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ABSTRACT
The advancement of indoor location-aware technologies enables
a wide range of location based services in indoor spaces. In this
paper, we formulate a novel Indoor Facility Location Selection
(IFLS) query that finds the optimal location for placing a new
facility (e.g., a coffee station) in an indoor venue (e.g., a university
building) such that the maximum distance of all clients (e.g.,
staffs/students) to their nearest facility is minimized. To the best
of our knowledge we are the first to address this problem in an
indoor setting. We first adapt the state-of-the-art solution in road
networks for indoor settings, which exposes the limitations of
existing approaches to solve our problem in an indoor space.
Therefore, we propose an efficient approach which prunes the
search space in terms of the number of clients considered, and
the total number of facilities retrieved from the database, thus
reducing the total number of indoor distance calculations required.
The key idea of our approach is to use a single pass on a state-of-
the-art index for an indoor space, and reuse the nearest neighbor
computation of clients to prune irrelevant facilities and clients.
We evaluate the performance of both approaches on four indoor
datasets. Our approach achieves a speedup from 2.84× to 71.29×
for synthetic data and 97.74× for real data over the baseline.

1 INTRODUCTION
The problem of finding the optimal location has been widely
studied for both Euclidean space and road networks [2–4, 9, 12,
14, 21, 22, 24]. Given a set of clients and a set of existing fa-
cilities, the problem requires identifying the optimal candidate
location for the new facility that optimizes an objective func-
tion. Existing works have mainly focused on optimizing three
objective functions. MinDist function minimizes the average dis-
tance of the clients from their nearest facilities, MinMax function
minimizes the maximum distance of the clients from their near-
est facilities, and MaxSum maximizes the number of the clients
who will have the new facility as the nearest one. Most of the
works [2, 5, 12, 24, 26] identify the optimal location from the con-
tinuous space and few works [3, 4, 8] select it from a set of given
candidate locations. Nevertheless, to the best of our knowledge
the problem of finding the optimal location has not been addressed
in indoor settings. Furthermore, as shown in [19], the techniques
designed for outdoor space cannot be effectively extended for
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indoor space due to its unique topology and characteristics. On
top of that, a brute force approach is also not desirable specially
in the context of dynamic crowd scenarios (e.g., changing crowd),
where the position a new facility needs to be updated constantly
or an additional new facility needs to be established instantly.
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Figure 1: Indoor Facility Selection Query.

In this paper, we focus on finding the optimal location for a new
facility from a set of given candidate locations for a set of clients in
an indoor venue so that the maximum indoor distance of the clients
from their nearest facilities is minimized. There are a number of
real-life applications for the proposed indoor facility location
selection query. For example, a hospital may want to identify a
location to set up a new nurse station from a set of candidate
locations such that it minimizes the maximum indoor distance
between the patient beds and their nearest nurse stations. Similarly,
a university authority may want to find a location to place a new
facility (e.g., printer, coffee or vending machine) that minimizes
the maximum indoor distance between the students/staffs and
their nearest facility. Again, an advertising agency may want to
place their advertising booth in a shopping mall and there may be
restrictions on where such booths can or cannot be installed. Thus,
given a set of candidate locations, the goal is to find the booth
location that maximises the coverage.

Figure 1 shows an example of an indoor space with 22 partitions
(𝑝1 to 𝑝22) and 60 clients (𝑐1 to 𝑐60). For clarity, we avoid using 𝑐

to represent the clients in the figure. Let us assume that we want
to open a new coffee facility in one of the partitions from 𝑛1 to
𝑛13 in this indoor space. There already exist four coffee facilities
(𝑒1 to 𝑒4). The indoor facility location selection query returns the
location 𝑛5 (𝑝10) for establishing the new coffee facility since it
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optimizes the MinMax objective function, i.e., establishing a new
coffee facility at 𝑛5 will minimize the maximum indoor distance
of all the clients from their nearest coffee facilities.

Existing work for outdoor space [2] considers MinMax function
and selects the optimal location in road networks. We cannot
directly apply the state-of-the-art work [2] for our purpose as the
construction of indoor space is different from road networks. More
specifically, in road networks, a user’s movement is restricted on
roads, whereas in the indoor venues, the users can freely move
inside a partition but the movement among the partitions are
restricted through doors and stairs. We adapt the most efficient
state-of-the-art technique [2] to find new facility location in an
indoor space as a baseline solution, which helps identifying several
potential limitations of the current state-of-the-art.

Major computational challenges to evaluate an indoor facility
selection query are finding the nearest existing facility and nearest
candidate locations for a large number of clients, and the huge
number of indoor distance computations. We propose an efficient
approach that addresses the above issues by (i) refining the facility
search space, (ii) pruning the clients, and (iii) finding nearest
neighbours for clients incrementally in the indoor space with a
reduced number of indoor distance computations.

