
User Customizable and Robust Geo-Indistinguishability for
Location Privacy

Primal Pappachan

Pennsylvania State University, USA

primal@psu.edu

Chenxi Qiu

University of North Texas, USA

chenxi.qiu@unt.edu

Anna Squicciarini

Pennsylvania State University, USA

acs20@psu.edu

Vishnu Sharma Hunsur Manjunath

Pennsylvania State University, USA

vxh5104@psu.edu

ABSTRACT
Geo-Indistinguishability (Geo-Ind), based on Differential Privacy,

is a popular privacy notion of privacy used for protecting individ-

ual’s location data. Existing approaches, to generate a Geo-Ind

satisfying obfuscation function, rely on a server, as this genera-

tion is computationally expensive. As a result, these obfuscation

functions are not modifiable by users and any customization

will lead to weakening of the Geo-Ind privacy guarantees i.e.,

violation of constraints in the function. A non-customizable ob-

fuscation function can map an individual to an undesirable loca-

tion, leading to poor quality of service. We present a framework

called CORGI, i.e., CustOmizable Robust Geo-Indistinguishability,

which allows users to customize an obfuscation function and

ensure it is robust i.e., after user customization only minimal

number of Geo-Ind constraints are violated. The experimental

results on a real-world dataset demonstrate the effectiveness of

CORGI in generating obfuscation functions that are more robust

against customization by users, e.g., removing 14.28% of loca-

tions from the range of the obfuscation function leads to 18.58%

and 3.07% Geo-Indistinguishability constraint violations, when

the obfuscation function is generated by prior approaches and

CORGI respectively.

1 INTRODUCTION
Many location obfuscation mechanisms have been proposed

for protecting location privacy of individuals [17]. These ap-

proaches, often placed in the context of service provisioning,

transform users’ actual locations into obfuscated locations to

protect their privacy while ensuring the quality of service. Geo-
Indistinguishability (Geo-Ind) is one of the most popular privacy

criteria used in location obfuscation mechanisms [2]. It extends

the well-known Differential Privacy (DP) [10] paradigm to pro-

tect location privacy in a rigorous fashion. To satisfy Geo-Ind, if

two locations are geographically close, their reported obfuscated

locations will have similar probability distributions i.e., given an

obfuscated location, it is hard for an adversary to distinguish a

true location among nearby ones.

When Geo-Ind is used as the privacy criteria, the obfuscation

function is formulated as a Linear Programming (LP) problem
with a large number of Geo-Ind constraints. This complex LP is

solved at a cloud server as users’ devices have limited computa-

tion capability [19, 25, 28]. The obfuscation functions, generated

using such a workflow, tend to be monolithic as it provides the

same obfuscation range and the granularity of location sharing

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

for all users. The obfuscation range is a set of locations from

which an obfuscated location is chosen, and the granularity of

the location determines the size/semantics of the location being

shared (e.g., block, county). Users may have different privacy

needs and utility requirements depending on the context and ap-

plication scenario. Prior work [14, 16] has looked at customizing

the obfuscation range to provide users’ customizability based

on their own privacy/utility needs. However, they focused on

statistical releases of data and not point queries that are used for

sharing location data. [7] extended this and applied it to loca-

tion privacy, where they represented the possible locations of a

user and their indistinguishability requirements using nodes and

edges in a policy graph. Their goal is to ensure Geo-Ind for any

two connected nodes in the graph, and to achieve this, they apply

DP-based noise to latitude and longitude independently. How-

ever, their approach is best suited when locations can be neatly

categorized, i.e., indistinguishability among multiple locations

in the same category (e.g., restaurants). Also, it does not allow

specific customization of an obfuscation function, i.e., remove

my home and office from the obfuscation range.

There are several challenges to be addressed in developing

such a framework that allows users to customize location ob-

fuscation mechanisms generated by an untrusted server. The

first challenge is specifying the customization parameters. Users

should be able to denote their preferred granularity of location

sharing and preferences for obfuscation range. Note that the user

preferences contain private information and should not be shared

with the server that generates the obfuscation function. By allow-

ing users to remove some of the locations from the obfuscation

range, users become active participants in their location-sharing

tasks. However, users’ edits to shareable locations add a signif-

icant risk of violating the Geo-Ind privacy guarantees of the

original obfuscation function. The second challenge, therefore,

pertains to considering the function’s robustness, where robust-

ness is the property by which the obfuscation function maximally

satisfies Geo-Ind constraints after user customization. If the user

customizes a non-robust function, then an adversary with knowl-

edge of the prior probability distribution of the user check-ins

in the area (from publicly available information) may be able

to eliminate location(s) from the obfuscation range (as they are

improbable) and hence increasing their chances of correctly dis-

tinguishing the user’s real location from other nearby locations.

The third challenge is performing these operations efficiently,

as generating such a customizable obfuscation function is an ex-

pensive optimization problem with many constraints. Efficiency

is also a challenge when the user updates their granularity of

sharing, and a new obfuscation function has to be generated.

Series ISSN: 2367-2005 658 10.48786/edbt.2023.55

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.55

We propose a new framework called, CORGI (CustOmizable

Robust Geo Indistinguishability), for generating location obfusca-

tion with strong privacy guarantees that effectively allows users

to balance the trade-off among privacy, utility, and customization.

CORGI uses a tree structure which is a semantic representation

of an area of interest; that assists users in specifying their cus-

tomization preferences. The preferences selected by the user are

used to select the obfuscation range and granularity of location

sharing. CORGI utilizes an untrusted server for performing the

computationally heavy task of generating the obfuscation func-

tion while ensuring the user’s privacy. In order to protect the

privacy of the user, the customization preferences are only selec-

tively shared with the server e.g., only the number of locations

to be removed from the obfuscation range and not the exact

locations. The server in CORGI generates a robust obfuscation
function, which would satisfy the Geo-Ind requirements after

user customization. To generate this robust function efficiently,

CORGI minimizes the number of constraints by using a graph
approximation approach. We describe this workflow in more de-

tail in Section 2.2. The experimental results on a real dataset

show that the robust obfuscation function generated by CORGI

is customizable with only a minimal number of constraint vio-

lations compared to the traditional approaches, which are not

robust against customization.

The main contributions of this work are as follows:

⊲ We propose a tree-based approach to assist users in specify-
ing customization preferences. This improves the utility of

location reporting as the number of locations in the obfus-

cation function is lower than traditional non-hierarchical

approaches [21].

⊲ We present a customization preferences model which is

expressed in the form of Boolean Predicates and is selec-

tively shared with the server for the purpose of generat-

ing an obfuscation function. Our customization model is

more expressive than the prior work [7] which focuses

on category-based privacy i.e., indistinguishability among

multiple locations of the same category (e.g., restaurants).

⊲ We develop a new framework for generating obfuscation

functions that are robust against user customization which

includes a graph approximationmethod to reduce the num-

ber of constraints and thus make optimization problems

for obfuscation function generation efficient.

⊲ We design a workflow with interactions between an un-

trusted server that performs computationally heavy tasks

and a user device that performs tasks involving real loca-

tion.

⊲ We evaluate CORGI on samples from multiple regions se-

lected from a real dataset (Gowalla - a social network based

on user check-ins) to evaluate the impact of customization

on utility, and privacy.

The rest of the paper is organized as follows. We introduce

the CORGI framework and describe the key concepts used in

our work in Section 2. In Section 3, we present the tree-based

representation used in this work along with the policy model. In

Section 4, we describe in detail the generation of the customizable

and robust obfuscation function for each user. We present in

Section 5, the architecture of our framework and detail the control

flow on the user and server side. In Section 6, we evaluate our

approach on a real dataset and compare it against a baseline. In

Section 7 we go over the related work and we conclude the work

by summarizing our contributions in Section 8.

2 PRELIMINARIES
In this section, we introduce the CORGI framework (Section

2.2) and the preliminaries (Section 2.1) of our geo-obfuscation

approach.

2.1 Background
In this section, we formalize key concepts and notions for our

proposed framework, introduced above.

Table 1: Main notations and their descriptions

Symbol Description

v
𝑖

Location 𝑖 or node 𝑖

V Set of locations or nodes

pv
𝑖

Prior probability of location i

d𝑖,𝑗 Distance between locations/nodes v
𝑖
and v

𝑗

V𝑘 The set of nodes with height 𝑘 in the location tree

T𝑖 A location tree with v
𝑖
as root node

Z𝐾 Obfuscation Matrix at level K

z
𝑖,𝑗

Entry in the matrix at row i and column j

𝛿 Number of location nodes to be pruned

S Set of location nodes to be pruned

Obfuscation matrix. Generally, when considering the obfus-

cation range as a finite discrete location setV = {𝑣1, ..., 𝑣𝐾 }, an
obfuscation function can be represented as a stochastic matrix

Z =
{
𝑧𝑖, 𝑗

}
𝐾×𝐾 [21]. Here, each 𝑧𝑖, 𝑗 represents the probability

of selecting 𝑣 𝑗 ∈ V as the obfuscated location given the real

location 𝑣𝑖 ∈ V . For each real location 𝑣𝑖 (corresponding to each

row 𝑖 of Z), the probability unit measure needs to be satisfied:∑𝐾
𝑗=1 𝑧𝑖, 𝑗 = 1,∀𝑖 = 1, ..., 𝐾, (1)

i.e., the sum probability of its obfuscated locations is equal to 1.

In this paper, we consider the location setV at different granu-

larity levels, and any real location can be only obfuscated to the

locations at the same granularity level (details are introduced in

Section 3.1).

Privacy Criteria. From the attacker’s perspective, the user’s

actual and reported locations can be described as two random

variables𝑋 and𝑌 , respectively. We applyGeo-Indistinguishability
(Geo-Ind) [2] as the privacy criterion for location privacy guaran-

tees:

Definition 2.1. (𝜖-Geo-Ind) Given the obfuscation matrix Z
that covers a set of locationsV at the same granularity level, Z
is called 𝜖-Geo-Ind if and only if for each pair of real locations

𝑣𝑖 , 𝑣 𝑗 ∈ V and any obfuscated 𝑣𝑙 ∈ V
Pr (𝑋 = 𝑣𝑖 |𝑌 = 𝑣𝑙)
Pr

(
𝑋 = 𝑣 𝑗 |𝑌 = 𝑣𝑙

) ≤ 𝑒𝜖𝑑𝑖,𝑗 𝑝𝑣𝑖
𝑝𝑣𝑗

, (2)

where 𝑝𝑣𝑖 and 𝑝𝑣𝑗 denote the prior distributions of 𝑣𝑖 and 𝑣 𝑗 ,

respectively, 𝜖 > 0 is predetermined constant called privacy

budget, and 𝑑𝑖, 𝑗 denotes the distance between 𝑣𝑖 and 𝑣 𝑗 .

Equ. (2) indicates that the posterior of the user’s location es-

timated from its obfuscated location is close to the user’s prior

location distribution and how close they are depends on the pa-

rameter 𝜖 . In other words, an adversary cannot obtain sufficient

additional information from a user’s obfuscated location.

