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ABSTRACT
Estimating query result sizes is a critical task in areas like query

optimization. For some years now it has been popular to apply

machine learning to this problem. However, surprisingly, there

has been very little research yet on how to present queries to a

machine learning model. Machine learning models do not simply

consume SQL strings. Instead, a SQL string is transformed into a

numerical representation. This transformation is called query fea-
turization and is defined by a query featurization technique (QFT).
This paper is concerned with QFTs for queries with many selec-

tion predicates. In particular, we consider queries that contain

both predicates over different attributes and multiple predicates

per attribute. We identify a desired property of query featuriza-

tion and present three novel QFTs. To the best of our knowledge,

we are the first to featurize queries with mixed combinations of

predicates, i.e., containing both conjunctions and disjunctions.

Our QFTs are model-independent and can serve as the query

featurization layer for different machine learning model types.

In our evaluation, we combine our QFTs with three different

machine learning models. We demonstrate that the estimation

accuracy of machine learning models significantly depends on

the QFT used. In addition, we compare our best combination of

QFT and machine learning model to various existing cardinality

estimators.

1 INTRODUCTION
The ever-increasing amount of data and the high demand for

low-latency query response times puts pressure on Database

Management Systems (DBMS). To meet the requirements, query

engines and query optimization remain the focus of database

research. In query optimization, cardinality estimates, i.e., esti-
mates for the number of rows in a query result, play a crucial role.

In particular, cardinality estimates serve as parameters to cost

functions whose outputs determine the decision-making in query

plan selection. Research findings indicate that query optimizers

benefit greatly from improved cardinality estimates [16, 19]. An-

other field that benefits from accurate cardinality estimates is

approximate query processing, in particular count queries. Here,

accuracy is traded for response time [1, 4]. Over the decades, the

database research community has examined many cardinality

estimation techniques. The earliest ones build on independence

and uniformity assumptions [25] and are still common in today’s

DBMS. Later, many synopses-driven approaches were integrated,

from sketches [6, 24] to histograms [18, 26]. Sampling techniques

for cardinality estimation are versatile, but selective selection

predicates cause inaccurate estimates [3, 30].
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Background. For some years now, Machine Learning (ML)

has been applied to the cardinality estimation problem [8, 12, 32,

33]. In general, ML means arbitrary function approximation. The
function that underlays the cardinality estimation problem in

databases is

query × data → cardinality (1)

Note that the data component often remains unmentioned even

though it is relevant since the query result of SELECT count(*)
FROM R WHERE R.A < 5 differs, depending on the content in R.
Nonetheless, in this paper, we assume the data to be fixed and

approximate Equation 1 by the two-step mapping

query → vector → cardinality (2)

The mapping query → vector is denoted by query featurization
and benefits from expert knowledge. Query featurization is neces-

sary since machine learning models do not consume SQL strings.

Instead, a numerical representation of the query is consumed.

Techniques for query featurization are the focus of this paper.

The second mapping vector → cardinality is the machine learn-

ing part and benefits fromML knowledge, in particular algorithm

choice and parameter tuning.

Despite the fact that all learning-based cardinality estimation

techniques need query featurization, most current approaches

do not focus on the query featurization part [12, 32]. For in-

stance, Kipf et al. learn the featurized representation of a query

from simple per-predicate featurizations. However, learned query

featurization leads to obfuscated query representations that ul-

timately result in sub-optimal query result size estimates. We

argue that a smart query featurization technique (QFT) can be

identified and implemented - instead of merely learned. Hence,

this paper focuses on improved QFTs.

Main contribution. In this paper, we present three novel

QFTs. We compare their pros and cons, in particular how well

they represent queries and how different types of ML models

benefit from good query featurization in terms of estimation accu-

racy and the number of queries needed for training. In particular,

we present the following findings:

• A formal definition of good query featurization, to which

we refer as lossless query featurization. To the best of our

knowledge, we are the first to define requirements for

query featurization. The definition is presented in Section

3 and motivates the design of our QFTs.

• We present (one established and) two novel QFTs for con-

junctive queries, i.e., queries whose predicates are con-

nected by AND. Unlike [33], we consider queries with mul-

tiple predicates per attribute.

• We present one additional QFT for queries including both

conjunctions as well as disjunctions, i.e., predicates con-

nected by OR. To the best of our knowledge, we are the

first to consider disjunctions in ML-based cardinality esti-

mation.
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• We provide an extensive evaluation showing the effect of

QFT on the estimation accuracy of several established ma-

chine learning models [5, 12, 32]. As part of our evaluation,

we also consider the impact of QFTs on estimation accu-

racy under query drift and different numbers of training

queries.

Outline. The structure of the paper is as follows: In the next

section, we outline preliminaries in terms of query featurization

and machine learning. Then, in Section 3, we present our three

new QFTs and discuss their advantages and limitations in detail.

In Section 4, we focus on implementation details of our QFTs as

part of learning-based cardinality estimators. Next, we evaluate

our new QFTs under different ML models with two data sets in

Section 5. In Section 6, we discuss how to generalize our approach,

for instance to queries with string predicates and aggregations.

Section 7 presents related work. Finally, we draw a conclusion

and discuss future work.

2 PRELIMINARIES
This section discusses preliminaries. In Section 2.1, existing query

featurization techniques for selection predicates and join predi-

cates are covered. Section 2.2 discusses basics of machine learning

models (ML models).

2.1 Query Featurization
In this section, we present existing techniques for query featur-

ization techniques – QFTs. Recall that a QFT encodes a query Q
into a numerical vector, named feature vector. This feature vector
then serves as input to a machine learning model – in particu-

lar one used for cardinality estimation. In query featurization,

the critical part is the encoding of the predicates and joins in

input query Q. In this section, we present existing approaches to

featurize selection predicates and join predicates.

2.1.1 Predicate Encoding. First, we focus on the encoding

of selection predicates. We describe how existing approaches

featurize simple predicates, i.e., a predicate that compares an

attribute value to a literal using one of the comparison operators

in {=, >, <, ≥, ≤,≠}. We present the approaches by [7, 12, 32].

Each simple predicate is featurized in the same fashion in all

these approaches - the difference lies in how the per-predicate

encodings are combined.

To encode a predicate like A > 5, the predicate is split and
encoded into three parts. (1) Attribute A is encoded in a one-hot

vector, i.e., only one entry is set, like 001 for a relation with three

attributes, (2) the literal 5 is encoded to 5−min(𝐴)
max(𝐴)−min(𝐴) , which is

always a number in [0, 1], and (3) the comparison operator > is
encoded to a 3-entries binary vector, where each entry represents

one of {=, >, <}, so at most two entries can be (meaningfully) set.

The featurization of A > 5 could then look like this:

001︸︷︷︸
𝐴

010︸︷︷︸
>

0.27︸︷︷︸
5

To combine multiple selection predicates, there exist two ap-

proaches:

In Singular Predicate Encoding, as used in [7, 32], for a

table with 𝑚 attributes, the feature vector F has 4·𝑚 entries.

Since specific entries in the feature vector are reserved for each

attribute, there is no need to encode the attribute id itself. For

𝑚 = 3 and a query with predicates A > 5 AND B = 7, the query

featurization looks like:

𝐴︷        ︸︸        ︷
010︸︷︷︸
>

0.27︸︷︷︸
5

𝐵︷        ︸︸        ︷
100︸︷︷︸
=

0.15︸︷︷︸
7

third attribute︷        ︸︸        ︷
000︸︷︷︸
no

0.0︸︷︷︸
pred.

