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ABSTRACT
Skyline queries are frequently used in data analytics and multi-

criteria decision support applications to filter relevant informa-

tion from big amounts of data. Apache Spark is a popular frame-

work for processing big, distributed data. The framework even

provides a convenient SQL-like interface via the Spark SQL mod-

ule. However, skyline queries are not natively supported and

require tedious rewriting to fit the SQL standard or Spark’s SQL-

like language.

The goal of our work is to fill this gap. We thus provide a

full-fledged integration of the skyline operator into Spark SQL.

This allows for a simple and easy to use syntax to input skyline

queries. Moreover, our empirical results show that this integrated

solution by far outperforms a solution based on rewriting into

standard SQL.

1 INTRODUCTION
Skyline queries are an important tool in data analytics and de-

cision making to find interesting points in a multi-dimensional

dataset. Given a set 𝑃 of data points, we can compute the skyline

(also called Pareto front) using the skyline operator [5]. Intuitively,
a data point 𝑝 ∈ 𝑃 belongs to the skyline if it is not dominated
by any other point. For a given set of dimensions, a data point 𝑞

dominates 𝑝 (denoted𝑞 ≺ 𝑝) if𝑞 is better in at least one dimension

while being at least as good in every other dimension. More for-

mally, the skyline 𝑆 is obtained as 𝑆 = {𝑝 ∈ 𝑃 | �𝑞 ∈ 𝑃 : 𝑞 ≺ 𝑝}.
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Figure 1: Example skyline for hotels

A common example for skyline queries in the literature can

be found in Figure 1. Suppose that we want to find the perfect

hotel for our holiday stay. Each hotel has multiple properties that

express its quality such as the price per night or the distance to

the beach among others. In this example, we limit ourselves to

the price per night (y-axis) and the user rating (x-axis) for sim-

plicity. Such attributes relevant to the skyline are called skyline
dimensions. A hotel dominates another hotel if it is strictly better

in at least one skyline dimension and not worse in all others. For

the price per night, minimization is desirable while we want the

rating to be as high as possible (maximization). Figure 1 depicts

the skyline of the hotels according to these two dimensions. In
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this simple (two-dimensional) example, it is immediately visible

that for each hotel not part of the skyline there exists a “better”

(dominating) alternative. In practice, things get more complex

as skyline queries usually handle a larger number of skyline

dimensions.

Skyline queries have a wide range of applications, including

recommender systems to propose suitable items to the user [5]

and location-based systems to find “the best” routes [23, 28]. Sky-

line queries have also been used to improve the quality of (web)

services [2] and they have applications in privacy [7], authenti-

cation [33], and DNA searching [8]. Many further use cases for

skyline queries are given in these surveys: [9, 22, 24]. Skyline

queries are particularly useful when dealing with big datasets

and filtering the relevant data items. Indeed, in data science and

data analytics, we are typically confronted with big data, which

is stored in an optimized and distributed manner. We thus need a

processing engine that is capable of efficiently operating on such

data.

Apache Spark [45] is a unified framework that is specifically

designed for distributed processing of potentially big data and

has gained huge popularity in recent years. It works for a wide

range of applications, and it can interoperate with a great variety

of data sources. Conceptually, it is similar to the MapReduce

framework, where instead of map-combine-reduce nodes, there

are individual nodes in an execution plan for each processing

step. Spark also provides a multitude of modular extensions such

as MLlib, PySpark, SparkR, and others, built on top of its core

functionality. Another important extension is Spark SQL, which

provides relational query functionality and comes with the pow-

erful Catalyst optimizer.

Hence, Apache Spark would be the perfect fit for executing

skyline queries over big, distributed data. Despite this, to date,

the skyline operator has not been integrated into Spark SQL.

Nevertheless, it is possible to formulate skyline queries using

“plain” SQL. Listing 2 shows the “plain” skyline query for our

hotel example.

Listing 1: Hotel skyline query in plain SQL [5, 15]

1 SELECT price, user_rating FROM hotels AS o WHERE

NOT EXISTS(

2 SELECT * FROM hotels AS i WHERE

3 𝑖 .price ≤ 𝑜 .price
4 AND 𝑖 .user_rating ≥ 𝑜 .user_rating
5 AND (

6 𝑖 .price < 𝑜 .price

7 OR 𝑖 .user_rating < 𝑜 .user_rating

8 )

9 );

There are several drawbacks to such a formulation of skyline

queries in plain SQL. First of all, as more skyline dimensions are

used, the SQL code gets more andmore cumbersome. Hence, such
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an approach is error-prone, and readability and maintainability

will inevitably be lost. Moreover, most SQL engines (this also

applies to Spark SQL) are not optimized for this kind of nested

SELECTs. Hence, also performance is of course an issue. Therefore,

a better solution is called for. This is precisely the goal of our

work:

• We aim at an integration of skyline queries into Spark SQL

with a simple, easy to use syntax, e.g., the skyline query

for our hotel example should look as depicted in Listing 2.

• We want to make use of existing query optimizations pro-

vided by the Catalyst optimizer of Spark SQL and extend

the optimizer to also cover skyline queries.

• At the same time, we want to make sure that our integra-

tion of the skyline operator has no negative effect on the

optimization and execution of other queries.

• Maintainability of the new code is an issue. We aim at a

modular implementation, making use of existing function-

ality and making future enhancements as easy as possible.

• Spark and Spark SQL support many different data sources.

The integration of skyline queries should work indepen-

dently of the data source that is being used.

Listing 2: Hotel skyline query in extended SQL [5, 15]

1 SELECT price, user_rating FROM hotels SKYLINE OF

price MIN, user_rating MAX;

Our contribution. The main result of this work is a full-fledged

integration of skyline queries. This includes the following:

• Virtually every single component involved in the query

optimization and execution process of Spark SQL (see Fig-

ure 2) had to be extended: the parser, analyzer, optimizer,

etc.

• While a substantial portion of new code had to be provided,

at the same time, we took care to make use of existing code

as much as possible and to keep the extensions modular

for easy maintenance and future enhancements.

• For the optimization of skyline queries, the specifics of

distributed query processing had to be taken into account.

Apart from incorporating new rules into the Catalyst op-

timizer of Spark SQL, we have extended the skyline query

syntax compared with previous proposals [5, 15] to allow

the user to control further skyline-specific optimization.

• We have carried out an extensive empirical evaluation

which shows that the integrated version of skyline queries

by far outperforms the rewritten version in the style of

Listing 1.

Structure of the paper. In Section 2, we discuss relevant related

work. The syntax and semantics of skyline queries are introduced

in Section 3. A brief introduction to Apache Spark and Spark SQL

is given in Section 4. In Section 5, we describe the main ideas

of our integration of the skyline operator into Spark SQL. We

report on the results of our empirical evaluation in Section 6. In

Section 7, we conclude and identify some lines of future work.

The source code of our implementation is available here: https:

//github.com/Lukas-Grasmann/skyline-queries-spark. Further

material, comprised of the binaries of our implementation, all

input data, and queries from our empirical evaluation is provided

at [20].

2 RELATEDWORK
Since the original publication of the skyline operator by Börzsönyi,

Kossmann, and Stocker [5], various algorithms and approaches

to skyline queries have been proposed. In this section, we give

an overview of the relevant related work. We limit ourselves to,

broadly, the “original” definition of skyline queries and exclude

related query types like reverse skyline queries [13].

The main cost factor of skyline computation is the time spent

on dominance testing, which in turn depends on how many

dominance tests between tuples need to be performed. A simple,

straightforward algorithm runs in quadratic time w.r.t. the size

of the data. It checks for each pair of tuples whether one of them

is dominated and, therefore, not part of the resulting skyline.

This basic idea of pairwise dominance tests is realized in the

Block-Nested-Loop skyline algorithm [5], which performs well

especially when the resulting output is not too big, and the input

dataset fits in memory.

