
Workload-AwareQuery Recommendation Using Deep Learning
Eugenie Y. Lai

Massachusetts Institute of
Technology

Cambridge, Massachusetts, USA
eylai@mit.edu

Zainab Zolaktaf
The University of British Columbia

Vancouver, British Columbia
Canada

zolaktaf@cs.ubc.ca

Mostafa Milani
The University of Western Ontario

London, Ontario, Canada
mostafa.milani@uwo.ca

Omar AlOmeir
The University of British Columbia

Vancouver, British Columbia
Canada

oomeir@cs.ubc.ca

Jianhao Cao
The University of British Columbia

Vancouver, British Columbia
Canada

jhcao@cs.ubc.ca

Rachel Pottinger
The University of British Columbia

Vancouver, British Columbia
Canada

rap@cs.ubc.ca

ABSTRACT
Users interact with databases bywriting sequences of SQL queries
that are are often stored in query workloads. Current SQL query
recommendation approaches make little use of query workloads.
Our work presents a novel workload-aware approach to query
recommendation.We use deep learning predictionmodels trained
on query pairs extracted from large-scale query workloads to
build our approach. Our algorithms suggest contextual (query
fragments) and structural (query templates) information to aid
users in formulating their next query. We evaluate our algo-
rithms on two real-world datasets: the Sloan Digital Sky Survey
(SDSS) and SQLShare. We perform a thorough analysis of the
workloads and then empirically show that our workload-aware,
deep-learning approach vastly outperforms known collaborative
filtering approaches.

ACM Reference Format:
Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao
Cao, and Rachel Pottinger. 2023. Workload-Aware Query Recommenda-
tion Using Deep Learning. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (EDBT ’23). ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
With increasing amounts of data being produced, even if the
share of relational databases is falling, the total number of people
relying on SQL to access their data is rising substantially. This
includes non-expert users. However, writing SQL queries is tricky,
especially for non-expert users, as it requires knowledge about
the application domain, understanding the database schema, and
SQL skills; users often lack at least one of these knowledge sets.

Query recommendation is one way to help users formulate
complex SQL queries [2, 11, 21, 22]. Query recommenders predict
either the entire query [1, 3, 11, 33] or parts of the query, such
as table names, column names, and function names [21, 22]. Rec-
ommending an entire query is often not desired or practical for
several reasons. First, there is usually limited knowledge about
the user’s intention. Second, suggesting an entire query may not
necessarily help the user compose the next query, especially if
the next query has a very complex syntax. Third, recommending

EDBT ’23, March 23–31, 2023, Ioannina, Greece
© 2023 Copyright held by the owner/author(s). Published in Proceedings of the 26th
International Conference on Extending Database Technology (EDBT), 28th March-
31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org. Distribution of
this paper is permitted under the terms of the Creative Commons license CC-by-
nc-nd 4.0.
ACM ISBN 978-3-89318-088-2.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

an entire query requires methods that can generate queries free
from both syntactic and local errors, which is very challenging.

In this paper we split the query prediction problem into two
sub-problems: query template recommendation (where we rec-
ommend the structure of the next query) and query fragment
recommendation (where we help users complete the predicted
template). Query templates are a composite of SQL keywords
(Figure 5), while query fragments are database-dependent, e.g.,
table and column names. This allows users to have more guided
help in writing their next query than just presenting them with
a fully-specified query.

Our solution is different from the existing recommenders and
addresses some of their key limitations, including that current
query recommenders make limited use of the preceding queries
in the session. Since users often take more than one try to write a
final query for a particular need, looking at pairs or even longer
sequences of queries can contain valuable information in reveal-
ing user intent and making recommendations. To illustrate, we
use an example from the SQLShare [19], a database-as-a-service
platform where human users upload their data and write queries
to interact.

Example 1. Changes in queries in a session tell a story. Fig-
ure 1 shows a session from the SQLShare workload with queries
over a database about genomics experiments. The user starts by
counting the number of unique experiment types (𝑄1), then ex-
plores the gene and type used in each experiment (𝑄2), and ends
the sequence by asking the number of genes used in each type
of experiment, where the gene count is greater than a threshold
(𝑄3). □

Most existing recommenders, including those that use collab-
orative filtering, ignore or make little use of the preceding query
or queries. For example, QueRIE [11] represents user vectors
using query sessions and compares the vectors to find users with
similar behaviours. To generate user vectors, it aggregates the
query vectors in a session while ignoring the query sequences.
SnipSuggest [22] recommends fragments of queries as the user
writes queries. While it uses the sequence of query fragments
within queries, it ignores the query sequences in query sessions.

Another common limitation of existing query recommenda-
tion systems is that the existing approaches rely on predefined
syntactic features to represent query statements. Such human
intervention leads to inevitable information loss when represent-
ing a query’s semantic meaning and user intent. For example,
the QueRIE framework uses hand-picked features in its query
vector representation, SnipSuggest entirely relies on predefined
features consisting of SQL keywords, tables, attributes, functions,

Series ISSN: 2367-2005 53 10.48786/edbt.2023.05

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.05

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

𝑄1: SELECT COUNT(DISTINCT type) FROM Experiment

𝑄2: SELECT gene, type FROM Experiment ORDER BY type

𝑄3: SELECT type, COUNT(gene) FROM Experiment
GROUP BY type HAVING COUNT(gene) > 1

Figure 1: A sequence of queries in the SQLShare workload.
𝑄4: SELECT DISTINCT obj.specclass, obj.zConf

FROM SpecObj obj, SpecLine ln
WHERE obj.specobjid = ln.specobjid
AND obj.specclass = 3

𝑄5: SELECT top 10 pt.specclass, pt.z FROM SpecPhoto pt
WHERE pt.zErr NOT IN

(SELECT DISTINCT p.zErr
FROM SpecPhoto p, SpecLine ln
WHERE p.specobjid = ln.specobjid)

𝑄6: SELECT top 5 obj.specclass, obj.zConf FROM SpecObj obj
WHERE obj.z NOT IN
(SELECT DISTINCT j.z FROM SpecObj j, SpecLine ln
WHERE j.specobjid = ln.specobjid)

Figure 2: 𝑄5 and 𝑄6 are structurally similar as both are
nested top-k queries, but 𝑄4 and 𝑄6 are more similar since
they both access SpecObj but 𝑄5 queries SpecPhoto.
and conditions. SQLSugg [13] is an interactive query recommen-
dation framework that works in similar phases as our solution
by recommending a template and query fragments to complete
the query. However, they also entirely rely on predetermined
syntactic features such as tables and attributes to generate and
rank queryable templates.

We argue that query representations based on predetermined
syntactic features lose critical information about the semantics
and user intent. Hence recommendations based on such represen-
tations can be improved upon for two reasons. First, queries can
have distinct meanings even if they have similar selected features
and vice versa. Second, these query representations are oblivious
to relationships between the words in queries. To demonstrate,
we use an example from the Sloan Digital Sky Survey (SDSS)
database [37, 38] workload, which stores images, spectra, and
catalogue data for more than three million astronomical objects.

Example 2. Figure 2 shows queries𝑄4 and𝑄5 from two differ-
ent sessions in SDSS, and the query𝑄6 in the current user session.
The QuerRIE framework compares queries based on fragments
such as table names, and therefore finds 𝑄6 more similar to 𝑄4
rather than 𝑄5 as almost the same set of tables and attributes
appear in 𝑄6 and 𝑄4. However, considering the structure of the
queries, 𝑄6 is more similar to 𝑄5. They only differ in a pair of
tables, SpecObj and SpecPhoto, which means 𝑄5’s session may
be more useful for query recommendations for the current user
compared to 𝑄4’s session. □

Example 2 shows that using predefined syntactic features, such
as table name, to compare queries can result in second-rate rec-
ommendations. In this example, we also need to compare queries
using their structural properties to be able to give a preferred
recommendation. The example shows that it is not trivial which
features summarize the syntactic properties of queries. In gen-
eral, the choice of query features depends on the application and
the type of queries in the workload. As such, this calls for solu-
tions with automatic feature selection that can adapt to different
workloads and queries.

We model the query recommendation problem as a next query
prediction task for a given query. We split next query prediction

into next template prediction and next fragment prediction. We
propose a data-driven, workload-aware approach to address
the concerns in the existing work. Specifically, we use deep learn-
ing prediction models to leverage the query statements in SQL
query workloads, a collective knowledge exploration history of
past users in the form of query sessions. In addition, our approach
uses the sequential information by considering the preceding
query.

Our approach is inspired by the use of deep learning tech-
niques in natural language processing (NLP) [23, 26, 31, 35].
Neural networks eliminate human intervention such as feature
selection since they can learn from large volumes of data at
different levels [26], e.g., word, sentence, paragraph. Recently,
neural networks have been used to model query statements, such
as query representation learning [18, 20] and query execution
prediction [55].

Specifically, we apply two deep learning techniques, sequence-
to-sequence (seq2seq) architecture [15, 25, 45, 48] and fine-tuning [17,
24, 46]. Fine-tuning has been abundantly used for transfer learn-
ing in NLP and has proved its effectiveness in text summariza-
tion [32], text classification [17], and text generation [10].