Note that all entries are set to 0 for attributes for which the query

contains no predicate. Further note that there can only be up to

one predicate per attribute and there is no (good) way to support

disjunctions, so all predicates must be connected by AND.
In Predicate Set Convolution, as used in [12], each selection

predicate is featurized and collected in a set 𝑃 . A convolution

step is applied to 𝑃 in the ML model. The convolution weights are

learned during training. The advantage of Predicate Set Convolu-

tion is that it supports multiple predicates per attribute. However,

disjunctions are not supported. In addition, Predicate Set Con-

volution as a QFT does not allow for statements in terms of

generalization.

2.1.2 Join Encoding. We now focus on query featurization for

queries containing joins. In particular, this section discusses how

to handle the tables and join predicates contained in some input

query Q. Again, there are two general approaches to encode

joins:

With local models, as used in [7, 32, 33], one model is built

per sub-schema, i.e., either per base table or per join result. To esti-

mate the result cardinality of some query, the selection predicates

in the query are featurized and forwarded to the corresponding

local models. The advantages are that (1) the size of the feature

vector remains small and (2) when data in some tables changes,

only the models for sub-schemata containing this table have to

be retrained. At first sight, a downside is the number of models,

since there are 2
𝑛 − 1 sub-schemata, i.e., combinations of 𝑛 tables.

However, in real applications, this number is reduced by relying

on System R formulas [25, 31] where models are built exactly

for those sub-schemata for which the assumptions from [25], i.e.,

uniformity and independence assumptions, do not hold.

On the other hand, a global model, as used in [12, 14], repre-

sents a single estimator capable to estimate result cardinalities

for all queries containing arbitrary sub-schemata of 𝑛 tables. In

global models, the feature vector of a featurized query must also

represent the accessed tables. Assuming that tables are joined

following their key/foreign-key relationships, any QFT can be

adapted to global models by appending a binary vector, where

each entry corresponds to a specific table, to the feature vector.

For instance, for tables 1, 2, 3, and 4, the binary vector 1101 cor-

responds to a query where tables 1, 2, and 4 are joined (following

their key/foreign-key relationships). For comparison, 0100 corre-

sponds to a query on base table 2. In MSCN [12], the approach

taken is slightly different. Each table contained in the query is

represented by a unique one-hot vector. Then, all one-hot vectors

are collected in one set. Similarly, all join predicates are collected

in a separate set.

2.2 Machine Learning Models
In this section, we present two types of Machine Learning (ML)

models that are commonly used for cardinality estimation. Here,

we present the general concepts of thesemodels. In our evaluation

in Section 5, we report the qualities of all model types enhanced

with the QFTs presented in Section 3.

In general, ML models are functions mapping vectors of fea-
tures 𝑋 to a label or target 𝑦. Sometimes, the input vectors are

referred to as samples. These are not to be confused with samples
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generated by random sampling.

𝑓 : 𝑋 → 𝑦,𝑋 ∈ R𝑑 , 𝑦 ∈ R (3)

The number of features 𝑑 is the dimension of the feature space.

A major advantage of ML approaches is their capability to re-

trieve the mapping function on their own. This is called training,
whereas the application of a model, i.e., the application of the

learned function, is called a forward pass. In general, training

requires much more time than the forward pass. In this work,

we concentrate on ML approaches using supervised learning. Su-
pervised Learning uses labeled example data during training to

derive the function 𝑓 . If the label is a continuous variable, like

a cardinality, we call it a regression problem. For the training, it

is essential that the mapping in the example data to its labels is

deterministic and that the same input produces the same label

all the time:

∀𝑥1, 𝑥2 ∈ 𝑋 : 𝑥1 = 𝑥2 ⇒ 𝑓 (𝑥1) = 𝑓 (𝑥2) (4)

Nothing is worse for an ML model than the same input leading

to different labels. This usually leads to a low prediction quality

either by an averaged output or by a preference of the model for

a specific label for the same input. In such a case, the entropy is

maximal and themodel cannot derive any information. Therefore,

query featurizationmust be collision-free to avoid these problems.

If two different queries are featurized to the same feature vector,

the model sees the same input for both queries but different result

cardinalities. This contradicts the requirement of determinism

and leads to inferior predictions for the problem.

2.2.1 Neural Networks. Neural networks have been applied to
various problems in DBMS [12, 13, 32]. Neural networks are able

to solve supervised ML problems by modeling the dependencies

within the problem as a black box. With increasing hardware per-

formance over the last years, their training has become feasible

on a large scale. Therefore, it seems to be evident that the data-

base community relies on neural networks to solve the complex

problem of cardinality estimation. Here, we focus on Multi-layer

Perceptron or Feed-forward Networks (NN) and Multi Set Con-

volutional Networks (MSCN) because previous work has shown

that these kinds of neural networks work best for queries with

joins on complex schemata [12, 32]. In our evaluation in Section

5, we use the original network architecture from [12] and [32]. To

show both the importance and versatility of query featurization,

we extend [12, 32] to use our new QFTs.

2.2.2 Gradient Boosting. It has been observed that neural

networks can be too complex and their training time takes too

long. Hence, [5] proposes to use smaller and faster models, based

on Gradient Boosting (GB). GB is a tree-based approach where

weak learners are combined based on the residuals of a preceding

learner. The GB estimator sums over 𝑃 weak predictors 𝐹𝑝 , each

with weight 𝜆𝑝 , and adds a constant 𝑐 .

ˆ𝑓 (𝑥) =
𝑃∑︁

𝑝=1

𝜆𝑝𝐹𝑝 (𝑥) + 𝑐 (5)

In our case, each weak predictor 𝐹𝑝 is a simple decision tree. The

general structure of GB models makes them very fast in training

and forward passes. In our evaluation in Section 5, we show

that GB trains and converges faster. Therefore, fewer training

samples are required. This leads to improved estimation accuracy

and faster setup times per model. Like with the neural network

approaches, we combine GB with different QFTs and compare

the performance of the QFT ×ML model combinations.

All neural networks and GB models are input-agnostic, i.e.,

for a fixed input vector length, they can work with any numeric

vector presented to them. This is very useful in the context of

this work since it allows us to vary the QFT without having to

modify the models’ architecture.

Finally, note that we also tested simpler models, like linear
regression and support vector regression. However, we do not in-
clude these ML models in the further discussion and evaluation

since their estimates are worse by a significant factor.

3 QUERY FEATURIZATION
Query featurization is the process of encoding a query Q in a

numerical vector, named feature vector. This feature vector then
serves as input to a machine learning model.

This section presents three novel query featurization tech-

niques, where we focus on the encoding of selection predicates.

The scope is restricted to simple predicates, where an attribute

value is compared to a literal using one of the comparison opera-

tors in {= , > , < , ≥ , ≤ ,≠ }. We consider conjunctions as well as

certain disjunctions of predicates. We also consider arbitrarily

many predicates per attribute. Our QFTs can be applied to either

a single table or, using the techniques presented in Section 2.1,

to queries containing joins. Extensions to groupings and certain

string predicates are discussed in Section 6.

The better a feature vector represents the predicates in a query,

the better the query featurization technique. As part of our assess-

ment of QFTs, we use the terms information loss and lossless from
the field of data compression and apply the following definition.

Definition 3.1 (Lossless Query featurization). The feature vector
F is a lossless query featurization of query Q iff there exists a

function from F to a query Q̃ such that Q and Q̃ have the same

query result.

In other words, a query featurization is lossless if the feature

vector is as expressive as the query. This implies that a featur-

ization is, in the sense of queries with equal results, invertible.

Note that the definition is similar to the requirements of a good

autoencoder. Note that the lossless property is not either satis-

fied or violated by some QFT in general. Instead, a QFT satisfies

the lossless property for a certain class of queries. When a QFT

does not satisfy the lossless property for a class of queries, then

information loss occurs, since an ML algorithm, to which feature

vectors serve as input, cannot distinguish between different input

queries with the same feature vector representation.