In the most recent algorithms, there are two main approaches

that are used to either decrease the total number of dominance

checks or to increase the parallelism of these checks.

(1) Using a score function on the skyline dimensions and sort-

ing the tuples w.r.t. to this score function [5, 34]. These

approaches may require the entire dataset to be available

on a single node, which is not ideal in a distributed envi-

ronment.

(2) Partitioning (and distributing) the skyline computation by

first independently computing the skyline of partitions

(local skylines) before proceeding to the computation of

the final skyline (global skyline) [12, 21, 26, 42]. This does
not necessarily decrease the total number of dominance

checks but speeds up the algorithm through parallelism.

Most of these approaches are centered around special data

structures and indexes, which are provided by the respective

database system. This makes them less suitable for Spark, which

currently has no internal support for building and maintaining

indexes. Such algorithms include Index [41] which uses a bitmap

index to compute the skyline. Many algorithms of this class also

make use of presorting, i.e., sorting the tuples from the dataset

according to a monotone scoring function. Such scoring can,

by definition, rule out certain dominance relationships between

tuples such that fewer comparisons become necessary. This in-

cludes the algorithms SFS [10, 11], LESS [17, 18], SALSA [3, 4],

and SDI [34].

A simple partition-based algorithm is the Divide-and-Conquer

algorithm presented in the original skyline paper [5]. Its working

principle is to recursively divide the data into partitions until the

units are small enough such that the skyline can be computed

efficiently. The resulting (local) skylines are then merged step by

step until the entire recursion stack has been processed. Related

approaches include the nearest-neighbor search [27] as well as

other similar algorithms [35–37, 40, 46].

The algorithm BSkyTree [29, 30] supports both a sorting-

based and a partition-based variant. These make use of an index

tree-structure to increase performance. Alternatively, there also

exist tree structures based on quad-trees [39]. Here, the data is

partitioned dynamically and gradually into smaller and smaller

“rectangular” chunks until the skylines can be computed effi-

ciently.

There are also newer algorithms specifically targeted towards

the MapReduce framework [26, 32, 42]. MapReduce approaches

use mappers to generate partitions by assigning keys to each
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tuple while the reducers are responsible for computing the ac-

tual skylines for all tuples with the same key. Each intermediate

skyline for a partition is called a local skyline. This approach
usually employs two or more rounds of map and reduce opera-

tions (stages) where each stage first (re-)partitions the data and

then computes skylines. The final result is then derived by the

last stage which generates only one partition and computes the

global skyline.
The success of MapReduce approaches relies on keeping the

intermediate results as small as possible and maximizing par-

allelism [26]. To achieve this, multiple different partitioning

schemes exist such as random, grid-based, and angle-based par-

titioning [26]. Keeping the last local skylines before the global

skyline computation small is especially desirable since the global

skyline computation cannot be fully parallelized. Indeed, this

is usually the bottleneck which slows the skyline computation

down [26]. This approach is not suitable for our purposes since

it requires data from different partitions to be passed along with

meta-information about the partitions. Spark does not currently

support such functionality and adding it would be beyond the

scope of this work.

There are efforts to eliminate multiple data points at once

and make the global skyline computation step distributed by

partitioning the data. In the case of grid-based-partitioning it is

possible to eliminate entire cells of data if they are dominated by

another (non-empty) cell [42]. It is then also possible to cut down

the number of data points which each tuple must be compared

against in the global skyline since some cells can never dominate

each other according to the basic properties of the skyline (if

a tuple is better in at least one dimension then it cannot be

dominated) [26, 42].

There have been two past efforts to implement skyline compu-

tation in Spark. The first one is the system SkySpark [25] which

uses Spark as the data source and realizes the skyline computa-

tion on the level of RDD operations (see Section 4 for details on

Spark and RDDs). A similar effort was made in the context of the

thesis by Ioanna Papanikolaou [38], which uses the map-reduce

functionality of RDDs in Spark to compute the skyline. Both

systems thus realize skyline computation as standalone Spark

programs rather than as part of Spark SQL, which would make,

for instance, a direct performance comparison with our fully

integrated solution difficult (even though it might still provide

some interesting insights). However, the most important issue is

that these implementations are not ready to use: SkySpark [25],

with the last source code update in 2016, implements skyline

computation for an old version of Spark. The code has been dep-

recated and archived by the author with a note that the code does

not meet his standards anymore. For the system reported in [38],

there is no runnable code provided since it is only available as

code snippets in the PDF document.

As will be detailed in Section 5, we have chosen the Block-

Nested-Loop skyline algorithm [5] for our integration into Spark

SQL due to its simplicity. By the modular structure of our imple-

mentation, replacing this algorithm by more sophisticated ones

in the future should not be too difficult. We will come back to

suggestions for future work in Section 7. Partitioning also plays

an important role in our distributed approach (see Section 5 for

limits of distributed processing in the case of incomplete data

though). However, to avoid unnecessary communication cost,

we refrain from overriding Spark’s partitioning mechanism.

3 SKYLINE QUERIES
In this section, we take a deeper look into the syntax and se-

mantics of skyline queries. Skyline queries can be expressed in a

simple extension of SELECT-FROM-WHERE queries in SQL. This

syntax was proposed together with the original skyline operator

in [5] and can be found in Listing 3. The𝑚 skyline dimensions

out of 𝑛 total dimensions are denoted as 𝑑1 through 𝑑𝑚 (where

𝑚 ≤ 𝑛). The DISTINCT keyword defines that we only return a

single tuple if there are tuples with the same values in the skyline

dimensions. If there are multiple possibilities, the exact tuple that

is returned is chosen arbitrarily. The keyword COMPLETE is an

extension compared to [5] that we have introduced. It allows the

user to inform the system that the dataset is complete in the sense

that no null occurs in the skyline dimensions. The system can,

therefore, safely choose the complete skyline algorithm, which is

more efficient than the incomplete one. This will be discussed in

more detail in Section 5.

Listing 3: Syntax of skyline queries in SQL [5]

1 SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ...

2 SKYLINE OF [DISTINCT][COMPLETE]

3 𝑑1 [MIN | MAX | DIFF], ..., 𝑑𝑚 [MIN | MAX | DIFF]

4 ORDER BY ...

In Section 1, we have already introduced the dominance rela-

tionship and the skyline itself in a semi-formal way. Below, we

provide formal definitions of both concepts.

Definition 3.1 (Dominance relationship between tuples [5, 26]).
Given a set of tuples 𝑅, two 𝑛-ary tuples 𝑟, 𝑠 ∈ 𝑅 and a set of

skyline dimensions 𝐷 which always consists of four (potentially

empty) disjoint subsets𝐷min, 𝐷max , 𝐷diff , 𝐷extra, we define 𝑟𝑖 and

𝑠𝑖 as the value of the tuple 𝑟 and 𝑠 in dimension 𝑑𝑖 ∈ 𝐷 respec-

tively. The subsets of the dimensions correspond to the skyline

dimensions (𝐷min, 𝐷max , 𝐷diff ) and “extra” (non-skyline) dimen-

sions (𝐷extra). Then 𝑟 dominates 𝑠 (𝑟 ≺ 𝑠) if and only if:( ∧
𝑑𝑖 ∈𝐷min

𝑟𝑖 ≤ 𝑠𝑖
)
∧

( ∧
𝑑𝑖 ∈𝐷max

𝑟𝑖 ≥ 𝑠𝑖
)
∧

( ∧
𝑑𝑖 ∈𝐷diff

𝑟𝑖 = 𝑠𝑖

)
∧
(( ∨

𝑑𝑖 ∈𝐷min

𝑟𝑖 < 𝑠𝑖

)
∨

( ∨
𝑑𝑖 ∈𝐷max

𝑟𝑖 > 𝑠𝑖

))
In words, the above definition means that a tuple 𝑟 ∈ 𝑅 dominates
another tuple 𝑠 ∈ 𝑅 if and only if:

• The values in all DIFF dimensions are equal and
• 𝑟 is at least as good in all MIN/MAX skyline dimensions and
• 𝑟 is strictly better in at least one MIN/MAX skyline dimen-

sion

The dominance relationships are transitive, i.e., if 𝑎 dominates

𝑏 and 𝑏 dominates 𝑐 then 𝑎 also dominates 𝑐 .

