os required to read Lr̄
buckets, we need to take the following two points into account.
Firstly, E2LSHoS will also need to issue I/Os for hash table access.
As explained in Sec. 2.3, E2LSH maintains a hash table that maps
a compound LSH hash value to the corresponding bucket. In
external memory implementation, buckets will be pointed to by
their storage addresses. As we need a hash table on the order of
the database size n for each of the Lr hashes, the total data size
will beO(Lrn), which can be large in itself. Hence we assume the
hash tables are also on external memory, and one I/O is required
to read the storage address of a bucket from a hash table before
accessing the bucket itself. Secondly, E2LSHoS may need to issue
multiple I/Os to read one bucket. We note that each bucket can
contain an arbitrary number of objects as it depends on the
spatial distribution of objects in the database and hash collision
probabilities. Moreover, E2LSH stops reading the content of a
bucket in the middle if the maximum number S of candidates
is reached. In order to save the stroage bandwidth in reading a
variable portion of a variable-sized bucket, a relatively small read
block size is desirable. With a finite block size B, the number of
I/Os per bucket may be more than one, in addition to the one I/O
for the hash table.

We first make a conservative estimate of the I/O count by
assuming that every bucket fits in the block size B, effectively
ignoring the second point above. The rightmost column of Table 4
shows the minimum number NI/O,∞ of I/Os thus calculated. The
subscript of∞ denotes the block size is assumed to be arbitrarily
large. Note that empty buckets are not counted as it is easy to
avoid issuing I/Os for them, and hence the number is smaller
than 2Lr̄ . As we adjust the ANNS accuracy without changing L
as described in Sec. 3.3, the number NI/O,∞ does not depend on
the accuracy.
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Figure 5: IOPS requirements for SRS speeds with a block
size of B = 512 bytes

Tomake amore practical estimate of the I/O count, we examine
how the number of I/Os changes depending on the accuracy
(affecting the number of objects in a bucket and the candidate
number limit S) and choice of read block sizeB. Figure 3 shows the
case of SIFT dataset. Here we set the size of each object to 4 bytes
as this has enough bits to distinguish billions of objects. As shown,
the IO count tends to be larger for higher accuracy (smaller
overall ratio) as buckets tend to contain more objects. Naturally,
more IOs are required with smaller block sizes. Note, however,
that the choice of block size does not affect the sublinear query
time of E2LSHoS, as the I/O count is capped at the maximum
number S of objects to be checked, which grows sublinearly in
the database size n.
Observation 2. E2LSH requires at least several hundred I/Os
per query for many workloads. The I/O count becomes larger for
higher accuracy and smaller block sizes.

4.4 Requirements for SRS Speeds
Now that we have the values for Tcompute and NI/O, we can
solve for the storage requirements. For asynchronous E2LSHoS to
achieve a comparable speed to the query timeTSRS of in-memory
SRS, we set Ttarget = TSRS in Equations 10 and 11 as

T−1
request ≥

NI/O
TSRS −Tcompute

(12)

T−1
read ≥

NI/O
TSRS

(13)

We first take a look at the second inequality providing the
random read performance requirement. We begin by examining
the effect of block size B in Figure 4, where we plot NI/O/TSRS,
the right-hand side of Equation 13, for SIFT dataset using the I/O
counts NI/O in Figure 3. The minimum required IOPS value with
B = ∞ decreases as it moves toward higher accuracy (to the left)
because the SRS query time TSRS increases while the I/O count
NI/O of E2LSHoS stays the same as in Figure 3. With finite block
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Figure 6: IOPS requirements for SRS speeds for varying k
for SIFT dataset

sizes, the required IOPS increases in the high accuracy region
because the I/O counts increase there. Still, even with a small
block size of B = 128 bytes, the required IOPS does not exceed
that of the low accuracy region. Since increasing the block size
will consume more bandwidth, we consider B = 512 bytes a
reasonable choice as it is the minimum size supported by typical
NVMe™ SSDs. With the choice of B = 512 bytes, Figure 5 plots
IOPS requirements for all the datasets. We can see that a few
hundred kIOPS is required in order to satisfy Equation 13 for all
the cases (datasets and accuracy levels).