The following shows that the previously discussed Singular

Predicate Encoding does not satisfy Definition 3.1 for a query Q
with 𝑘 > 1 predicates on some attribute 𝐴. Recall that Singular

Predicate Encoding can represent only one of the 𝑘 predicates

in Q’s feature vector F . The information about the other 𝑘 − 1

predicates is lost. Thus, F may represent a selective query with

many predicates on attribute 𝐴 or a less selective query with

few predicates on 𝐴. In terms of accuracy, this means an ML

model struggles to derive an accurate cardinality estimate from

the feature vector F . As we will see, Range Predicate Encoding,

presented in Section 3.1, is prone to the same problem for queries

with many predicates per attribute.

3.1 Range Predicate Encoding
This section presents a straightforward but useful extension of

Singular Predicate Encoding as discussed in Section 2.1. More

evolved techniques are discussed in the next two sections. Range
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Predicate Encoding is a QFT that allows to encode, per attribute,

either (1) a range predicate, where both open or closed ranges

are supported, or (2) an equality predicate. In existing work,

range predicates were discussed in [33], but since their model

was optimized for point queries, their cardinality estimate for

queries containing range predicates is the sum of cardinality

estimates for multiple point queries, which is computationally

feasible only for small, discrete ranges. For large ranges, [33]

employs a sampling technique.

Our predicate encoding technique builds on the observation

that, in databases, all types of point and range predicates can be

encoded to closed ranges. For instance, A = 5 becomes [5, 5] and
A ≤ 5 becomes [min(𝐴), 5]. While the difference between range

predicates including or excluding endpoints is often marginal,

this can still be addressed: For integer attributes it is easy to see

that A < 5 corresponds to [min(𝐴), 4] and for decimal attributes

we can use a small step size, e.g. [min(𝐴), 4.9]. Since this is ben-
eficial for some ML models, all ranges are normalized to [0, 1]
using the min and max values of each attribute.

The benefit of Range Predicate Encoding is that all queries

with up to one equality, open range, or closed range predicate

per attribute are featurized losslessly. Queries with multiple pred-

icates per attribute are not supported. Neither are disjunctions,

so all predicates must be connected by AND.

3.2 Universal Conjunction Encoding
The QFTs discussed thus far could be read of directly from the

query but share one common caveat: Only a limited number of

predicates can be encoded in the feature vector without informa-

tion loss. The problem is inherent to the previous featurization

techniques: SQL queries are of arbitrary length but feature vec-

tors have a fixed length!

Universal Conjunction Encoding builds on the observation

that both the number of attributes in the data set, denoted by𝑚,

and the data domain of each attribute remains constant. Hence,

while the same attribute may occur in multiple predicates, we

use the fact that no query references more than 𝑚 distinct at-

tributes. The data-driven idea that follows is to (1) partition the

data domain of each attribute, (2) give each partition one entry

in the feature vector, and (3) assign a value to each entry that

indicates whether the partition it represents satisfies the pred-

icates in query Q. This technique allows us to encode queries

with arbitrarily many simple predicates connected via AND. To
implement this idea, we discretize the domain of each attribute

𝐴 into 𝑛𝐴 = min(𝑛, max(𝐴)−min(𝐴)+1) partitions, where 𝑛 de-

notes some maximum number of partitions per attribute, e.g. 64.

The feature vector entry corresponding to 𝑣 ∈ 𝐴 has zero-based

index

⌊
𝑣𝑎𝑙−min(𝐴)

max(𝐴)−min(𝐴)+1 · 𝑛𝐴
⌋
. Hence, the partition each entry

represents consists of consecutive values. Each feature vector

entry indicates via a categorical value whether the corresponding
partition qualifies the predicates in Q. We use 0 to indicate that

no value qualifies,
1

2
to indicate that some values qualify, and

1 to indicate that all values qualify. The concatenation of the

per-attribute featurization yields the total feature vector.

Note that the optimal choice of the maximum number of par-

titions 𝑛 depends on the frequency distribution of the values

in the𝑚 attributes. In general, we observe that each partition

covers 1/𝑛 of the domain of some attribute 𝐴. Hence, with 𝑛=32,

each partition covers roughly 3% of an attribute’s domain. In the

context of query optimization, this granularity usually suffices.

Indeed, our evaluation (Sec. 5.4) supports 𝑛=32 as a reasonable

heuristic. For attributes with high skew, a larger 𝑛 may be neces-

sary. Observe that it is easy to extend our approach to choose an

attribute-specific 𝑛. One could also apply sophisticated partition-

ing techniques from the field of histograms, like v-optimal [23]

and q-optimal [18] partitioning.

Example: Suppose a table with numeric attributes A, B, and

C, where min(𝐴)= -9, max(𝐴)= 50, min(𝐵)= 0, max(𝐵)= 115 and

C contains only values in {1, 2}. Let 𝑛=12 be the maximum per-

attribute feature vector length. Then, a query with predicates

A < 7 AND B >= 30 AND B <= 100 AND B <> 66 induces the

following feature vector (ignore gray entries for now):

111
1

2
000000000.32︸                 ︷︷                 ︸

𝐴<7

000
1

2
11

𝐵≠66

1

2
111

1

2
00.48︸                    ︷︷                    ︸

30≤𝐵≤100 ∧ 𝐵≠66

111.0︸︷︷︸
no pred.

With respect to A < 7, note that 7 maps to the fourth entry in

the vector of 𝐴 since, according to the above zero-based index

formula, ⌊(7− (-9))/(50− (-9) + 1) · 12⌋ = 3. This fourth entry is

set to
1

2
. All entries to the left are 1 to indicate that values smaller

than 7 qualify. Accordingly, all entries to the right, but within

the bounds of 𝐴’s vector, are 0. Since there is no predicate on

attribute C, and its data domain consists of only two values, C’s
featurization is the all-one vector 11. To reproduce the rest of the

example, handle the predicates on 𝐵 accordingly.

Algorithm 1 describes the steps taken to featurize a query Q.

Ignore the gray lines for now, they are discussed later. In line 1

we define a map that associates each attribute 𝐴, where 𝐴 is an

attribute in the relation under consideration, to a vector with 𝑛𝐴
entries (see above). Initially, each entry in the mapped vector is

set to 1. Then, for each predicate 𝑝 in query Q, 𝑝 is decomposed

into the attribute 𝐴 it refers to, its comparison operator op, and
the literal val to which 𝐴 is compared. 𝐴 and val are then used

to compute the index idx of the vector entry corresponding to

val. If the vector entryM𝐴 [𝑖𝑑𝑥] is 1, it is set to 1

2
. In particular,

M𝐴 [𝑖𝑑𝑥] can only be decreased, e.g., once it is zero, it remains

zero. Then in lines 6 to 16, depending on the comparison operator

op, vector entries that correspond to attribute values which do not
qualify 𝑝 are set to 0. Hence, each predicate 𝑝 sets specific entries

to 0 (or
1

2
). This captures the property that further predicates in

a conjunction can make a query only more selective. The final

feature vector, returned in line 21, is the concatenation of all

per-attribute vectors.

Note that, strictly speaking, there are no queries that can

be featurized losslessly with Universal Conjunction Encoding,

unless there are more feature vector entries than distinct values.

However, the following lemma captures a convergence property

that holds.

Lemma 3.2. Let Q be some query with an arbitrary conjunction
of simple predicates. Denote by F𝑛 the feature vector as produced
by Algorithm 1 for query Q, where 𝑛 denotes the maximum number
of feature vector entries per attribute.

The sequence (F𝑛)𝑛∈N converges to a lossless query featurization
(cf. Definition 3.1).