Given this formal definition of the dominance relationship, we

can now also formally define the skyline itself.

Definition 3.2 (Skyline [5]). Given a set of skyline dimensions

𝐷 , let 𝑅 be a set of tuples. The skyline 𝑅 (denoted 𝑆𝐾𝑌 (𝑅)) is a set
of tuples defined as follows: 𝑆𝐾𝑌 (𝑅) := {𝑟 ∈ 𝑅 | �𝑠 ∈ 𝑅 : 𝑠 ≺ 𝑟 }.

Note that the above definitions apply to complete datasets. For
incomplete datasets (if null may occur in some skyline dimen-

sion), we need to slightly modify the definition of dominance in

that the comparison of two tuples is always restricted to those
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dimensions where both are not null. Hence, the above definition
for the complete case is modified as follows [21]:

• The values in all DIFF dimensions where 𝑟 and 𝑠 are not

null are equal and
• 𝑟 is at least as good in all MIN/MAX skyline dimensions

where 𝑟 and 𝑠 are not null and
• 𝑟 is strictly better in at least one MIN/MAX skyline dimen-

sion where 𝑟 and 𝑠 are not null

Given the modified dominance relationship, we now run into

the problem that for incomplete datasets the transitivity prop-

erty of skyline dominance is lost and there may be cyclic dom-
inance relationships. For instance, assume a dataset similar to

the one given in [21] consisting of three tuples 𝑎 = (1, ∗, 10),
𝑏 = (3, 2, ∗), 𝑐 = (∗, 5, 3) where ∗ is a placeholder for a missing

value. If all three dimensions are skyline dimensions, then, given

the definition of dominance in incomplete datasets, it follows

that 𝑎 ≺ 𝑏 since 1 < 3 for the first dimension. Similarly, we have

𝑏 ≺ 𝑐 since 2 < 5 on the second dimension. Lastly, we note that

𝑎 ⊀ 𝑐 since 10 ≮ 3 but 𝑐 ≺ 𝑎 since 3 < 10 for the third dimension.

Under the assumption of transitivity, it would follow from 𝑎 ≺ 𝑏
and 𝑏 ≺ 𝑐 that 𝑎 ≺ 𝑐 holds, which is not the case. In other words,

for incomplete data, the transitivity property gets lost [21]. Since

𝑎 ≺ 𝑏, 𝑏 ≺ 𝑐 , and 𝑐 ≺ 𝑎, the dominance relationship forms a cycle

and can therefore be referred to as a cyclic dominance relation-
ship [21]. Hence, when computing the skyline of a potentially

incomplete dataset, prematurely deleting dominated tuples may

lead to erroneous results. Indeed, this is the trap into which the

skyline algorithm proposed in [21] fell. For details, see [19].

As already mentioned in Section 1, skyline queries can be for-

mulated in plain SQL without the specialized skyline syntax from

Listing 3. A general schema of rewriting skyline queries in plain

SQL is given in Listing 4. A first version of this rewriting was

informally described in [5]. The full details and the correspond-

ing syntax used here were introduced in [15]: First, the outer

query selects all tuples from some relation (which may itself be

the result of a complex SELECT-statement) and then we use a

subquery with WHERE NOT EXISTS to eliminate all dominated

tuples.

Listing 4: Translated skyline query in plain SQL [5, 15]

1 SELECT column_list FROM rel AS o WHERE condition(s)

AND NOT EXISTS(

2 SELECT * FROM rel AS i WHERE condition(s)

3 AND 𝑖 .𝑎1 ≤ 𝑜.𝑎1 AND . . . AND 𝑖 .𝑎 𝑗 ≤ 𝑜.𝑎 𝑗
4 AND 𝑖 .𝑎 𝑗+1 ≥ 𝑜.𝑎 𝑗+1 AND . . . AND 𝑖 .𝑎𝑘 ≥ 𝑜.𝑎𝑘
5 AND 𝑖 .𝑎𝑘+1 = 𝑜.𝑎𝑘+1 AND . . . AND 𝑖 .𝑎𝑚 = 𝑜.𝑎𝑚

6 AND (

7 𝑖 .𝑎1 < 𝑜.𝑎1 OR . . . OR 𝑖 .𝑎 𝑗 < 𝑜.𝑎 𝑗

8 OR 𝑖 .𝑎 𝑗+1 > 𝑜.𝑎 𝑗+1 OR . . . OR 𝑖 .𝑎𝑘 > 𝑜.𝑎𝑘

9 )

10 );

4 APACHE SPARK
Apache Spark is a unified and distributed framework for pro-

cessing large volumes of data. The framework can handle many

different data sources. Through various specialized modules on

top of its core module, it supports a wide range of processing

workloads. The central data structure of the Spark Core are re-
silient distributed datasets (RDDs). An RDD is a collection of

elements distributed over the nodes of the cluster. Working with

Spark comes down to defining transformations and actions on

RDDs, while data distribution, parallel execution, synchroniza-

tion, fault-tolerance, etc. are taken care of by the system and are

largely hidden from the user.

The focus of our work lies on the Spark SQL module, which

extends the Spark Core by providing an SQL interface. Queries

can be formulated either via query strings or using an API. This

API is based on specialized data structures called DataFrame
and DataSet. They are (meanwhile) closely related in that every

DataFrame is also a DataSet, with the only difference being that

DataSets are strongly typed while DataFrames are not. The pro-

cessing and execution of input queries follows a well-defined

schema with multiple steps that are depicted in Figure 2.

First, the queries are formulated either via SQL query strings

or via APIs. In the case of query strings, it is necessary to parse

them first. Both methods produce a logical execution plan that

contains the information which operations the plan consists

of. For instance, filtering is represented as a specific node in

the plan and can be used for both WHERE and HAVING clauses

in the query. The references to tables or columns are not yet

assigned to actual objects in the database in this step. To solve

this, the Analyzer takes each identifier and translates it using

the Catalog. The result returned by the Analyzer is the resolved
logical plan where all placeholders have been replaced by actual

references to objects in the database.

The Catalyst Optimizer is a crucial part for the success of

Spark SQL. It is a powerful rule-based optimizer that can be

extended to include new rules for specific (newly introduced)

nodes. Optimizations are applied to the resolved logical plan.

To actually execute the query, the logical execution plan must

first be translated into a physical execution plan, which contains

information about how the various operations are to be real-

ized. For example, Spark provides different join implementations,

which are each represented by different nodes in the physical

plan and one of them is selected during the physical planning

phase. There may be more than one physical plan generated

during this step. Based on the physical plan(s), one specific plan

must be selected, and Code Generation is carried out according

to the chosen physical plan. In Spark, the generated code is a

computation based on RDDs.

It will turn out that, for a full-fledged integration of skyline

queries into Spark SQL, virtually all of the components of query

processing and execution mentioned above have to be extended

or modified. This will be the topic of the next section.

5 INTEGRATING SKYLINES INTO APACHE
SPARK

Below, we give an overview of the required modifications and

extensions of each component of the query processing flow de-

picted in Figure 2. An important aspect of integrating skyline

queries into Spark SQL is the algorithm selection for the actual

computation of the skyline. Here, we will discuss in some detail

the challenges arising from potentially incomplete data and our

solution.

5.1 Skyline Query Syntax in Spark SQL
The parser is the first step of processing a Spark SQL query. It

uses the ANTLR parser grammar generator to generate a lexer

and subsequent parser which take query strings as input to obtain
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Figure 2: Apache Spark SQL Query Processing and Execution (adapted from [44])

nodes in a logical plan. We modify both parts to extend Spark’s

SQL-like syntax such that it also includes skyline queries.