Our approach does not need to retrieve any facility (existing
or candidate) outside the refined search space. This allows us to
avoid the computation of the clients’ nearest existing facilities not
in the refined search space. Moreover, we identify and prune the
clients for whom the new facility cannot improve their distance
from the existing facilities. Our proposed efficient algorithm incre-
mentally finds the nearest neighbours from both existing facilities
and candidate locations for new facilities in the indoor space for
all clients with a single search. Our algorithm significantly re-
duces the number of indoor distance computations by grouping
the clients while exploring the facilities. On average, our efficient
approach achieves a speedup from 2.84× to 71.29× for synthetic
data and 97.74× for real data over the baseline .

Our contributions in the paper are summarized as follows.

• To the best of our knowledge, we are the first to formulate
the facility location selection query in an indoor space.
• We devise a non-trivial baseline solution by modifying the

state-of-the-art solution designed for road networks, and
highlight the baseline’s limitations for indoor spaces.
• We propose an efficient approach for solving the indoor

facility selection queries that prune the data space both w.r.t.
the facilities and clients in a single pass in the database.
• We run an extensive set of experiments on four real indoor

venues, namely Melbourne Center, Chadstone shopping
center, Copenhagen Airport, and Menzies Building using
both synthetic and real dataset.

2 RELATED WORK
2.1 Non-Indoor Facility Location Selection
Even though the facility location selection queries have been stud-
ied in a wide range of applications in literature, the underlying
idea of the problem remains same: given a set of objects (clients)
and facilities, find a facility from a discrete or continuous space
which optimizes an objective function in some distance metric
space. In terms of the selection of the objective function, these
works can be divided into following categories where the optimal
candidate location (i) MaxInf [5, 7–9, 21, 22]: maximizes the total
weight of objects that are closer to it than to any other facility,
i.e., has maximum influence, (ii) MinDist [3, 4, 14, 22, 24, 26]:

minimizes the average distance of the objects from its nearest
facilities, (iii) MinMax [2, 22]: minimizes the maximum distance
of the objects from its nearest facilities, (iv) MaxSum [12]: max-
imizes the number of objects which will have the new facility
as the nearest one. All these objective functions have been de-
fined either in Manhattan [5, 26], Euclidean [3, 8, 9, 14, 21] or
Road Network [2, 4, 14, 22, 24] space. These works can also be
categorized based on the continuity of the solution space: (i) Dis-
crete [3, 4, 7–9, 14, 21], and (ii) Continuous [2, 5, 12, 22, 24, 26].
They can be further categorized based on the number of optimal
locations they return. Some works [4, 5, 14, 22, 26] find only a
single optimal facility, whereas others [2, 3, 7–9, 12, 21, 24] find
𝑘 optimal facilities. Table 1 gives an overview of the location
selection queries in non-indoor setting.

Our work is similar to [2, 22] that also aim to optimize the Min-
Max objective function. However, both these works are intended
exclusively for road network. Hence, the algorithms proposed
in [2, 22] can not be adapted to indoor settings in a straightfor-
ward manner. We adapt [2] to find an optimal location indoor
space and use it as a baseline to compare with our approach.

2.2 Indoor Route Planning Queries
An indoor trip planning query (iTPQ) [18] enables a user to visit at
least one indoor point from each fixed set of categories with mini-
mum indoor distance as the objective function. Category-aware
multi-criteria route planning query (CAM) [17], a generalized
version of iTPQ , lets a user choose the objective function, based
on which an optimal route is calculated. Liu et al. [11] propose
FPQ, a crowd-aware route planning query that returns the fastest
route between two indoor points, and LCPQ [11] to return the
route encountering the least number of objects. Feng et al. [10]
study temporal-variation aware shortest path query (ITSPQ) that
takes the opening and closing times of rooms and doors in an
indoor space in contention while providing the solution. Indoor
top-k keyword-aware routing query (IKRQ) [6] finds k routes with
optimal ranking scores based on keyword relevance and distance
cost. Salgado [15] proposes keyword-aware skyline route query
(KSR) that takes the number of keywords visited in contention
along with the route distance while calculating the solution routes.
Different from the aforementioned route planning queries, given a
moving source and a static destination point an indoor continuous
detour query [16] continuously finds the nearest detour object
that minimizes the indoor travel distance. Unlike these works that
aim to find a route (a sequence of location) for a single client
which optimizes some objective function satisfying a specified
constraint, our work finds a single location for a set of clients
which optimizes MinMax objective function.