Figure 3: The overview of the query recommendation sys-
tem (arrows: data flow). We train the encoder and decoder
in step one and the classifier in step two. In step three we
use the encoder and classifier to solve the next template
prediction problem. In step four we use the encoder and
the decoder to solve the next fragment prediction problem.

As shown in our overall architecture (Figure 3), there are
three components in our approach, an encoder, a decoder, and a
classifier.We use the three components to build two deep learning
models: a seq2seq model and a template classification model. We
first train the seq2seq models to extract information about query
prediction from sequences of query statements. We then apply
the fine-tuning technique to build the template classification
model, where we reuse the encoder as a pre-trained model to
fine-tune the classifier.We apply the template classificationmodel
to solving next template prediction and the seq2seq model for
next fragment prediction.

There are four main contributions in our work:
• We define a new approach that guides database users to
write next-step queries (Section 2).

• We adapt two deep learning techniques to solve the two
sub-problems (Section 4).

54

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

SELECT j.target, CAST(j.estimate AS VARCHAR) AS estimate
FROM Jobs j, Status s,

(SELECT DISTINCT target, queue FROM Servers r
WHERE r.queue = 'FULL')

WHERE j.outputtype LIKE '%QUERY%'

Figure 4: Sample query 𝑄

SELECT Column, Function(Column AS VARCHAR)
FROM Table, Table,

(SELECT DISTINCT Column, Column FROM Table
WHERE Column = Literal)

WHERE Column LIKE Literal

Figure 5: A recommended template statement

• We conduct a thorough analysis of two real-world datasets
at the workload, query session, and pair level (Section 5).

• We compare the different models to baselines and known
approaches on real-world data and empirically show the
effectiveness of our approach (Section 6).

We also give model background (Section 3), discuss related
work (Section 7), and conclude (Section 8).

2 PROBLEM DEFINITION
Informally, our ultimate goal is to help users compose queries.
We break the query prediction problem into two sub-problems:
template prediction and fragment prediction. We assume that
the user has started a session by posing an initial query. We also
assume that a user’s goal is to write a complex query. The initial
query is unlikely to be the final query, either because the user is
building up the query in stages, or because the user will make
errors. We help the user by providing two recommendations.
First, we predict the structure of the next query—i.e., we predict
the template that the query will use. This is the template prediction
problem. Second, we predict what the parts are that will fill in
the query template. In other words, we predict the fragments
that will be needed to fill in the template. This is the fragment
prediction problem.

Example 3. Assuming that the user’s goal is to write a query
𝑄 in Figure 4, we recommend a template statement shown in
Figure 5, and then suggest fragments, such as Jobs, Status, and
Servers to fill Table and target, estimate, queue, outputtype to re-
place Column. □

Existing query recommendation solutions are based on Next
Query Prediction (NQP); they either recommend the next entire
query statement [1, 3, 11] or recommend some fragments of the
next query [21, 22, 33]. We follow the second approach, which
we believe is both more useful and more practical. Suggesting an
entire query may not necessarily be useful in helping the user
compose the next query, especially if the predicted next query
is very complex. Practically, we often have limited knowledge
about the user’s intention, making it impossible to predict the
next full query. Recommending an entire query requires models
that can generate queries free from both syntactic and logical
errors, which is a challenging task. Therefore, to make our query
prediction problem tractable and simplify the recommended in-
formation for users, we split our query prediction problem into
query template prediction and query fragment prediction.

To formally define the template predication and fragment
prediction problems, we first present some basic concepts.

Definition 1. [Query] We represent a query statement 𝑄
as a sequence of tokens (𝑡1, ..., 𝑡 |𝑄 |) with each token 𝑡𝑖 from a

SELECT

select_list FROM

CAST

VARCHAR

j.target

j.estimate

Jobs j Status s

DISTINCT

target queue

FROM

Servers r

WHEREselect_list

SELECT

WHERE

j.outputtype LIKE “%QUERY%”

r.queue = “FULL”

conditions

conditions

Figure 6: The AST of 𝑄 from Figure 4

SELECT

select_list FROM

CAST

VARCHAR

Column

Column

Table Table

DISTINCT

Column Column

FROM

Table

WHEREselect_list

SELECT

WHERE

Column LIKE Literal

Column = Literal

conditions

conditions

Figure 7: The template of 𝑄 from Figure 4
vocabulary 𝑉 . We consider a vocabulary that contains words
from SQL queries. We define 𝑣 to denote the size of 𝑉 and Q to
denote the collection of all queries over 𝑉 . We use 𝑄 to refer to
both a query statement and its vector representation when it is
clear from the context. □

Example 4. 𝑄1 = (SELECT, ∗, FROM, PhotoTag) is the vector
representation of query statement “SELECT ∗ FROM PhotoTag”.
□

Definition 2. [One-hot Query Representation] In the one-
hot representation of a query𝑄 = (𝑡1, ..., 𝑡 |𝑄 |), we represent each
token 𝑡𝑖 by its one-hot encoding 𝒆𝑖 ∈ {0, 1}𝑣 , i.e. a vector of bits
that correspond to the tokens in 𝑉 ; the bit that corresponds to 𝑡𝑖
is 1 and all the other bits are 0. □

Example 5. The one-hot representation of 𝑄 w.r.t. 𝑉 = {𝑡1, 𝑡2,
𝑡3, 𝑡4} is (𝑒1, ..., 𝑒4), where 𝑒𝑖 is the one-hot encoding of 𝑡𝑖 , e.g.,
𝒆1= [1 0 0 0] and 𝒆2= [0 1 0 0] are the one-hot encodings of 𝑡1 =
SELECT and 𝑡2 = *. □

Definition 3. [Session, Query Pair, and Workload] A (user)
session S = (𝑄1, ..., 𝑄 |S |) is a sequence of queries. A query pair
refers to a pair ⟨𝑄𝑖 , 𝑄𝑖+1⟩ of consecutive queries in a session. A
query workloadW is a set of sessions {S1, ...,S𝑚}. □

In our query recommendation setting, we assume a user poses
a sequence of queries that are recorded in a session S∗. The goal
is to help the user to write the next query, 𝑄∗

𝑖+1, considering the
previously posed queries, 𝑄∗

1, . . . , 𝑄
∗
𝑖
in S∗.

Definition 4. [Query Fragment] Given a query 𝑄 , a query
fragment is either a table, a column, or a function in 𝑄 . We use
tables(𝑄), columns(𝑄), functions(𝑄), and literals(𝑄) to respec-
tively refer to the sets of these fragments in 𝑄 . 1 □

We represent query templates using Abstract Syntax Trees
(ASTs) of SQL queries, which allows us to ignore some non-
structural differences between query statements, e.g., indentation,
spacing and order of some SQL phrases such as select conditions.
1Functions refer to built-in functions, e.g., AVG and SUM, and user-defined functions.
Literals are fixed values.

55

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

Symbol Description

W,S, 𝑄 Workload, session and query
𝑄𝑖 , ⟨𝑄𝑖 , 𝑄𝑖+1⟩ 𝑖-th query in a session, query pair
𝑄∗
𝑖+1, �̂�𝑖+1 Next query, next model predicted query

tables(𝑄), columns(𝑄) Tables and columns in query 𝑄
functions(𝑄), literals𝑄) Functions and literals in query 𝑄
fragments(𝑄) Fragment set of 𝑄
template(𝑄) Template of query 𝑄
fragments𝑁 , templates𝑁 N-fragments set and N-templates set

Table 1: Notation.

Definition 5. [Query Template] The template of 𝑄 , denoted
by template(𝑄), is a tree obtained from 𝑄 by replacing query
fragments, i.e., tables, columns, function names, and literals, in
the abstract syntax tree (AST) of 𝑄 with placeholders, i.e., Table,
Column, Function, and Literal resp., and removing aliases. □

Example 6. Figure 7 shows template(𝑄), the template of the
query 𝑄 in Figure 4. The fragments of 𝑄 are tables(𝑄) = {Jobs,
Status, Servers}, columns(𝑄) = {target, estimate, queue, outputtype},
functions(𝑄) = {CAST,MIN}, and literals(𝑄) = {%QUERY%}. We
use template statement to refer to the SQL statement obtained
from a template, e.g., the statement in Figure 5 is obtained from
the template in Figure 7. □

The notion of query fragment can be extended to represent
combinations of terms or phrases in queries, e.g., frequent con-
ditions in the where clauses or a frequent list of tables in the
selection clauses (cf. features in SnipSuggest [22]). Our solutions
can be easily adapted to such extensions. We postpone further
discussion about template and fragment definition to future work.

Definition 6. [Template Prediction] LetW = {S1,S2, . . . ,S𝑚}
be a workload over a database 𝐷 , and S∗ = (𝑄∗

1, 𝑄
∗
2, . . . , 𝑄

∗
𝑖
) be

the sequence of queries in the current session where 𝑄∗
𝑖
is the

last query the user posed to 𝐷 . Let 𝑄∗
𝑖+1 be the next query that

the user will pose. The query template prediction problem is to
predict template(𝑄∗

𝑖+1), given S∗ andW. □

Our template prediction problem can be seen as a variation on
classification; the classes are the existing templates in the given
query workload. The classification problem is thus to assign a
template (class) to a given query. The query represents the current
query and the template refers to the structure of the next query.
Alternatively, one could synthesize new templates not seen in
the workload and recommend them to the user. We focus on
the former problem because our SDSS and SQLShare workload
analysis shows that most templates cover multiple queries, which
means users rarely write queries with a completely new structure.
We leave the alternative template prediction problem for future
work.