Listing 5: ANTLR grammar for skyline queries

1 skylineClause
2 : SKYLINE
3 skylineDistinct=DISTINCT?
4 skylineComplete=COMPLETE?
5 skylineItems+=skylineItem (','

skylineItems+=skylineItem)*↩→

6 ;
7

8 skylineItem
9 : skylineItemExpression=expression

skylineMinMaxDiff=(MIN | MAX | DIFF)↩→

10 ;

The grammar corresponding to the syntax introduced in List-

ing 3 is shown in Listing 5. Given a “regular” SELECT statement,

note that a skyline always comes after the HAVING clause (if any)

but before any ORDER BY clause. Each skyline clause consists of

the SKYLINE OF keyword (line 2), an optional DISTINCT (line 3)

and COMPLETE (line 4), as well as an arbitrary number of skyline

dimensions (line 5 and 8 - 9) where the “type” MIN/MAX/DIFF is
given separately for each dimension (line 9). The ordering of sky-

line dimensions in this syntax has no bearing on the outcome of

the query (except for potential ordering). It may, however, have

a slight effect on the performance of dominance checks since it

determines the order in which the skyline dimensions of two

tuples are compared.

5.2 Extending the Logical Plan
Each node in the logical plan stores the details necessary to

choose an algorithm for the specific operator and to derive a

physical plan. In the case of the skyline operator, we use a single

node with a single child in the logical plan. This node contains

information such as the skyline dimensions SkylineDimension
as well as other vital information like whether the skyline should

be DISTINCT or not. The child node of the skyline operator node

provides the input data for the skyline computation.

Each SkylineDimension extends the default Spark Expression
such that it stores both the reference to the database dimen-

sion and the type (i.e., MIN/MAX/DIFF). The database dimension

is usually a column but can also be a more complex Expression
(e.g., an aggregate) in Spark. It is stored as the child of the

SkylineDimension which allows us to make use of the generic

functionality responsible for resolving Expressions in the ana-

lyzer.

5.3 Extending the Analyzer
The analyzer of Spark already offers a wide range of rules which

can be used to resolve the expressions. Since the skyline dimen-

sions used by our skyline operator as well as their respective

children are also expressions, they will be resolved automatically

by the existing rules in most cases. We have to ensure that all

common queries also work when the skyline operator is used.

To achieve this, we have to extend the existing rules from the

Analyzer to also incorporate the skyline operator. Such rules

mainly pertain to the propagation of aggregates across the (unre-

solved) logical execution plan of Spark.

First, we ensure that we are also able to compute skylines

which include dimensions not present in the final projection (i.e.,

the attributes specified in the SELECT clause). To achieve this,

we expand the function ResolveMissingReferences by adding

another case for the SkylineOperator. The code is shown in

Listing 6. The rule is applied if and only if the SkylineOperator
has not yet been resolved, has missing input attributes, and the

child is already fully resolved (line 1 - 3). Then, we resolve the

expressions and add the missing attributes (line 4 - 5) which are

then used to generate a new set of skyline dimensions (line 6 - 7).

If no output was added, we simply replace the skyline dimensions

(line 8 - 9). Otherwise, we create a new skyline with the newly

generated child (line 10 - 11) and add a projection to eliminate

redundant attributes (line 12).

Listing 6: Analyzer extension to allow dimensions not

present in the projection in the skyline operator

1 case s @ SkylineOperator(_, _, skylineItems, child)
2 if (!s.resolved || s.missingInput.nonEmpty)
3 && child.resolved =>
4 val (exprs, newChild) =
5 resolveExprsAndAddMissingAttrs(skylineItems, child)
6 val dimensions =
7 exprs.map(_.asInstanceOf[SkylineDimension])
8 if (child.output == newChild.output) {
9 s.copy(skylineItems = dimensions)
10 } else {
11 val newSkyline = s.copy(dimensions, newChild)
12 Project(child.output, newSkyline)
13 }

Next, we need to take care that aggregate attributes are also

propagated to the skyline properly. The code to accomplish this
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is given in Listing 7. We will only explain it briefly since it was

modified from existing Spark code for similar nodes.

To do this, we match the skyline operator which is a parent or

ancestor node of an Aggregate (line 3). Then we try to resolve

the skyline dimensions using the output of the aggregate as a

basis (line 5 - 6). This will also introduce missing aggregates

in the Aggregate node which is necessary, for example, if the

output of the query only contains the sum but the skyline is based
on the count (line 7 - 13). Using the output of the resolution, we

(re-)construct the skyline operator (line 14 - 17). Additionally, we

introduce analogous rules for other similar cases like plans where

there is a Filter node introduced by a HAVING clause between
the Aggregate and the skyline operator node among others.

Listing 7: Analyzer extension to propagate aggregate

attributes to skylines

1 case SkylineOperator(
2 distinct, complete, skylineItems,
3 agg: Aggregate
4 ) if agg.resolved =>
5 val maybeResolved = skylineItems.map(_.child)
6 .map(resolveExpressionByPlanOutput(_, agg))
7 resolveOperatorWithAggregate(
8 maybeResolved, agg,
9 (newExprs, newChild) => {
10 val newSkylineItems = skylineItems.zip(newExprs)
11 .map {
12 case (skylineItems, expr) =>
13 skylineItems.copy(child = expr)
14 }
15 SkylineOperator(
16 distinct, complete, newSkylineItems, newChild
17 )
18 }
19 )

Note that the correct handling of Filter and Aggregate
nodes is non-trivial in general – not only in combination with

the skyline operator. Indeed, when working on the integration of

skyline queries into Spark SQL, we noticed that aggregates are

in some cases not resolved correctly by the default rules of Spark.

This is, for example, the case when Sort nodes are resolved in

combination with Filters and Aggregates. Such cases may be

introduced by a HAVING clause in the query. For a more detailed

description of this erroneous behavior of Spark SQL together

with a proposal how to fix this bug, see [19].

5.4 Additional Optimizations
Given a resolved logical plan, the Catalyst Optimizer aims at

improving the logical query plan by applying rule-based op-

timizations (see Figure 2). The default optimizations of Spark

also apply to skyline queries – especially to the ones where the

data itself is retrieved by a more complex query. Skyline queries

integrated into Apache Spark thus benefit from existing optimiza-

tions, which can be further improved by adding the following

specialized rules.

If a skyline query contains a single MIN or MAX dimension,

then this is equivalent to selecting the tuples with the lowest or

highest values for the skyline dimension respectively. In other

words, the Pareto optimum in a single dimension is simply the

optimum. There are two possibilities to rewrite the skyline. We

can either first sort the values according to the skyline dimension

and then only select the top results or find the lowest or highest

value in a scalar subquery (i.e., a subquery that yields a single

value) and then select the tuples which have the desired value.

Given that, for a relation with 𝑛 tuples, sorting and selecting

exhibits a worst-case runtime of O(𝑛 · log(𝑛)) while the scalar
subquery and selection can, when optimized, be done in O(𝑛)
time, we opt for the latter.

A more sophisticated optimization is taken from [5], where [6]

is referenced for the correctness of this transformation. It is

applicable if the skyline appears in combination with a Join
node in the tree. If the output of the join serves as the input to

the skyline operator, then we can check whether it is possible

to move the skyline into one of the “sides” of the join. This is

applicable if the join is non-reductive [5] which is defined in [6].

Intuitively, non-reductiveness in our case means that due to the

constraints in the database, it can be inferred that for every tuple

in the first table joined there must exist at least one “partner”

in the other join table if the tuple is part of the skyline. The

main benefit of this optimization is that computing the skyline

before the join is likely to reduce the input size for both the

skyline operator and the (now subsequent) join operation, which

typically reduces the total query execution time.