This IOPS value is expected to be sufficient for a larger data-
base size n and larger k in top-k ANNS. When the database size
n becomes larger, the IOPS requirement tends to be lower. This
is because the numerator NI/O of Equation 13 grows sublinearly
while the denominatorTSRS grows linearly as SRS is a linear time
algorithm. The requirement is thus proportional to nρ−1, which
decreases with n. It is a moderate decrease, though, as ten-fold
increase in n will not lead to one-tenth the IOPS requirement.
Hence, looking at the BIGANN(100M) line in Figure 5, one-billion
databases will still likely require up to ten kIOPS. With top-k
ANNS, we observe higher IOPS requirements for larger k in the
high accuracy region as shown in Figure 6, which is still not
significantly higher than the requirement in the low accuracy
region at k = 1.

Next, we examine Equation 12 providing the CPU overhead
requirement. Its right-hand side is larger than Equation 13, but
only so by a small margin since TSRS ≫ Tcompute as shown in
Sec. 4.2, and the requirement is still a few hundred kIOPS (in terms
of maximum IOPS/core). That is, the CPU overhead time Trequest
must be less than a few microseconds. This requirement always
holds as long as we use storage interfaces shown in Table 3.

Referring to Table 2, a few hundred kIOPS is hard to achieve
with HDDs as hundreds of them would be required, while it is
easily overcome by a single cSSD with asynchronous I/Os. A
cSSD with synchronous I/Os falls far short (and recall that the
IOPS requirement is larger in the synchronous case as described
in Sec. 4.1).
Observation 3. The random read performance required for stor-
age devices to allow E2LSHoS to achieve comparable query
speeds to SRS is a few hundred kIOPS. This IOPS number can be
obtained by using a single cSSD with asynchronous implementa-
tion.

4.5 Requirements for In-memory Speeds
We turn our attention to whether E2LSHoS can be as fast as in-
memory E2LSH. By setting our target time to the query time of
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Figure 7: IOPS requirements for in-memory E2LSH speeds
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Figure 8: IOPS requirements for in-memory E2LSH speeds
for varying k for SIFT dataset

in-memory E2LSH as Ttarget = TE2LSH in Equations 10, we have

T−1
request ≥

NI/O
TE2LSH −Tcompute

(14)

T−1
read ≥

NI/O
TE2LSH

(15)

Again, we first look at the second inequality and plot the right-
hand side in Figure 7, using the I/O count NI/O,512 assuming a
block size of B = 512 bytes. The plots tell us that the required
random read performance to reach in-memory-class speeds for
all the cases is a few MIOPS. Although a single cSSD is no longer
sufficient, this IOPS number is easily achievable by using multiple
drives or by using higher performance drives such as eSSDs and
XLFDDs.

This IOPS requirement is expected to hold for a larger database
size n and larger k in top-k ANNS. This is because the in-memory
E2LSH time TE2LSH and its I/O count NI/O, the denominator and
numerator of Equation 15, both grow in the same way in n and
k : we know they both grow sublinearly in n, and while we do
not have equations for k , no substantial change in the IOPS
requirements is observed for larger k as shown in Figure 8.