Definition 7. [Fragment Prediction] Given a workloadW
and the current user session S∗ = (𝑄∗

1, 𝑄
∗
2, . . . , 𝑄

∗
𝑖
) over a data-

base𝐷 , we define two versions of fragment prediction:(1) Fragment-
set prediction predicts the sets of fragments tables(𝑄∗

𝑖+1), columns
(𝑄∗

𝑖+1), functions(𝑄
∗
𝑖+1), and literals(𝑄

∗
𝑖+1).(2) For a user-specified

positive integer𝑁 ,𝑁 -fragments prediction is to predict𝑁 frag-
ments from the sets of fragments tables(𝑄∗

𝑖+1), columns(𝑄∗
𝑖+1),

functions(𝑄∗
𝑖+1), and literals(𝑄∗

𝑖+1). □

We defined two versions of fragment prediction because of
their applications. In query recommendation, we recommend a
limited number of fragments that users can easily comprehend
and select from. Our workload analysis shows that queries in

SDSS and SQLShare can contain hundreds of tables; predicting
and presenting the user with the entire set of fragments, i.e.,
fragment-set prediction, is not useful. Therefore, we consider
the 𝑁 -fragments prediction problem which limits the number of
fragments. This is simpler than fragment-set prediction; we can
use the latter to predict the entire set of fragments and select 𝑁
fragments to solve the former problem for applications such as
database performance tuning.

Definitions 6 and 7 assume the predictions are made using
all the past queries posed by the user in the current session, i.e.,
S∗ = (𝑄∗

1, . . . , 𝑄
∗
𝑖
). In our solution (Section 4), we only use𝑄∗

𝑖
, i.e.,

the last preceding query, to predict the next query’s template and
fragments. This is because our experimental results in Section 5
and our baseline prediction model in Section 6 show that the
immediate successor, i.e., 𝑄∗

𝑖
, encodes most of the necessary

information for predicting 𝑄∗
𝑖+1. In Section 5, we report statistics

about the similarity between𝑄𝑖+1 and𝑄𝑖 in the two workloads to
highlight the importance of 𝑄𝑖 in predicting 𝑄𝑖+1. Our solution
using seq2seq models can be easily extended to work with all
the queries 𝑄∗

1, . . . , 𝑄
∗
𝑖
: one can concatenate multiple queries to

generate a single sequence and provide as input to the seq2seq
models.

3 PRELIMINARIES
As described in the introduction, we rely on deep learning tech-
niques in our architecture (Figure 3). Readers familiar with sequence-
to-sequence models and fine-tuning can skip this section; we
describe the novel aspects of our approach in Section 4.

Sequence-to-sequence (seq2seq) models are widely used in
NLP [48]. because seq2seqmodels map the input sequence (𝒙1, ...,
𝒙𝒏) to the target sequence (𝒚1, ...,𝒚𝒎). Seq2seq also has more
general purposes related to sequence mapping, such as next
sentence prediction [5, 39] and representation learning [18, 23].
In our problem, we model query statements as a sequence of
word tokens. Seq2seq models’ sequence-mapping ability well
suits our purpose, where we aim to predict the next query using
the preceding query.

A seq2seq model consists of an encoder and a decoder. In
training, the encoder reads the input, computes hidden states
𝒉1, ...,𝒉𝒏 , and outputs the context vector 𝒄 = 𝑔(𝒉1, ...,𝒉𝒏). 𝒄 is a
numeric representation of the input sequence and is input to the
decoder. The decoder uses 𝒄 to generate an output sequence by
finding𝒚𝑖s that maximize the joint probability. Our work assesses
three types of seq2seq models. Details of the Recurrent Neural
Network (RNN) seq2seq model [4] are in the full version of the
paper.

Instead of sequentially processing a sequence token-by-token
as in RNNs, the transformer reads tokens in parallel [48]. The
transformer computes more meaningful representations by scor-
ing tokens based on their relatedness to others [25, 48].

Convolutional seq2seq models (ConS2S) use convolutional
neural networks (CNNs) in the hidden layers. CNNs are feed-
forward neural networks that extract local patterns or features in
data using convolving filters [15, 47]. Applying CNNs in NLP en-
ables the seq2seq model to identify n-grams in sequences and cre-
ate a semantic representation. Similar to the transformer, ConS2S
is independent of the input length and allows parallel computa-
tion [15].

Fine-tuning is commonly used for transfer learning. The goal
is to transfer the knowledge learned from a source task to get
a head start on a related target task. E.g., BERT [9] is a NLP

56

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

language representation model. Fine-tuning trains BERT with
additional datasets to add specific context [27] and/or augment it
with other models for specific tasks such as text classification [17].
We explain how we apply fine-tuning in next template prediction
in Section 4.1.2.

4 METHODOLOGY
We are now ready to describe the details of our query recom-
mendation methodology (Figure 3). This section first describes
the offline model training of the encoder, decoder, and classifier
(Section 4.1); then we solve the next fragment prediction and
next template prediction problem using online recommendation
(Section 4.2).

4.1 Offline Model Training
One of our contributions is to adapt the deep learning techniques
in Section 3 to next template prediction and next fragment pre-
diction. There are two steps in this stage: step 1 uses the seq2seq
models to extract information from query sequences. Step 2 ap-
plies the fine-tuning techniques using the trained encoder from
step 1.

4.1.1 The Workload-Aware Approach. Step 1 leverages the se-
quence mapping feature of seq2seq models to extract information
for query prediction using the preceding query (Figure 3). Our
main contribution is the two sequence-related aspects: we first
model query statements as a sequence of word tokens; we then
build the seq2seq models using the preceding query and the
next query as query pairs ⟨𝑄𝑖 , 𝑄𝑖+1⟩ (Definition 3) to capture the
natural sequences in human data exploration recorded in the
workloads.

Our seq2seq model has two components, an encoder and a
decoder. We use input (𝒙1, ..., 𝒙𝒏) to represent a sequence of
word tokens (𝑡1, ..., 𝑡𝑛) in a query 𝑄𝑖 where each 𝒙 𝒊 = 𝒆𝒊 is
the one-hot representation of token 𝑡𝑖 . Similarly, we use target
output (𝒚1, ...,𝒚𝒎) to represents the next query 𝑄𝑖+1. In step 1,
𝑄𝑖 is the input to the encoder, and 𝑄𝑖+1 is the target output of
the decoder. Through training, the encoder learns next-query
representation by becoming better at extracting features from
queries that are relevant to query prediction, while the decoder
becomes better at generating the next query using the given
next-query representation.

Previously, seq2seq was used as an autoencoder in [18, 20] for
query representation learning. Our work concerns fundamen-
tally different problems. To solve our query prediction problem
defined in Section 2, we map the preceding query 𝑄𝑖 and the
next query 𝑄𝑖+1. For this purpose, seq2seq models are a natu-
ral architecture due to their sequence generative and mapping
features. Our approach is motivated by the differences across
workloads (Section 5.3.1) and the syntactic differences between
𝑄𝑖 and 𝑄𝑖+1 (Section 5.3.2 and 5.3.3). We later show experimen-
tally that this approach is a success, but the details are non-trivial
due to the differences above. Next we explain how we handle
the unique challenges that come with this data-driven, workload-
aware query recommendation.

4.1.2 Template Classification Model Fine-Tuning. Another of our
contributions is to apply fine-tuning to solve the challenges in
next template prediction. Since model-generated queries can con-
tain syntactic errors, we extract template classes from workload
queries and model the template prediction problem as a classifica-
tion task (Definition 6). Since the AST template (Definition 5) is

Figure 8: Step 4 next fragment prediction zoom-in.
a part of query statements, we consider next template prediction
a related downstream task of step 1 and apply fine-tuning. To do
so we leverage the learned query sequences from step 1, where
the encoder learns next-query representation by becoming better
at extracting features from queries that are relevant to query
prediction.

Step 2 in Figure 3 shows the overview of how we apply fine-
tuning to next template prediction. Our template classification
model has two components: the trained encoder from step 1 and
a classifier. We use the encoder from the seq2seq model as a
pre-trained model and augment a standard two-layer classifier
in NLP [17]. We take a supervised approach to train the template
classification model. For every ⟨𝑄𝑖 , 𝑄𝑖+1⟩, we extract the AST
template of 𝑄𝑖+1 and label 𝑄𝑖 with template(𝑄𝑖+1) (Definition 5).
In training, 𝑄𝑖 is the input sequence, and template(𝑄𝑖+1) is the
target output of the classification model. In comparison to the
fine-tuning approach to next template classification, we also
include a classification model without the pre-trained encoder
(Section 6.2.3).

4.2 Online Recommendation
Subsequently, we apply the trained the template classification
model to next template prediction (Section 4.2.1) and the seq2seq
model to next fragment prediction (Section 4.2.2).