5.5 Algorithm Selection
Given the problems that arise with skyline queries on incomplete

datasets as mentioned in Section 3, we have to take extra care

which algorithm is used for which dataset. The decision is mainly

governed by whether we can assume the input dataset to be

complete or not. If the dataset is (potentially) incomplete, we

have to select an algorithm that is capable of handling incomplete

data since otherwise, the computation may not yield the correct

results.

As will be explained in Section 5.7 (and it will also be observed

in the empirical evaluation in Section 6), skyline algorithms that

are able to handle incomplete datasets are lacking in performance

compared to their complete counterparts. Given that Spark can

handle multiple different data sources and cannot always detect

the nullability of a column, it is desirable to provide an over-

ride that decides whether a complete algorithm is used regardless

of the detected input columns. We do this by introducing the

optional COMPLETE keyword in the skyline query syntax. This

gives the user the possibility to enforce the use of the complete

algorithms also on datasets that can technically be incomplete

but are known to be complete. The correctness of the algorithm

only depends on whether null values actually appear in the data.

We implement the algorithm selection using the nodes in the

physical execution plan. Which algorithm is selected depends

on which physical nodes are chosen during translation of the

(resolved and optimized) logical execution plan. In a minimally

viable implementation, it is possible to implement the skyline

operator in a single physical node. This has, however, the disad-

vantage that Spark’s potential of parallelism would be lost for

the skyline computation. We therefore split the computation into

two steps, represented by two separate nodes in the physical plan.

The pseudocode of the algorithm selection is shown in Listing 8.

The main decision to be made (line 1, 2) is if we may use the

complete algorithm. This is the case when the SKYLINE clause

contains the COMPLETE keyword or when the skyline dimensions

are recognized as not nullable by the system. Note that the

local skylines use the same basic nodes both in the complete and

incomplete cases, while the nodes for the global skyline differ.
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Listing 8: Selection of appropriate skyline nodes in phys-

ical execution plan

input : resolved logical plan with skyline operator node

sky as root

output :optimized (resolved) logical plan

1 skylineNullable← ∃𝑑 ∈ 𝐷SKY : 𝑖𝑠𝑛𝑢𝑙𝑙𝑎𝑏𝑙𝑒 (𝑑)
2 if COMPLETE is set OR ¬skylineNullable then
3 local_skyline← local_node()

4 global_skyline← complete_global_node()

5 else
6 local_skyline← local_node()

7 global_skyline← incomplete_global_node()

8 return global_skyline

The first node in the physical plan corresponds to the local
skyline computation, which can be done in a distributed manner

(line 3 and 6). This means that there may exist multiple instances

of the node which can exist distributed across the cluster on

which Spark runs. For the actual distribution of the data, we can

use multiple different schemes provided by Spark or leave it as-is

from the child in the physical plan. When left at standard distribu-

tion (UnspecifiedDistribution), Spark will usually try to dis-

tribute the data equally given the number of available executors.

For example, if there are 10 executors available for 10.000.000

tuples in the original dataset, then each executor will receive

roughly 1 million tuples each. For the algorithms that can handle

incomplete datasets, we have to use a specialized distribution

scheme, which will be discussed in more detail in Section 5.7.

The output of the local skyline computation is used as input

for calculating the global skyline (line 4 and 7). This means that,

in the physical execution plan, we create a global skyline node

whose only child is the local skyline. In contrast to the local

skyline, we may not freely choose the distribution but must

instead ensure that all tuples from the local skyline are handled

by the same executor for the global skyline computation. This

is enforced by choosing the AllTuples distribution provided by

Spark.

To keep our solution modular, we encapsulate the dominance
check in a new utility that we introduce in Spark. It takes as input

the values and types of the skyline dimensions of two tuples

and checks if one tuple dominates the other. For every skyline

dimension, we match the data type to avoid costly casting and (in

the case of casting to floating types) potential loss of accuracy.

With our approach to algorithm selection in the physical plan

and the modular structure of the code, it is easy to incorporate

further skyline algorithms if so desired in the future. Choosing

a different algorithm mainly entails replacing the local and/or

global skyline computation nodes in the physical plan by new

ones.

5.6 Skylines in Complete Datasets
For complete datasets, we adapt the Block-Nested-Loop skyline

algorithm [5]. The main idea is to keep a window of tuples in

which the skyline of all tuples processed up to this point is stored.

We iterate through the entire dataset, and, for each tuple, we

check which dominance relationships exist with the tuples in the

current window. If tuple 𝑡 is dominated by a tuple in the window,

then 𝑡 is eliminated. Here, it is not necessary to check 𝑡 against

the remaining tuples since it cannot dominate any tuples in the

window due to transitivity. If tuple 𝑡 dominates one or more

tuples in the window, then the dominated tuples are eliminated.

In this case, 𝑡 is inserted into the window since, by transitivity, 𝑡

cannot be dominated by other tuples in the window. Tuple 𝑡 is

also inserted into the window if it is found incomparable with

all tuples in the current window.

We can use the same algorithm for both the local and the global

skyline computation. The only necessary difference is the distri-

bution of the data, where we let Spark handle the distribution

for the local skyline while we force the AllTuples distribution
for the global skyline computation. This has the additional ad-

vantage that partitioning done in prior processing steps can be

kept, which increases the locality of the data for the local skyline

computation and may thus help to further improve the overall

performance.

The Block-Nested-Loop approach is most efficient if the win-

dow fits into main memory. Note that also Spark, in general, per-

forms best if large portions of the data fit into the main memory

available. Especially in cloud-based platforms, there is typically

sufficient RAM available (in the order of magnitude of terabytes

or even petabytes). At any rate, if RAM does not suffice, Spark

will swap data to disk like any other program – with the usual

expected performance loss.

5.7 Skylines in Incomplete Datasets
When computing the local skyline for an incomplete dataset, we

must take care that no potential cyclic dominance relationships

are lost such that tuples may appear in the result even though

they are dominated by another tuple. To combat this, we use a

special form of a bitmap-based skyline algorithm [21].

Given a set 𝑃 of tuples, we can assign each tuple 𝑝 ∈ 𝑃 a bitmap

𝑏 (an index in binary format) such that each bit in 𝑏 corresponds

to a skyline dimension. If a tuple 𝑝 has a null value in a skyline

dimension, then the corresponding bit in bitmap 𝑏 is set to 1;

otherwise, it is set to 0. Then, subsequently, the data is partitioned

according to the bitmap indexes such that all tuples with a specific

bitmap 𝑏 are assigned to the same subset (partition) 𝑃𝑏 of 𝑃 . We

can then calculate the local skyline 𝑆𝐾𝑌 (𝑃𝑏 ) for each set of tuples
𝑃𝑏 without losing the transitivity property or running into issues

with cyclic dominance relationships.

In Spark, this sort of partitioning is done via the integrated

distribution of the nodes. We craft an expression for the distribu-

tion which uses the predefined IsNull() method to achieve this

effect.

For the global skyline computation, we cannot use the standard

Block-Nested-Loop approach since cyclic dominance relation-

ships may occur and the transitivity of the skyline operator is

not guaranteed. We therefore opt for the less efficient approach

where we compare all tuples against each other. Even if a tuple 𝑡

is dominated, we may not immediately delete it since it may be

the only tuple that dominates another tuple 𝑡 ′. In such a case, by

prematurely deleting 𝑡 , tuple 𝑡 ′ would be erroneously added to

the skyline. This is a subtle point which was, for instance, over-

looked in the algorithm proposed in [21]. In [19], we illustrate

the error resulting from premature deletion of dominated tuples

in detail.

The following lemma guarantees that our skyline computation

in case of a potentially incomplete dataset yields the correct

result:

Lemma 5.1. Let a dataset 𝑃 be partitioned according to the null
values and let 𝑆𝑙𝑜𝑐𝑎𝑙 denote the resulting union of local skylines.
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Then it holds for every tuple 𝑝 ∈ 𝑃 not part of the global skyline
𝑆𝑔𝑙𝑜𝑏𝑎𝑙 that either 𝑝 ∉ 𝑆𝑙𝑜𝑐𝑎𝑙 or there exists 𝑞 ∈ 𝑆𝑙𝑜𝑐𝑎𝑙 with 𝑞 ≺ 𝑝 .