2.3 Indoor Models and Indexes
Yang et al. [25] propose a door graph to model an indoor space,
where each door represents a graph vertex. A weighted edge con-
nects two vertices if the corresponding two doors belong to the
same partition, where the edge weight is the indoor distance be-
tween the two doors. Graph traversal algorithms are then applied
on the doors graph to compute and store the door to door dis-
tances in a hash table. Indoor distance-aware model [13] models
the topology of an indoor space as an accessibility base graph
where partitions represent vertices and doors represent directed
edges between the two partitions they connect. It injects indoor
distances into the base graph through a door to door and a door
to partition indoor mapping function to support indoor shortest
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Table 1: Existing Works in Non-Indoor Setting (D: Discrete, C: Continuous; M:Manhattan , E: Euclidean, RN: Road Network)
Optimization Function Solution Space Distance Metric |Query Answer |

Reference MaxInf MinDist MinMax MaxSum D C M E RN 1 k
[2] ✓ ✓ ✓ ✓ ✓ ✓

[22] ✓ ✓ ✓ ✓ ✓ ✓
[4] ✓ ✓ ✓ ✓
[7] ✓ ✓ ✓

[21] ✓ ✓ ✓ ✓
[5] ✓ ✓ ✓ ✓

[24] ✓ ✓ ✓ ✓ ✓
[26] ✓ ✓ ✓ ✓
[12] ✓ ✓ ✓ ✓
[14] ✓ ✓ ✓ ✓
[8] ✓ ✓ ✓ ✓ ✓
[9] ✓ ✓ ✓ ✓
[3] ✓ ✓ ✓ ✓

distance and path queries. Indoor distance-aware index [13], an
indexing framework for indoor spaces stores the global door-to-
door distances and their ordering on top of this distance-aware
model for further efficient computation of these indoor queries
over the distance-aware model.

Xie et al. propose a composite indoor index [23], which is a
combination of these three layers: i) geometric layer: it uses a
R*- tree [1] for indexing indoor partitions, ii) topological layer:
it stores the information about what two indoor partitions are
connected and by which doors they are connected, and iii) object
layer: it stores the information about which partition of the indoor
space each object is in. Finally, Shao et al. [19, 20] propose two
tree based indexes, Indoor-Partitioning tree (IP-Tree) and vivid
IP-Tree (VIP-Tree) for indexing indoor space. Both these tree
indexes are built bottom-up, and the index nodes store additional
information for efficiently calculating the indoor distances. We
discuss the VIP-Tree in detail in Section 3.

3 PROBLEM AND PRELIMINARIES
Research Problem (The Indoor Facility Location Selection
(IFLS) Query). Given a client set𝐶, an existing facility set 𝐹𝑒 and
a candidate location set 𝐹𝑛 , an indoor facility location selection
query returns a candidate location 𝑛 ∈ 𝐹𝑛 for a new facility to be
established at, which minimizes the maximum distances of the
clients to their nearest facilities.

Let 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑓 ) return the indoor distance between a client 𝑐
and a facility 𝑓 , and 𝑁𝑁 (𝑐, 𝐹 ) return 𝑐’s nearest neighbor from
a set of indoor facilities 𝐹 . Assuming 𝐴 is the query answer, the
indoor facility location query can then be formalized as follows.

𝐴 = argmin
𝑛∈𝐹𝑛

(max
𝑐∈𝐶

𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑁𝑁 (𝑐, 𝐹𝑒 ∪ 𝑛)))

To clarify, our problem setting considers an existing facility or a
candidate location as a partition of the indoor space.
Preliminaries: VIP Tree [19]. Vivid indoor partitioning (VIP)
tree is the state-of-the-art index that partitions the indoor space
while taking its topological properties such as multiple levels
into account. First, it combines adjacent indoor partitions to create
multiple leaf nodes and then builds the tree on top of the leaf nodes
by combining the adjacent ones to generate the immediate-level
non-leaf nodes. It keeps on doing so until it converges to a single
root node. Figure 2 showcases the VIP tree built for the indoor
space showed in Figure 1. Here, the nearby indoor partitions 𝑝1
to 𝑝6, 𝑝7 to 𝑝13, 𝑝14 to 𝑝22 are combined to generate the leaf
nodes 𝑁1, 𝑁2 and 𝑁3, respectively. Finally, all three leaf nodes are
combined to generate the root node 𝑁4.