In the lemma, converge means that, as the number of buckets

𝑛 is increased beyond a certain level, the feature vector does not

change anymore. Below this level, each increase in 𝑛 reduces

the information loss. The lemma derives directly from the way

each feature vector entry corresponds to a specific partition of

an attribute. Hence, for large feature vectors where each entry

corresponds only to one distinct value of an attribute, Universal
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Algorithm 1 Query featurization using Universal Conjunction

Encoding

FeaturizeArbitraryConjunction(Q)
1 Let M map attributes to all-one per-attribute vectors

2 for 𝑝 ∈ Predicates(Q)
3 A, op, val = Decompose(𝑝 )
4 idx =

val−min(𝐴)
max(𝐴)−min(𝐴)+1 · 𝑛𝐴

5 if M𝐴 [𝑖𝑑𝑥 ] == 1: M𝐴 [𝑖𝑑𝑥 ] = 1

2

6 if op ∈ {”=”, ”is”}
7 M𝐴 [!𝑖𝑑𝑥 ] = 0

8 elseif op ∈ {”>”, ”>=”}
9 M𝐴 [0 : idx ] = 0

10 min𝐴 = max(min𝐴, 𝑣𝑎𝑙 ) // initially min(𝐴)
11 elseif op ∈ {”<”, ”<=”}
12 M𝐴 [idx+1 : Len(M𝐴 ) ] = 0

13 max𝐴 = min(max𝐴, 𝑣𝑎𝑙 ) // initially max(𝐴)
14 elseif op ∈ {”! =”, ”<>”}
15 // do nothing

16 nots𝐴 ∪= 𝑣𝑎𝑙 // initially empty set

17 for 𝐴 ∈ Attributes(M)
18 c𝐴 = CountBetween(nots𝐴,max𝐴,min𝐴 )
19 𝑟𝐴 = max(max𝐴−min𝐴 − 𝑐𝐴, 0)
20 Append(M𝐴, 𝑟𝐴 / (max(𝐴)−min(𝐴)+1)
21 return Concat_all(M) // feature vector F

Conjunction Encoding is a lossless query featurization for all

queries with arbitrary conjunctions of simple predicates. For

smaller feature vectors, this featurization loses only information

up to the size of the attribute partition that a feature vector entry

represents.

So far, we did not discuss the gray lines in Algorithm 1. Here,

per-attribute selectivity estimates are appended to the feature

vector. The per-attribute selectivity estimate of some attribute 𝐴

is the ratio of𝐴’s domain that qualifies by the predicates on𝐴. In

the gray lines of Algorithm 1, this estimate is obtained as the size

of 𝐴’s domain that qualifies 𝑟𝐴 divided by the total size of 𝐴’s

domain max(𝐴) −min(𝐴) + 1. This corresponds to an estimate

under uniformity assumption like in [25]. The model benefits

when the partitions in the feature vector are coarse-grained or

when trained on a few queries.

Note that for attributes with sufficiently small domain sizes,

one feature vector entry corresponds to one distinct value of some

attribute. In our implementation of Algorithm 1, we recognize

this case and set entries only to 0 or 1 (but not
1

2
). For brevity,

we omitted this aspect in Algorithm 1.

3.3 Limited Disjunction Encoding
To the best of our knowledge, Limited Disjunction Encoding is the

first QFT that is designed to take both conjunctions and disjunc-

tions, i.e. predicates connected by AND as well as OR, into account.
Limited Disjunction Encoding is essentially a generalization of

Universal Conjunction Encoding. Note that others [33] have men-

tioned disjunctions, but only referred to the inclusion-exclusion

principle.

Before we present Limited Disjunction Encoding, we address

its limitations - the name already suggests that we cannot handle

arbitrary disjunctions. We restrict ourselves to the following class

of queries:

Definition 3.3 (Mixed query). Amixed query is a conjunction

of the compound predicates for an arbitrary subset of attributes.

A compound predicate 𝑃𝐴 for some attribute 𝐴 is an arbitrary

combination (AND/OR) of arbitrarily many simple predicates on

𝐴.

For example, the following mixed query asks for orders in the

TPC-H dataset from either 1994 or 1996, with July 4th excluded

in both years, that are either in progress (P) or finished (F) and

with a price range from 1000 to 2000:

SELECT count(*) FROM Orders WHERE
(o_orderdate >= ’1994-01’ AND o_orderdate <= ’1994-12’

AND o_orderdate <> ’1994-07-04’
OR

o_orderdate >= ’1996-01’ AND o_orderdate <= ’1996-12’
AND o_orderdate <> ’1996-07-04’) AND

(o_orderstatus = ’P’ OR o_orderstatus = ’F’) AND
(o_totalprice > 1000 AND o_totalprice < 2000);
Note that the query contains three compound predicates, each

enclosed by parentheses. Our example, as well as the original

TPC-H and TPC-DS queries, illustrate disjunctions with both

categorical data and ordinal data. Note that mixed queries do not

have to follow a CNF or DNF form.

As for this class of queries, disjunctions occur only locally, i.e.,

per attribute, it is sufficient for our approach to address them at

this level. The key idea of Limited Disjunction Encoding is to

regard each conjunction in each compound predicate as a query

that can be featurized using Universal Conjunction Encoding.

Then, for each compound predicate, the per-conjunction featur-

izations can be merged by taking the entry-wise max over all

per-conjunction featurizations. This merging technique captures

the property that additional disjunctions make queries only less

selective. As in the previous section, the final feature vector is

the concatenation of all per-attribute vectors.

Example: To illustrate the idea, we featurize the WHERE clause

(A > -2 AND A <= 30 AND A != 7 OR A >= 42) AND B
>= 39.5. Suppose the attributes A, B, C have the min and max

values from the example in the previous section. The compound

predicate on 𝐴 consists of two conjunctions. For each conjunc-

tion, a featurized representation is generated using Universal

Conjunction Encoding. In particular, A > -2 AND A <= 30 AND
A != 7 is featurized to

0
1

2
1
1

2
111

1

2
0000︸             ︷︷             ︸

−2<𝐴≤30∧𝐴≠7

and A >= 42 is featurized to

0000000000
1

2
1︸            ︷︷            ︸

𝐴≥42

.

The above per-conjunction vectors must then be merged by tak-

ing the entry-wise max, i.e.,

0
1

2
1
1

2
111

1

2
00

1

2
1︸             ︷︷             ︸

−2<𝐴≤30∧𝐴≠7∨𝐴≥42

The compound predicate on 𝐵 only consists of B >= 39.5, which
is regarded as one conjunction. The featurized representation is

0000
1

2
11111111︸             ︷︷             ︸

𝐵≥39.5

.

As in the example from the previous section, since attribute C is

not mentioned in the query, its featurization is the all-one vector

11. The concatenation of the per-attribute vectors gives the final
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Algorithm 2 Query featurization using Limited Disjunction

Encoding

FeaturizeLimitedDisjunction(Q)
1 Let M map attributes to all-one per-attribute vectors

2 for cp ∈ CompoundPredicates(Q)
3 Let𝑉 be an all-zero feat. vec. for attr(𝑐𝑝 )
4 for d ∈ Split(cp, "OR")
5 f = FeaturizeArbitraryConjunction(𝑑 )
6 𝑉 = entrywise_max(𝑉 , 𝑓 )
7 M[Attr(𝑐𝑝 ) ] = 𝑉

8 return Concat_all(M)

feature vector:

0
1

2
1
1

2
111

1

2
00

1

2
1︸             ︷︷             ︸

−2<𝐴≤30∧𝐴≠7∨𝐴≥42

𝐵≥39.5︷             ︸︸             ︷
0000

1

2
11111111 11

no pred.

.

For the sake of brevity, we do not include per-attribute selectivity

estimates, which were illustrated in gray in the previous section.