Next, we examine the first inequality in Equation 14. In Sec. 4.2,
we estimated the computational time Tcompute of E2LSHoS by
the query time TE2LSH of in-memory E2LSH, which has been
sufficient as we have only used the fact that Tcompute ≪ TSRS for
our analysis so far. However, to examine Equation 14, we note that
Tcompute is slightly shorter than TE2LSH. As in-memory E2LSH
places everything in DRAM including a large hash index, it has a
much larger memory footprint than E2LSHoS, leading to a higher
likelihood of CPU cache misses. As in-memory E2LSH alone does
not tell us how much CPU time is accounted for by the increased
footprint, we estimate it by running a workload that imitates
bucket reading and distance checking of E2LSH. It reads buckets
randomly fromwithin a specifiedmemory footprint and performs
a fixed amount of computation. For each dataset, we compare two
cases. One with the footprint size E2LSHwould use, and the other
with a footprint that is smaller by the index size. With the smaller
memory footprint, we observe a decrease in thememory stall time

using perf command. As a result, the runtime decreases around
10% for all the datasets. By plugging Tcompute = 0.9TE2LSH into
Equation 14, we estimate the requirement to be

T−1
request ≥ 10

NI/O
TE2LSH

. (16)

The right-hand side is a scaled version of the random read per-
formance requirement of a few MIOPS, meaning T−1

request must
be at least a few tens of MIOPS in terms of maximum IOPS/core,
or Trequest must be less than a few tens of nanoseconds. This
requirement is in the range of what XLFDD interface provides.
Observation 4. In-memory E2LSH speeds are achievable with
storage devices having random read performance of a fewMIOPS
along with a lightweight storage interface incurring only a small
CPU overhead time of no more than a few tens of nanoseconds
per I/O.

5 E2LSH-ON-STORAGE IMPLEMENTATION
This section presents how to implement E2LSH on external mem-
ory, which we call E2LSH-on-Storage (E2LSHoS).

The analysis in Sec. 4 made it clear that asynchronous I/O
is crucial in allowing E2LSHoS to run faster than SRS and to
approach in-memory speeds. Many I/O requests need to be issued
in parallel in order to increase the queue depth and make full use
of the random read performance of storage devices. In addition,
we have learned that buckets containing many objects can be
read in small blocks without impacting the performance, as long
as the storage provides a few MIOPS. We design E2LSHoS in
what follows based on these points as well as on some practical
considerations.

Because the E2LSH algorithm performs random access to a
large index space and the access locality is low (this will be
demonstrated in Sec. 6.5), E2LSHoS does not employ any caching
for I/Os: the OS page cache is bypassed and all the data comes
from storage.

5.1 Data Structure
We store both hash tables and buckets on external memory. The
data structure of the hash bucket is shown in Figure 9. Since
the numbers of objects in the buckets vary, we use a linked list
similar to [14] whose elements (called bucket blocks) each contain
a header and multiple object IDs. The header holds a pointer
(address on the storage) to the next block, while an object ID
points to the d-dimensional coordinates of that object on DRAM.
We use a block size of 512 bytes, the minimum unit for a typical
SSD read command. The header size is 16 bytes, where 8 bytes are
used for the link pointer, 2 bytes to store the number of objects
in the block as it may be less than the block can hold, and the
rest is a padding (reserved for debug purposes). For the reason
described below in Sec. 5.2, we attach a fingerprint (FP) to an
object ID to form a 5-byte object info entry. The space overhead
coming from the header and fingerprints reduces the number of
objects per block to 99 (= (512− 16)/5) from 128, but this number
is still large enough to keep the IOPS requirement from growing
according to the analysis in Sec. 4. The storage address of the
first bucket block is stored in a hash table.

5.2 Hash Value Size and Fingerprints
Hash values need to be represented by a finite number (v) of
bits in practice, which can introduce false hash collisions due to
the limited precision. While a larger number for v is desirable, it
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Figure 9: Data structure of the hash bucket

Figure 10: Hash index structure and query processing
steps

increases the cost of managing hash values. Our implementation
uses v = 32 bits in order for ideal hash functions to be able to
distinguish one billion objects. Meanwhile, we use a hash table
that looks at u bits of a hash value, and attach the remaining
v − u bits as a fingerprint to the object info in the bucket. This
means we effectively use u-bit hash values at the hash table
level. If we set u ≈ log2 n, the hash table size will be O(Lrn), and
the false collision probability will be still low. We can further
reject false collisions coming from the use of u < v bits by
checking the fingerprints when reading hash buckets, ensuring
32-bit precision. We use u that is slightly smaller than log2 n as
long as it does not substantially increase false collisions. Since
the object ID can be represented by ⌈log2 n⌉ bits, the object info
in Figure 9 will use ⌈log2 n⌉ + v − u bits in total, which can be
larger than v = 32 bits. Thus we allocate 5 bytes to the object
info.