The utility of our approach is measured based on the estima-

tion error in traveling distance due to using obfuscated location

in service provisioning. Given that user’s real location is v
𝑖
, the

659

area of interest

… …

…

location tree

Server
Obfuscation
matrix/function
generation

𝑧𝑧1,1 ⋯ 𝑧𝑧1,𝐾𝐾
⋮ ⋱ ⋮

𝑧𝑧𝐾𝐾,1 ⋯ 𝑧𝑧𝐾𝐾,𝐾𝐾

Matrix Customization

Customization PoliciesUser Customized matrix
Real

location

Report
obfuscated
location

Location-based
applications

Customization
parameters

①

②
③

④ ⑤

⑤

⑥

④

⑤

⑦

Service
Provisioning

Figure 1: Overview of CORGI framework.

obfuscated location generated is v
𝑙
, the target location is v𝑛 , the

utility is given by

𝑈 (v
𝑖
, v
𝑙
, v𝑛) =| dv𝑖 ,v𝑛 − dv𝑙 ,v𝑛 | . (3)

where dv
𝑖
,v𝑛 can be implemented using any relevant distance

function e.g., euclidean distance, haversine formula. If there are

multiple target locations denoted by v
1
, . . . , v

𝑁
, the overall utility

is computed as
1

𝑁

∑𝑁
𝑛=1𝑈 (v𝑖 , v𝑗 , v𝑛).

2.2 Framework
Our problem setting is that of Location Based Services (LBS)where
users share their privatized locations with a server in order to

receive service provisioning. This includes applications where

reporting obfuscated location will directly affect QoS, such as

taxi-hailing applications (e.g., Uber, Lyft), and other applications

where QoS is not affected by obfuscated location, such as locality-

based search engines (e.g., Yelp, Google Reviews), and citizen

science applications (e.g., iNaturalist, eBird). There are three

main actors in our setting: users, third party providers, and a

server. Users wish to share their locations in a privacy-preserving

manner with applications. They specify policies to state their cus-

tomization preferences and have a privacy module/middleware

running on their mobile device or on a trusted edge computer to

assist with location hiding. Third party providers use the priva-
tized locations shared by the user for providing services to the

user. Finally, we have the server, which runs on the cloud with

whom non-sensitive portions of the user preferences are shared

and it takes care of computationally heavy operations. Note that,

while an attacker can eavesdrop on the communication between

the server and the user to obtain the location tree, users’ requests

(including privacy level, precision level, and the number of lo-

cations to be removed), and the generated obfuscation matrix.

However, none of this information reveals anything about the

user’s exact location and does not weaken the Geo-Ind privacy

guarantee of users’ location reported by CORGI. Users do not

trust either the third-party providers or the server with their sen-

sitive location information or preferences. Figure 1 introduces

the flow of CORGI and interactions among these three actors:

1○ The server generates a spatial index/location tree for an area

of interest (Section 3.1).

2○ The location tree is shared with the users in the area to allow

them to specify their preferences (Section 3.2).

3○ CORGI evaluates the preferences on the user side to derive

the customization parameters.

4○ The server obtains the customization parameters and uses

it to determine the privacy budget and generate the robust ob-

fuscation function which guarantees Geo-Indistinguishability.

The obfuscated function is represented by a set of probability

distributions in an obfuscation matrix (Section 4.1).

5○ Users receive the obfuscation function/matrix and customize

it based on their needs (Section 4.3)
1
.

6○ 7○ This customized obfuscation function is utilized to deter-

mine the user’s obfuscated location, to be shared with location-

based applications owned by third-party providers for the pur-

pose of service provisioning.

3 MODELS
In this section, we introduce the models, including the location

tree model (Section 3.1), i.e., how we organize locations at differ-

ent granularity levels in a tree structure, and the user customiza-

tion policies (Section 3.2), i.e., what attributes are considered in

the customization.

3.1 Location Tree Model
We build a hierarchical index over a given spatial region for

location representation. We design a tree-like structure, called

location tree, where each level of the tree represents a particu-

lar granularity of location data, with finer levels of granularity

represented at lower levels of the tree. This representation of

locations is intuitive and makes it easier for users to specify the

granularity of location sharing, that they are comfortable with.

In general, a tree can be represented by T = (V, ≺), where
V denotes the node set and ≺ describes the ordered relationship

between nodes, i.e., ∀v
𝑖
, v
𝑗
∈ V, v

𝑗
≺ v

𝑖
means that v

𝑗
is a child

of v
𝑖
. ∀v

𝑖
∈ V, we let N

(
v
𝑖

)
denote the set of v

𝑖
’s children,

i.e., N
(
v
𝑖

)
=

{
v
𝑗
∈ V

���v𝑗 ≺ v
𝑖

}
. Here, we slightly overload the

notation by letting 𝑣𝑖 denote both location 𝑖 and its corresponding

node in the location tree. Given these notations, we formally

define a location tree as follows:

Definition 3.1. (Location Tree) A location tree T = (V, ≺) is
a rooted tree, where

⊲ the root node v
r
∈ V represents the whole area

⊲ the tree is balanced and leaf nodes are

{
v
1
, . . . , v

𝐾

}
;

⊲ for each non-leaf node v
𝑖
∈ V, its children v

𝑗
∈ N

(
v
𝑖

)
represent a partition of v

𝑖
, i.e., locations in N

(
v
𝑖

)
are dis-

joint and their union is v
𝑖
.

We partition the node setV in the location tree into𝐻+1 levels:
V0

, . . .,V𝐻
, where 𝐻 is the height of the tree (i.e., the number

of hops from the node to the deepest leaf).V0
represents the set

of leaf nodes. We define obfuscation in a location Tree (V, ≺) as
a function that maps a given real location v

𝑖
∈ V𝑛 to another

location v
𝑘
∈ V𝑛 and both nodes are at the same level 𝑛.

We generate this location tree using Uber’s H3
2
hexagonal

hierarchical spatial index. For an area of interest, H3 takes as

input the relevant longitude and latitude, along with resolution

(between 0 and 15, with 0 being coarsest and 15 being finest)

and outputs a hexagonal grid index (as illustrated in Figure 2).

H3, then, partitions the area into contiguous hexagonal cells of

the same size based on the resolution level. As H3 keeps the dis-

tance between the center point of a hexagon and its neighboring

cells consistent, it is a better candidate for representing spatial

relationships than grid-based systems such as Geohash. Figure 2

illustrates the location tree generated for Times Square, New

York. Blue nodes at the highest granularity represent the leaf

nodes. Red and green nodes at lower granularity represent the

intermediate nodes. The root node encompasses the entire region.

1
Matrix customization operations can be done on a trusted edge server if user

device lacks the computational capability

2
https://eng.uber.com/h3/

660

root

8cc1.. 8cc6..

38cc0.. 38cc5.. 38cc7.. 38cc9..

87fff.. 97fff.. 17fff..07fff..

Figure 2: Location Tree of 3 levels generated using H3.

Nodes in each level do not overlap with each other. Our approach

to location representation is inspired by previous works on spa-

tial indexing such as R-Tree proposed by Beckmann et. al [5]. In

Beckmann’s approach, however, location nodes can overlap and

are not disjoint partitions. In our cases, if any two location nodes

overlap, it is hard to assess whether these two locations satisfy

𝜖-Geo-Ind (Equation (2)) or not as a user can be in both of these

nodes simultaneously.

3.2 User Customization Policies
Users express customization preferences byway of policies. These

policies help determine the properties of the final obfuscation

function that is generated. A policy captures users’ customization

requirements as follows:

< 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑙 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑙 , 𝑈𝑠𝑒𝑟_𝑃𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 >

Privacy level or 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑙 is a user-set parameter that deter-

mines the obfuscation range i.e., the set of locations/nodes from

which users’ obfuscated location is selected. Given a policy P
with privacy_l = 𝑛, a privacy forest is the set of all sub-trees with
nodes at level 𝑛 as their root. Thus, the privacy forest contains

all the possible locations that can be reported as obfuscated loca-

tions. As Figure 3 shows, if a user selects privacy level 𝑛, we first

determine the nodes at height 𝑛 (V𝑛) which forms the privacy

forest. Accordingly, a higher privacy level implies a wider range

of obfuscated locations to select for users. In Figure 3, the red

and blue colored subtrees indicate two different user policies

both of which specify their privacy level as 2 but with the cor-

responding user at different real locations. For a particular user,

if v is the ancestor of the user’s real location at height 𝑛, the

sub-tree with v as the root node includes all the locations that

the user could report. The server can use privacy level to limit

the number of locations in the obfuscation matrix for this user,

and accordingly, reduce the overhead of generating it as well as

improve the utility of location reporting compared to traditional

approaches [21]. The privacy level also provides the flexibility

for the user to specify the range of locations they are comfort-

able sharing. Note that, when a user selects a different privacy

level, the obfuscation range is changed but the privacy budget

𝜖 remains the same, indicating that the same level of Geo-Ind

(quantified by 𝜖) is guaranteed no matter which privacy level is

selected by the user.

Precision level (Precision_l) specifies the exact granularity at

which the user reports their locations (e.g., neighborhood or

block). For example, if a user requires the precision level to be

1, then their reported location/node is restricted to the set of

nodes in level i.e.,V1
. Thus Precison_l gives users the flexibility

to reduce the granularity at which location is shared depending

on their needs. As the privacy level is the maximum possible

granularity for location sharing, the precision level is always

lower than the privacy level.

User Preferences specify users’ preferred options for location

User privacy

request

Privacy forest

Level H
(root node)

subtree subtree

…

Level n

… ……

Level 0

subtree 𝒯𝑖

Level n
(Privacy level)

Level h

… …

…
Indistinguishable

Level 0
(leaf node)

𝑣𝑖

𝒱𝑖,ℎ

Figure 3: Tree-based geo-obfuscation.

selection and further narrows down the obfuscation range and

therefore reduces the number of locations/nodes in the matrix.

These may be expressed in a variety of ways, depending on the

application at hand and the users’ requests (e.g.black lists of lo-

cations, dynamic checks, etc). An intuitive approach is to encode

preferences as Boolean predicates in the form < var, op, val>
where var denotes commonly used preferences for location shar-

ing such as home, office, traffic, weather, driving_distance, etc;

op is one among {=,≠, <, >, ≥, ≤} depending upon the variable;

and val is assigned from the domain of the var.
An example of a policy modeled using these 3 attributes is as

follows: <privacy_l = 3, precision_l = 0, user_preferences = [popu-
lar = “True”, distance ≤ 5 miles] This customization policy states

that the user would prefer to have the privacy forest with nodes

from level 3 (privacy_l = 3) and the nodes in this privacy for-

est represent their obfuscation range. From this set of possible

locations, any of them which are not popular (determined us-

ing prior distribution), and has a distance higher than 5 miles

from their real location should not be considered for reporting

(user_preferences). Finally, when generating their obfuscated

location, they would like it to be at the granularity of level 0

(precision_l = 0) i.e., the leaf nodes.

4 GENERATING ROBUST OBFUSCATION
MATRIX

We describe how to generate a robust obfuscation matrix, that

preserves strong privacy guarantees while meeting users’ cus-

tomization policies, using the location tree. This is non-trivial, as

introducing additional constraints based on policies affects the

ability to obfuscate locations within certain regions and limits the

range of possible obfuscated locations. In the rest of this section,

we describe how to generate the obfuscation matrix based on

the users’ customization requirements < 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑙 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑙 ,

𝑈𝑠𝑒𝑟_𝑃𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 >. In Section 4.1, we introduce how to gener-

ate the obfuscation matrix, based on the location tree, given users’

requested privacy level 𝑃𝑟𝑖𝑣𝑎𝑐𝑦_𝑙 using linear programming (LP)
(formulated in Equ. (8)). As the number of Geo-I constraints in

the LP is high, next, we present a graph approximation to reduce

the number of the Geo-I constraints and improve the efficiency

of the matrix generation (Section 4.2). We then customize the

obfuscation matrix according to𝑈𝑠𝑒𝑟_𝑃𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝑠 by removing

locations based on user preferences (Section 4.3). Since removing

locations might cause the Geo-I constraint violations in the ma-

trix, we design how to generate a robust matrix to satisfy Geo-I

constraints even after being customized (Section 4.4). Finally, we

describe how to generate the matrix at the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑙 requested

by the user starting from the original matrix (Section 4.5).