To facilitate efficient indoor distance calculation, VIP-tree
nodes store additional information in the form of distance ma-
trices. The VIP-tree leaf nodes store the distances between all
the doors and access doors of the node. On the other hand, the
VIP-tree non-leaf nodes store the distances between the access
doors of all its children. Access doors refer to those doors of a
node which connect the node itself to the outside world, i.e., any
path entering or leaving the node must go through these doors. Let
𝑑1, 𝑑2, 𝑑3, 𝑑5 and 𝑑6 represent the doors of partitions 𝑝1, 𝑝2, 𝑝3, 𝑝5,
and 𝑝6, respectively. Moreover, let 𝑑4 be the door connecting par-
tition 𝑝4 to 𝑝7, and 𝑑7 be the door connecting 𝑝7 to 𝑝22. Then, any
path entering node 𝑁1 have to use 𝑑4, thus making 𝑑4 the access
door of leaf node 𝑁1.

Aside from the distances, both the leaf and non-leaf nodes
also store the first-hop door on the shortest path between two
doors of the distance matrix. In addition, VIP-tree leaf nodes store
the distance between all its doors and all the access doors of its
ancestor nodes along with the first-hop door information.

Figure 2 illustrates the distance matrix of leaf node 𝑁1 and root
node 𝑁4. In 𝑁1, the corresponding entry between door 𝑑1 and 𝑑7
is (12, 𝑑4), i.e., the shortest distance between the two doors is 12
and 𝑑4 is the first-hop door in the shortest path from 𝑑1 to 𝑑7.

𝑁4

𝑁1 𝑁2 𝑁3

𝑝1 − 𝑝6 𝑝7 − 𝑝13 𝑝14 − 𝑝22

Distance Matrix for 𝑁1

Distance Matrix for 𝑁4

𝑑1
𝑑4
𝑑7

𝑑2 𝑑3 𝑑6 𝑑5 𝑑4
6 5 2 4 3 0

12, 𝑑4 11, 𝑑4 8, 𝑑4 10, 𝑑4 9, 𝑑4 6

𝑑4
𝑑4
𝑑7

𝑑7
0 6
6 0

Figure 2: VIP-tree for the indoor venue in Figure 1.

4 MODIFIED MINMAX ALGORITHM
MinMax algorithm [2] is the most efficient solution in the lit-
erature for identifying the optimal candidate location for a new
facility in road networks. MinMax algorithm takes the road net-
work as a graph input and selects the new facility location along
one of its edges that minimizes the maximum road network dis-
tance of the clients from their nearest facilities.

Though indoor space has also been modeled as a graph in
literature [13] where each indoor partition represents a vertex and
each door represents an edge between two connected partitions, it
performs not so well as the other indoor models and indexes [19]
discussed in Section 2.3. On top of that, contrary to road networks
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where the movements of clients are restricted on roads, the clients
can move freely inside a partition and the movements between
partitions are restricted through doors and stairs. These make it
non-trivial to apply the techniques proposed in [13] to model the
indoor space, especially when the number of clients is large which
is the case for indoor facility location selection queries.

Hence, we modify the MinMax algorithm to find the new fa-
cility location from a given set of indoor candidate locations. The
key difference between the original MinMax algorithm and our
modified version are as follows: (i) MinMax algorithm refines the
continuous space instead of a candidate set, (ii) MinMax algorithm
uses an efficient technique for finding the nearest existing neigh-
bors for all clients in road networks, which we cannot use. Rather,
we model the indoor space as a VIP-tree and apply relevant indoor
distance calculation techniques [19] instead of the Dijkstra-like
expansion techniques proposed in the original MinMax algorithm.

Algorithm 1 IFLS_Modified_MinMax(𝐹𝑒 , 𝐹𝑛,𝐶)
1: 𝑖 ← 1
2: 𝐿𝑠 ← 𝐹𝑖𝑛𝑑_𝑁𝐸𝐹 (𝐶, 𝐹𝑒 )
3: 𝐶𝐴𝑖 ← 𝐹𝑖𝑛𝑑_𝐶𝐴_𝑐𝑙𝑖𝑒𝑛𝑡 (𝐿𝑖𝑠 .𝑐, 𝐿𝑖𝑠 .𝑑𝑖𝑠𝑡, 𝐹𝑛 )
4: 𝐶𝐴← 𝐶𝐴𝑖

5: while 𝑖 < 𝑛 and |𝐶𝐴 | > 1 do
6: 𝐶𝐴𝑝𝑟𝑒𝑣 ← 𝐶𝐴

7: 𝑖 ← 𝑖 + 1
8: 𝐶𝐴𝑖 ← 𝐹𝑖𝑛𝑑_𝐶𝐴_𝑐𝑙𝑖𝑒𝑛𝑡 (𝐿𝑖𝑠 .𝑐, 𝐿𝑖𝑠 .𝑑𝑖𝑠𝑡,𝐶𝐴)
9: 𝐶𝐴← 𝐶𝐴 ∩𝐶𝐴𝑖

10: 𝑗 ← 1
11: while 𝑗 < 𝑖 and 𝐶𝐴 ≠ ∅ do
12: 𝐶𝐴← 𝑅𝑒𝑓 𝑖𝑛𝑒_𝐶𝐴(𝐿𝑖𝑠 .𝑑𝑖𝑠𝑡,𝐶𝐴[ 𝑗 ],𝐶𝐴)
13: 𝑗 ← 𝑗 + 1
14: end while
15: end while
16: 𝐴← 𝐹𝑖𝑛𝑑_𝐴𝑛𝑠 (𝐶𝐴,𝐶𝐴𝑝𝑟𝑒𝑣, 𝐿𝑠 , 𝑖 )
17: return 𝐴