4.2.1 Next Template Prediction. Step 3 applies the trained tem-
plate classification model from step 2 to next template predic-
tion by finding AST templates that are more likely to appear in
the next query statement. In online recommendation, the model
takes 𝑄∗

𝑖
as input and generates N-templates 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑁 (�̂�𝑖+1)

as output. We rank the predicted 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑠𝑁 (�̂�𝑖+1) based on
the probabilities. We evaluate the accuracy on top-1 template
prediction as well as N-templates prediction with a rank-aware
metric (Section 6.4).

4.2.2 Next Fragment Prediction. Step 4 applies the trained seq2seq
model from step 1 to next query fragment prediction (Figure 8) by
finding fragments that are more likely to appear in the next query
statement. Same as next template prediction, the model takes
𝑄∗
𝑖
as input. Our approach differs slightly for the fragment-set

prediction and the N-fragments prediction.

Fragment-Set Prediction. In fragment-set prediction (Defi-
nition 7), we apply the common greedy decoding strategy to
the seq2seq models where the decoder selects the most likely
term in each step of decoding. Decoding stops when the model-
generated sequence reaches the end-of-file term and returns a
query statement �̂�𝑖+1. As shown in Figure 8, the model outputs
fragments(�̂�𝑖+1), which is the predicted fragment set of the next
query parsed �̂�𝑖+1.

N-Fragments Prediction. Rather than an arbitrary number of
fragments, N-fragment prediction recommends a fixed-sized list.

57

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

However, the need of decoding N fragments cannot be met with
the greedy strategy. To solve this problem, we assess three types
of beam search strategies in the decoder to generate multiple
queries and achieve more diverse fragment recommendations.
• Beam search: Beam search is a decoding method that gener-
ates top-𝐵 candidate output queries with the highest score at
each step; where 𝐵 is known as the beam width [14, 50, 51].

• Diverse beam search: Vanilla beam search can result in
queries that are very similar. We apply diverse beam search
with the default dissimilarity setting to encourage diversity
between the explored beams at each step [30, 49].

• Stochastic decoding (sampling): Diverse beam search may
select tokens with a low score which can lead to irrelevant
queries [16]. The idea of stochastic decoding is to select the
tokens by sampling from the probabilities at each step to sup-
port diversity. We follow the technique in [16] but we set the
probability of the tokens with a low score to zero.
These search strategies generate partial search trees in which

each leaf node is an end-of-file token that marks the end of a
query statement. A complete search tree is obtained by consid-
ering every word token at each decoding step. Every token in
the tree has a probability attached. To obtain 𝑓 𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠𝑁 (�̂�𝑖+1)
from these �̂�𝑖+1’s, we use the probabilities of tokens in a search
tree and apply a brute-force algorithm to compute a probabil-
ity for the fragments to appear in the next query. We compute
these probabilities as we build the search trees. When a fragment
appears for the first time in a path from the roof to a leaf, its
probability is the same as the token probability. If the fragment
appears in multiple paths, we use the sum of the probability to
appear in different paths. We then select the top 𝑁 fragments
with the highest probabilities to recommend.

Notice that computing the exact probability of a fragment to
appear in the next query is intractable as it requires exploring the
entire search tree, and applying the same brute force algorithm.
The search strategies in this section generate a partial tree and as
a result the probability that we compute for each fragment is an
estimation of the actual probability that the fragment appears in
the next query. At this point, we have described the methodology
that we used to solve both the fragment prediction problem
and the next template prediction problem. We are now ready to
describe the workloads that we trained and tested our approach
on.

5 WORKLOADS AND ANALYSIS
In order to understand our results and also show why there
are reasons to believe why they are generally applicable, we
extensively analyzed the workloads to provide context. This is in
line with the existing applied ML literature [6, 12, 41–44] which
also largely takes into account the specific domain context of the
model applications.

5.1 SDSS Workload
The Sloan Digital Sky Survey (SDSS) stores images, spectra,
and catalog data for more than three million astronomical ob-
jects [37]. For each SQL record, we obtained the raw query
statement 𝑄 and session class label following [55]. From 𝑄 ,
we extracted query template template(𝑄) (Definition 5) by re-
placing tables(𝑄), columns(𝑄), functions(𝑄), and literals(𝑄)with
the corresponding tokens in the raw query statement. We ob-
tained query pairs ⟨𝑄𝑖 , 𝑄𝑖+1⟩ (Definition 3) as follows. We first
extracted the query start time from the “SqlLog.theTime” and

Statistics SDSS SQLShare

Total pairs 814,855 16,452
Unique pairs 187,762 15,710
Unique queries 15,094 15,792
Sessions 28,395 2,697
Datasets 1 64
Vocabulary 4,648 7,761
Tables 56 1,722
Columns 3,756 4,564
Functions 110 455
Literals 636 685
Templates 2,975 3,485

Table 2: Workload-level statistics.

session ID from “SessionLog.sessionID”. Per session, we grouped
queries by session ID and sorted queries by start time. In each
⟨𝑄𝑖 , 𝑄𝑖+1⟩, the two queries are from the same session and are
consecutive based on the start time, where𝑄𝑖 has an earlier start
time than 𝑄𝑖+1.

5.2 SQLShare Workload
The SQLShareworkload is collected from SQLShare [19], a database-
as-a-service platform [19] where users upload data and write
queries to interact. Besides the raw query statement [55], we
extracted the start time from the “start_time” attribute and the
session ID using SDSS’s definition for query sessions [37, 38].
We also obtained the query template and query pairs as de-
scribed above.

Rather than a single schema as in the SDSS workload, the
SQLShare workload contains query sequences over short-term,
user-uploaded datasets in various domains, including biomedi-
cal to ocean sciences. Since users upload their own datasets to
SQLShare, the query sessions can operate on their individual
datasets and be oblivious to the datasets used in other sessions by
other users, which makes the SQLShare workload a collection of
individual workloads with a variety of schemas. This difference
in the SDSS and SQLShare service is reflected in the analysis
(Section 5.3).

5.3 Workload Analysis
The objective of our workload analysis is to (1) provide evidence
that the query pairs and the sessions in the query workloads
contain useful information for our prediction tasks and (2) help
explain the experiment results. We analyze the workload data at
three levels, workload, session, and query pair (Sections 5.3.1–
5.3.3, respectively). The findings lead to the implications in Sec-
tion 5.4.

Figure 9: Number of queries covered per template.
5.3.1 Workload-Level Analysis. Overall, SDSS has 50 times more
query pairs and 12 times more unique pairs than SQLShare (Ta-
ble 2). The two datasets have almost the same number of unique
queries while SDSS has a smaller vocabulary. SDSS has more
query samples, making it easier for deep learning models to learn
patterns from them [44], while SQLShare represents a harder
scenario.

58

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

A key consideration for fragment prediction is the diversity
of each fragment type in the data, indicated by the number of
unique columns, literals, functions and tables. In SDSS, the order-
ing from most to least was columns, literals, functions, and tables.
In contrast, SQLShare has more tables, making its ordering from
most to least be columns, tables, literals, functions. Sample size
and the number of appearances of tokens have a great effect on
deep learning models [44]. In our setting, given the same number
of query statements, tokens from a more diverse fragment type
are likely to be used less often, and thus are more difficult to
learn. For this reason we expect the difficulty for each type of
fragment prediction in the same order. In SDSS, column predic-
tion is expected to be the hardest, followed by literal, function,
and table prediction. In SQLShare, column and table prediction
is expected to be harder than function and literal.

For template prediction, SDSS and SQLShare have a similar
number of unique templates, while SDSS has 50 times more
data that the models can learn from. Thus SQLShare would also
be a harder dataset than SDSS. Such findings align with the
differences in the collection of the SDSS and SQLShare workload
(Section 5.2).

5.3.2 Session-Level Analysis. Users start a session with intent.
At the session level, we empirically show that users often pose a
sequence of different queries to fulfill the session intent, which
motivates our workload-aware approach. We grouped the work-
load data by session and extracted the following statistics (Fig-
ures 10 and 11 (a)–(e)) to show how much query statements vary
per session: number of queries, number of unique queries, and
number of sequential changes, which is the number of times a
successive query differs from the one preceding it. For templates
per session, we obtained the number of unique templates and
number of template changes.

In SDSS and SQLShare, over 70% of the sessions have at least
two unique queries. Sessions also use a variety of query templates.
In SDSS, 79% of the sessions use at least two unique templates, and
64% of the sessions change templates at least twice. The number
is 68% and 55% respectively for SQLShare. Overall, the session-
level statistics show frequent changes in queries per session;
the majority of users use a variety of queries and templates in
sequence to achieve session intent. These findings provide the
ground for our work to capture sequential changes in sessions.

On average, per session, SDSS has many more sequential
changes than SQLShare, compared to the small difference in
unique queries. Note that sequential changes indicate changes
in fragments, templates, or both. These session-level query statis-
tics align with our workload-level analysis, which indicates that
SQLShare is also a harder dataset for next template prediction.