661

Graph

approximation

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣10

𝑣11

𝑣12

𝑎

(a) Build edge (b) Graph

𝑣𝑗

Figure 4: Graph approximation.
*(a) Build 12 edges connected to 𝑣1: 𝑒 𝑗,1, ..., 𝑒 𝑗,12. The distance from
𝑣1, ..., 𝑣6 to 𝑣𝑗 is 𝑎; and the distance from 𝑣7, ..., 𝑣12 to 𝑣𝑗 is

√
3𝑎.

4.1 Feasibility Conditions for Geo-I
Given a user’s requested privacy level 𝑛, the nodes at level 𝑛

(v
𝑖
∈ V𝑛) and their children nodes (N

(
v
𝑖

)
) represent the possible

set of obfuscated locations for a user. As the server does not know

the user’s real location or the subtree that contains user’s real

location, it has to generate an obfuscation matrix for each node

v
𝑖
based on the leaf nodes in N

(
v
𝑖

)
. The server then returns

all the generated obfuscation matrices to the user, and the user

selects the obfuscation matrix according to their real location.

Suppose users want to report a location with lower granularity

than the leaf nodes for which the matrix is generated, they can

do by applying precision reduction (discussed in Section 4.5) to

generate the obfuscation matrix at the desired precision level.

Next, we introduce how to generate feasible obfuscation ma-

trices of each subtree rooted at level 𝑛. Suppose that 𝑣𝑖 is a node

at level 𝑛, then we use T 𝑖 to denote the subtree rooted at 𝑣𝑖 and

letV𝑖,0 denote the set of leaf nodes in T 𝑖 , as shown in Fig. 3.

We use Z0 =
{
𝑧𝑘,𝑙

}
|V𝑖,0 |× |V𝑖,0 | to represent the obfuscation

matrix of T 𝑖 at precision level 0 (the highest precision level). We

call Z0 is feasible if only if both 𝜖-Geo-Ind (general case is defined
in Equ. (2))

Pr
(
𝑋 = 𝑣 𝑗 |𝑌 = 𝑣𝑙

)
Pr (𝑋 = 𝑣𝑘 |𝑌 = 𝑣𝑙)

≤ 𝑒𝜖𝑑𝑖,𝑗
𝑝𝑣𝑗

𝑝𝑣𝑘
,∀𝑣 𝑗 , 𝑣𝑘 , 𝑣𝑙 ∈ V𝑖,0 (4)

and probability unit measure∑︁
𝑣𝑙 ∈V𝑖,0

𝑧𝑘,𝑙 = 1, ∀𝑘 ∈ V𝑖,0, (5)

are satisfied. We let Q = 𝑣1, ..., 𝑣𝑀 denote a set of places of inter-

ests which in our problem setting are locations where service is

requested for e.g., passenger pickup. Given the target location

𝑣𝑞 ∈ Q, the actual location 𝑣𝑘 of a user, the obfuscated location

𝑣𝑙 , the expected estimation error of moving distance caused by

obfuscation matrix Z0 is obtained by

Δ𝑞
(
Z0

)
=

∑︁
𝑣𝑘 ∈V𝑖,0

Pr (𝑋 = 𝑣𝑘)
∑︁

𝑣𝑙 ∈V𝑖,0
𝑧𝑘,𝑙𝑈 (v𝑘 , v𝑙 , v𝑞). (6)

Given the probability distribution of target locations Pr
(
𝑄 = 𝑣𝑞

)
,

then we can define the quality loss as the expected estimation

error of moving distance as

Δ
(
Z0

)
=

∑︁
𝑣𝑞 ∈V𝑖,0

Pr
(
𝑄 = 𝑣𝑞

)
Δ𝑛

(
Z0

)
(7)

Z0
is generated by solving the following linear programming

(LP) problem

min Δ
(
Z0

)
s.t. Equ. (4) (5) are satisfied (8)

i.e., minimize the expected estimation error of moving distance

using the matrix Z0
to all the target locations. Once Z0

is gen-

erated, it will be delivered to the user and they are allowed to

customize Z0
based on evaluation of User_Preferences (Section

4.3) and selection of the desired granularity level (Section 4.5).

While customizing, users select to remove a certain number of

locations from the obfuscation range, and this results in a pruning

of the matrix. Note that, after Z0 is pruned, the new matrix might

no longer satisfy the Geo-I constraints in Equ. (4) (the details

of matrix pruning will be introduced in Section 4.3). Intuitively,

to avoid this potential privacy issue, we need to reserve more

privacy budget when formulating the 𝜖-Geo-Ind constraints and

generate a more robust matrix that allows users to remove up to a

certain number of locations in the matrix without violating Geo-I.

The details of generating such a robust matrix will be given in

Section 4.4.

4.2 Graph approximation to reduce the
number of Geo-I constraints

According to the definition of Geo-Ind in Equ. (4), for each column

(location) of the obfuscation matrix Z0, an 𝜖-Geo-Ind constraint

is generated for pairwise comparison of all locations, leading to

a total of 𝑂 (𝐾3) constraints. This generates a very high compu-

tation load to derive Z0
. To improve the time efficiency of the

matrix calculation, we approximate the users’ mobility on the

2D plane by a graph, where it is sufficient to enforce 𝜖-Geo-Ind

for each pair of neighboring nodes (Theorem 4.2), to enforce the

𝜖-Geo-Ind constraints for all pairs of nodes. This reduces the

number of constraints in LP from𝑂 (𝐾3) to𝑂 (12×𝐾2) = 𝑂 (𝐾2).
The method for approximating the hexagonal grid to a graph

is illustrated in Figure 4. We connect each node 𝑣𝑖 to not only the

6 immediate neighbors (denoted by 𝑣1, ..., 𝑣6) but also the 6 other

diagonal neighbors (denoted by 𝑣7, ..., 𝑣12). We let 𝑎 denote the

distance between the immediate neighbors, computed based on

the distance between their center points, and therefore the weight

of each edge is set to 𝑎. Then, we can obtain a weighted graph

G as Fig. 4(b) shows. The length of the shortest path between

any pair of nodes 𝑣 𝑗 and 𝑣𝑘 on the graph, denoted by 𝑑G (𝑣 𝑗 , 𝑣𝑘).
Since the graph is undirected, we have 𝑑G (𝑣 𝑗 , 𝑣𝑘) = 𝑑G (𝑣𝑘 , 𝑣 𝑗),
∀𝑣 𝑗 , 𝑣𝑘 ∈ V𝑖,0. To ensure that 𝜖-Geo-Ind on G to be a sufficient

condition of the original 𝜖-Geo-Ind constraint defined on the 2D

plane, we need to guarantee that 𝑑G (𝑣 𝑗 , 𝑣𝑘) is no longer than

their Euclidean distance d𝑗,𝑘 , i.e., 𝑑G (𝑣 𝑗 , 𝑣𝑘) ≤ 𝑑 𝑗,𝑘 (the reason

will be further explained in the proof of the Theorem 4.2). We

first introduce Lemma 4.1 as preparation for Theorem 4.2.

Lemma 4.1. ∀𝑣 𝑗 , 𝑣𝑘 ∈ V𝑖,0, 𝑑G (𝑣 𝑗 , 𝑣𝑘) ≤ 𝑑 𝑗,𝑘 .

Proof. We consider the two locations 𝑣𝑘 and 𝑣 𝑗 on a polar

coordinate system, where 𝑣 𝑗 is located at the origin point. We use

[𝑟𝑘 , 𝜑𝑘] to represent 𝑣𝑘 ’s polar coordinate, where 𝑟𝑘 ≥ 0 denotes

the radial coordinate and 𝜑𝑘 ∈ (−𝜋, 𝜋] denotes the angular coor-
dinate. As Fig. 5 shows, there are 6 different cases according to the

value of 𝜑𝑘 : Case 1: 𝜑𝑘 ∈
(
−𝜋

6
, 𝜋
6

]
, Case 2: 𝜑𝑘 ∈

(
𝜋
6
, 𝜋
2

]
, Case 3:

𝜑𝑘 ∈
(
𝜋
2
, 5𝜋
6

]
, Case 4: 𝜑𝑘 ∈

(
5𝜋
6
,− 5𝜋

6

]
, Case 5: 𝜑𝑘 ∈

(
− 5𝜋

6
,−𝜋

2

]
,

and Case 6: 𝜑𝑘 ∈
(
−𝜋

2
,−𝜋

6

]
. In what follows, we prove that

Lemma 4.1 is true in Case 1, where the conclusion can be applied

to the other 5 cases due to the symmetricity of the 6 cases.

Case 1 can be further divided into two cases: Case 1(a) when

𝜑𝑘 ∈
[
0, 𝜋

6

]
, and Case 1(b) when 𝜑𝑘 ∈

[
11𝜋
6
, 0

]
.

In Case 1(a), we can always find a location 𝑣1 that is 𝑢 hops

away from 𝑣 𝑗 in the direction of
𝜋
6
and𝑤 hops away from 𝑣𝑘 in

662

Case 1(a)

Case 2

Case 4

Case 5

Case 1(b)

Case 6

𝑣𝑗

…

…

𝑣𝑗

𝑣𝑘

𝑣1

𝑣2 𝑣3

𝑢 × 𝑎
𝑤 × 𝑎

𝑢 × 𝑎 𝑤 × 𝑎

120𝑜

𝑣𝑗

𝑣𝑘

𝑣1

𝑣2 𝑣3

𝑢 × 𝑎
𝑤 × 𝑎

𝑢 × 𝑎 𝑤 × 𝑎

120𝑜

Figure 5: Proof of Lemma 4.1

the direction of
2𝜋
3
. Starting from 𝑣1 and 𝑣𝑘 , if we move in the

direction of
2𝜋
3
, we can find a location 𝑣2 and 𝑣3 with the radial

coordinate equal to 0. The number of hops from 𝑣1 to 𝑣 𝑗 is equal

to the number of hops from 𝑣2 to 𝑣 𝑗 (𝑢 hops). The number of

hops from 𝑣𝑘 to 𝑣1 is equal to the number of hops from 𝑣3 to 𝑣2
(𝑤 hops). Note that the length of each hop in the graph is 𝑎. In

Case 1(b), we can always find a location 𝑣1 that is 𝑢 hops away

from 𝑣 𝑗 in the direction of −𝜋
6
and𝑤 hops away from 𝑣𝑘 in the

direction of −𝜋
3
. Similarly, we can find the corresponding 𝑣2 that

is 𝑢 hops away from 𝑣 𝑗 and 𝑣3 that is 𝑤 hops away from 𝑣2. In

both Case 1(a)(b), according to the Law of Sines, we obtain that

𝑑 𝑗,𝑘 =
sin ∠𝑣 𝑗𝑣3𝑣𝑘
sin ∠𝑣 𝑗𝑣𝑘𝑣3

𝑑 𝑗,3 ≥ 𝑑 𝑗,3 = (𝑢 +𝑤) 𝑎 (9)

from which we can then derive that (according to the triangle
inequality on a graph)

𝑑G
(
𝑣 𝑗 , 𝑣𝑘

)
≤ 𝑑G

(
𝑣 𝑗 , 𝑣1

)︸ ︷︷ ︸
𝑢×𝑎

+𝑑G (𝑣1, 𝑣𝑘)︸ ︷︷ ︸
𝑤×𝑎

≤ 𝑑 𝑗,𝑘

The proof is completed. □

Theorem 4.2. (Transitivity of 𝜖-Geo-Ind) To enforce 𝜖-Geo-Ind
for each pair of locations, it is sufficient to enforce 𝜖-Geo-Ind only
for each pair of neighboring peers in the graph G.