Algorithm 1 shows the pseudocode of the modified MinMax
algorithm. Its main steps are as follows:

(1) Nearest existing facility computation: The algorithm finds the
nearest existing facility from each client in𝐶 from the existing
facility location set 𝐹𝑒 and stores them in a sorted list 𝐿𝑠 (Line
2), where 𝑖𝑡ℎ entry of 𝐿𝑠 includes a client 𝑐, its nearest existing
facility 𝑒, the distance 𝑑𝑖𝑠𝑡 between 𝑐 and 𝑒. The entries of
𝐿𝑠 are sorted based on the distances of the clients from their
nearest existing facilities.

(2) Candidate answer set𝐶𝐴 generation: The algorithm considers
the first client with the maximum distance from her nearest
existing facility and finds a candidate answer set 𝐶𝐴 from the
candidate location set 𝐹𝑛 . To elaborate, it finds the candidate
locations in 𝐶𝐴1 for which 𝐿1𝑠 .𝑐 has distances smaller than its
distance from the nearest existing facility (Line 3) and assigns
𝐶𝐴1 to the candidate answer set 𝐶𝐴 (Line 4).

(3) Candidate answer set 𝐶𝐴 refinement: If the candidate answer
set 𝐶𝐴 has more than one location, the algorithm considers
other clients one by one in descending order of their distances
from their nearest existing facilities. For each client, the algo-
rithm refines 𝐶𝐴 by applying two pruning techniques:

(a) The algorithm prunes the locations from 𝐶𝐴 whose dis-
tances from the client are larger than the client’s distance
from her nearest existing facility.

(b) The algorithm prunes the locations from 𝐶𝐴 whose dis-
tances from any of the previously considered clients are

larger than the current client’s distance from her nearest
existing facility.

In each iteration 𝑖 in the loop (Lines 5–15), the algorithm
considers the next client from 𝐿𝑠 , finds its 𝐶𝐴𝑖 (Line 8) using
𝐹𝑖𝑛𝑑_𝐶𝐴_𝑐𝑙𝑖𝑒𝑛𝑡 and refines 𝐶𝐴 (Lines 9-16).
Function 𝐹𝑖𝑛𝑑_𝐶𝐴_𝑐𝑙𝑖𝑒𝑛𝑡 computes the distances of each can-
didate location in 𝐶𝐴 from 𝐿𝑖𝑠 .𝑐 and include those in 𝐶𝐴𝑖

whose distances are less than 𝐿𝑖𝑠 .𝑑𝑖𝑠𝑡 . Line 9 refines 𝐶𝐴 with
respect to 𝐶𝐴𝑖 (pruning technique 1). Starting from the first
client 𝐿𝑖𝑠 .𝑐, the inner loop (Lines 11–14) considers first 𝑖 − 1
clients in 𝐿𝑠 one by one, and for each considered client 𝐿 𝑗𝑠 .𝑐
Function 𝑅𝑒 𝑓 𝑖𝑛𝑒_𝐶𝐴 prunes a candidate facility location from
𝐶𝐴 if the candidate facility’s distance from 𝐿

𝑗
𝑠 .𝑐 exceeds

𝐿𝑖𝑠 .𝑑𝑖𝑠𝑡 (pruning technique 2). If the candidate answer set 𝐶𝐴
becomes empty for a client, then the algorithm stops refining
𝐶𝐴 for other remaining clients (Line 11).

(4) Termination of the refinement: The refinement terminates
when either all clients are considered or there is one or no
candidate location in 𝐶𝐴 (Line 5).

(5) Finding the answer: Finally, the algorithm (Line 16) finds
the answer using 𝐹𝑖𝑛𝑑_𝐴𝑛𝑠. If 𝐶𝐴 is empty, 𝐹𝑖𝑛𝑑_𝐴𝑛𝑠 first
assigns 𝐶𝐴𝑝𝑟𝑒𝑣 to 𝐶𝐴. If 𝐶𝐴 includes one candidate location,
it becomes the answer 𝐴. If 𝐶𝐴 includes more than one can-
didate location, the function selects the one with the smallest
maximum distance from the considered clients.