Proof. Let 𝑝 ∈ 𝑃 be a tuple that is not part of the global

skyline 𝑆𝑔𝑙𝑜𝑏𝑎𝑙 , i.e., there exists some tuple 𝑞 ∈ 𝑃 with 𝑞 ≺ 𝑝 . If
both 𝑝 and 𝑞 belong to the same partition during local skyline

computation, then this dominance relation will be detected in

this step and 𝑝 will be deleted. Hence, in this case, 𝑝 ∉ 𝑆𝑙𝑜𝑐𝑎𝑙 .

Now suppose that 𝑝 and 𝑞 belong to different partitions. If

𝑞 ∈ 𝑆𝑙𝑜𝑐𝑎𝑙 , then 𝑞 is the desired tuple in 𝑆𝑙𝑜𝑐𝑎𝑙 with 𝑞 ≺ 𝑝 .
It remains to consider the case that 𝑞 ∉ 𝑆𝑙𝑜𝑐𝑎𝑙 . This means

that 𝑞 gets deleted during the local skyline computation. In other

words, there exists a tuple 𝑟 in the same partition as 𝑞 with 𝑟 ≺ 𝑞
such that 𝑟 ∈ 𝑆𝑙𝑜𝑐𝑎𝑙 . The latter property is guaranteed by the

fact that, inside each partition, all tuples have nulls at the same

positions and there can be no cyclic dominance relationships.

By the assumption 𝑞 ≺ 𝑝 and the definition of skylines in

incomplete datasets, 𝑞 is at least as good as 𝑝 in all non-missing

skyline dimensions and strictly better in at least one. Since 𝑟 ≺ 𝑞
and both tuples have the same set of missing dimensions due

to being in the same partition, it follows that also 𝑟 is at least

as good as 𝑝 in all non-missing skyline dimensions and strictly

better in at least one. That is, 𝑟 is the desired tuple in 𝑆𝑙𝑜𝑐𝑎𝑙 with

𝑟 ≺ 𝑝 . □

Selecting an algorithm which can handle incomplete datasets

yields the correct result also for a complete dataset (while the con-

verse is, of course, not true). There is, however, a major drawback

to always using an incomplete algorithm. Since the partitioning

in the incomplete algorithm is done according to which values

of a tuple are null, only limited partitioning is possible. The

worst case occurs when the algorithm for incomplete datasets is

applied to a complete dataset. In this case, since there are no null
values, there is only a single partition which all tuples belong to.

This means that any potential of parallelism gets lost. Hence, in

the case of a complete dataset, the algorithm for incomplete data

performs even worse than a strictly non-distributed approach

which immediately proceeds to the global skyline computation

by a single executor.

5.8 Extending the User Interfaces
In addition to our extension of the SQL string-interface of Spark

SQL,we integrate the skyline queries also into the basic DataFrame

API provided in Java and Scala by adding newAPI functions. Here,

the data about the skyline dimensions can either be passed via

pairs of skyline dimension and associated dimension type or by

using the columnar definition of Spark directly. For the latter

purpose, we define the functions smin(), smax(), and sdiff(),
which each take a single argument that provides the skyline di-

mension in Spark columnar format as input. The API calls bypass

the parsing step and directly create a new skyline operator node

in the logical plan.

We also integrate skyline queries into Python and R via PyS-

park and SparkR, respectively – two of the most popular lan-

guages for analytical and statistical applications. Rather than

re-implementing skyline queries in these languages, we build

an intermediate layer that calls the Scala-implementation of the

DataFrame API.

In Python, this method relies on the external, open-source

library Py4J (https://www.py4j.org/). Its usage requires the sky-

line dimensions and skyline types to first be translated into Java

objects, which can then be passed on using Py4J. A slight compli-

cation arises from the fact that Python is a weakly typed language,

which imposes restrictions on the method signatures. Skyline

dimensions and their types are therefore passed as separate lists

of strings. The first dimension is then matched to the first type of

skyline dimension and so forth. Passing the skyline dimensions

via Columns (i.e., Expressions) works similarly to the Scala/Java

APIs.

In R, the integration is simpler since R allows for tuples of

data to be entered more easily. Hence, in addition to the column-

based input analogous to the Python interface, the R interface

also accepts a list of pairs of skyline dimension plus type.

5.9 Ensuring Correctness
As far as the impact of the skyline handling on the overall be-

havior of Spark SQL is concerned, we recall from Sections 5.2

and 5.3 that, in the logical plan, the skyline operator gives rise

to a single node with a single input (from the child node) and a

single output (to the parent node). When translating the logical

node to a physical plan, this still holds since, even if there are

multiple physical nodes in the plan, there is only a single input

and output.

Therefore, the main concern of ensuring correctness of our

integration of skyline queries into Spark SQL is the handling

of skyline queries itself. There are no side effects whatsoever

of the skyline integration on the rest of query processing in

Spark SQL. This also applies to potential effects of the skyline

integration on the performance of Spark SQL commands not

using the skyline feature at all. In this case, the only difference

in the query processing flow is an additional clause in the parser.

The additional cost is negligible.

We have intensively tested the skyline handling to provide

evidence for its correctness. Unit tests are provided as part of

our implementation in the GitHub repository. Additionally, for a

significant portion of the experiments reported in Section 6, we

have verified that our integrated skyline computation yields the

same result as the equivalent “plain” SQL query in the style of

Listing 4.

6 EMPIRICAL EVALUATION
In this section, we take a closer look at how our integration

performs based on a series of benchmarks executed on a cluster.

We will first provide information about the experimental setup

as well as the input data and the queries which are executed

on them. Following that, we will provide an overview of the

outcomes of the benchmark. To round off the section, we will

give a brief summary of the performance measurements and

draw some conclusions.

6.1 Experimental Setup
We have implemented the integration of skyline queries into

Apache Spark, and provide our implementation as open-source

code at https://github.com/Lukas-Grasmann/skyline-queries-spark.

Our implementation uses the same languages as Apache Spark,

which include Java, Scala, Python, and R. The bulk of the main

functionality was written in Scala, which is also the language

in which the core functionalities of Spark are implemented. The

experiments can be easily reproduced by using the provided

open-source software. The binaries, benchmark data, queries,

and additional scripts can be found at [20].
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All tests were run on a cluster consisting of 2 namenodes and

18 datanodes. The latter are used to execute the actual program.

Every node consists of 2 Xeon E5-2650 v4 CPUs by Intel that

provide 24 cores each, which equals 48 cores per node and up to

864 cores across all worker nodes in total. Each node provides up

to 256GB of RAM and 4 hard disks with a total capacity of 4TB

each.

The resource management of the cluster is entirely based on

Cloudera and uses YARN to deploy the applications. It provides

the possibility to access data stored in Hive, which we found

convenient for storing and maintaining the test data in our ex-

periments. And it is also a common way how Apache Spark is

used in practice.

For fine-tuning the parameters, we use the command line argu-

ments provided by Spark to deploy the applications to YARN. In

these tests, we tell Spark how many executors are to be spawned.

The actual resource assignment is then left to Spark to provide

conditions as close to the real-world setting as possible.