Proof. We pick up any pair of locations. Without loss of

generality, we denote the two locations by (𝑣1, 𝑣𝑀) and denote

their shortest path by S(𝑣1,𝑣𝑀) = ((𝑣1, 𝑣2) , ..., (𝑣𝑀−1, 𝑣𝑀)). We

then prove that (𝑣1, 𝑣𝑀) satisfies 𝜖-Geo-Ind if all the neighboring
peers satisfy Geo-I.

Since 𝑣1, ..., 𝑣𝑀 are in the shortest path from 𝑣1 to 𝑣𝑀 se-

quentially, d1,𝑀 ≥ 𝑑G (1, 𝑀) =
∑𝑀−1
𝑙=1

𝑑G (𝑣𝑙 , 𝑣𝑙+1) (according
to Lemma 4.1).

Because each neighboring peer (𝑣𝑚𝑙 , 𝑣𝑚𝑙+1) (𝑙 = 1, ..., 𝑀 − 1)
satisfies 𝜖-Geo-Ind, for each obfuscated location 𝑣𝑘 ,

𝑧
1,𝑘 − 𝑒𝜖𝑑1,𝑀 𝑧𝑀,𝑘 (10)

≤ 𝑧
1,𝑘 − 𝑒𝜖

∑𝑀−1
𝑙=1

𝑑G (𝑣𝑙 ,𝑣𝑙+1)𝑧𝑀,𝑘 (11)

=

𝑀−1∑︁
𝑙=1

(
𝑧𝑙,𝑘 − 𝑒𝜖𝑑𝑙,𝑙+1𝑧𝑙+1,𝑘

)
︸ ︷︷ ︸

≤0 since (𝑣𝑙 , 𝑣𝑙+1) satisfy 𝜖-Geo-Ind

𝑒𝜖
∑𝑙−1
ℎ=1

𝑑ℎ,ℎ+1
(12)

≤ 0, (13)

indicating that (𝑣1, 𝑣𝑀) satisfy 𝜖-Geo-Ind. The proof is completed.

□

Note that enforcing 𝜖-Geo-Ind for neighbors in G provides a

sufficient condition for the original 𝜖-Geo-Ind constraints (de-

fined in Equ. (2)), but not a necessary condition, which means

Pruning

Original obfuscation

matrix at level 0

Level L
(root node)

Level 0

… …

…

…

… …

vi vj vk Pruned obfuscation

matrix at level 0

vk

vj

vi

vkvjvi

Figure 6: Matrix pruning (in the figure, v
𝑖
, v
𝑗
, v
𝑘
are the

locations to be pruned).

it might shrink the feasible region of the original LP defined in

Equ. (8), leading to a higher quality loss (Δ
(
Z0

)
).

4.3 Customization by Matrix Pruning
After receiving obfuscation matrices from the server, the user can

select thematrixZ0 based on their real location and can customize

the matrix by removing the locations that do not satisfy their

preferences. For example, in Figure 6, the three nodes marked in

red at Level 0, {v
𝑖
, v
𝑗
, v
𝑘
}, are to be pruned

3
. The 3 corresponding

rows and columns in the matrix Z0
are highlighted and in the

next step, they are removed.

The resulting matrix Z0

∗ is considered feasible, only if it still

satisfies the probability unit measure for each row in the matrix

as per Equ. (1). We denote the set of nodes (that do not satisfy the

user’s preferences) to be removed from thematrix byS (S ⊆ V0
).

After pruning, the new obfuscation matrix Z0∗ is of dimensions

𝑚 ×𝑚 where𝑚 = |V0 − S|. This process called matrix pruning
is carried out as follows:

⊲ Remove the rows and the columns of nodes with indices

in S from Z0 to create Z0∗.
⊲ For each remaining row 𝑖 in Z0∗, multiply each entry in the

matrix z
𝑖,𝑘

by
1

1−∑𝑙∈S z𝑖,𝑙 , i.e., z𝑖,𝑘 ← z
𝑖,𝑘

1−∑𝑙∈S z𝑖,𝑙 .
This ensures that the entries in each row still satisfy the prob-

ability unit measure, i.e.,∑︁
𝑘∈V0\S

z
𝑖,𝑘

=

∑
𝑘∈V0\S z𝑖,𝑘

1 −∑
𝑙 ∈S z𝑖,𝑙

(14)

=

∑
𝑘∈V0 z

𝑖,𝑘
−∑

𝑘∈S z𝑖,𝑘
1 −∑

𝑙 ∈S z𝑖,𝑙
(15)

= 1.

4.4 Ensuring Robustness of Customized
Matrix

After matrix pruning, although the pruned matrix satisfies the

probability unit measure, it might not satisfy 𝜖-Geo-I since in each

column 𝑘 , the entries 𝑧𝑖,𝑘 (𝑖 = 1, ..., 𝐾) are multiplied by different

factors
1

1−∑𝑙∈S z𝑖,𝑙 . We denote the size of the set of nodes to be

pruned from the matrix as 𝛿 i.e., 𝛿=|S|, and define 𝛿-prunable
robust matrix as follows:

Definition 4.3. An obfuscation matrix Z is called 𝛿-prunable if,
after removing up to 𝛿 number of nodes from Z through matrix

3
Even though pruning can be done at any level of the tree, it makes the most sense

to do it for locations at leaf node (at highest granularity) so as to remove only the

exact locations and avoid over-pruning.

663

pruning, the new matrix Z∗ still satisfies 𝜖-Geo-Ind, i.e., ∀𝑖, 𝑗, 𝑘 ,

𝑧𝑖,𝑘

1 −∑
𝑙 ∈S 𝑧𝑖,𝑙

− 𝑒𝜖𝑑𝑖,𝑗
𝑧 𝑗,𝑘

1 −∑
𝑙 ∈S 𝑧 𝑗,𝑙

≤ 0,∀S ⊆ V𝑖,0 s.t. |S| ≤ 𝛿

(16)

In order to make an obfuscation matrix 𝛿-prunable, we need

to reserve more privacy budget 𝜖𝑖, 𝑗 (defined in Equ. (17)) for each

pair of locations 𝑣𝑖 and 𝑣 𝑗 , such that even a certain number of

locations are pruned from the matrix, the Geo-I constraints of 𝑣𝑖
and 𝑣 𝑗 are still satisfied. We now define reserved privacy budget,
denoted by 𝜖𝑖, 𝑗 , as follows.

Definition 4.4. The reserved privacy budget 𝜖𝑖, 𝑗 for each pair of
locations v

𝑖
and v

𝑗
where 𝑖, 𝑗 are their indices in the obfuscation

matrix is given by,

𝜖𝑖, 𝑗 =
1

𝑑𝑖, 𝑗
ln

(
max

S⊆V𝑖,0 s.t. |S |≤𝛿

1 −∑
𝑙 ∈S 𝑧 𝑗,𝑙

1 −∑
𝑙 ∈S 𝑧𝑖,𝑙

)
(17)

Proposition 4.5. A sufficient condition for Z to be 𝛿-prunable
is to satisfy

𝑧𝑖,𝑘 − 𝑒 (𝜖−𝜖𝑖,𝑗)𝑑𝑖,𝑗 𝑧 𝑗,𝑘 ≤ 0,∀𝑖, 𝑗, 𝑘 . (18)

Proof. Given that Equation (18) is satisfied, then for each

column 𝑘 , ∀𝑖, 𝑗,V ′
0
∈ V0 with |V ′

0
| ≤ 𝛿 ,

𝑧𝑖,𝑘

1 −∑
𝑙 ∈V′

0

𝑧𝑖,𝑙
− 𝑒𝜖𝑑𝑖,𝑗

𝑧 𝑗,𝑘

1 −∑
𝑙 ∈V′

0

𝑧 𝑗,𝑙

=
1

1 −∑
𝑙 ∈V′

0

𝑧 𝑗,𝑙

(
1 −∑

𝑙 ∈V′
0

𝑧 𝑗,𝑙

1 −∑
𝑙 ∈V′

0

𝑧𝑖,𝑙
𝑧𝑖,𝑘 − 𝑒𝜖𝑑𝑖,𝑗 𝑧 𝑗,𝑘

)
≤ 1

1 −∑
𝑙 ∈V′

0

𝑧 𝑗,𝑙

(
𝑒𝜖𝑖,𝑗𝑑𝑖,𝑗 𝑧𝑖,𝑘 − 𝑒𝜖𝑑𝑖,𝑗 𝑧 𝑗,𝑘

)
=

𝑒𝜖𝑖,𝑗𝑑𝑖,𝑗

1 −∑
𝑙 ∈V′

0

𝑧 𝑗,𝑙

(
𝑧𝑖,𝑘 − 𝑒 (𝜖−𝜖𝑖,𝑗)𝑑𝑖,𝑗 𝑧 𝑗,𝑘

)
︸ ︷︷ ︸
≤0 according to Equ. (18)

≤ 0.

□

Thus, we can state the minimization problem for robust matrix
generation, min Δ

(
Z0

)
, where the objective function (Equ. (7))

and equality constraints remains the same as earlier (Equ. (5)) but

the inequality constraints are updated to Equ. (18) using reserved

privacy budget.

In order to calculate 𝜖𝑖, 𝑗 in Equ. (17), we need to consider

all the possible subsets of S ⊆ V𝑖,0 with the cardinality no

larger than 𝛿 . The complexity of computing the reserved privacy

budget increases exponentially with 𝛿 . Therefore, we define an

approximation of 𝜖𝑖, 𝑗 , denoted by 𝜖 ′
𝑖, 𝑗

as follows:

𝜖 ′𝑖, 𝑗 =
1

𝑑𝑖, 𝑗
ln

©«
1 −

maxS⊆V𝑖,0 s.t. |S|≤𝛿
∑
𝑙∈S 𝑧 𝑗,𝑙

𝑒
𝜖𝑑𝑖,𝑗

1 −maxS⊆V𝑖,0 s.t. |S |≤𝛿
∑
𝑙 ∈S 𝑧 𝑗,𝑙

ª®®¬ (19)

Proposition 4.6. The matrix generated by replacing 𝜖𝑖, 𝑗 with
𝜖 ′
𝑖, 𝑗

in Equ. (18) is an upper bound of the solution.

Proof.

𝜖𝑖, 𝑗

=
1

𝑑𝑖, 𝑗
ln

(
max

S⊆V𝑖,0 s.t. |S |≤𝛿

1 −∑
𝑙 ∈S 𝑧 𝑗,𝑙

1 −∑
𝑙 ∈S 𝑧𝑖,𝑙

)
≤ 1

𝑑𝑖, 𝑗
ln

©« max

S⊆V𝑖,0 s.t. |S |≤𝛿

1 −
∑
𝑙∈S 𝑧𝑖,𝑙
𝑒
𝜖𝑑𝑖,𝑗

1 −∑
𝑙 ∈S 𝑧𝑖,𝑙

ª®®¬ (as 𝑒𝜖𝑑𝑖,𝑗 𝑧 𝑗,𝑙 ≤ 𝑧𝑖,𝑙)
≤ 1

𝑑𝑖, 𝑗
ln

©«
1 −

maxS⊆V𝑖,0 s.t. |S|≤𝛿
∑
𝑙∈S 𝑧𝑖,𝑙

𝑒
𝜖𝑑𝑖,𝑗

1 −maxS⊆V𝑖,0 s.t. |S |≤𝛿
∑
𝑙 ∈S 𝑧𝑖,𝑙

ª®®¬ = 𝜖 ′𝑖, 𝑗

□

To calculate 𝜖 ′
𝑖, 𝑗
, we need to find the top 𝛿 number of 𝑧 𝑗,𝑙 with

𝑣𝑙 ∈ V𝑖,0, which takes 𝑂 (𝐾 log𝐾) in the worst case. According

to Proposition 4.6, by replacing 𝜖𝑖, 𝑗 with 𝜖
′
𝑖, 𝑗

in Equ. (18), we can

obtain a sufficient condition of Equ. (18).