Algorithm 2 outlines the implementation of Limited Disjunc-

tion Encoding. As before, the input is query Q, and we start

with a map from attributes to vectors. Then, for each compound

predicate cp, a vector with all entries set to zero is created. The

subroutine Attr(𝑐𝑝) returns the attribute of 𝑐𝑝 , and 𝑉 contains

𝑛
Attr(𝑐𝑝 ) many entries. Recall that cp is a disjunction of multiple

conjunctions. Starting in line 4, each conjunction is regarded as a

query that serves as input to Algorithm 1 which returns a feature

vector 𝑓 . Then, to capture the property that further disjunctions

make queries only less selective,𝑉 is merged by taking the entry-

wise maximum for each entry in 𝑉 and its corresponding entry

in 𝑓 . For simplicity, assume that the subroutine entrywise_max

knows which entries in 𝑓 refer to 𝑉 . The final per-attribute 𝑉

is stored inM. As before, the concatenation of all per-attribute

vectors gives the final feature vector for input query Q.

Since merging feature vectors as in line 6 of Algorithm 2

directly resembles the semantics of OR, and the feature vectors to
be merged converge to a lossless feature vector by Lemma 3.2, it

follows that Limited Disjunction Encoding converges to a lossless

query featurization of mixed queries.

4 IMPLEMENTATION
This section outlines how we adopt different ML models to use

our QFTs. In our implementation, the code of the QFTs is inde-

pendent of the ML model. Hence, each ML model may use any

QFT. As discussed in Section 2.2, we focus on NN, MSCN, and

GB models.

4.1 Local Models
The local model approach can be implemented with both NN and

GB because local models operate on sub-schemata and therefore

can be any arbitrary ML model [32]. We decide to use the original

NN from [32] and a modified version where each neural network

is replaced by a GB model. Of course, we adjust the necessary

hyperparameters.

Extending NN and GB to use different QFTs is rather straight-

forward since both models are input-agnostic. In particular, the

model’s architecture remains as is and only the feature vectors

presented to a model change. To achieve this, the code pipeline is

adjusted so that queries flow through the configured QFT routine.

4.2 Global Models
As a common representative for global models in cardinality

estimation, we extended the MSCN [10] implementation to use

our new QFTs. Since, in MSCN, query featurization is intertwined

with the model, we briefly outline our adjustments. MSCN uses a

three-part featurization dividing the information from the query

into three vector sets. The three vector sets are: (1) the joins, (2)

the tables and their samples, and (3) the predicates. Our QFTs

address the featurization of the predicates. The other two vector

sets remain untouched by our implementation. To maintain the

set logic of MSCN, we featurize all predicates referencing the

same attribute into one feature vector. Each per-attribute feature

vector is then labeled by the attribute id and added to a vector

set. This vector set serves as the predicate vector set for MSCN,

exactly as in the original implementation [10].

5 EVALUATION
This section presents our experimental evaluation. We evaluate

all QFT ×ML model combinations. In the evaluation, we use two

different data sets under different query workloads. We evalu-

ate estimation accuracy under different scenarios, take memory

consumption into account, and compare our best QFT × ML

model combination to other established cardinality estimators. In

particular, we give empirical answers to the following questions:

• Which QFT leads to the best estimation accuracy?

• Does the number of attributes or selection predicates ex-

plain dispersion in estimation accuracy?

• Does our approach improve query run times in Postgres?

• Does query drift impact estimation accuracy?

• Does the QFT choice impact training convergence?

• What is the time & memory cost of QFTs and models?

• What QFT ×ML model combination do we recommend?

• How does our favored QFT ×MLmodel combination com-

pare to established cardinality estimation techniques?

Data sets & query workloads.We use two real-world data

sets together with corresponding query workloads. The first data

set, forest cover type (forest) [17] is popular both in the machine

learning and cardinality estimation community and contains

more than 580k entries with 55 attributes. For forest, we generate

a query workload with conjunctive queries, i.e., predicates con-
nected by AND. We draw 𝑘, 1≤𝑘≤55 distinct attributes uniformly

at random and randomly generate a closed range predicate for

each. Additionally, we generate 𝑙, 0≤𝑙≤5 not-equal predicates,

for each of the 𝑘 chosen attributes, that exclude values from the

aforementioned range, where 𝑙 is drawn uniformly at random.

For instance, one of the queries from our evaluation is:

SELECT count(*) FROM forest
WHERE A7 >= 160 AND A7 <= 225 AND
A8 >= 45 AND A8 <= 237 AND A8 <> 220 AND A8 <> 186
In addition, we generate a second query workload with mixed

queries, in the sense of Definition 3.3. The generation is the same

as for conjunctive queries, except that we repeat the generation

for the per-attribute predicates between 𝑚, 1≤𝑚≤3 times and

concatenate them via OR. For an example see the query below

Definition 3.3. For both conjunctive and mixed queries, we gen-

erated 100k training queries and another 25k test queries.

As a second data set, the Internet Movie Database (IMDb) [16]

is used. IMDb contains data on more than 2.5 million movies with

around 4 million actors from more than 135 years. For testing, we

use JOB-light, a collection of 70 hand-written SQL queries con-

taining joins from [12]. The JOB-light queries contain between 2
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and 5 joins. The selection predicates are only conjunctions of 1

to 5 predicates on 1 to 4 different attributes. The queries contain

at most one range per attribute. For training, 231k generated

training queries are used. In all query workloads, since training

and test sets are disjoint, test set leakage is avoided.

Error metric. We use the q-error metric [19], defined as

max( 𝑥𝑒 ,
𝑒
𝑥 ), to measure the deviation between a cardinality 𝑥

and its estimate 𝑒 . The q-error is a relative and symmetric metric.

Essentially all relevant work on ML-based cardinality estimation

employs the q-error [5, 7, 8, 12, 32, 33]. In our evaluation, we con-

sider only queries with non-empty results, and all estimates are

≥ 1. Hence, we can ignore that the q-error is undefined for zero

inputs. Note that the relative error
|𝑒−𝑥 |
𝑥 is an insufficient metric

for its systematic preference to estimators that underestimate

[28].

Experimental setup. All QFTs are implemented in Python.

For the NN, we use the Keras/TensorFlow implementation pro-

vided by the authors of [32]. The GB models are built with light-

GBM. MSCN and its modifications are built upon the code pub-

lished alongside the paper [10]. We ran all experiments on an

AMD A10-7870K Radeon R7 machine with 32 GB memory and

an NVIDIA Tesla K20c. The neural networks are trained only

with the hyperparameters from their papers due to long training

times. The GB models, on the other hand, are trained with full

hyperparameter tuning implying the presented results are based

on the best configurations.

Abbreviations. Throughout this section, the following abbre-
viations serve as labels in plots:

simple Singular Predicate Encoding

range Range Predicate Encoding

conjunctive Universal Conjunction Encoding

complex Limited Disjunction Encoding

GB Gradient Boosting

NN Feed-Forward Network

MSCN Multi Set Convolutional Network

Unless stated otherwise, Universal Conjunction Encoding and

Limited Disjunction Encoding use 64 per-attribute entries each.

5.1 Quality under all QFT ×Model
Combinations

In this section, we analyze the estimation accuracy of all QFT ×
ML model combinations discussed in this paper. Recall that the

new QFTs presented in this paper are Range Predicate Encod-

ing (range), Universal Conjunction Encoding (conjunctive), and

Limited Disjunction Encoding (complex). Singular Predicate En-

coding (simple) serves as a benchmark comparison. The QFTs are

combinedwith theMLmodels feed-forward neural network (NN),

gradient boosting (GB), and Multi-Set Convolutional Network

(MSCN).

Figure 1 shows the estimation errors observed for the forest

data set. As usual, the bottom and top of a box are the 25% and

75% quantiles, and the middle band is the median. The lower and

upper whiskers show the 1% and 99% percentiles, respectively.