5.3.3 Pair-Level Analysis. We use query pairs ⟨𝑄𝑖 , 𝑄𝑖+1⟩ (Defini-
tion 3) to capture the sequential changes in query fragments and
template.We analyze query syntactic properties to show how syn-
tactically different𝑄𝑖+1 is from𝑄𝑖 . For each𝑄 , we use the ANTLR
parser to get its AST and extract six properties [55]: table count,
selected columns, predicate count, predicate columns, function
count, and word count. Then we show the count difference be-
tween𝑄𝑖 and𝑄𝑖+1 for each property. We use change in template
to show whether template(𝑄𝑖) is different than template(𝑄𝑖+1).

In SDSS (Figure 10 (g)–(l)), 8% of𝑄𝑖+1 use more tables than𝑄𝑖 ,
14% select more tables and attributes, 10% use more functions,
and 16% become longer. In SQLShare (Figure 11 (g)–(l)), 5% of
𝑄𝑖+1 use more tables than 𝑄𝑖 , 12% select more attributes, 9%
use more functions, and 13% become longer. The percentage is

similar for the pairs that decrease in our syntactic measurements.
Overall in terms of fragment counts, 𝑄𝑖+1 is more similar to 𝑄𝑖

in SQLShare. However, the differences of fragment counts in 𝑄𝑖

and 𝑄𝑖+1 still suggest that 𝑄𝑖 as-is may not be a good prediction
for 𝑄𝑖+1.

For templates in the pair level (Figure 10, 11 (f)), over 40% of the
𝑄𝑖+1 has a different template than 𝑄𝑖 in SDSS, while the percent-
age goes up to 62% in SQLShare. Thus template(𝑄𝑖) alone may
also not be a good prediction for template(𝑄𝑖+1), and SQLShare
is also a harder scenario than SDSS for template prediction.

5.4 Analysis Implications
5.4.1 Implication on Data Pre-Processing. Our SDSS workload
analysis (Table 2) shows evidence of duplicate queries and query
pairs within and across sessions, which means that some use of
queries and patterns naturally occur more often than others. We
keep all query pairs in the SDSS and SQLShare datasets. Further,
we need a collection of sensible word tokens as vocabulary since
our approach uses model-generated queries. For each𝑄 , we used
the ANTLR parser to get its AST. We replaced the numerical
literals with a <NUM> token to control the vocabulary size.
Since aliases are an instance of a table or view, they encode
implicit information about the schema and intent, so we replaced
aliases with the corresponding table name.

For template prediction, we assigned a template class (Defi-
nition 5) to each 𝑄 . The templates capture the query structure
using SQL keywords. ASTs can distinguish the type of fragments.
We replace fragments in ASTs with their corresponding tokens.
We keep templates that appear at least 3 times in the datasets
and get 830 template classes in SDSS and 552 in SQLShare.

5.4.2 Implication on Evaluation. The analysis also affects our
baseline selection. From our workload-level statistics (Table 2),
we see queries repeat within and across sessions, especially in
SDSS. This means that some fragments are frequently used. For
example, one or more of the 56 tables appear in the 15, 094 unique
SDSS queries. For templates, the long tail in Figure 9 suggests that
some are more frequently used than others. Therefore we include
a baseline popular that predicts the most popular N-fragments
and N-templates.

From our pair-level analysis (Section 5.3.3), although we see
changes in the fragment count, some of the fragments used in
the next query may remain the same. Figures 10 and 11 (f) show
that query pairs can share the same template as well. Specifically,
over 50% of 𝑄𝑖+1 in SDSS and 40% in SQLShare use the same
template as 𝑄𝑖 . Hence, we include a second baseline, naïve 𝑸𝒊 ,
that uses the fragment set of the current query for fragment-set
prediction, and the template of 𝑄𝑖 for template prediction.

6 EXPERIMENTAL EVALUATION
6.1 Evaluation Objectives
2We have four questions: Does the preceding query matter?Is the
data-driven approach effective? Between the deep learning archi-
tectures, the transformer and ConS2S, does one outperform the
other? And do the models perform differently on the workloads?
We evaluate our solution from four aspects.
(1) Effectiveness: We define effectiveness based on the accuracy

measures (Table 4) for each sub-problem.
(2) Deep learning model effect: Traditional query recommen-

dation approaches often rely on human-selected features
2We made our script, experiment data, and trained models publicly available.

59

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

Figure 10: Session and pair level analysis for SDSS.

Figure 11: Session and pair level analysis for SQLShare.

such as table names. We compare against the QueRIE frame-
work [1, 11] to evaluate the data-driven approach.

(3) Sequence effect: To isolate the effect of the preceding query,
we build seq-less deep learning models using the same archi-
tecture. Seq-aware models are trained with a query predic-
tion task, where given a query pair ⟨𝑄𝑖 , 𝑄𝑖+1⟩, we used 𝑄𝑖 as
the model input sequence and 𝑄𝑖+1 as the target sequence.
Seq-less models are trained with a reconstruction task using
⟨𝑄𝑖 , 𝑄𝑖 ⟩, where the input sequence is the same as the target
sequence.

(4) Fine-tuning effect: The fine-tuning approach shows to be
beneficial to the downstream tasks in NLP as discussed in
Section 3. Since our problem is closely related to NLP, we
evaluate whether the learned space from the trained encoder
is helpful for our downstream task, next template prediction.

6.2 Setup
6.2.1 Data Split. We used the SDSS and SQLShare workload
(Table 2) to evaluate the method performance for next fragment
prediction and next template prediction. For both datasets, we
used an (80/10/10) random split for the train, validation, and test
sets.

6.2.2 Evaluation Settings. We have two settings for next frag-
ment prediction: fragment-set and N-fragments. In fragment-set
prediction, the methods are evaluated on whether they can pre-
dict all the fragments in the next query. In N-fragments prediction,
we extract 𝑁 fragments from multiple beams, where each beam
is a model-generated query (Section 4.2.2). For next template pre-
diction, we evaluate the methods on the top-1 and N-templates
prediction.

6.2.3 Methods Compared. Our selection of methods compared
is derived from the objective (2)–(4) in Section 6.1. We evaluate
the effectiveness of the combination of deep learning models and
query pairs in query recommendation. We have ⟨𝑄∗

𝑖
, 𝑄∗

𝑖+1⟩ in
the test set, where 𝑄∗

𝑖+1 is the ground truth next query of 𝑄∗
𝑖
. In

evaluation, except for the two baselines defined in Section 5.4.2,

all other methods take query 𝑄∗
𝑖
as input. We compared the

following models.

• Baseline popular: It uses the most popular fragments in the
workload for N-fragments prediction and the most popular
templates for N-templates prediction.

• Naïve 𝑸𝒊 : It uses the fragment-set in 𝑄∗
𝑖
as-is for fragment

prediction and template(𝑄∗
𝑖
) for template prediction.

• QueRIE framework: We include the binary fragment-based
collaborative filtering approach in the QueRIE framework [1,
11] to measure objective (2) in Section 6.1. Given𝑄∗

𝑖
, the frame-

work constructs a vector based on the tables and attributes.
Then it uses cosine similarity to recommend queries in the
workload that are the closest to the user input. We parse the
output queries to get the fragment-set and N-templates. We
note that QueRIE was designed for a different query recom-
mendation problem, and while we have adapted it as fairly as
possible, it should not be expected to perform as well here as
it did for its original problem.

• Sequence-less (seq-less) models: We include another set
of models to decouple the deep learning model effect and the
sequence effect in Section 6.1. The seq-less models are trained
using query pair ⟨𝑄𝑖 , 𝑄𝑖 ⟩. The other steps remain the same.

• Sequence-aware (seq-aware) models: We trained the seq-
aware models with a prediction task using ⟨𝑄𝑖 , 𝑄𝑖+1⟩.

• Template classification model without fine-tuning: We
apply fine-tuning to solve next template prediction. To evaluate
the effect of fine-tuning, we include a template classification
model that uses the classifier component without the trained
encoder.

We considered experimentally evaluating our work against
SQLSugg [13] and SnipSuggest [22] but found this to be inappro-
priate.

To begin with, both SQLSugg and SnipSuggest solve different
problems than the one that we solve—both help users translate
their intention or requests to SQL queries. This means that they
cannot propose new fragments that are not related to user input,
which means that they will necessarily perform similarly to naïve
𝑸𝒊 , whichwe thoroughly experimentally analyzed. Aswe show in

60

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

Model SDSS SQLShare
𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑖𝑛𝑓 𝑒𝑟 Size 𝑇𝑡𝑟𝑎𝑖𝑛 𝑇𝑖𝑛𝑓 𝑒𝑟 Size

seq-less cons2s 13.12 0.20 8,003,869 1.05 0.81 41,337,294
tfm 36.24 0.53 72,867,301 0.76 0.51 15,026,682

seq-aware cons2s 12.5 0.20 8,024,036 2.12 0.83 41,547,994
tfm 49.48 0.52 73,073,192 3.73 0.46 32,307,382

Table 3: Model statistics, where 𝑇𝑡𝑟𝑎𝑖𝑛 is training time in
hour and 𝑇𝑖𝑛𝑓 𝑒𝑟 is inference time per query in second. We
denote transformer as tfm.