𝑧𝑖,𝑘 − 𝑒
(
𝜖−𝜖′𝑖,𝑗

)
𝑑𝑖,𝑗
𝑧 𝑗,𝑘 ≤ 0,∀𝑖, 𝑗, 𝑘 . (20)

By replacing Equ. (18) with this sufficient condition expressed in

Equ. (19), we have the robust matrix generation problem which

is an upper bound on the solution.

min Δ
(
Z0

)
s.t. Equ. (20) (5) are satisfied (21)

Algorithm 1: Robust matrix generation

1 Function generateRobustMatrix(V, 𝑃𝑟𝑜𝑏0, 𝛿 , 𝜖 , 𝑡):
2 𝑖 = 0

3 Z
𝑖
[0, 0] . . . [|V| − 1, |V| − 1] = 0

4 Z
𝑖
= LPSolver(V, 𝜖 , 𝑃𝑟𝑜𝑏0)

5 ⊲ Matrix generated by solving Equ. (8)

6 𝑅𝑃𝐵 [0, 0] . . . [|V| − 1, |V| − 1] = 0

7 do
8 𝑖 +=1

9 𝑅𝑃𝐵 = computeRPB(V, Z
𝑖
, 𝛿)

10 ⊲ Reserved Privacy Budget (RPB) using Equ. (19)

11 Z
𝑖
= LPSolver(V, 𝜖 , 𝑃𝑟𝑜𝑏0, 𝑅𝑃𝐵)

12 ⊲ Matrix generated by solving Equ. (21)

13 while 𝑖 ≤ 𝑡
14 return Z𝑡

Algorithm 1 takes as input the set of nodesV, their prior prob-
ability distribution 𝑃𝑟𝑜𝑏0, number of locations to be pruned 𝛿 ,

privacy parameter 𝜖 , and the number of iterations for conver-

gence 𝑡 (which is determined empirically based on convergence

experiments, see Section 6). The non-robust matrix is generated

first by solving the linear programming problem expressed in

Equ. (8) (Step 4). For storing the Reserved Privacy Budget (RPB)

for each pair of locations v
𝑖
and v

𝑗
, we initialize a matrix denoted

by RPB (Step 6). We iteratively compute the RPB matrix using

Equ. (19) and then use it to generate the matrix using the linear

programming problem expressed in Equ. (21). This process is re-

peated for 𝑡 iterations until the RPB matrix, as well as the matrix

generated using it, converges. The robust obfuscation matrix is

returned in the final step.

664

Level l

vi vj

Ri Rj

Level L
(root node)

Level 0

… …

…

…

… …

Ri …

…

Rj

zij

Precision

reduction

Original

obfuscation

matrix at level 0

vi

vj

obfuscation matrix

after precision

reduction (at level l)

Figure 7: Matrix precision reduction.

4.5 Matrix Precision Reduction
In Figure 7, the original obfuscationmatrix is generated for level 0,

i.e., the set of leaf nodes. Suppose the user specifies a value 𝑙 as its

Precision_l. Matrix precision reduction generates the obfuscation

matrix at level 𝑙 , Z𝑙 (𝑙 > 0), given the obfuscation matrix at level

0, Z0
. As illustrated in the figure, the new matrix is generated

by replacing all the rows of the descendant leaf nodes with their

corresponding ancestor nodes at level 𝑙 . For each pair of nodes

v
𝑖
and v

𝑗
at level 𝑙 , we use N

(
v
𝑖

)
and N

(
v
𝑗

)
to represent the

set of their descendant leaf nodes, respectively. The probability

of selecting v
𝑗
as the obfuscated location given the real location

v
𝑖
is calculated using Bayes’ theorem.

z𝑙𝑖, 𝑗 =

∑
v𝑚 ∈N(v𝑖) pv𝑚

∑
v𝑛 ∈N

(
v
𝑗

) z0𝑚,𝑛
pv
𝑖

(22)

where pv𝑚 and pv
𝑖
denote the prior distributions of v𝑚 and v

𝑖

respectively. Note that, pv
𝑖
=

∑
v𝑚 ∈N(v𝑖) pv𝑚 .

Proposition 4.7. Matrix precision reduction preserves both
probability unit measure and 𝜖-Geo-Ind.

Proof. First, we check the probability unit measure.

V0 = ∪𝑠 𝑗 ∈V𝑙R 𝑗
⇒

∑︁
𝑠 𝑗 ∈V𝑙

∑︁
𝑠𝑣 ∈R 𝑗

𝑧0𝑢,𝑣 =
∑︁
𝑠𝑣 ∈V0

𝑧0𝑢,𝑣 = 1. (23)

We take sum of the entries in each row 𝑖 in Z𝑙 ,∑︁
𝑠 𝑗 ∈V𝑙

𝑧𝑙𝑖, 𝑗 =
∑︁
𝑠 𝑗 ∈V𝑙

∑
𝑠𝑢 ∈R𝑖 𝑝𝑢

∑
𝑠𝑣 ∈R 𝑗 𝑧

0

𝑢,𝑣

𝑝𝑖

=

∑
𝑠𝑢 ∈R𝑖 𝑝𝑢

(∑
𝑠 𝑗 ∈V𝑙

∑
𝑠𝑣 ∈R 𝑗 𝑧

0

𝑢,𝑣

)
𝑝𝑖

=

∑
𝑠𝑢 ∈R𝑖 𝑝𝑢
𝑝𝑖

=
𝑝𝑖

𝑝𝑖
= 1,

i.e., each row 𝑖 satisfies the probability unit measure.

We then check 𝜖-Geo-Ind for each column 𝑘 in Z𝑙 : ∀𝑠𝑖 , 𝑠 𝑗
𝑧𝑙
𝑖,𝑘
− 𝑒𝜖𝑧𝑙

𝑗,𝑘

=

∑
𝑠𝑢 ∈R𝑖

∑
𝑠𝑤 ∈R𝑘 𝑝𝑢𝑧

0

𝑢,𝑤

𝑝𝑖
− 𝑒𝜖

∑
𝑠𝑣 ∈R 𝑗

∑
𝑠𝑤 ∈R𝑘 𝑝𝑣𝑧

0

𝑣,𝑤

𝑝 𝑗

=
∑︁

𝑠𝑤 ∈R𝑘

(∑
𝑠𝑣 ∈R 𝑗

∑
𝑠𝑢 ∈R𝑖 𝑝𝑢𝑝𝑣

(
𝑧0𝑢,𝑤 − 𝑒𝜖𝑧0𝑣,𝑤

)
𝑝𝑖𝑝 𝑗

)
≤ 0

since 𝑧0𝑢,𝑤 − 𝑒𝜖𝑧0𝑣,𝑤 ≤ 0 ∀𝑢, 𝑣,𝑤 . □

Algorithm 2 presents the approach for matrix precision reduc-

tion given the matrix for leaf nodes (Z0
), the location tree (T),

the prior probability distribution of the leaf nodes 𝑝𝑟𝑜𝑏0, and the

Algorithm 2: Precision Reduction Function

Input: Obfuscation matrix (at level 0) Z0, Location Tree T,
Precision Level 𝑙

Output: Obfuscation Matrix (at level l) Z𝑙

1 Function precisionReduction(Z0, T, 𝑙):
2 V𝑙 = getNodes(T, 𝑙) ⊲ Get nodes at precision level

3 Z𝑙 [0, 0] . . . [|V𝑙 | − 1, |V𝑙 | − 1] = 0

4 for 𝑖 ∈ 0, . . . , |V𝑙 | − 1 do
5 for 𝑗 ∈ 0, . . . , |V𝑙 | − 1 do
6 𝑛𝑢𝑚 = 0, 𝑑𝑒𝑛 = 0

7 for 𝑢 ∈ 0 . . . | N
(
v
𝑖

)
| −1 do

8 𝑟𝑜𝑤_𝑠𝑢𝑚 = 0

9 for 𝑣 ∈ 0 . . . | N
(
v
𝑗

)
| −1 do

10 𝑟𝑜𝑤_𝑠𝑢𝑚 = 𝑟𝑜𝑤_𝑠𝑢𝑚 + z0𝑢,𝑣
11 end
12 𝑛𝑢𝑚 = 𝑛𝑢𝑚 + pV0 [𝑢] × 𝑟𝑜𝑤_𝑠𝑢𝑚

13 𝑑𝑒𝑛 = 𝑑𝑒𝑛 + pV0 [𝑢]
14 end
15 z𝑙

𝑖, 𝑗
=
𝑛𝑢𝑚
𝑑𝑒𝑛

16 end
17 end
18 return Z𝑙

precision level (𝑙) which specifies the granularity/height of the

tree of the reported location. First, we get the set of nodes (V𝑙)
from level 𝑙 (Step 2). We initialize the new obfuscation matrix

with dimensions based on the set of nodes retrieved. For each pair

of location nodes (v
𝑖
, v
𝑗
) inV𝑙 , we compute their corresponding

probability in the new matrix (z𝑙
𝑖, 𝑗
) by using the probabilities

of their leaf nodes, N
(
v
𝑖

)
and N

(
v
𝑗

)
respectively, in Equ. (22)

(Steps 4-16). The prior probability distribution for the leaf nodes

pV0 in this subtree can be obtained by querying the server
4
. Fi-

nally, the new matrix Z𝑙 for level 𝑙 is returned. Thus using matrix

precision reduction, we are able to save the overhead of gener-

ating the obfuscation matrix when the user chooses to share at

a lower granularity than the leaf nodes.

5 LOCATION OBFUSCATION BY CORGI
In this section, we describe the steps performed CORGI in order

to generate the obfuscated location of a user. This process is

sketched in Figure 8 and we explain the steps on the user and

server side in detail below.

5.1 Server side
CORGI on server side takes as input the Privacy level Privacy_l
and the number of locations to be pruned (𝛿). Algorithm 3 de-

scribes the steps for determining the obfuscation range (rep-

resented by the privacy forest) and generating the obfuscation

matrix. First, the server determines the nodes at the given privacy

level V𝑙 by performing a Breadth First Search in the Location

Tree T(Step 2). Second, it initializes the privacy forest as a dictio-

nary where the key is a subtree and the value is the obfuscation

4
We assume that the prior probability distribution is readily available based on

publicly available information. We explain how it is computed for a real dataset

in Section 6. We disregard communication and computation cost for this as it is a

relatively small vector and only has to be periodically updated.

665

Figure 8: Steps in generating the obfuscated location

matrix for the leaf nodes of that subtree (Step 3). The system then

iterates through each node v
𝑖
at the privacy level and generates an

obfuscation matrix for each of them. For this purpose, the server

has to determine the subtree rooted at v
𝑖
and perform a Depth

First Search to determine the leaf nodes of that subtree (Steps

5-6). Next, it calls the generateRobustMatrix (Algorithm 1) with

the set of leaf nodes and the number of locations to be pruned

(Step 7)
5
. The robust obfuscation matrix Z0 thus generated for

the leaf nodes is added to the dictionary with the subtree as the

key (Steps 8-9). After iterating through all the nodes at the set pri-

vacy level and generating obfuscation matrices for each of their

descendant leaf nodes, the final privacy forest PF is returned.