All boxplots refer to the conjunctive query workload, except for

Limited Disjunction Encoding. Limited Disjunction Encoding

refers to the mixed query workload, for which, to the best of our

knowledge, no good comparison exists. To indicate this difference,

we separate the plots of Limited Disjunction Encoding via a

vertical line.

We note three things in Figure 1: (1) Given the Singular Pred-

icate Encoding and Range Predicate Encoding QFT, the local

G
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C
N

simple range conjunctive complex

1

10
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1

10
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1
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100
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Figure 1: Error distribution by QFT × ML model combina-
tion. Dataset is forest. Limited Disjunction Encoding shows
errors for mixed query workload. All other QFTs are for
conjunctive query workload.

model choice, GB or NN, does not make a significant difference.

(2) Given the Universal Conjunction Encoding and Limited Dis-

junction Encoding QFTs, GB and MSCN outperform NN. And (3),

given the GB or MSCN model, Universal Conjunction Encoding

and Limited Disjunction Encoding clearly outperform the other

two QFTs.

In Figure 2, we explore the estimation accuracy for different

numbers of attributes mentioned in the queries. We only show

GB since NN underperforms GB over all number of attributes

and MSCN performs worse than GB on joins queries, as will be

shown later. Observe how the accuracy worsens for all QFTs in

the number of attributes. Further observe that Universal Con-

junction Encoding outperforms Singular Predicate Encoding and

Range Predicate Encoding. Note that while disjunctions are gen-

erally regarded as challenging in cardinality estimation, Limited

Disjunction Encoding performs about as well as Universal Con-

junction Encoding.

Figure 3 shows the estimation accuracy by number of predi-

cates in the queries, again only for GB. Note that queries with

two predicates refer to queries with a single range predicate, one

predicate for the lower bound and the other one for the upper

bound. Further, note that queries with three predicates refer to

queries with one closed range predicate from which one value

is excluded via a not-equal predicate. For its limited predicate

encoding abilities, the observation that only Singular Predicate

Encoding struggles with two predicates meets the expectation.

Accordingly, as we go from two to three predicates, we observe

a spike in the 99% error quantile (upper whisker) of Range Predi-

cate Encoding. Observe that the accuracy further worsens as the

number of predicates increases. Universal Conjunction Encoding

and Limited Disjunction Encoding perform more consistently

over varying numbers of predicates.
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Figure 2: Estimation errors per QFT in the number of at-
tributes mentioned in the queries.
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Figure 3: Estimation errors per QFT in the number of pred-
icates in the queries.

For queries containing joins, we report the JOB-light results

in Table 1, which shows for each QFT × ML model combination

the errors of the mean, median, 99% quantile, and maximum.

Since JOB-light consists of only 70 queries, the 99% quantile con-

tains all errors except the worst outlier. For the feed-forward

neural network model, Universal Conjunction Encoding signifi-

cantly outperforms the other two QFTs. Overall, the estimates of

GB + range are best. This comes as no surprise since JOB-light

queries contain at most one point- or range predicate per at-

tribute. Universal Conjunction Encoding was configured to have

Table 1: 70 hand-written JOB-light join queries

model + QFT mean median 99% max

NN + simple 144.47 10.67 2507.34 3331.07

NN + range 110.23 7.60 2050.50 3573.30

NN + conj 19.97 5.74 129.45 134.37

GB + simple 4.03 1.88 34.06 56.39

GB + range 3.92 1.65 29.77 45.51
GB + conj 8.88 1.52 106.10 114.55

Table 2: JOB-light join queries: Local vs. Global Models

model + QFT mean median 99% max

MSCN w/o mods (global) 138.94 11.23 4209 5460

MSCN + conj (global) 119.83 5.26 1465 1811

NN + conj (local) 19.97 5.74 129 134

Table 3: Effect of per-attribute selectivity estimates

model mean median 99% max

GB+conj w/ attrSel 2.65 1.12 20.19 4709.14

GB+conj w/o attrSel 2.93 1.23 25.78 3876.95

GB+comp w/ attrSel 2.95 1.11 18.31 6051.11

GB+comp w/o attrSel 2.92 1.06 16.00 8823.52

NN+conj w/ attrSel 3.65 1.36 19.80 23912.81

NN+conj w/o attrSel 4.00 1.28 16.93 38377.30

NN+comp w/ attrSel 5.08 1.21 37.54 16482.75

NN+comp w/o attrSel 39.74 3.20 268.39 246047.41

8 per-attribute entries for the NN and 32 per-attribute entries for

GB. Limited Disjunction Encoding is not shown since JOB-light

does not contain disjunctions and, hence, the feature vectors of

Limited Disjunction Encoding and Universal Conjunction Encod-

ing are equal.

Recall from Section 2.1.2, that for queries containing joins,

there is a difference between local and global models. While

Table 1 shows only local models, we address global models sepa-

rately in Table 2 and focus on MSCN. MSCN w/o mods refers to
the original MSCN from [12]. MSCN + conj is a modified version

that uses our Universal Conjunction Encoding QFT. Observe that

the errors in MSCN, both on average and over all quantiles, are

significantly reduced with our QFT. In addition, note the gap

between the accuracy of global and local models. Since the local

model NN and the global model MSCN are both neural network

approaches, we again show NN + conj in the last line of Table 2

to illustrate their difference. Observe that NN + conj has sig-

nificantly lower errors than both MSCN w/o mods and MSCN

+ conj. Since the global model MSCN struggles with joins, we

recommend to use local models.

Recall that, in Universal Conjunction Encoding and Limited

Disjunction Encoding, we append per-attribute selectivity esti-

mates to the feature vectors. In Table 3 we investigate the effect

of these estimates. For multiple QFT × ML model combinations,

we show results obtained with per-attribute selectivity estimates

(w/ attrSel) and without per-attribute selectivity estimates (w/o

attrSel). Note that in most cases the difference is marginal. How-

ever, the benefit is that in all except one case, the worst case error

(max) is reduced.
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Table 4: End-to-end run times for the JOB-light in Post-
greSQL

Postgres Our approach True cardinalities

144.95s 142.45s 142.20s

5.2 Comparison with Other Estimators
We identified GB + Universal Conjunction Encoding as the best

estimator for conjunctive queries. For mixed queries (conjunc-

tions and disjunctions), GB + Limited Disjunction Encoding is

our best estimator. In this section, we compare our best query

QFT ×ML model combinations to the following estimators:

• Postgres is the cardinality estimator from PostgresSQL

version 13.2., essentially independence assumption.

• Sampling is a 0.1% Bernoulli sample of the data. The sample

is drawn independently per query.

• Multi-set Convolutional Network (MSCN) without modifica-

tions, where we did not use the optional sampling to solely

judge the prediction accuracy of the ML model itself.

Section 7 describes the above competing estimators in detail.

Figure 4 shows our best and the competing estimators for

both the mixed and conjunctive query workload over the forest

data set. In the plot, the query workload is partitioned by the

number of attributes in each query. We discuss the Conjunctive
Queries first. In the plot, note that all estimators lose accuracy

with an increasing number of attributes. The accuracy of the

Postgres estimator is worse compared to both ML approaches.

For sampling, we observe a familiar phenomenon: It works in

most cases but has large tail errors. MSCN performs well, but

the error varies a lot for different runs as presented in [33]. Note

though the difference between MSCN and our approach (GB +
conj). In some cases, as specified by the number of attributes, we

significantly outperform MSCN.

Looking at the Mixed Queries, we again note that all estimates

worsen in the number of attributes mentioned in the queries. We

observe that the Postgres estimator performs worst. For sampling,

we again note bad tail errors. Our approach (GB + complex) has
a slightly larger median and 75% error but significantly lower

99% errors than sampling. Since the standard implementation of

MSCN does not support disjunctions, its performance cannot be

demonstrated for this query workload.