5.3 LSH Index Construction
E2LSHoS constructs a hash index as follows. For each radius
R ∈ {1, c, c2, · · · , cr−1} and compound hash l ∈ {1, 2, · · · ,L}, we
randomly generate a compound hash function, calculate the hash
values of all the objects oj in the database D, and add the objects
to the buckets corresponding to their hash values. If the bucket
size exceeds a bucket block of 512 bytes, we allocate a new empty
bucket block on the storage and put its address in the header of
the current bucket block. Finally, we write the hash table on the
storage.

5.4 Query Processing
For each search radius R and compound hash l , E2LSHoS finds
ANNs of a given query as shown in Figure 10. We calculate a hash
value of the query and issue a read request for the bucket address
in the hash table (Step 1). We then issue a read request for the
bucket data using that address (Step 2). Upon receiving the bucket
data, we examine the objects in the bucket by computing their

distances to the query and update the query result (Step 3). The
bucket may be read in multiple bucket blocks by traversing the
link addresses in the headers. In order to issue many I/O requests
in parallel to maximize the storage utility, we interleave multiple
queries. We issue read requests for L buckets successively for one
query, and switch the context to process another query while
waiting for data.

6 EVALUATION RESULTS
We evaluate our E2LSHoS implementation presented in Sec. 5
using various storage configurations (types of device, numbers of
devices, and interfaces) and compare it with SRS and in-memory
E2LSH. Table 5 shows the device types and numbers. When using
multiple devices, the number is set so that it is sufficient to store
the index for BIGANN dataset. Both cSSD and eSSD may be
combined with io_uring or SPDK interface. XLFDD uses its own
interface.

Table 5: Storage device configurations

Device Number Total capacity Total random read
cSSD 1 2 TB 273 kIOPS
cSSD 4 8 TB 1.1 MIOPS
eSSD 1 800 GB 1.4 MIOPS
eSSD 8 6.4 TB 11.2 MIOPS
XLFDD 12 6.2 TB 46.3 MIOPS

6.1 Effect of Storage Configurations
We first investigate the impact of storage configurations using
SIFT dataset. Figure 11 shows speedups over SRS for various
configurations. As some storage configurations result in almost
identical speedups, we represent them by a single line using
their geometric mean to avoid clutter, leading to six distinct lines
corresponding to six groups of configurations. We explain them
from bottom to top.

• Group 1 (cSSD × 1): The lowest line uses a single cSSD
with either io_uring or SPDK. The speedup is above 1,
meaning that E2LSHoS runs faster than SRS even with a
single cSSD in agreement with our analysis in Sec 4.4. The
IOPS of a single cSSD limits the performance.

• Group 2 (io_uring): The next line is the result of cSSD×4,
eSSD× 1 and eSSD× 8, all using io_uring. All of them pro-
vide random read performance of over 1MIOPS, indicating
that the CPU overhead of io_uring limits the performance.

• Group 3 (cSSD × 4 with SPDK): The use of faster inter-
face by SPDK boosts the performance over Group 2.

• Group 4 (eSSD with SPDK): This line is the result of
eSSD×1 and eSSD×8, both using SPDK. As the in-memory-
class IOPS requirement is slightly over what cSSD×4 offers,
eSSD gives another performance boost over Group 3. As a
single eSSD provides enough IOPS, using multiple of them
does not lead to any further speed-up.

• Group 5 (in-memory E2LSH): It is faster than E2LSHoS
on eSSD with SPDK. As eSSDs provide sufficient IOPS, the
slowdown of E2LSHoS comes from the overhead of SPDK.