Algorithm 3: Generate Robust Obfuscation Matrices

based on Obsfucation Range

Input: Location Tree T, Privacy Level 𝑙 , Prune Parameter

𝛿

Output: Privacy Forest 𝑃𝐹

1 Function generateMatrix(T, 𝑙 , 𝛿):
2 V𝑙 = getNodes(T, 𝑙)
3 PF = { }

4 for v
𝑖
∈ V𝑙 do

5 T 𝑖 = findSubTree(v
𝑖
, T, 𝑙)

6 V0
= getNodes(T 𝑖 , 0)

7 𝑃𝑟𝑜𝑏0 = getPriorProbDist(V0
)

8 Z0 = generateRobustMatrix(V0
, 𝑃𝑟𝑜𝑏0, 𝛿 , 𝜖 , 𝑡)

9 PF[T 𝑖] = Z0

10 end
11 return PF

5.2 User side
Users input their policies as well as their real location in order to

generate the obfuscated location. First, CORGI on the user side de-

termines the subtree T 𝑖 that contains the user’s real location and

is rooted at P.Privacy_l (Step 1). We slightly abuse the notation

here as v
𝑖
denotes the real location as well as the node in the tree

that contains the actual user’s location. Next, the user preferences

are evaluated on the leaf nodes of that subtree and determine the

set of nodes (S) that are to be pruned. (Step 2 of Fig 8). The num-

ber of locations in this set (|S|) along with P.Privacy_l is passed
to the server side (Step 4). From the privacy forest returned by

the server (based on Algorithm 3), the obfuscation matrix Z0

5
The privacy parameter (𝜖) and the number of iterations to convergence when

generating the robust matrix (𝑡) are set universally for all the users. 𝜖 is updated

based on the user’s customization needs.

corresponding to the subtree that contains the user’s real loca-

tion is selected (Step 5). Next, the system prunes this matrix by

calling the Matrix Pruning Algorithm (pruneMatrix) with the set

of nodes to be pruned (Step 6). The pruned matrix Z0∗ is updated
to reflect the required granularity specified in P.Precision_l (Step
7). From this final matrix, the row corresponding to the node at

P.Precision_l, which contains the ancestor of the real location of

the user is selected. The obfuscated location v
𝑗
is selected from

the row by sampling based on the probability distribution (Step

8).

5.3 Discussion
It is possible that when evaluating user preferences at the time of

location sharing more than 𝛿 locations need to be pruned based

on the user preferences. In such a situation, there are two options

for customization: (1) Satisfy all the user preferences which result

in a set of locations to be pruned S where |S| > 𝛿 which leads to

Geo-Ind violation, (2) Satisfy some of the policies in P such that

|S| ≤ 𝛿 locations which leads to policy violations (there exists a
location v ∈ Z such that it does not satisfy a policy in P). Both
these violations may occur if based on the policies a large number

of locations have to be pruned from the matrix i.e., |S| is large. In
such a case, CORGI finds it impossible to meet the 𝛿 requested by

the user as well as generate an obfuscation matrix that is robust.

Algorithm 4: Generate Obfuscated Location

Input: Location Tree T, Real Location v
𝑖
, Policy P

Output: Obfuscated Location v
𝑗

1 Function generateObsfucatedLocation(v
𝑖
, P):

2 T 𝑖 = findSubTree(v
𝑖
, T, P.Privacy_l)

3 S = eval(T 𝑖 , P.User_Preferences)
4 PF = generateMatrix(T, P.Privacy_l, |S|)
5 Z0 = PF[T 𝑖]
6 Z∗

0
= pruneMatrix(Z0, S)

7 Z∗
𝑙
= precisionReduction(Z∗

0
, T 𝑖 , P.Precision_l)

8 v
𝑗
= sample(Z∗

𝑙
[ancestor(v

𝑖
,P.Precision_l)]))

9 return v
𝑗

In this work, we have used approximation techniques in order

to reduce the number of constraints (see Section 4.2). An alterna-

tive method is to incorporate optimization decomposition in the

linear programming model itself (similar to [20]) which would

lead to improvement in utility. Currently, CORGI supports point

queries and does not handle trajectory data. An adversary who

has knowledge of the local traffic flows can eliminate impossible

locations from the obfuscation range considering the restrictions

of vehicle traffic flow. This can be extended by replacing the

privacy notion of Geo-Indistinguishability with Trajectory Indis-

tinguishability [22]. Trajectory-Ind guarantees that an adversary

is unable to distinguish the vehicle’s real trajectory from the other

fake trajectories generated by our approach (TrafficAdaptor). This

can be currently implemented in CORGI by using customization

parameters to limit the obfuscation range to contain only the

locations that are reachable based on current traffic flow and/or

along the fake trajectory generated by TrafficAdaptor. Local Dif-

ferential Privacy (LDP) has recently emerged as an approach to

avoid using a centralized server and perturb users’ data locally

before it leaves their device [15]. However, to the best of our

knowledge, most previous works that utilize LDP have mainly

666

focused on releasing population statistics [30] and not location

privacy as presented in this paper.

6 EXPERIMENTS
6.1 Experimental setup
Datasets:We use the Gowalla dataset [8] for our experiments.

Gowalla is a location-based social networking website where

users share their location check-in data. The dataset includes

the following attributes: [user, check-in time, latitude, longitude,
location id]. We sampled the user check-ins from two different

regions in the Gowalla dataset: 1) San Francisco (D1), and New

York (D2). We choose these two regions because they both had

a dense distribution of check-ins distributed over a large area.

The first sample (D1) includes 38,523 check-ins and the second

sample (D2) includes 13,384 check-ins. We use D1 as the default

region in the simulation. For both samples, we generated the

root node which covers the entire region at resolution 6 followed

by the children for this root node at resolution 7. We repeated

the process two more times and generated a tree of height 3 with

343 leaf nodes. For generating customization preferences, we

analyzed the sample and came up with heuristics to identify a

user’s home, office, and their outlier locations (where the user

visited rarely and at odd times). We also analyzed the number

of check-ins per location in order to identify what locations are

popular and at what times. Using this metadata we generated

realistic user preferences such as home = “False”, outlier = “False”,
popular = “True” .
Priors:We computed prior probability for the leaf nodes in the

location tree by counting number of user check-ins within that

node. For intermediate nodes (higher up in the tree), the prior

was computed by aggregating the priors of its children nodes.

Baseline: We used the commonly used mechanism of linear
programming (LP) for implementing the baseline [6, 21, 28]. The

LP method used in these approaches, sets their objective as to

minimize quality loss like CORGI, while only satisfying Geo-Ind

defined in Equ. (4). Hence, their generated matrix is likely to

violate Geo-Ind constraints, if some locations are removed by

users. The matrix generated by CORGI satisfies not only Equ.

(4), but also the stronger constraints defined in Equ. (16) that

reserves extra privacy budget 𝜖𝑖, 𝑗 (defined in Equ. (17)) to ensure

Geo-Ind is still satisfied after user customization.

Implementation:All of the algorithms were implemented using

the state-of-the-art Linear Programming tool kit in Matlab. The

full implementation including scripts to run the experiments is

available on Github
6
. In addition to the prototype, we have also

developed a web application of CORGI where users can observe

in the real-time impact of various customization parameters on

privacy and utility [18].

6.2 Experimental results
6.2.1 Convergence. In this experiment, we test the conver-

gence of the quality loss of CORGI, measured as the mean esti-

mation error of traveling distance (implemented using Haversine
distance) to all the target locations. We set 𝑁𝑅_𝑇𝐴𝑅𝐺𝐸𝑇 = 49

(number of target locations that are randomly selected from a

list of leaf nodes), 𝜖 = 15 km
−1

and used the priors generated

from the Gowalla dataset. We ran two sets of experiments: when

𝛿 = 2 and 𝛿 = 4, where 𝛿 is the number of locations that the user

wishes to remove after customization. In each group, we ran the

6
https://github.com/User-Privacy/CORGI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

0

5

10

15

E
st

im
a

tio
n

 e
rr

o
r

o
f

tr
a

ve
lin

g
 c

o
st

 (
km

)

(a) 𝛿 = 2 (objective value)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

0

2

4

6

8

10

12

E
st

im
a

tio
n

 e
rr

o
r

o
f

tr
a

ve
lin

g
 c

o
st

 (
km

)

(b) 𝛿 = 4 (objective value)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

-5

0

5

10

D
iff

e
re

n
ce

 o
f

e
st

.
e

rr
o

r
o

f
tr

a
ve

lin
g

 c
o

st
 (

km
)

(c) 𝛿 = 2 (difference of the ob-

jective value in consecutive iter-

ations)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Iteration

-5

0

5

10

D
iff

e
re

n
ce

 o
f

e
st

.
e

rr
o

r
o

f
tr

a
ve

lin
g

 c
o

st
 (

km
)

(d) 𝛿 = 4 (difference of the ob-

jective value in consecutive iter-

ations)

Figure 9: Convergence of the objective value (estimation
error of traveling costs).

experiment for 10 times, and depicted the convergence of the

quality loss in Fig. 9(a)(c) (when 𝛿 = 2) and Fig. 9(b)(d) (when

𝛿 = 4). In all four figures, the 𝑥-axis denotes the iteration index.

In Fig. 9(a)(b), the 𝑦-axis represents the quality loss, while in Fig.

9(c)(d), the𝑦-axis represents the difference between quality loss in

consecutive iterations. Here, a lower value on the 𝑦-axis denotes

better convergence as there is little difference between entries in

the matrix after each round. As illustrated in Figure 9(a)(b)(c)(d),

the differences between quality loss in consecutive iterations

converges in approximately 4 iterations for both values of 𝛿 . We

conservatively terminate the program after 10 iterations for rest

of the experiments.

6.2.2 Computation time of the obfuscation matrix generation.
CORGI uses graph approximation to improve the time-efficiency

of the obfuscation matrix generation (Section 4.2). In this exper-

iment, we evaluate how much computation time is reduced by

the graph approximation. Fig. 10(a) compares the computation

time with and without graph approximation, with 𝛿 increased

from 1 to 7. Fig. 10(a) demonstrates that the graph approxima-

tion has reduced the running time by 92.34% on average. The

graph approximation improves the time efficiency of the matrix

generation significantly since it reduces the number of Geo-Ind

constraints from𝑂 (𝐾3) to𝑂 (𝐾2). Fig. 10(b) compares the number

of Geo-Ind constraints without and with graph approximation,

with the number of locations increasing from 7 to 49. The fig-

ure shows that the number of Geo-Ind constraints is reduced by

54.58% on average.

Fig. 11(a)(b)) compares the quality loss with and without graph

approximation, with 𝛿 increased from 1 to 7 and the number

of locations increased from 7 to 49, respectively. As expected,

when using graph approximation, the quality loss is higher as it

shrinks the feasible region of the LP defined in Equ. (8) which

has been analyzed in Section 4.2. Note that, graph approximation

is optional and can be turned off in CORGI for better utility if

the running time is not a concern.