5.3 End-to-End Performance
We integrated Universal Conjunction Encoding with a global

neural network into the PostgresSQL database system. The goal

is to measure the improvement in query run times over Post-

gresSQL with its standard cardinality estimator. We report the

numbers for the JOB-light benchmark in Table 4. Observe that

the run time improves by only 1.7%. At first sight, this comes as a

surprise since, for PostgresSQL’s standard cardinality estimator,

[12] observed a mean q-error of 174 on the JOB-light benchmark

and also Figure 4 indicates weak cardinality estimates. Further

investigation reveals that our run times are close to the run times

with the true cardinalities, as can be observed by the run time

difference of only 0.25s. We believe the only marginal run time

improvement is due to the defensive behavior and limited search

space of the PostgresSQL optimizer. Note that, in commercial

database systems, significantly faster run times for improved

cardinality estimates have been observed [16].
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Figure 4: Our best QFT × ML model combinations (GB +
conj./complex) are compared to established estimators. We
consider both query workloads (conjunctive and mixed)
for the forest data set. The figure shows the q-error distri-
butions for different numbers of attributes in the queries.

Table 5: Accuracy for different feature vector lengths

no. entries Bytes feat. vec.* mean median 99% max

8 72 16.98 1.63 149.51 169.90

16 136 11.49 1.52 111.61 123.06

32 264 8.88 1.52 106.10 114.55
64 520 20.13 1.90 278.45 313.93

256 2136 86.68 1.69 1347.91 1539.26

*Affects only input layer. Rest of model remains the same.

5.4 Feature Vector Length
This section compares the performance of Universal Conjunction

Encoding with different feature vector lengths. In Section 3.2, we

discussed that the number of per-attribute entries in the feature

vector is a parameter that can be varied. Table 5 shows the ac-

curacy for the JOB-light query workload for {8, 16, 32, 64, 256}
per-attribute entries. Note that one additional entry is used for

the per-attribute selectivity estimate (printed in gray in the illus-

tration in Section 3.2). Table 5 shows the memory a feature vector

temporarily occupies for a featurized query. This is equal to the

input layer size of a model. The rest of model stays the same.

The ML model used is GB. We observe that, for the JOB-light

workload, the best choice is 32 per-attribute entries for Universal

Conjunction Encoding. For smaller number of entries, informa-

tion loss dominates, i.e., the feature vector is too far away from a

lossless query featurization, thus causing larger errors. For more

than 32 entries, the ML model struggles to learn the patterns

encoded in the feature vector, which happens when the feature

vector is too long, given the number of training queries.
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5.5 Concept Drift
This section is concerned with how well eight QFT × ML model

combinations generalize to unseen input/output pairs. In partic-

ular, concept drift describes the change of input and/or output
characteristics. We make the following observation.

Key observation. At any point in time, the data stored and/or
queries executed in a DBMS may change abruptly and drastically.

This observation does not apply to all machine learning tasks.

For instance, cats in image recognition usually do not change

their shape abruptly and drastically (evolution takes time).

5.5.1 Query Drift. This section presents an experiment where

we simulate query drift. In this experiment, we use query work-

loads with different characteristics for training and testing. Low-
dimensional queries, mentioning at most two distinct attributes,

are used for training. For testing, high-dimensional queries, men-

tioning at least three distinct attributes, are used. Here, the changed

feature vectors are query drift for the MLmodel. In particular, the

more attributes mentioned in the predicates of a query, the fewer

entries are set to 1 in the query’s feature vectors. In addition, the

output characteristics, i.e., the query result sizes, change, making

it hard for a model to generalize. The low-dimensional queries,

used for training, have a mean query result size of 174 566 and

307 093 for the conjunctive and mixed workload, respectively.

The high-dimensional queries, used for testing, however, have

mean query result sizes of only 79 805 and 131 376. Hence, to

maintain a good estimation accuracy during testing, the model

must, on average, produce estimates less than half as large as

during training. Figure 5 shows the corresponding plots. The

rows with 3, 5, and 8 attributes correspond to the test queries.

The rows with 1 or 2 attributes correspond to the training queries,

which we normally do not show, but are meant to illustrate the

impact of the query drift. For GB, all featurizations generalize

well. This can be observed by comparing Figure 5 to Figure 2,

which shows the same aspects but without query drift. Taking a

closer look, note that the 99% quantile error for the 8-attributes

case is larger in Figure 5 than it was in Figure 2. The right col-

umn of Figure 5 illustrates the case for the NN. For NN, a clear

difference between low-dimensional training queries (≤ 2 at-

tributes) and high-dimensional test queries (> 2 attributes) can

be noted. The notable difference indicates that the NN overfits

during training, but less for Limited Disjunction Encoding and

Universal Conjunction Encoding.

5.5.2 Data Drift. Over time, the data stored in a database

changes and all cardinality estimators become outdated. In ML,

this is known as data drift. This section discusses how to react to

data drift. We start by reporting measured run times for learning

an estimator for 125k mixed queries for the forest data set. Note

though that only 100k of the queries are used for training. We

spend 3.5 days generating the queries and 1.5 minutes for fea-

turization. The training depends on the model: 6 seconds for GB,

21 minutes for NN, and 41 minutes for MSCN. Based on these

numbers, we conclude that how to obtain queries and result car-

dinalities is critical. In Snowflake [27], queries and their result

cardinalities can be derived from query logs or profiles. Featur-

ization and training are rather cheap, in particular for estimators

like GB. Since reinforcement learning is slow when looking at

cumulated run times [22], we simply recommend to reconstruct

models after data drift occurred. For deciding when to recon-

struct, we recommend to follow Larson et al. [15], who propose

to base the decision on query feedback.
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Figure 5: Training on queries with up to two attributes
in query. Testing on queries with at least three attributes.
Not all featurization/model combinations compensate this
query drift well.

Table 6: Average estimation error for different
model/size/featurization combinations. Forest data
set.

training GB

queries conj comp range simple

10k 5.96 4.71 58.23 76.93

20k 4.31 4.11 56.07 63.98

30k 3.83 3.79 45.82 58.32

40k 3.43 3.83 43.74 54.23

50k 3.24 3.72 32.48 51.20

100k 2.93 2.96 32.50 47.29

training NN

queries conj comp range simple

10k 28.44 17.91 283.20 386.20

20k 19.70 12.18 232.70 325.50

30k 13.15 10.44 98.17 267.80

40k 19.56 5.88 70.69 313.70

50k 8.32 4.45 57.37 149.02

100k 5.71 5.08 74.2 130.3

5.6 Training Convergence
We report on how the average error changes in the number of

training queries in Table 6. First, we observe that for all QFT

× ML model combinations, the average error decreases, as the

number of training queries increases. Next, note that the errors

for NN are significantly larger than for GB. Finally, observe that,

given the number of training queries, Universal Conjunction

Encoding and Limited Disjunction Encoding have significantly

smaller average errors for both GB and NN than the other QFTs.

5.7 Time & Memory Consumption
In Table 7, we report on the time consumption of each QFT. The

table shows the average time to featurize the forest workload
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Table 7: Time consumption of QFTs for forest dataset

QFT Simple Range Conj. Comp.

𝜇s per query 21.6 29.7 43.2 72.9

queries. We note two things: (1) All QFTs run fast. All QFTs

take significantly less than 100𝜇s to featurize a query. (2) The

time to featurize a query grows in the complexity of the QFT,

with Singular Predicate Encoding being the fastest and Limited

Disjunction Encoding being the slowest.