6.2 Test Data and Queries
For our tests with a real-world dataset, we use the freely avail-

able subset of the Inside Airbnb dataset as input, which contains

accommodations from Airbnb over a certain timespan. The time

span chosen is 30 days and contains approximately 1 million

tuples. The tuples were downloaded from the Inside Airbnb web-

site [1] and then subsequently merged while eliminating dupli-

cates and string-based columns. For the complete variant of the

dataset, we have eliminated all tuples containing a null value

in at least one skyline dimension. Content-wise, this dataset

is similar to the hotel example provided in Section 1. The use

cases considered here are also similar and encompass finding the

“best” listings according to the chosen dimensions. The relevant

key (identifying) dimension and the 6 skyline dimensions can

be found in Table 1. From this relation, we constructed skyline

queries with 1 dimension, 2 dimensions, . . . , 6 dimensions by

selecting the dimensions in the same order as they appear in

Table 1, i.e., the one-dimensional skyline query only uses the

first skyline dimension (price) in the table, the two-dimensional

query uses the first two dimensions (price, accommodates), etc.

Dimension Type Description
id KEY identification number

price MIN price for renting

accommodates MAX (max) number of accommo-

dated people

bedrooms MAX number of bedrooms

beds MAX number of beds

number_of_reviews MAX number of reviews

review_scores_rating MAX total review score ratings (all

categories)

Table 1: Skyline dimensions in the Inside Airbnb dataset

We also carried out tests on a synthetic dataset, namely the

store_sales table from the benchmark DSB [14]. The skyline

dimensions used in the benchmarks can be found in Table 2. The

table has 2 identifying key dimensions and, again, 6 skyline di-

mensions. The selection of skyline dimensions to derive 6 skyline

queries (with the number of skyline dimensions ranging from 1

to 6) is done exactly as described above for the Airbnb test case.

As far as the test data is concerned, we randomly gener-

ated data such that the total size of the table is approximately

15,000,000 tuples (note that data generation in DSB works by

indicating the data volume in bytes not tuples; in our case, we

generated 1.5 GB of data). For the tests with varying data size,

we simply select the first tuples from the table until the desired

size of the dataset is reached. For the complete dataset, we only

select the tuples which are not null in all six potential skyline

dimensions.

Dimension Type Description
ss_item_sk KEY stock item identifier

ss_ticket_number KEY ticket number identifier

ss_quantity MAX quantity purchased in sale

ss_wholesale_cost MIN wholesale cost

ss_list_price MIN list price

ss_sales_price MIN sales price

ss_ext_discount_amt MAX total discount given

ss_ext_sales_price MIN sum of sales price

Table 2: Skyline dimensions in the store_sales dataset

For both datasets, there exists a complete as well as an in-

complete variant. The difference between them is that for the

complete dataset all tuples that contain null values in at least

one skyline dimension have been removed. For the real-world

dataset, this means that the incomplete dataset is bigger than the

complete variant while for the synthetic dataset, both variants

have the same size.

6.3 Tested Algorithms
In total, we run our tests on up to four skyline algorithms:

(1) The distributed algorithm for complete datasets (described

in Section 5.6), which splits the skyline computation into

local and global skyline computation; strictly speaking,

only the local part is distributed (whence, parallelized).

(2) The non-distributed complete algorithm,which completely

gives up on parallelism, skips the local skyline computa-

tion and immediately proceeds to the global skyline com-

putation from the previous algorithm.

(3) The distributed algorithm for incomplete datasets described

in Section 5.7. Recall, however, that here, distribution is

based on the occurrence of nulls in skyline dimensions,

which severely restricts the potential of parallelism.

(4) As the principal reference algorithm for our skyline algo-

rithms, we run our tests also with the rewriting of skyline

queries into plain SQL as described in Listing 4.

In our performance charts, we refer to these 4 algorithms as

“distributed complete”, “non-distributed complete”, “distributed

incomplete”, and “reference”. In all tests with complete datasets,

we compare all four algorithms against each other. For incomplete

datasets, the complete algorithms are not applicable; we thus only

compare the remaining two algorithms in these cases.

6.4 Experimental Results
In our experimental evaluation, we want to find out how the

following parameters affect the execution time:

• number of skyline dimensions;

• number of input tuples in the dataset;

• number of executors used by Spark.
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For the number of skyline dimensions, we have crafted queries

with 1 – 6 dimensions. The number of executors used by Spark is

chosen from 1, 2, 3, 5, 10. For the size of the dataset, we distinguish

between the real-world (Airbnb) and synthetic dataset (DSB): all

tests with the real-world dataset are carried out with all tuples

contained in the data, i.e., ca. 1,200,000 tuples if nulls are allowed
and ca. 820,000 tuples after removing all tuples with a null in

one of the skyline dimensions. In contrast, the synthetic dataset

is randomly generated and we choose subsets of size 10
6
, 2 · 106,

5 · 106, and 107 both, for the complete and the incomplete dataset.

We have carried out tests with virtually all combinations of

the above mentioned value ranges for the three parameters under

investigation, resulting in a big collection of test cases: complete

vs. incomplete data, 1 – 6 skyline dimensions, “all” tuples (for

the Airbnb data) vs. varying between 10
6
, 2 · 106, 5 · 106, and 10

7

tuples (for the DSB data), and between 1 and 10 executors. In all

these cases, we ran 4 algorithms (in the case of complete data)

or 2 algorithms (for incomplete data) as explained in Section 6.3.

Below we report on a representative subset of our experiments.

The runtime measurements are shown in Figures 3 – 7. Further

performance charts are provided in [19].

In our experiments, we have defined a timeout of 3600 sec-

onds. Timeouts are “visualized” in our performance charts by

missing data points. Actually, timeouts did occur quite frequently

– especially with incomplete data and here, in particular, with the

“reference” algorithm. Therefore, in Figures 3 – 7, for the case of

incomplete data (always the plot on the right-hand side), we only

show the results for datasets smaller than 10
7
tuples. In contrast,

for complete data (shown in the plots on the left-hand side) we

typically scale up to the max. size of 10
7
tuples.

The plots for the impact of the number of skyline dimen-
sions on the execution time can be found in Figure 3 for the

real-world dataset and Figure 4 for the synthetic dataset. Of

course, if the number of dimension increases, the dominance

checks get slightly more costly. But the most important effect on

the execution time is via the size of the skyline (in particular, of

the intermediate skyline in the window).

Increasing the number of dimensions can have two opposing

effects. First, adding a dimension can make tuples incomparable,

where previously one tuple dominated the other. In this case, the

size of the skyline increases due to the additional skyline dimen-

sion. Second, however, it may also happen that two tuples had

identical values in the previously considered dimensions and the

additional dimension introduces a dominance relation between

these tuples. In this case, the size of the skyline decreases.

For the real-world data (Figure 3), the execution time tends

to increase with the number of skyline dimensions. This is, in

particular, the case for the reference algorithm. In other words,

here we see the first possible effect of increasing the number

of dimensions. In contrast, for the synthetic dataset, we also

see the second possible effect. This effect is best visible for the

reference algorithm in the left plot in Figure 4. Apparently, there

are many tuples with the maximal value in the first dimension

(= ss_quantity), which become distinguishable by the second

dimension (= ss_wholesale_cost). For the right plot in Figure 4,

it should be noted that the tests were carried out with a 10 times

smaller dataset to avoid timeouts, which makes the test results

less robust. The peak in the case of two dimensions is probably

due to “unfavorable” partitioning of tuples causing some of the

local skylines to get overly big.

At any rate, when comparing the algorithms, we note that

the specialized algorithms are faster in almost all cases and scale

significantly better than the “reference” algorithm (in particular,

in case of the real-word data). For complete data, the “distributed

complete” algorithm performs best. The discrepancy between the

best specialized algorithm and the reference algorithm is over

50% in most cases and can get up to ca. 80% (complete synthetic

data, 5 dimensions) and even over 95% (complete synthetic data,

1 dimension).

The impact of the size of the dataset on the execution time

is shown in Figure 5. Recall that we consider the size of the

real-world dataset as fixed. Hence, the experiments with varying

data size were only done with the synthetic data. Of course, the

execution time increases with the size of the dataset, since a

larger dataset also increases the number of dominance checks

needed. The exact increase depends on the used algorithm; it is

particularly dramatic for the “reference” algorithm, which even

reaches the timeout threshold as bigger datasets are considered.