667

1 2 3 4 5 6 7
0

100

200

300

400

500

600

R
un

ni
ng

 ti
m

e
(s

ec
) without graph approximation

with graph approximation

(a) Running time

7 14 21 28 35 42 49

Number of locations

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f

G
e
o
-I

 c
o
n
st

ra
in

ts

104

without graph approximation
with graph approximation

(b) Number of Geo-Ind constraints

Figure 10: Efficacy of Graph Approximation

1 2 3 4 5 6 7
0

2

4

6

8

E
st

im
a

tio
n

 e
rr

o
r

o
f

tr
a

ve
lin

g
 c

o
st

 (
km

) without graph approximation
with graph approximation

(a) Different 𝛿

7 14 21 28 35 42 49

Number of locations

0

1

2

3

4

5

6

E
st

im
a
tio

n
 e

rr
o
r

o
f

tr
a
ve

lin
g
 c

o
st

 (
km

)

without graph approximation
with graph approximation

(b) Different number of locations

Figure 11: Quality Loss of Graph Approximation

15 16 17 18 19

 (1/km)

0

1

2

3

4

5

6

7

E
st

im
a
tio

n
 e

rr
o

r
o
f

tr
a
ve

lin
g
 c

o
st

 (
km

) = 0
 = 1
 = 2
 = 3

(a) D1 sample

15 16 17 18 19

 (1/km)

0

1

2

3

4

5

6

E
st

im
at

io
n

er
ro

r
of

tr

av
el

in
g

co
st

 (
km

)

 = 0
 = 1
 = 2
 = 3

(b) D2 sample

Figure 12: Impact of privacy parameter (𝜖) and customiza-
tion parameter (𝛿) on quality.

6.2.3 Impact of privacy parameters. In this experiment, we

test the impact of privacy parameter 𝜖 and customization pa-

rameter 𝛿 on quality loss using prior probability distributions

that are computed from two different regions/samples in the

Gowalla dataset (D1, D2). When generating the matrix, we set

𝑁𝑅_𝑇𝐴𝑅𝐺𝐸𝑇 = 49 (same as earlier) and used priors from D1 and

D2 respectively. We compared our results against the baseline

(“non-robust”) approach which has 𝛿 = 0 and therefore is not ro-

bust against pruning of any locations from thematrix, and depicts

the results using D1 and D2 in Fig. 12(a)(b), respectively. In both

Fig. 12(a)(b), the𝑦-axis denotes the quality loss, and the 𝑥-axis de-

notes the 𝜖 value that ranges from 15/km to 20/km in increments

of 1/km. As illustrated in both figures, (1) with increasing 𝜖 , the

quality loss decreases, since higher 𝜖 implies weaker privacy and

hence lower quality loss; (2) higher 𝛿 introduces higher quality

loss, as higher privacy budget 𝜖 ′
𝑖, 𝑗

is needed for each pair of real

locations 𝑣𝑖 and 𝑣 𝑗 (according to Equ. (19)) is needed to offset

possible pruning of locations.

6.2.4 Impact of pruning locations. Users might not strictly

follow the preferences that, only 𝛿 locations can be pruned (see

Section 5.3). Therefore, in this experiment, we test the impact of

the number of locations pruned on the quality loss, especially

when this number is higher than 𝛿 . We create 10 experiment

groups, wherein each group 𝑛 (𝑛 = 1, ..., 10), we let a user ran-

domly prune 𝑛 locations from the leaf nodes of the location tree

and run the experiment 500 times. We test both CORGI and the

1 2 3 4 5 6 7 8 9 10

Number of pruned locations

0

5

10

15

20

25

P
e

rc
e

n
ta

g
e

 o
f

vi
o

la
te

d

G
e

o
-I

n
d

 c
o

n
st

ra
in

ts
 (

%
)

non-robust
CORGI

(a) 𝛿 = 3

1 2 3 4 5 6 7 8 9 10

Number of pruned locations

0

5

10

15

20

25

P
e

rc
e
n

ta
g

e
 o

f
vi

o
la

te
d

G
e
o

-I
n

d
 c

o
n
st

ra
in

ts
 (

%
)

non-robust
CORGI

(b) 𝛿 = 5

Figure 13: Impact of customization parameter (𝛿) on Geo-
Ind violations.

15 16 17 18 19

 (1/km)

0

0.5

1

1.5

2

2.5

3

E
st

im
a
tio

n
 e

rr
o
r

o
f

tr
a
ve

lin
g
 c

o
st

 (
km

) privacy level = 2 (D1)
privacy level = 3 (D1)
privacy level = 2 (D2)
privacy level = 3 (D2)

(a) Quality loss with different

𝜖

1 2 3 4 5
0

2

4

6

8

10

E
st

im
at

io
n

er
ro

r
of

tr

av
el

in
g

co
st

 (
km

) privacy level = 2 (D1)
privacy level = 3 (D1)
privacy level = 2 (D2)
privacy level = 3 (D2)

(b) Quality loss with different

𝛿

Figure 14: Impact of obfuscation range (privacy level) on
quality loss.

baseline and depict the results in Fig. 13(a)(b), where the num-

ber of locations is 49 and 70, respectively. In both figures, the

𝑥-axis denotes the number of locations pruned by a user, which

is increased from 1 to 10, and the 𝑦-axis denotes the number of

Geo-Ind constraint violations. As expected, the number of pri-

vacy violations in the non-robust matrix is much higher than

that of the robust matrix. For example, pruning 14.28% locations

only causes 3.07% Geo-Ind constraint violations in the matrix

generated by CORGI, while it causes 18.58% Geo-Ind constraint

violations in the non-robust matrix. We also observe that with

higher 𝛿 , CORGI is more robust to the pruned locations as it

preserves a higher privacy budget in the Geo-Ind constraints.

The small number of privacy violations in some robust matrices

is due to, 1) the number of pruned locations is greater than 𝛿

(the maximum number of locations expected to be removed) and

2) the robust matrix generation algorithm only converges to a

relatively small threshold instead of 0 in consecutive iterations,

indicating the output matrices might still have a small number

of entries violating the preserved privacy budget.

6.2.5 Impact of privacy level on quality loss. In this experi-

ment, we test the quality loss of CORGI given different privacy

levels. The location tree has four levels, where level 3 includes

the root node covering 343 locations, level 2, 1, and 0 includes 49

locations, 7 locations, and 1 location, respectively. Here, we com-

pare two possible choices from users: 1○ privacy level = 3 (with

precision level = 1), and 2○ privacy level = 2 (with precision level

= 0). Fig. 14(a)(b) compares the quality loss of the two choices

given different 𝜖 and 𝛿 values. Not surprisingly, the quality loss

of both choices decreases with the increase of 𝜖 and increases

with the increase of 𝛿 , which are consistent with the results in

Fig. 11. Furthermore, the quality loss of privacy level 3 is higher

than that of privacy level 2, since level 3 has a wider range of

obfuscated locations to select for users (covering 343 leaf nodes)

compared to level 2 (covering 343 leaf nodes), and hence leads to

a higher distortion between estimation error of traveling cost.

668

28 35 42 49 56 63 70

Number of locations

10-5

100

R
u
n
n
in

g
 t
im

e
 (

se
c)

matrix recalculation
precision reduction

(a) Running time with differ-

ent number of locations

1 2 3 4 5 6 7

10-2

100

102

R
u

n
n

in
g

 t
im

e
 (

se
c)

matrix recalculation
precision reduction

(b) Running time with differ-

ent values of 𝛿

Figure 15: Efficacy of precision reduction.

6.2.6 Computation time (precision reduction vs. matrix recal-
culation). Recall that in CORGI, the server first generates the

obfuscation matrix for leaf level nodes. If a user selects to share

location at a lower granularity, then instead of recalculating the

matrix, CORGI generates the matrix via the precision reduction

of the matrix at the bottom level. As such, in the last experiment,

we test the computation time of precision reduction with the

comparison of matrix recalculation. Fig. 15(a)(b) shows the run-

ning time of the two approaches given the different numbers

of locations (from 28 to 70) and different 𝛿 (from 1 to 7). Both

figures demonstrate that precision reduction can significantly

reduce the computation time compared to matrix recalculation,

e.g., on average, the computation time of precision reduction is

only 0.000073% of that of the matrix recalculation.

7 RELATEDWORK
Geo-I based obfuscation. The discussion of location privacy cri-
teria can date back to almost two decades ago, when Gruteser and

Grunwald [13] first introduced the notion of location𝑘-anonymity
on the basis of Sweeney’s well-known concept of 𝑘-anonymity
for data privacy [26]. Location 𝑘-anonymity was originally used

to hide a user’s identity in LBS [32]. This notion has been ex-

tended to obfuscate location by means of 𝑙-diversity, i.e., a user’s
location cannot be distinguished with other 𝑙−1 locations [29, 31].
However, 𝑙-diversity is hard to achieve in many applications as

it assumes dummy locations are equally likely to be the real

location from the attacker’s view [2, 31].

In recent years, the privacy notion Geo-Ind [2] which was first

by introduced by Andres et. al, and many obfuscation strategies

based on it (e.g., [3, 6, 19, 24, 24, 25, 28, 31]) have been used for lo-

cation obfuscation. As these strategies inevitably introduce errors

to users’ reported locations, leading to a quality loss in LBS, a key

issue that has been discussed in those works is how to trade off

QoS and privacy. Many existing works follow a global optimiza-

tion framework: given the Geo-I constraints, an optimization

model is formulated to minimize the quality loss caused by ob-

fuscation [11, 12, 25, 28]. We now cover the related work closer

to our work by categorizing them into tree-based approaches to

obfuscation and policy-based approaches to customization.

Tree/hierarchy based approaches to location obfuscation.
[1] uses a hierarchical grid to overcome the computational over-

head of optimal mechanisms. They first construct a hierarchical

grid with increasing granularity as one traverses down the in-

dex with the highest granularity at leaf nodes (similar to our

approach). Second, they allocate the privacy budget (𝜖) appropri-

ately to these different levels using sequential composition. In

order to generate the obfuscated location, they start at the root

node containing the real location of the user and go down the

tree by recursively using the output of the obfuscation function

at the prior level. The main difference between our approach

and theirs is, they partition the privacy budget for each level in

the grid, while ours, no matter from top to bottom or bottom to

up (increase or decrease precision), uses the maximum privacy

budget. In [27], the authors present a tree-based approach for

differentially private online task assignments for crowdsourcing

applications. They construct a Hierarchically well-Separated Tree

(HST) based on a region that is published to both workers and

task publishers who use it in order to obfuscate worker and task

locations respectively. However, their approach relies on workers

and task publishers using the same HST and obfuscation function

in order to effectively perform task assignments and is not geared

toward allowing users to customize the obfuscation functions.

Other hierarchical-based approaches to spatial data such as [9, 23]

focus on private release population statistics or histograms.

Policy based approach to privacy. Blowfish privacy proposed

by [14] uses a policy graph to determine the set of neighbors

that users want to mark as sensitive. A policy graph encodes the

user’s preferences about which pairs of values in the domain of

the database should be indistinguishable for an adversary. Thus,

it allows users to tradeoff privacy for utility by restricting the

indistinguishability set. Blowfish works for statistical queries and

not location queries. [7] extended blowfish privacy and applied it

to location privacy where the nodes and edges in the policy graph

represent possible locations of the user and the indistinguishabil-

ity requirements respectively. Their goal is to ensure 𝜖-Geo-Ind
for any two connected nodes in the graph and to achieve this

they apply DP-based noise to latitude and longitude indepen-

dently. Their approach is best suited for category-based privacy

i.e., indistinguishability among multiple locations of the same

category (e.g., restaurants) as specifying pairwise indistinguisha-

bility between locations according to general user preferences

is challenging. Our customization model allows users to specify

their preferences which then get translated to the parameters

in generating the obfuscation function reducing the overhead

on the user in terms of specification. Furthermore, [7] does not

allow users to choose the granularity at which their location is

shared as the graph model doesn’t capture the natural hierarchy

of locations. [4] proposed an approach to recommend location

privacy preferences based on place and time (similar to our cus-

tomization policies) using local differential privacy. Their work is

complementary to ours and could be used to help users in coming

up with their user preferences.