Problem Metric Definition

Fragment
predic-
tion

Precision 1
|𝑅 |

∑
𝑄∗

𝑖

��fragments𝑁 (�̂�𝑖+1)∩fragments(𝑄∗
𝑖+1)

����fragments𝑁 (�̂�𝑖+1)
��

Recall 1
|𝑅 |

∑
𝑄∗

𝑖

��fragments𝑁 (�̂�𝑖+1)∩fragments(𝑄∗
𝑖+1)

��
|fragments(𝑄∗

𝑖+1) |

Template
predic-
tion

Accuracy 1
|𝑅 |

∑
𝑄∗

𝑖

1templates𝑁 (�̂�𝑖+1) (template(𝑄∗
𝑖+1))

MRR 1
|𝑅 |

∑
𝑄∗

𝑖

1
rank(template(𝑄∗

𝑖+1),templates𝑁 (�̂�𝑖+1))

Table 4: Evaluation metrics.

Section 6.3.1, our approach greatly outperforms naïve 𝑸𝒊 because
it cannot suggest new fragments.

Secondly, both methods assume the availability of resources
that we do not have. SQLSugg requires schema information and
access to the database, neither of which we have in our datasets.
SnipSuggest requires human intervention to guide the query
completion. Without any intervention, which we would need to
assume in order to do a fair comparison, their results would be
even more limited than the existing fragments that they are able
to produce.

Therefore, since both methods are going to necessarily do
worse when testing against our metrics, we have tested against
naïve 𝑸𝒊 , which provides very similar results, and they require re-
sources that we did not have, we did not experimentally evaluate
against them.

6.2.4 Model Training and Hyper-Parameter Tuning. We use the
standard cross-entropy loss, which decreases as the predicted
probability converges to the actual word token for a given step.
We use Adam as the optimizer following [5, 9, 48].

Deep learning models need to be configured correctly. Since
our workload analysis (Section 5) shows many differences in the
SDSS and SQLShare datasets, we separately tuned the hyper-
parameters for each dataset. Following [4, 9, 15, 25, 48, 55], we
mostly preserved the model architecture and constrained the
range of the training dynamics to make the tuning tractable. For
the transformer models, we assessed the number of attention
heads in [8, 16], hidden size in [512, 1024], and number of layers in
[2, 12] as in [25, 48]. For ConS2S, we fixed the hyper-parameters
as [15]. We tested the batch size in [16, 64] for both architectures.
For template prediction, we also tuned the classification models
and tested the hidden size in [300, 2000]. We assessed dropout in
[0.0, 0.3] and learning rate in [1𝑒 − 4, 1𝑒 − 6] for all models. The
hyper-parameters are selected based on the best validation loss
using early stopping.

6.2.5 Performance Metrics. Table 4 shows our evaluation met-
rics. For fragment prediction, we evaluate the methods in the
fragment-set setting and N-fragments setting, where𝑁 is in [1, 5],
and 𝑅 is the test dataset of pairs ⟨𝑄∗

𝑖
, 𝑄∗

𝑖+1⟩. fragments𝑁 (�̂�𝑖+1)
is the model-predicted N-fragments in �̂�𝑖+1’s generated using

beam search strategies (Section 4.2.2). In the fragment-set setting,
fragments𝑁 (�̂�𝑖+1) is replaced with fragments(�̂�𝑖+1), where �̂�𝑖+1
is the model predicted query generated by greedy decoding. We
report the test F-measure of individual fragment types. Hence
fragments in the metrics can be replaced by the four specific types
of fragments. For N-templates prediction, we report the test aver-
age accuracy as a rank-less metric, where templates𝑁 (�̂�𝑖+1) is the
list of N predicted templates. We also evaluate the methods with
two rank-aware metrics, mean reciprocal rank (MRR) and nor-
malized discounted cumulative gain (NDCG). In the definition of
accuracy, 1templates𝑁 (�̂�𝑖+1) (template(𝑄∗

𝑖+1)) is an indicator func-
tion that returns 1 if template(𝑄∗

𝑖+1) is in the list of templates
templates𝑁 (�̂�𝑖+1) and 0 otherwise. InMRR, rank(template(𝑄∗

𝑖+1),
templates𝑁 (�̂�𝑖+1)) is a function that returns the rank of template
(𝑄∗

𝑖+1) in the list of templates rank(templates𝑁 (�̂�𝑖+1) (it returns
infinite if template(𝑄∗

𝑖+1) does not appear in the list). Due to
the similarity in our results, we only include NDCG in the full
version.

6.3 Next Fragment Prediction
6.3.1 Fragment-Set Prediction. In this setting, given𝑄∗

𝑖
, themeth-

ods output all the fragments that are likely to appear in 𝑄∗
𝑖+1.

Since naïve 𝑄𝑖 directly outputs fragments(𝑄∗
𝑖
), it shows the sim-

ilarity in the fragment-sets in 𝑄∗
𝑖
and 𝑄∗

𝑖+1. Hence naïve 𝑄𝑖 sets
the bar for the fragment prediction task and specifies its difficulty.
For SDSS (Table 5), both seq-aware deep learning models outper-
form the baselines, indicating a strong sequence effect in table,
column, and function prediction. In terms of architectures, the
transformer generally outperforms ConS2S in both seq-less and
seq-aware cases. Specifically, seq-aware transformer performs
the best in table, column, and function prediction, while seq-less
transformer performs well in literal prediction. For each type of
fragment-set, comparing the models to naïve 𝑄𝑖 , we observe the
most improvement in table and function prediction. One possible
reason is the diversity of word tokens in the data. From our work-
load statistics (Table 2), SDSS has a lower count of unique tables
(56) and functions (110) than columns (3,756) and literals (636).
This implies that tables and functions may occur more frequently
in the dataset as a whole. More occurrences can help the deep
learning models recognize functions and literals than tables and
columns in SQLShare [44].

For SQLShare (Table 5), seq-less models outperform others
by far, indicating a weak sequence effect. We attribute this to
the nature of the dataset for two possible reasons. First, we note
that naïve 𝑄𝑖 performs better in SQLShare than SDSS. Naïve
𝑄𝑖 ’s high performance indicates a higher similarity between
fragments(𝑄𝑖) and fragments(𝑄𝑖+1) in SQLShare (Section 5.3.3).
Since our sequence effect is captured by ⟨𝑄𝑖 , 𝑄𝑖+1⟩, we observe
that the sequence effect gets weaker as this similarity increases.
Second, regardless of the sequential features in data, it is pos-
sible that the potential of seq-aware models is constrained by
the data size, as neural networks generally benefit from larger
datasets [44]. The seq-aware models may be more sensitive to
the data size since more variance is introduced as they consider
⟨𝑄𝑖 , 𝑄𝑖+1⟩, as opposed to ⟨𝑄𝑖 , 𝑄𝑖 ⟩ for seq-less models. This ob-
servation can also be backed up by the superior performance
of seq-aware models on SDSS, which has the same number of
unique query pairs but more samples (Table 2).

Next we look at the model performance on each type of frag-
ment set for SQLShare (Table 5). Function and literal prediction
have the most improvement from naïve 𝑄𝑖 . Similar to SDSS, this

61

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

Method SDSS SQLShare
table column function literal table column function literal

naïve 𝑄𝑖 0.53 0.47 0.08 0.13 0.61 0.68 0.54 0.40
QueRIE 0.47 0.26 0.02 0.07 0.16 0.24 0.25 0.06

seq-less cons2s 0.50 0.45 0.27 0.18 0.70 0.73 0.68 0.54
tfm 0.50 0.45 0.33 0.18 0.71 0.76 0.73 0.56

seq-aware cons2s 0.65 0.56 0.34 0.13 0.46 0.55 0.62 0.48
tfm 0.65 0.58 0.37 0.14 0.64 0.66 0.68 0.54

Table 5: Fragment-set prediction f-measure.

Method SDSS SQLShare
baseline 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 0.67 0.07
naïve 𝑄𝑖 0.62 0.45

seq-less
cons2s-tuned 0.72 0.48
tfm-tuned 0.73 0.55
untuned 0.73 0.52

seq-aware
cons2s-tuned 0.77 0.48
tfm-tuned 0.81 0.50
untuned 0.80 0.45

Table 6: Top-1 template prediction accu-
racy.

result could also be explained by the diversity of functions and lit-
erals in SQLShare. From Table 2, there are fewer unique functions
(455) and literals (685) than tables (1,722) and columns (4,564)
in SQLShare. As discussed in Section 5.3.1, SQLShare has more
unique tables and columns since the service allows user-uploaded
datasets.

6.3.2 N-Fragments Prediction. In this setting, given𝑄∗
𝑖
, the meth-

ods output N-fragments that are likely to appear in 𝑄∗
𝑖+1. We

assess 𝑁 in [1, 10] and report 𝑁 in [1, 5] since the results for
𝑁 > 5 are similar to 𝑁 = 5. For SDSS (Figure 12), the general
trend stays consistent with the fragment-set setting, where the
seq-aware models vastly outperform the seq-less models and
baseline 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 . In literal prediction, all deep learning mod-
els outperform the baseline 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 , with seq-less transformer
being the best. Between the two deep learning architectures,
the transformer generally outperforms ConS2S on all fragment
types. The trend is the same for SQLShare (Figure 12), where
seq-less models sightly outperform seq-less transformer in table,
column, and function prediction, while seq-aware transformer
performs the best in literal prediction. In terms of architectures,
the transformer performs better than ConS2S.