We index 𝐹𝑒 and 𝐹𝑛 separately using the most efficient indexing
technique for the indoor space, VIP-tree, and use the VIP-tree
based nearest neighbor and shortest distance computation algo-
rithms [19] for indoor venues for implementing the steps men-
tioned above. Note that 𝐹𝑒 is indexed once offline and the query
parameter 𝐹𝑛 is indexed during the query processing time.

We explain the steps of the modified MinMax algorithm using
the example shown in Figure 1. The algorithm starts by sorting the
clients in 𝐶 based on their distances from their respective nearest
existing facility in 𝐹𝑒 in the following order.

𝐿𝑠 = {(𝑐25, 𝑒3, 8.90) > (𝑐26, 𝑒3, 8.85) > (𝑐23, 𝑒3, 8.70) >
(𝑐24, 𝑒3, 8.68) > . . . > (𝑐58, 𝑒4, 0) > (𝑐59, 𝑒4, 0)}

Since client 𝑐25 has the maximum distance from her nearest exist-
ing facility 𝑒3, 𝐿1𝑠 .𝑐 = 𝑐25, 𝐿1𝑠 .𝑒 = 𝑒3, 𝐿1𝑠 .𝑑𝑖𝑠𝑡 = 8.90. The algorithm
calculates the candidate answer set𝐶𝐴 by considering 𝐿1𝑠 .𝑐, which
is 𝑐25. 𝐶𝐴1 represents the candidate locations from 𝐹𝑛 that have
shorter distance than the distance between 𝑐25 and her nearest
existing facility (i.e., 𝐿1𝑠 .𝑑𝑖𝑠𝑡 = 8.90). The candidate answer set
𝐶𝐴 is generated from 𝐶𝐴1:

𝐶𝐴 = 𝐶𝐴1 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}

Since, |𝐶𝐴| = 6 > 1, the modified MinMax algorithm picks the
next client, 𝐿2𝑠 .𝑐 = 𝑐26 off the sorted list and refines𝐶𝐴 considering
client 𝐿2𝑠 .𝑐 = 𝑐26 based on the pruning strategies mentioned in Step
3 of modified MinMax algorithm. First, the algorithm calculates
𝐶𝐴2 by finding the candidate facility locations that have shorter
distance than 𝐿2𝑠 .𝑐 = 𝑐26’s nearest existing facility, 𝐿2𝑠 .𝑒 = 𝑒3 and
updates 𝐶𝐴 by picking only those locations common to both 𝐶𝐴

and 𝐶𝐴2, thus pruning the locations from 𝐶𝐴 whose distances are
greater than client 𝐿2𝑠 .𝑐’s distance to her nearest existing facility
(pruning strategy 3a).

𝐶𝐴2 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}
𝐶𝐴 = 𝐶𝐴 ∩𝐶𝐴2 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}
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Then, the algorithm considers each of the previously consid-
ered clients, 𝐿1𝑠 .𝑐 = 𝑐25 in this case and prunes those candidate
locations (𝐶𝐴′1) from𝐶𝐴, which have larger distances than the cur-
rent considered client 𝐿2𝑠 .𝑐 = 𝑐26’s distance to her nearest existing
facility, 𝐿2𝑠 = 𝑒3 (i.e., 8.85). (pruning strategy 3b).

𝐶𝐴′1 = {𝑛𝑖 ∈ 𝐶𝐴1 : 𝑖𝐷𝑖𝑠𝑡 (𝐿1𝑠 .𝑐, 𝑛𝑖 ) > 𝐿2𝑠 .𝑑𝑖𝑠𝑡} = ∅
𝐶𝐴 = 𝐶𝐴 \𝐶𝐴′1 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}

Similarly, the modified MinMax algorithm picks the clients,
𝐿
3,4,5
𝑠 .𝑐 = {𝑐23, 𝑐24, 𝑐28} one by one off the sorted list and refines

the candidate location set 𝐶𝐴 using the two pruning strategies
above. Only the calculation for client 𝐿5𝑠 .𝑐 = 𝑐28 is shown below.