• Group 6 (XLFDD): It reaches (and exceeds in this case)
the in-memory speed with the lightweight interface of
XLFDD.

These results show that both IOPS and CPU I/O overhead require-
ments must be met to achieve in-memory-class performance, in
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Figure 12: I/O cost of different storage interfaces for SIFT

agreement with our analysis in Sec. 4.5. The impact of storage
interfaces can also be clearly seen in Figure 12, comparing the
I/O cost in the query time. Here, eSSD × 8 is used with io_uring
and SPDK so IOPS will not be a limiting factor. The I/O cost is
the total CPU time spent for I/O-related functions measured with
perf command.

The reason why E2LSHoS on XLFDD outperforms in-memory
E2LSH is attributed to the smaller memory footprint as explained
in Sec. 4.5. The reduced stall time overcompensates the I/O cost.

6.2 Query Performance
Next, we see if the tendency observed above in SIFT dataset holds
in general for all the datasets. We use the three storage interfaces
as before, but we limit the SSD configuration to cSSD × 4 as this
represents a low-cost solution that still provides sufficient ran-
dom read performance and capacity. Figure 13 shows the speedup
gains over SRS. Note that the values of in-memory E2LSH for
BIGANN dataset are missing because the DRAM capacity (768
GB) of our machine is too small to run it with the same parame-
ters as E2LSHoS. A subset (100 million) of BIGANN is added for
in-memory comparison. The figure shows the impact of storage
interfaces as observed in Sec. 6.1. E2LSHoS approaches and some-
times exceeds in-memory E2LSH speeds using faster interfaces.
E2LSHoS consistently outperforms SRS. In particular, it is faster
by an order of magnitude or two for BIGANN dataset. The benefit
of E2LSHoS becomes more significant for larger datasets thanks
to its sublinear query time, which will be further evaluated below
in Sec. 6.3.

6.3 Validation of Sublinear Query Time
Here we show that, as with in-memory E2LSH, the query time
of E2LSHoS grows sublinearly with the database size n. To this
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Figure 13: Speedups over SRS for top-1 ANNS (k = 1, top)
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end, we generate databases of varying sizes by taking subsets
of BIGANN dataset. We run E2LSHoS on XLFDDs and compare
it with in-memory E2LSH and SRS. For in-memory E2LSH, we
conduct the experiment under two conditions: one with the same
parameter ρ with E2LSHoS, and the other with an extremely
small ρ = 0.09 that dramatically reduces the index size to the
extent that it permits in-memory execution for the one billion
case. Under the latter condition, the LSH cannot reliably find
quality ANN candidates, which has to be compensated for by
checking more candidates in order to achieve the target accuracy,
significantly increasing the query time. Figure 14 shows the query
times. Since their ranges differ greatly, the two panels show the
same plots with different vertical axis scales. As can be seen in
the left plots with a larger time scale, the SRS query time grows
linearly and its difference from E2LSH(oS) becomes increasingly
larger. The right plots with a smaller scale demonstrates the
sublinear growth of E2LSHoS. Even though in-memory E2LSH
follows the same curve as E2LSHoS when the same parameter
is used, it has to stop at a database size of 100 million objects
due to the DRAM capacity limit. With the small ρ, in-memory
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E2LSH can reach one billion objects, but the query time becomes
significantly longer than E2LSHoS.

6.4 Index Size and Runtime Memory Usage
Table 6 compares E2LSHoS with SRS in terms of the index size
and runtime memory usage. As the database is placed on DRAM,
the memory usage is the sum of the database size and the index
size on memory (shown in parentheses) for both E2LSHoS and
SRS. While E2LSHoS uses a large index on storage, it only keeps
relatively small index-related data (the hash table addresses) on
DRAM, leading to comparable memory usage to SRS.