Across the datasets, baseline 𝑝𝑜𝑝𝑢𝑙𝑎𝑟 performs drastically bet-
ter on SDSS than SQLShare. This is due to the differences in
the data explained in Section 5.3.1. Table 2 shows that all SDSS
users share one dataset and schema, while there are 64 datasets
in the SQLShare workload, where users typically upload their
own datasets and have limited access to datasets uploaded by
other users [19]. Hence the most popular fragments may not
be accessible to all SQLShare users and thus may only appear
in limited queries, which leads to low performance of baseline
𝑝𝑜𝑝𝑢𝑙𝑎𝑟 in SQLShare.

6.3.3 Discussion. Using the baseline naïve 𝑄𝑖 as an anchor, it is
relatively easier for the deep learning models to improve on table
and column prediction. This is due to co-occurrence data such as
n-grams in NLP. In SQL query statements, tables and columns are
used in a certain position to comply with the grammar, e.g., tables
often appear as a group in the where clauses. Neural networks
utilize this feature well [53, 54]. Information about the relative or
absolute position of the word tokens in a query is crucial for the
transformer [48], whereas ConS2S is sensitive to local n-gram
patterns [15] (Section 3). For these reasons, tables and columns
are more likely to be captured by the deep learning models.

In next fragment prediction, the deep learning models in gen-
eral outperform the baselines and known existing method on
both datasets, which indicates the effectiveness of our data-driven
approach in predicting all the fragments of the next query.

The effectiveness of the data-driven approach on next frag-
ment prediction varies depending on the workload, reflecting
the importance of workload-aware recommendation. Further,
sequence effect also varies between the workloads. In general,

seq-aware models trump in SDSS, while seq-less models perform
better in SQLShare. Seq-aware models’ superior performance
on SDSS indicates that their learning could benefit if there were
more query pair samples in SQLShare.

In next fragment prediction overall, the transformer architec-
ture outperforms ConS2S. One possible reason is that given long
queries, the transformer can relate the word tokens in a query
regardless of how far they are apart from each other [48]. This
characteristic enables the transformer models to learn and pre-
serve information better than ConS2S, especially when the data
is more diverse and local n-gram patterns are less pronounced.

6.4 Next Template Prediction
In this section we discuss the effectiveness of the data-driven
approach, sequence effect, and the fine-tuning technique. We first
analyze the accuracy results of the methods on each dataset and
then consider a rank-aware metric to analyze model performance
in the N-templates setting. We acknowledge that the QueRIE
framework does not consider SQL structure, which places it at a
disadvantage.

6.4.1 Top-1 Template Prediction. Table 6 shows the template
prediction accuracy of the methods. Given 𝑄∗

𝑖
, the methods out-

put the AST template most likely to appear in 𝑄∗
𝑖+1. Overall, all

the deep learning models improve upon the baselines. Naïve 𝑄𝑖

again sets up a baseline to show the difficulty of the problem.
SQLShare is a harder dataset due to its more diverse templates
and unique queries (Table 2). For SDSS, all the seq-aware models
drastically outperform their seq-less counterparts, indicating a
stronger sequence effect on SDSS than SQLShare. In terms of
the architecture, transformer-tuned model consistently achieves
the best accuracy on both workloads. For the fine-tuning effect,
the deep learning architectures obtain different results. While
ConS2S-tunedmodel seems less effective than the untunedmodel,
transformer-tuned model generally performs the best.

6.4.2 N-Templates Prediction. The methods output N ranked
templates to predict template(𝑄∗

𝑖+1). We assess 𝑁 in [1, 10] and
report𝑁 in [1, 5] and include a rank-awaremetricMRR, described
in Section 6.2.5. For SDSS (Figure 13), seq-aware transformer-
tuned model consistently outperforms other methods in both
accuracy and MRR. In addition, although seq-aware transformer-
tuned only slightly outperforms seq-aware ConS2S-tuned in
terms of accuracy, the difference grows on the rank-aware met-
ric, meaning that seq-aware transformer-tuned is able to output
more relevant template predictions. For SQLShare (Figure 13),
although seq-less transformer-tuned performs the best at N = 1,
seq-awaremodels start to pick upwhen𝑁 > 2, indicating that the
sequence effect becomes more relevant as N increases. In terms
of architecture, transformer-tuned model still overall performs
the best.

62

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

Figure 12: F-measure of N-fragments prediction on SDSS (top) and SQLShare (bottom).

Figure 13: N-templates prediction.

6.4.3 Discussion. For SDSS, the combination of sequence effect
and the data-driven approach drastically outperforms the base-
lines and others. For SQLShare, the seq-aware approach becomes
particularly relevant when 𝑁 > 2. These results highlight the
importance of the preceding query in next template prediction,
especially when the user asks for more than one template recom-
mendation.

For next template prediction overall, seq-aware transformer-
tuned achieves the best performance on both rank-less and rank-
aware metrics. Though the difference in performance between
the transformer-tuned and ConS2S-tuned template classification
model depends on the dataset.

In terms of the fine-tuning effect, regardless of sequence-
awareness, the transformer architecture can be more effectively
tuned than ConS2S for next template prediction. In summary,
our results show the effectiveness of the combined use of the
data-driven deep learning models and sequential information
from the preceding query. The transformer achieves the best per-
formance in both query fragment prediction and query template
prediction. The transformer is also shown to work well with the
fine-tuning technique.

7 RELATEDWORK
7.1 Facilitating Query Composition
Query recommendation is one way to help users write queries.
There are many approaches. SnipSuggest [22] models each query
as a vertex and uses query popularity to build a directed acyclic
graph (DAG); SQLSugg [13] generates undirected graphs as queryable
templates; QueRIE [11] uses collaborative filtering tomake recom-
mendations based on summarized query sessions. These existing
methods use selected features, e.g., tables and attributes, to model
query statements, and ignore query sequences in sessions.

Aligon et al. [2] use collaborative filtering to recommend sets
of queries as OLAP sessions based on previous sessions. They use
whole sessions and full sequences of queries instead of individual
queries. Sessions are extracted from workloads, ranked based
on similarity, and fitted to create a session that most resembles

the user’s future steps in the current session. The framework
in [34] recommends next steps in a data analysis context, where
sessions are modelled as trees. Similar past sessions are compared
using a tree edit distance metric. Abstract generalized actions
are recommended instead of concrete actions, this is similar in
concept to the templates we recommend. These two works are
similar in goals but used in different contexts, with different
inputs and outputs.

Data-aware query recommendation applies several query sim-
ilarity measures, including data dependant measures that con-
sider query answers and accessed data by the queries, to find
relevant sessions and queries in a workload [3]. This work is
similar to QueRIE and relies on pre-determined similarity mea-
sures. The most similar work to ours is [33] where the authors
use q-learning, i.e., an algorithm based on reinforcement learn-
ing, for next query prediction. They apply RNNs and compare
these learning algorithms. The main difference with our work
is the treatment of next query and the characterization of the
next query prediction. While we divide next query prediction
into template prediction and fragment prediction, they define the
problem as predicting the entire query.

Recent work has been using deep learning techniques for im-
provements in facilitating query composition from aspects other
than query recommendation. In [55] character-level and word-
level CNNs and LSTMs are used to predict query performance
to guide users to write more efficient queries, while [28] shows
query tree visualization to help users understand SQL fragments
to formulate queries. While these solutions apply similar tech-
niques to ours, they facilitate query composition from different
perspectives.

Other related work, such as [29], addresses a related problem
where the intent is to help users, without knowledge of SQL, for-
mulate SQL queries. Users specify the output table as well as the
input database instance (or use an existing one). The approach
is to interactively show users example results and database in-
stances that can lead them to the correct query. Such work makes
a great step towards solving the related problem without using
query logs at all. However, the supported class of queries is much

63

EDBT ’23, March 23–31, 2023, Ioannina, Greece Eugenie Y. Lai, Zainab Zolaktaf, Mostafa Milani, Omar AlOmeir, Jianhao Cao, and Rachel Pottinger

smaller, and the user interaction is more complex. For those rea-
sons, it is very difficult to compare against our query log based
methods.

7.2 Sequence Representation Learning
Neural networks are effective tools for learning the underlying
explanatory factors and useful representation from data for se-
quence modelling tasks such as machine translation and natural
language understanding [15, 17, 45, 48]. Using neural networks
for representation learning has two main advantages. First, it
reduces the cost of feature engineering and enables automatic
feature learning from raw data in supervised or unsupervised
approaches. Second, it allows models to work with heteroge-
neous data as they do not rely on hand-picked features. These
advantages are important in our query recommendation problem.
Feature engineering for queries is a challenging task and is not
always applicable to different query workloads. [18, 20] employ
LSTM autoencoder to express queries in a standardized form
for query composition tasks such as error prediction and query
similarity comparison. Our work differentiates as discussed in
Section 4. We use seq2seq models to capture query sequences for
effective query recommendation.