𝐶𝐴5 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}
𝐶𝐴 = 𝐶𝐴 ∩𝐶𝐴5 = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12, 𝑛13}
𝐶𝐴′1 = {𝑛𝑖 ∈ 𝐶𝐴

′
1 : 𝑖𝐷𝑖𝑠𝑡 (𝐿

1
𝑠 .𝑐, 𝑛𝑖 ) > 𝐿5𝑠 .𝑑𝑖𝑠𝑡} = {𝑛13}

𝐶𝐴′2 = {𝑛𝑖 ∈ 𝐶𝐴
′
2 : 𝑖𝐷𝑖𝑠𝑡 (𝐿

2
𝑠 .𝑐, 𝑛𝑖 ) > 𝐿5𝑠 .𝑑𝑖𝑠𝑡} = {𝑛13}

𝐶𝐴′3 = {𝑛𝑖 ∈ 𝐶𝐴
′
3 : 𝑖𝐷𝑖𝑠𝑡 (𝐿

3
𝑠 .𝑐, 𝑛𝑖 ) > 𝐿5𝑠 .𝑑𝑖𝑠𝑡} = {𝑛13}

𝐶𝐴′4 = {𝑛𝑖 ∈ 𝐶𝐴
′
4 : 𝑖𝐷𝑖𝑠𝑡 (𝐿

4
𝑠 .𝑐, 𝑛𝑖 ) > 𝐿5𝑠 .𝑑𝑖𝑠𝑡} = {𝑛13}

∴ 𝐶𝐴 = 𝐶𝐴 \ (𝐶𝐴′1 ∪𝐶𝐴
′
2 ∪𝐶𝐴

′
3 ∪𝐶𝐴

′
4) = {𝑛5, 𝑛9, 𝑛10, 𝑛11, 𝑛12}

It goes on until the algorithm finds some client
𝐿37𝑠 .𝑐 = 𝑐3 for which the candidate answer set can
not be refined anymore, but only after the algo-
rithm has considered the following clients, 𝐿

1,...,36
𝑠 .𝑐 =

{𝑐25, 𝑐26, 𝑐23, 𝑐24, 𝑐13, 𝑐12, 𝑐11, 𝑐27, 𝑐30, 𝑐31, 𝑐22, 𝑐34, 𝑐7, 𝑐32, 𝑐5,
𝑐33, 𝑐21, 𝑐40, 𝑐38, 𝑐6, 𝑐35, 𝑐14, 𝑐43, 𝑐36, 𝑐39, 𝑐41, 𝑐15, 𝑐37, 𝑐47, 𝑐44,
𝑐46, 𝑐20, 𝑐60, 𝑐4, 𝑐49, 𝑐10} in order.

𝐶𝐴 = {𝑛5, 𝑛10},𝐶𝐴37 = {𝑛3};𝐶𝐴 = 𝐶𝐴 ∩𝐶𝐴37 = ∅
Hence, the final candidate answer set, 𝐶𝐴 = {𝑛5, 𝑛10}. As |𝐶𝐴| >
1, the modified MinMax algorithm selects the candidate location
from𝐶𝐴 which minimizes the maximum distance from the already
considered clients 𝐿1,...,36𝑠 .𝑐. Hence,

A = argmin
𝑛 𝑗 ∈𝐶𝐴

(
max

𝑐𝑖 ∈𝐿1,...,36𝑠 .𝑐

𝑖𝐷𝑖𝑠𝑡 (𝑐𝑖 , 𝑛 𝑗 )
)
= 𝑛5

5 AN EFFICIENT APPROACH
The Modified MinMax algorithm considers each client separately
while calculating their nearest existing facilities. Given the large
number of clients in an indoor space, this significantly increases
the number of required indoor distance computation and limits the
performance of the algorithm. We develop an efficient approach
for finding the optimal location to set up a new facility that min-
imizes the maximum distances of the clients from their nearest
facilities. The key idea behind the efficiency of our approach is
the refinement of the search space and reduction in the number of
indoor distance computations. Moreover, rather than considering
each client separately we group the nearby clients, which also re-
duces the indoor distance computation overhead. In addition, our
efficient technique to incrementally find the nearest neighbours in
the indoor space for all clients with a single search on the database
further reduces the processing overhead.

5.1 Overview
In our approach, we index both existing and candidate facilities in
𝐹𝑒 ∪ 𝐹𝑛 using a single VIP-tree. The indexing of 𝐹𝑒 in a VIP-tree
is done once offline and then 𝐹𝑛 is indexed as part of the same

VIP-tree during the query processing. Our approach incrementally
finds the nearest facilities for all clients in 𝐶 with a single search
on 𝐹𝑒 ∪ 𝐹𝑛 . We develop an efficient bottom up VIP-tree traversal
technique to incrementally find the nearest facilities for all clients
with a single search. The traditional VIP-tree based nearest neigh-
bour algorithm [19] starts the search from the VIP tree root and
traverses the tree in a top down manner using a priority queue.
Extending it for finding the nearest facilities for all clients would
result in traversing majority of the leaf nodes because clients are
distributed across different leaf nodes of the VIP tree. To reduce
the query processing overhead of the top down search, we opted
for the bottom up traversal of the VIP-tree. Initially, for each client
we insert the leaf node that contains the client’s partition into the
priority queue and dequeue the queue. If the dequeued entry is a
VIP-tree node, the algorithm enqueues its parent and child nodes
into the priority queue if they have not been previously enqueued
for that client, and the process carries on. Refer to Section 5.3 for
a detailed explanation.