8 CONCLUSIONS
We developed CORGI, a framework for generating customiz-

able obfuscation functions with strong privacy guarantees via

Geo-Indistinguishability. CORGI includes a location tree and a

policy model to assist users in specifying their customization

parameters. CORGI includes user and server-side interactions

for efficiently generating a robust matrix. Experimental results

show that CORGI effectively balances privacy, utility, and cus-

tomization.

9 ACKNOWLEDGEMENT
This work was supported by an NSF grant under CNS-2136948.

We thank the reviewers for their comments which helped to

improve the paper.

669

REFERENCES
[1] Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. 2019. A Utility-

Preserving and Scalable Technique for Protecting Location Data with Geo-

Indistinguishability. In Advances in Database Technology - 22nd International
Conference on Extending Database Technology, EDBT 2019, Lisbon, Portugal,
March 26-29, 2019, Melanie Herschel, Helena Galhardas, Berthold Reinwald,

Irini Fundulaki, Carsten Binnig, and Zoi Kaoudi (Eds.). OpenProceedings.org,

217–228. https://doi.org/10.5441/002/edbt.2019.20

[2] Miguel E. Andrés, Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and

Catuscia Palamidessi. 2013. Geo-Indistinguishability: Differential Privacy for

Location-Based Systems. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (Berlin, Germany) (CCS ’13). Association
for Computing Machinery, New York, NY, USA, 901–914. https://doi.org/10.

1145/2508859.2516735

[3] C. Ardagna,M. Cremonini, S. Vimercati, and P. Samarati. 2011. AnObfuscation-

Based Approach for Protecting Location Privacy. IEEE TDSC 8 (03 2011), 13 –

27. https://doi.org/10.1109/TDSC.2009.25

[4] Maho Asada, Masatoshi Yoshikawa, and Yang Cao. 2019. "When andWhere Do

You Want to Hide?" - Recommendation of Location Privacy Preferences with

Local Differential Privacy. InData and Applications Security and Privacy XXXIII
- 33rd Annual IFIPWG 11.3 Conference, DBSec 2019, Charleston, SC, USA, July 15-
17, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11559), Simon N.

Foley (Ed.). Springer, 164–176. https://doi.org/10.1007/978-3-030-22479-0_9

[5] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-Tree: An Efficient and Robust Access Method for Points and

Rectangles. In Proceedings of the 1990 ACM SIGMOD International Confer-
ence on Management of Data (Atlantic City, New Jersey, USA) (SIGMOD
’90). Association for Computing Machinery, New York, NY, USA, 322–331.

https://doi.org/10.1145/93597.98741

[6] Nicolás E. Bordenabe, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.

2014. Optimal Geo-Indistinguishable Mechanisms for Location Privacy. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-
tions Security (Scottsdale, Arizona, USA) (CCS ’14). Association for Computing

Machinery, New York, NY, USA, 251–262. https://doi.org/10.1145/2660267.

2660345

[7] Yang Cao, Yonghui Xiao, Shun Takagi, Li Xiong, Masatoshi Yoshikawa, Yilin

Shen, Jinfei Liu, Hongxia Jin, and Xiaofeng Xu. 2020. PGLP: Customizable and

Rigorous Location Privacy Through Policy Graph. In European Symposium on
Research in Computer Security. Springer International Publishing, 655–676.

[8] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship andMobility:

User Movement in Location-Based Social Networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (San Diego, California, USA) (KDD ’11). Association for Computing

Machinery, New York, NY, USA, 1082–1090. https://doi.org/10.1145/2020408.

2020579

[9] Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, Entong Shen,

and Ting Yu. 2012. Differentially Private Spatial Decompositions. In IEEE
28th International Conference on Data Engineering (ICDE 2012), Washington,
DC, USA (Arlington, Virginia), 1-5 April, 2012, Anastasios Kementsietsidis and

Marcos Antonio Vaz Salles (Eds.). IEEE Computer Society, 20–31. https:

//doi.org/10.1109/ICDE.2012.16

[10] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of

differential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
[11] Kassem Fawaz, Huan Feng, and Kang G. Shin. 2015. Anatomization and

Protection of Mobile Apps’ Location Privacy Threats. In Proceedings of the
24th USENIX Conference on Security Symposium (Washington, D.C.) (SEC’15).
USENIX Association, USA, 753–768.

[12] K. Fawaz and K. G. Shin. 2014. Location Privacy Protection for Smartphone

Users. In Proc. of ACM CCS (Scottsdale, Arizona, USA). ACM, New York, NY,

USA, 239–250. https://doi.org/10.1145/2660267.2660270

[13] Marco Gruteser and Dirk Grunwald. 2003. Anonymous Usage of Location-

Based Services Through Spatial and Temporal Cloaking. In Proceedings of the
1st International Conference on Mobile Systems, Applications and Services (San
Francisco, California) (MobiSys ’03). Association for Computing Machinery,

New York, NY, USA, 31–42. https://doi.org/10.1145/1066116.1189037

[14] Xi He, Ashwin Machanavajjhala, and Bolin Ding. 2014. Blowfish privacy:

tuning privacy-utility trade-offs using policies. In International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 1447–1458.

https://doi.org/10.1145/2588555.2588581

[15] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhod-

nikova, and Adam Smith. 2011. What can we learn privately? SIAM J. Comput.
40, 3 (2011), 793–826.

[16] Daniel Kifer and Ashwin Machanavajjhala. 2014. Pufferfish: A framework

for mathematical privacy definitions. ACM Transactions on Database Systems
(TODS) 39, 1 (2014), 1–36.

[17] Jong Wook Kim, Kennedy Edemacu, Jong Seon Kim, Yon Dohn Chung, and

Beakcheol Jang. 2021. A Survey Of differential privacy-based techniques and

their applicability to location-Based services. Computers & Security 111 (2021),

102464. https://doi.org/10.1016/j.cose.2021.102464

[18] Primal Pappachan, Vishnu Sharma Hunsur Manjunath, Chenxi Qiu, Anna

Squicciarini, and Hailey Onweller. 2023. CORGI: An interactive framework

for Customizable and Robust Location Obfuscation. In IEEE International
Conference on Data Engineering (ICDE). IEEE.

[19] Chenxi Qiu, Anna Squicciarini, Zhuozhao Li, Ce Pang, and Li Yan. 2020.

Time-Efficient Geo-Obfuscation to Protect Worker Location Privacy over

Road Networks in Spatial Crowdsourcing. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management (Virtual
Event, Ireland) (CIKM ’20). Association for Computing Machinery, New York,

NY, USA, 1275–1284. https://doi.org/10.1145/3340531.3411863

[20] Chenxi Qiu, Anna Squicciarini, Zhuozhao Li, Ce Pang, and Li Yan. 2020.

Time-Efficient Geo-Obfuscation to Protect Worker Location Privacy over

Road Networks in Spatial Crowdsourcing. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management (Virtual
Event, Ireland) (CIKM ’20). Association for Computing Machinery, New York,

NY, USA, 1275–1284. https://doi.org/10.1145/3340531.3411863

[21] Chenxi Qiu, Anna Squicciarini, Ce Pang, Ning Wang, and Ben Wu. 2022.

Location Privacy Protection in Vehicle-Based Spatial Crowdsourcing via Geo-

Indistinguishability. IEEE Transactions on Mobile Computing 21, 7 (2022),

2436–2450. https://doi.org/10.1109/TMC.2020.3037911

[22] Chenxi Qiu, Li Yan, Anna Squicciarini, Juanjuan Zhao, Chengzhong Xu, and

Primal Pappachan. 2022. TrafficAdaptor: An Adaptive Obfuscation Strategy

for Vehicle Location Privacy against Traffic FlowAware Attacks. In Proceedings
of the 30th International Conference on Advances in Geographic Information
Systems (Seattle, Washington) (SIGSPATIAL ’22). Association for Computing

Machinery, New York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/

3557915.3560938

[23] Sina Shaham, Gabriel Ghinita, Ritesh Ahuja, John Krumm, and Cyrus Sha-

habi. 2021. HTF: Homogeneous Tree Framework for Differentially-Private

Release of Location Data. In Proceedings of the 29th International Conference
on Advances in Geographic Information Systems (Beijing, China) (SIGSPATIAL
’21). Association for Computing Machinery, New York, NY, USA, 184–194.

https://doi.org/10.1145/3474717.3483943

[24] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre

Hubaux. 2011. Quantifying Location Privacy. In 2011 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 247–262. https://doi.org/10.

1109/SP.2011.18

[25] Reza Shokri, George Theodorakopoulos, Carmela Troncoso, Jean-Pierre

Hubaux, and Jean-Yves Le Boudec. 2012. Protecting Location Privacy: Optimal

Strategy against Localization Attacks. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security (Raleigh, North Carolina,

USA) (CCS ’12). Association for Computing Machinery, New York, NY, USA,

617–627. https://doi.org/10.1145/2382196.2382261

[26] L. Sweeney. 2002. Achieving K-anonymity Privacy Protection Using General-

ization and Suppression. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10, 5
(2002), 571–588. https://doi.org/10.1142/S021848850200165X

[27] Qian Tao, Yongxin Tong, Zimu Zhou, Yexuan Shi, Lei Chen, and Ke Xu. 2020.

Differentially Private Online Task Assignment in Spatial Crowdsourcing: A

Tree-based Approach. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE Computer Society, 517–528. https://doi.org/10.1109/

ICDE48307.2020.00051

[28] Leye Wang, Dingqi Yang, Xiao Han, Tianben Wang, Daqing Zhang, and Xi-

aojuan Ma. 2017. Location Privacy-Preserving Task Allocation for Mobile

Crowdsensing with Differential Geo-Obfuscation. In Proceedings of the 26th
International Conference on World Wide Web (Perth, Australia) (WWW ’17).
International WorldWideWeb Conferences Steering Committee, Republic and

Canton of Geneva, CHE, 627–636. https://doi.org/10.1145/3038912.3052696

[29] T. Wang and L. Liu. 2009. Privacy-aware Mobile Services over Road Networks.

VLDB Endow. 2, 1 (Aug. 2009), 1042–1053. https://doi.org/10.14778/1687627.

1687745

[30] Mengmeng Yang, Lingjuan Lyu, Jun Zhao, Tianqing Zhu, and Kwok-Yan

Lam. 2020. Local Differential Privacy and Its Applications: A Comprehensive

Survey. CoRR abs/2008.03686 (2020). arXiv:2008.03686 https://arxiv.org/abs/

2008.03686

[31] Lei Yu, Ling Liu, and Calton Pu. 2017. Dynamic Differential Lo-

cation Privacy with Personalized Error Bounds. In 24th Annual Net-
work and Distributed System Security Symposium, NDSS 2017, San Diego,
California, USA, February 26 - March 1, 2017. The Internet Soci-

ety. https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/

dynamic-differential-location-privacy-personalized-error-bounds/

[32] Lijuan Zheng, Huanhuan Yue, Zhaoxuan Li, Xiao Pan, Mei Wu, and Fan Yang.

2018. k-Anonymity Location Privacy Algorithm Based on Clustering. IEEE
Access 6 (2018), 28328–28338. https://doi.org/10.1109/ACCESS.2017.2780111

670