7.3 Deep Learning in Recommender Systems
Recommender systems estimate users’ preferences and inter-
ests to recommend them favourable items. These systems apply
three types of strategies [40]. Content-based systems use items’
properties and users’ information to match items and users. In
collaborative filtering, the recommendations are made by learn-
ing from the past user-item interactions, e.g. the history of visited
or liked items. Hybrid systems apply a combination of the two
strategies.

Recently, plenty of research has been done on deep learning
in recommender systems. [8] applies neural networks to rec-
ommend videos on YouTube; [7] uses deep learning models to
recommend applications on GooglePlay; [36] presents an RNN-
based system to recommend Yahoo news (see [52] for a related
survey). Deep learning has driven a revolution in recommender
systems and the systems that use deep learning have shown sig-
nificant improvements over traditional recommender systems.
Our work is the first to use deep learning in a recommender
system for SQL queries.

8 CONCLUSION AND FUTUREWORK
We introduced a workload-aware deep learning query recom-
mendation approach that addresses two main weaknesses of
the existing query recommendation systems, namely the limited
use of the sequential information from the preceding query and
the predefined syntactic features used to compare queries. We
applied and compared two state-of-the-art seq2seq models for
fragment prediction and tuned them for template prediction. We
evaluated the models on two real-world workloads and show
major improvements over the existing methods for query recom-
mendation and prediction.

There are many potential extensions to our work. First is
incorporating query result information to customize recommen-
dations. Automatic feature selection in these models makes it
easier to apply the models in heterogeneous settings. Another
research direction is applying and assessing the models in this
paper with workloads of different query languages. More com-
plex embedding techniques can also be explored. We are also

interested in the transferability of the models. One direction is to
train the models on one (or multiple) workload(s) and fine-tune
them on a different workload. This could help if the large-scale
workload data is unavailable for some DBMSs. A closely-related
successful precedent is BERT [9] in NLP. Other architectures
such as hierarchical models [31] could be explored to incorporate
multi-level session information.

REFERENCES
[1] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy, S. Mittal, D. On, N. Poly-

zotis, and J. S. V. Varman. SQL querie recommendations. PVLDB, 3(2):1597–
1600, 2010.

[2] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi. A collaborative
filtering approach for recommending OLAP sessions. Decision Support Systems,
69:20–30, 2015.

[3] N. Arzamasova and K. Böhm. Scalable and data-aware SQL query recommen-
dations. Information Systems, 96:101646, 2021.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] T. B. Brown, B.Mann, N. Ryder,M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-
tan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot
learners, 2020.

[6] C. Chen, K. Lin, C. Rudin, Y. Shaposhnik, S. Wang, and T. Wang. An inter-
pretable model with globally consistent explanations for credit risk, 2018.

[7] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Ander-
son, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu,
and H. Shah. Wide and deep learning for recommender systems. In DLRS,
page 7–10, 2016.

[8] P. Covington, J. Adams, and E. Sargin. Deep neural networks for youtube
recommendations. In RecSys, page 191–198, 2016.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

[10] S. Edunov, A. Baevski, and M. Auli. Pre-trained language model representa-
tions for language generation. arXiv preprint arXiv:1903.09722, 2019.

[11] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh. QueRIE: Collaborative
database exploration. TKDE, 26(7):1778–1790, 2014.

[12] F.-L. Fan, J. Xiong, M. Li, and G. Wang. On interpretability of artificial neural
networks: A survey. IEEE Transactions on Radiation and Plasma Medical
Sciences, 5(6):741–760, 2021.

[13] J. Fan, G. Li, and L. Zhou. Interactive sql query suggestion: Making databases
user-friendly. In ICDE, pages 351–362, 2011.

[14] M. Freitag and Y. Al-Onaizan. Beam search strategies for neural machine
translation. arXiv preprint arXiv:1702.01806, 2017.

[15] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

[16] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[17] J. Howard and S. Ruder. Universal language model fine-tuning for text classi-
fication. In ACL, pages 328–339, 2018.

[18] S. Jain, B. Howe, J. Yan, and T. Cruanes. Query2vec: An evaluation of nlp
techniques for generalized workload analytics. arXiv preprint arXiv:1801.05613,
2018.

[19] S. Jain, D. Moritz, D. Halperin, B. Howe, and E. Lazowska. SQLShare: Results
from a multi-year sql-as-a-service experiment. In SIGMOD, page 281–293,
2016.

[20] S. Jain, J. Yan, T. Cruane, and B. Howe. Database-agnostic workload manage-
ment, 2018.

[21] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon, and D. Suciu. A
case for A collaborative query management system. In CIDR, 2009.

[22] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu. Snipsuggest: Context-
aware autocompletion for sql. PVLDB, 4(1):22–33, 2010.

[23] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. Skip-thought vectors. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, NIPS, pages 3294–3302, 2015.

[24] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better?
In CVF, pages 2661–2671, 2019.

[25] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A
lite bert for self-supervised learning of language representations, 2020.

[26] Q. Le and T. Mikolov. Distributed representations of sentences and documents.
In ICML, pages 1188–1196, 2014.

[27] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. Biobert: a
pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240, 2020.

[28] F. Li and H. V. Jagadish. Constructing an interactive natural language interface
for relational databases. PVLDB, 8(1):73–84, Sept. 2014.

[29] H. Li, C. Y. Chan, and D. Maier. Query from examples: An iterative, data-
driven approach to query construction. Proceedings of the VLDB Endowment,
8(13):2158–2169, 2015.

64

Workload-AwareQuery Recommendation Using Deep Learning EDBT ’23, March 23–31, 2023, Ioannina, Greece

[30] J. Li and D. Jurafsky. Mutual information and diverse decoding improve neural
machine translation. arXiv preprint arXiv:1601.00372, 2016.

[31] J. Li, T. Luong, and D. Jurafsky. A hierarchical neural autoencoder for para-
graphs and documents. In ACL, pages 1106–1115, 2015.

[32] Y. Liu and M. Lapata. Text summarization with pretrained encoders. arXiv
preprint arXiv:1908.08345, 2019.

[33] V. V. Meduri, K. Chowdhury, and M. Sarwat. Evaluation of Machine Learning
Algorithms in Predicting the Next SQL Query from the Future. TODS, 46(1):1–
46, 2021.

[34] T. Milo and A. Somech. Next-step suggestions for modern interactive data
analysis platforms. In SIGMOD, pages 576–585, 2018.

[35] K. Pichotta and R. J. Mooney. Using sentence-level lstm language models for
script inference. arXiv preprint arXiv:1604.02993, 2016.

[36] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi. Personalizing
session-based recommendations with hierarchical recurrent neural networks.
In RecSys, page 130–137, 2017.

[37] M. J. Raddick, A. R. Thakar, A. S. Szalay, and R. D. C. Santos. Ten years of
skyserver i: Tracking web and sql e-science usage. Computing in Science
Engineering, 16(4):22–31, 2014.

[38] M. J. Raddick, A. R. Thakar, A. S. Szalay, and R. D. C. Santos. Ten years
of skyserver ii: How astronomers and the public have embraced e-science.
Computing in Science Engineering, 16(4):32–40, 2014.

[39] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 2019.

[40] F. Ricci, L. Rokach, and B. Shapira. Recommender systems: Introduction and
challenges. Recommender Systems Handbook, page 1, 2015.

[41] C. Rudin. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence,
1(5):206–215, 2019.

[42] C. Rudin, R. J. Passonneau, A. Radeva, H. Dutta, S. Ierome, and D. Isaac.
A process for predicting manhole events in manhattan. Machine Learning,
80(1):1–31, 2010.

[43] C. Rudin and B. Ustun. Optimized scoring systems: Toward trust in machine
learning for healthcare and criminal justice. INFORMS Journal on Applied
Analytics, 48(5):449–466, 2018.

[44] T. J. Sejnowski. The unreasonable effectiveness of deep learning in artificial
intelligence. PNAS, 117(48):30033–30038, 2020.

[45] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with
neural networks, 2014.

[46] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway,
and J. Liang. Convolutional neural networks for medical image analysis: Full
training or fine tuning? TMI, 35(5):1299–1312, 2016.

[47] B. Trevett. Convolutional sequence to sequence learning, 2018.
[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[49] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. Crandall,
and D. Batra. Diverse beam search: Decoding diverse solutions from neural
sequence models. arXiv preprint arXiv:1610.02424, 2016.

[50] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng. End-to-end text recognition with
convolutional neural networks. In ICPR, pages 3304–3308, 2012.

[51] S. Wiseman and A. M. Rush. Sequence-to-sequence learning as beam-search
optimization. In EMNLP, pages 1296–1306, 2016.

[52] S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender system:
A survey and new perspectives. ACM Computing Surveys, 52(1):1–38, 2019.

[53] Z. Zhao, T. Liu, S. Li, B. Li, and X. Du. Ngram2vec: Learning improved word
representations from ngram co-occurrence statistics. In EMNLP, pages 244–
253, 2017.

[54] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie. Co-occurrence
feature learning for skeleton based action recognition using regularized deep
lstm networks. In AAAI, 2016.

[55] Z. Zolaktaf, M. Milani, and R. Pottinger. Facilitating sql query composition
and analysis. In SIGMOD, 2020.

65