Again, the “distributed complete” algorithm, when applicable,

performs best and, in almost all cases, all specialized skyline

algorithms outperform the “reference” algorithm. The discrep-

ancy between the best specialized algorithm and the reference

algorithm reaches ca. 60% for incomplete data and over 80% for

complete data (for 5 · 106 tuples). For the biggest datasets (107
tuples), the reference algorithm even times out.

The impact of the number of executors on the performance

is shown in Figure 6 for the real-world dataset and in Figure 7

for the synthetic dataset. Ideally, we want the algorithms to be

able to use an arbitrary number of executors productively. Here,

we use the term “executors” since it is the parameter by which

we can instruct Spark how many instances of the code it should

run in parallel.

We observe that the benefit of additional executors tapers off

after a certain number of executors has been reached. This point

is reached sooner, the smaller the dataset is. This behavior, espe-

cially in the case of the distributed algorithms, can be explained

as follows: As we increase the parallelism of the local skyline

computation, the portion of data contained in each partition

becomes smaller; this means that more and more dominance rela-

tionships get lost and fewer tuples are eliminated from the local

skylines. Hence, more work is left to the global skyline computa-

tion, which allows for little to no parallelism and, thus, becomes

the bottleneck of the entire computation. In other words, there

is a sweet spot in terms of the amount of parallelism relative to

the size of the input data.

Note that the “reference” algorithm is also able to make (lim-

ited) use of parallelism. Indeed, the execution plan generated by

Spark from the plain SQL query is still somewhat distributed

albeit not as much as the truly distributed and specialized ap-

proaches. As in the previous experiments, the “reference” algo-

rithm never outperforms any of the specialized algorithms – not

even the non-distributed or quasi-non-distributed (incomplete

algorithm on complete dataset) approaches. The discrepancy be-

tween the best specialized algorithm and the reference algorithm

is constantly above 50% and may even go up to 90% (complete

synthetic data, 10 executors).

6.5 Further Measurements and Experiments
Our main concern with the experiments reported in Section 6.4

was to measure the execution time of our integrated skyline algo-

rithms depending on several factors (number of dimensions/tu-

ples/executors). Apart from the execution time, we made further
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Figure 3: Number of dimensions vs. execution time on the Inside Airbnb dataset
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Figure 4: Number of dimensions vs. execution time on the store_sales dataset
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Figure 5: Number of input tuples vs. execution time on the store_sales dataset
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Figure 6: Number of executors vs. execution time on the Inside Airbnb dataset
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Figure 7: Number of executors vs. execution time on the store_sales dataset
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measurements in our experiments. In particular, we were inter-

ested in thememory consumption of the various algorithms

in the various settings. In short, the results were unsurprising:

the number of dimensions does not influence the memory con-

sumption while the number of executors and, even more so, the

number of input tuples does. In the case of the executors this

is mainly due to the fact that each executor loads its entire ex-

ecution environment, including the Java execution framework,

into main memory. In the case of the number of tuples, of course,

more memory is needed if more tuples are loaded. Importantly,

we did not observe any significant difference in memory con-

sumption between the four algorithms studied here. For the sake

of completeness, we provide plots with the memory consumption

in various scenarios in [19].

The test setup described in Section 6.2 was intentionally mini-

malistic in the sense that we applied skyline queries to base tables

of the database rather than to the result of (possibly complex)

SQL queries. This allowed us to focus on the behavior of our

new skyline algorithms vs. the reference queries without having

to worry about side-effects of the overall query evaluation. But,

of course, it is also interesting to test the behavior of skyline

queries on top of complex queries. To this end, we have carried

out experiments on the MusicBrainz database [16] with more

complex queries including joins and aggregates. Due to lack of

space, the detailed results are given in [19]. In a nutshell, the

results are quite similar to the ones reported in Section 6.4:

• The execution time of the reference solution is almost

always above the time of the specialized algorithms. The

only cases where the reference solution performs best are

the easiest ones with execution times below 50 seconds.

For the harder cases it is always slower and – in contrast

to the specialized algorithms – causes several timeouts.

• The memory consumption is comparable for all 4 algo-

rithms. There are, however, some peaks in case of the

reference algorithms that do not occur with the special-

ized algorithm. In general, the behavior of the reference

algorithm seems to be less stable than the other algorithms.

For instance, with 4, 5, or 6 dimensions, the execution time

jumps from below 50 seconds for 3 executors to over 1000

seconds for 5 executors and then slightly decreases again

for 10 executors.

• It is also notable, that skyline queries rewritten to plain

SQL aremuch less readable and less intuitive in the context

of the entire query.

6.6 Summary of Results
From our experimental evaluation, we conclude that, in almost

all cases, our specialized algorithms outperform the “reference”

algorithm and they also provide better scalability. Parallelization

(if applicable) has proved profitable – but only up to a certain

point, that depends on the size of the data. Moreover, it has

become clear that using the incomplete distributed algorithm on a

complete dataset is not advisable andmay performworse than the

non-distributed algorithm. As such, the introduction of additional

syntax to select an appropriate algorithm through the keyword

COMPLETE may help to significantly boost the performance.

7 CONCLUSION AND FUTUREWORK
In this work, we have presented the extension of Spark SQL by

the skyline operator. It provides users with a simple, easy to use

syntax for formulating skyline queries. To the best of our knowl-

edge, this is the first distributed data processing system with

native support of skyline queries. By our extension of the various

components of Spark SQL query execution and, in particular, of

the Catalyst optimizer, we have obtained an implementation that

clearly outperforms the formulation of skyline queries in plain

SQL. Nevertheless, there is still ample space for future enhance-

ments:

So far, we have implemented only the Block-Nested-Loop

skyline algorithm and variants thereof. It would be interesting

to implement additional algorithms based on other paradigms

like ordering [3, 4, 10, 11, 17, 18, 34] or index structures [29,

30, 41] and to evaluate their strengths and weaknesses in the

Apache Spark context. Also, for the partitioning scheme, further

options such as angle-based partitioning [26, 43] are worth trying.

Further specialized algorithms, that require a deeper modification

of Spark (such as Z-order partitioning [42], which requires the

computation of a Z-address for each tuple [31]) are more long-

term projects.

For our skyline algorithm that can cope with (potentially) in-

complete datasets, we have chosen a straightforward extension

of the Block-Nested-Loop algorithm. As mentioned in Section 5.7,

this may severely limit the potential of parallelism. Moreover, in

the worst case, the algorithm may thus have to compare each

tuple against any other tuple. Clearly, a more sophisticated al-

gorithm for potentially incomplete datasets would be highly

desirable.

We have included rule-based optimizations in our integration

of skyline queries. The support of cost-based optimization by

Spark SQL is only somewhat rudimentary as of now. Fully inte-

grating skyline queries into a future cost-based optimizer will

be an important, highly non-trivial research and development

project. However, as soon as further skyline algorithms are imple-

mented, a light-weight form of cost-based optimization should

be implemented that selects the best-suited skyline algorithm for

a particular query.

Finally, from the user perspective, the integration into different

Spark modules such as structured streaming would be desirable.

To conclude, the goal of this work was a full integration of sky-

line queries into Spark SQL. The favorable experimental results

with simple skyline algorithms (Block-Nested-Loops and vari-

ants thereof) demonstrate that an integrated solution is clearly

superior to a rewriting of the query on SQL level. To leverage

the full potential of the integrated solution, the implementation

of further (more sophisticated) skyline algorithms is the most

important task for future work. It should be noted that, in our

implementation, we have paid particular attention to a modular

structure of our new software so that the implementation of fur-

ther algorithms is possible without having to worry about Spark

SQL as a whole. Moreover, our code is provided under Apache

Spark’s own open-source license, and we explicitly invite other

groups to join in this effort of enabling convenient and efficient

skyline queries in Spark SQL.
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