Table 6: Index size and runtime memory usage

E2LSHoS SRS
Index Mem (Index Mem (Index

storage usage mem) usage mem)
MSONG 4.6 GB 1.7 GB (3.6 MB) 1.7 GB (47 MB)
SIFT 6.3 GB 133 MB (3.9 MB) 177 MB (48 MB)
GIST 2.2 GB 3.9 GB (2.1 MB) 3.9 GB (48 MB)
RAND 10 GB 412 MB (8.2 MB) 452 MB (48 MB)
GLOVE 10 GB 487 MB (9.4 MB) 534 MB (57 MB)
GAUSS 6.0 GB 4.1 GB (4.9 MB) 4.1 GB (96 MB)
MNIST 16 GB 6.4 GB (6.6 MB) 6.8 GB (410 MB)
BIGANN 530 GB 15 GB (2.1 GB) 18 GB (4.8 GB)(100M)
BIGANN 6.1 TB 139 GB (7.2 GB) 180 GB (48 GB)(1B)

6.5 Additional Experiments
We present a few more experiments to further characterize the
performance of E2LSHoS. Here, E2LSHoS on cSSDs uses io_uring.

Comparison with synchronous I/Os: In order to assess the
impact of the asynchronous implementation of E2LSHoS, we
compare its speed with that of a synchronous implementation.
To evaluate the latter, we run in-memory E2LSH with memory-
mapped I/O, turning its DRAM accesses into storage I/Os. With
BIGANN(100M) dataset, we limit the page cache size to 32 GB,
which is comparable to the E2LSHoS memory usage. This syn-
chronous implementation turns out 19.7 times slower than E2LSHoS
(both use cSSD × 4). This is because it does not hide the storage
latency as illustrated in Figure 1(A). Even though we use the page
cache, it is not effective. In fact, the page cache miss rate (page
fault per 4 kB read) is as high as 93% due to the random access
nature of the E2LSH algorithm.
Storage throughput and latency: When storage devices run
at a high IOPS, their latency becomes long. In order to examine
how this trade-off affects the query speed of E2LSHoS, we vary
the number of cSSDs for SIFT dataset and plot the query speed (in
queries per second), total observed IOPS, latency, and device us-
age (per-device observed IOPS divided by the maximum random
read performance, which is 273 kIOPS) in Figure 15. The result
indicates that the query speed is proportional to the IOPS value,
supporting our analysis that the random read performance is the
primary storage metric determining the query speed. The speed
increases as we add devices until the maximum total IOPS the
devices can sustain exceeds what the workload requires. When
the number of devices is small and their usage is high, the latency
becomes longer, but the latency by itself does not determine the
application performance.
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Figure 15: Query speeds and device statistics for varying
number of devices
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Figure 16: Query speeds with multithreading

Multithreading: All of our evaluations so far have been done
on a single thread. We evaluate the query speeds of E2LSHoS and
SRS using up to 32 threads for SIFT dataset as shown in Figure 16.
Both methods linearly scale, except that E2LSHoS plateaus when
it is bottlenecked by the storage IOPS. E2LSHoS on cSSDs is
faster than SRS for up to 8 threads, but the gap narrows beyond
it. E2LSHoS on XLFDDs is consistently faster than SRS by an
order of magnitude.

7 DISCUSSION
We believe our analysis and evaluation have demonstrated that
E2LSHoS can be a viable alternative to small-index LSH methods,
but there are a number of factors to be considered in practice.
Storage capacity and cost: E2LSHoS runs fast thanks to its sub-
linear time complexity, but its price remains to be the large hash
index size. It does not reduce the space complexity of E2LSH, and
its large space consumption translates to additional hardware
cost, which is a major limitation of this approach. Nonetheless,
with E2LSHoS, the limit of E2LSH has been greatly relaxed, in-
creasing the maximum allowable index size and enabling the
algorithm to run even with one billion objects. However, depend-
ing on the system and problem at hand, the desired accuracy
and speed may not be achieved due to the storage capacity limit.
While we are hopeful that the continued exponential growth
trend of storage capacity will render this less of a concern, it
would be interesting to consider incorporating the ideas from
small-indexmethods in such away that the index size of E2LSHoS
is reduced without sacrificing its sublinear query time.