We also report on the memory consumption of each estima-

tor considered in this evaluation. Since Postgres relies on inde-

pendence and uniformity assumptions, its estimator’s memory

footprint is negligible. For sampling, the size of a 0.1% sample de-

pends on the data. For the forest dataset (142 MB in the Postgres

DB), the sample consumes around 142 kB. For MSCN, unfortu-

nately, we cannot report the exact memory consumption, but

only a lower bound of 320 kB based on the number of trainable

parameters. Gradient boosting (GB) is the smallest estimator with

only 4.8 kB memory consumption. Thus, we confirm results from

[5], who observed that ML models can be small. The NN is the

largest estimator with a footprint of more than 1 MB.

6 DISCUSSION
This section discusses extensions and limitations of our approach

to make it applicable for general-purpose cardinality estimation.

GROUP BY clauses. To the best of our knowledge, thus far, only
Kipf et al. [11] covered GROUP BY clauses in ML-based cardinality

estimation. However, GROUP BY clauses can significantly impact

query result sizes. We outline how to featurize GROUP BY clauses

such that combination with any QFT is easy. Suppose a binary

vector with as many entries as attributes in the table under con-

sideration, and we have defined some arbitrary mapping from

attributes to vector entries. Then, this vector exactly describes

the GROUP BY clause by setting the entry of each of the grouping

attributes to 1. For instance, suppose we have the 5 attributes 𝐴1

to 𝐴5, then 01010 exactly corresponds to the clause GROUP BY
A2, A4.

String predicates. The state-of-the-art approach to support

strings is to use a dictionary encoding [33]. This approach works

for equality predicates. However, range predicates could only be

supported for sorted dictionaries, and C like a% predicates are

not supported at all. The problem is that they cannot be encoded

in the feature vector. However, Universal Conjunction Encoding

and LimitedDisjunction Encoding naturally support the encoding

of such predicates. Consider, for example, a column where all

entries are strings of lower case letters, i.e., [a-z]*. With 26

entries in the per-attribute vector, each entry corresponds to the

most significant letter of a word, e.g. words starting with d are
represented by the fourth entry. For enhanced accuracy, more

entries can be used.

Inclusion-Exclusion Principle. Yang et al. [33] noted that

the inclusion-exclusion principle (IEP) helps them with queries

that contain disjunctions of predicates, which they cannot featur-

ize. Here, we go into detail to show that the IEP is not a practical,

i.e., efficient, solution. The reason is that IEP replaces one cardi-

nality estimation problem with many. In particular, for a query

with𝑛 predicates connected by OR, the IEP states that an estimate

for the result cardinality is obtained by solving 2
𝑛 − 1 cardinality

estimation problems whose results must then be accumulated.

For the exact formula, we refer to [2]. Here, we present an illus-

trative example: Consider a query with the WHERE clause: 𝑝1 OR
𝑝2 OR 𝑝3, where each 𝑝𝑖 is a predicate like A > 5. Let |𝑝1∨𝑝2∨𝑝3 |
denote the cardinality of the query result. Then, according to the

IEP, |𝑝1∨𝑝2∨𝑝3 | can be computed as:

|𝑝1 | + |𝑝2 | + |𝑝3 | − |𝑝1∧𝑝2 | − |𝑝1∧𝑝3 | − |𝑝2∧𝑝3 | + |𝑝1∧𝑝2∧𝑝3 |.
Note how the cardinality of a single query with 𝑛=3 predicates

connected by OR is computed via 2
3 − 1 = 7 query result cardi-

nalities, each of which must be estimated, and might introduce

errors. Hence, we believe the practical approach is to have QFTs

that allow to featurize disjunctions of predicates.

7 RELATEDWORK
This section discusses related work. First, we discuss established,

non-ML cardinality estimation. Then, ML-based cardinality esti-

mation techniques are discussed.

The first cardinality estimation technique is by Selinger et al.

[25] and is commonly referred to as independence assumption.

For instance, Postgres implements this estimator. In fact, the per-

selection-predicate estimates rely on uniformity assumptions,

i.e., it is assumed that each value in the domain has the same

frequency. The overall estimate is calculated as the product of

the per-selection-predicate estimates. Many DBMS use frequency

histograms to avoid the uniformity assumption [9, 21].

Another established method for cardinality estimation is sam-

pling. In Bernoulli sampling, one draws a random sample 𝑅′ from
table 𝑅, hence each tuple from 𝑅 is drawn independently and with

the same probability. Let |𝑅′ (𝑄) | denote the number of tuples

in 𝑅′ that satisfy the predicates in some query 𝑄 and suppose

that 𝑅′ is a 𝑝 percent sample of 𝑅, then the final cardinality esti-

mate is
|𝑅′ (𝑄 ) |

𝑝 . For join size estimation, Correlated sampling [29]
or Two-Level Sampling [3] give better estimates than Bernoulli

sampling.

Many sketches for specific estimation problems were invented,

e.g.,. HyperLogLog [6] for estimating the number of distinct

values in an attribute. Several join size sketches are described

in [24]. An approach to incorporate selection predicates is pre-

sented in [20].

For the rest of this section, we focus on well-known ML-based

cardinality estimation techniques and their connection to QFTs.

Kipf et al. featurize queries into different sets and learn their

cardinalities with a specific Multi Set Convolutional Network

(MSCN) architecture [12]. This approach supports both base table

and join size estimates with multiple predicates. However, its

QFT is lacking domain knowledge and explainability, since it

learns an implicit black box featurization through its structure

during training.

Woltmann et al. [32] extend [12] to handle arbitrary subsets

of a database schema by training several local models. Whereas

this approach reduces the disadvantages of Kipf et al., this work

only examines one type of QFT for one predicate per attribute.

Naru [33] uses autoregressive models to learn the conditional

joint probability of point queries. This introduces overhead for

range queries since their estimate is the sum over multiple point

queries. Additionally, the order of attributes needs to be fixed,

which makes generalization difficult. Note that both [12, 33] com-

bine their approach with sampling to achieve their best results

in terms of estimation accuracy. Naru uses a very simple QFT

that also only allows one predicate per attribute. The authors

do not present details about its impact on the models’ quality.

A similar approach by Hasan et al. [7], who acknowledge the
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impact of query featurization on the models’ quality but do not

further research in this direction.

Dutt et al. [5] present similar approaches to [12, 32], but fo-

cus on the estimator models’ complexity, like memory footprint

and training time. This work supports gradient boosting as a

lightweight model architecture but does not detail the impact of

QFTs.

DeepDB [8] is a workload-independent approach. It uses Sum-

Product-Networks (SPN) to model distributions on the base table

level and to combine their outputs for multi-predicate queries

over joins without the requirement of labeled example queries.

However, it relies to some extent on sampling for finding match-

ing join attributes for the construction of SPN. Similar to Kipf

et al., DeepDB implicitly learns a black box featurization for

queries.

8 CONCLUSION
We presented three new query featurization techniques (QFTs)

and their impact on learning-based cardinality estimation. To

the best of our knowledge, we are the first to consider queries

containing both conjunctions and disjunctions of predicates for

learning-based cardinality estimation. Previous QFTs either do

not support disjunctions or only by rewriting to conjunctions.

One key aspect of our work is to formally define desired prop-

erties of QFTs, i.e., lossless query featurization. Our QFTs are

derived from this definition. The experimental evaluation indi-

cates that using our QFTs leads to more accurate cardinality

estimates. We find that our QFTs are robust since we examine the

query workloads from different view points, like the number of

predicates, attributes mentioned, and also query drift. In addition,

our QFT ×ML model combinations compete well against estab-

lished cardinality estimators. We demonstrated that our QFTs are

model-independent by using them as a plug-in featurization layer

for existing ML models. Hence, other researchers may choose to

use our QFTs for their work on ML models.

For further research, one can test the influence of our QFTs

with even more established ML model architectures to improve

their estimation accuracy. In addition, we aim to support fea-

turization for even broader classes of queries, including queries

with nested sub-queries, arbitrary string predicates, or group-by

clauses.
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