Compared with small-index methods, the cost increase due
to storage may be justified by the application performance gain.
For one-billion ANNS, we added 6 TB of SSDs (around $2,000) to
our $15,000 server. Therefore, with 13% more hardware cost, we
were able to achieve 100 times faster query than SRS.
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Storage-specific issues: Using storage requires attention to the
associated issues including endurance and heat. As SSDs have a
limit to the amount of data that can be written under warranty,
updating the hash index consumes the device life. While the im-
pact of object insertion and deletion is small, rebuilding the entire
index should be done sparingly. Under heavy load, SSDs may
trigger thermal throttling to prevent overheating, causing tem-
porary performance degradation. Adequate cooling is important
to avoid this.
More general implementations: Our approach is not the only
way of executing E2LSH on external memory. More general im-
plemetations would be to develop a mechanism that would medi-
ate in-memory E2LSH and storage so that it would serve DRAM
loads while fetching data from storage. Memory-mapped I/Owith
the page cache in Sec. 6.5 can be viewed as one such implementa-
tion, albeit slow: storage latency and CPU I/O overhead including
the page cache account for 50% and 40% of the query time, re-
spectively. Therefore, an efficient mediation mechanism would
need not only to employ a lightweight user-space cache, but also
to hide the storage latency to cope with the cache-unfriendly
E2LSH workload in such a way that handling cache misses (in-
cluding resultant I/Os) could be overlapped with computation
using many threads and contexts. While we have taken concep-
tually similar strategies for our E2LSHoS implementation in an
application-specific way, designing a more general mechanism is
an interesting future direction.
Non-storage solutions: We have shown that large databases
requiring a terabyte-sized index can be handled by E2LSHoS on
a single node. However, we are not trying to imply that single-
node in-memory E2LSH is infeasible for large databases. Some
flagship machines can accommodate 24 terabytes of DRAM per
node [3, 40]. Moreover, storage class memory such as Intel®
Optane™ DC Persistent Memory Module may be used to expand
the system main memory further, for instance to 36 terabytes
[40]. Therefore, it is up to the user what environment to run
E2LSH(oS) on. We believe E2LSHoS offers a lower-cost solution
to sublinear time ANNS.

8 CONCLUSION
This paper has shown that E2LSH is regaining the advantage
in query speed over small-index LSH methods with the advent
of modern flash storage devices. We have analyzed the E2LSH
algorithm on a modern single-node computing environment, and
shown that (1) the storage performance necessary for E2LSHoS
to run faster than small-index methods is satisfied by a single
consumer-gradeNVMe™SSD, and (2) emerging high-performance
storage devices and interfaces allow E2LSHoS to approach in-
memory E2LSH speeds. Our E2LSHoS implementation has demon-
strated these two points for large datasets of up to one billion
objects with comparable DRAM usage to small-index methods.
These results indicate that the user can enjoy the benefit of sub-
linear query time of the E2LSH algorithm beyond the index size
limit of in-memory E2LSH.

We believe our work suggests that large-index LSH methods
are becoming increasingly worth exploring. In particular, meth-
ods using similar index structures to E2LSH, such as [26, 38],
are likely to benefit from modern storage devices. However, we
do not intend to imply large-index methods are superior. The
benefits of small-index methods are clear and they will continue
to be valuable. Moreover, small-index methods may also benefit
from modern storage devices on a memory-limited environment.

Asynchronous I/Os will be useful in such cases as well. For ex-
ample, external-memory SRS and QALSH may issue requests
for adjacent tree nodes while processing the current node. In
summary, our intention is to renew the community’s interest
in larger-index methods as well as to spur efforts of leveraging
modern storage devices. We believe this will help expand the
possible solution space of LSH-based ANNS, from which we hope
further new approaches will emerge.
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