On top of that, we devise an efficient pruning technique to prune
the clients whose distance from their nearest existing facilities
can not be improved by a candidate location. The search proceeds
while pruning clients from 𝐶 based on the pruning technique
proposed in Lemma 5.1. It stops when at least the closest facility
with respect to every client has been identified. At this stage, the
algorithm checks whether the answer is already determined by
examining 𝐶, since 𝐶 may change due to the pruning of clients. If
𝐶 becomes empty while pruning the clients in the search process,
then no answer exists for the query. If the remaining clients in 𝐶

have a common retrieved nearest facility that is included in 𝐹𝑛 ,
this location is returned as the answer. Otherwise, if the remaining
clients in 𝐶 have no common retrieved nearest facility in 𝐹𝑛 , the
algorithm again resumes the incremental nearest facility search
until 𝐶 becomes empty or a common retrieved nearest facility in
𝐹𝑛 for all remaining clients in 𝐶 has been identified.

The notations used in our algorithms are summarized below:

• Variable 𝑝 represents any partition and variable 𝑐𝑖 .𝑝 represents
the partition where client 𝑐𝑖 is located.
• Variable 𝑁 represents a VIP-tree node (i.e., the minimum bound-

ing box of the partitions represented by the VIP-tree node).
• Variable I represents an indoor entity which can be an indoor

partition or a VIP tree node.
• List 𝐿𝑖 represents the list of retrieved facilities (existing and/or

candidate) for client 𝑐𝑖 , and the locations are sorted based on
their shortest indoor distances from 𝑐𝑖 .
• 𝐿 represents the set of 𝐿𝑖s for all clients in 𝐶.
• Variable 𝐶′ [𝑝] represent the set of clients that have not been

pruned and are located in partition 𝑝.
• 𝐶′ is the set of 𝐶′ [𝑝]s for all partitions, i.e.,

⋃
𝑒∈𝐶′ ∀𝑒 = 𝐶.

• 𝑄 is a priority queue where entries are ordered based on the
shortest indoor distance between a partition 𝑝 and an indoor
entity I included in an entry.
• Function 𝑖𝑀𝑖𝑛𝐷 (𝑝,I) returns the shortest indoor distance be-

tween a partition and an indoor entity I.
• Function 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝) returns the shortest indoor distance be-

tween a client 𝑐 and an indoor partition 𝑝.
• Variable 𝐺𝑑 represents the shortest distance between a partition
𝑝 and an indoor entity I of the last dequeued entry.
• Variable 𝑑𝑙𝑜𝑤 represents the lower bound of the maximum short-

est distance of the clients from their nearest facilities after the
query answer 𝐴 is identified.
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5.2 Search Space Refinement
Our efficient approach considers 𝐹𝑒 and 𝐹𝑛 at the same time, which
allows us to derive a global distance (𝐺𝑑 ) for the refinement of
the search space. Here, the global distance refers to the maximum
distance between the clients and facilities (existing or candidate)
that have already been retrieved from the database. We use this
global distance to refine the search space in two ways: by pruning
the facilities and the clients. The global distance guarantees the
following: a VIP-tree node or a partition whose shortest distance
from any client in 𝐶 is less than or equal to the global distance
have been retrieved from the database. Unlike modified MinMax
algorithm, our approach does not need to find the nearest existing
facility from 𝐹𝑒 for a client, if the distance of the client from the
nearest existing facility is greater than the global distance.

We prune a client if it is guaranteed that a candidate facility
cannot improve the client’s distance from her nearest existing
facility. Once a client is pruned, our approach does not need to
(i) retrieve any candidate facility for the client from the database
and (ii) compute the distance of the client from the candidate
facilities that are retrieved from the database for other clients. The
following lemma shows the condition of pruning a client:

LEMMA 5.1. Let 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑒) be the indoor distance between
a client 𝑐 and an existing facility 𝑒 ∈ 𝐹𝑒 , and 𝐺𝑑 be a global
distance that tracks the maximum distance between the clients and
facilities (existing or candidate) that have already been retrieved
from the database. A client 𝑐 can be pruned if 𝐺𝑑 ≥ 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑒).

PROOF. Let 𝑑𝐴 represent the maximum shortest distance of
the clients from their nearest facilities after the IFLS query answer
𝐴 is found, which is mathematically defined as follows:

𝑑𝐴 = max
𝑐∈𝐶

𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑁𝑁 (𝑐, 𝐹𝑒 ∪𝐴))

If there is an existing facility 𝑒 in the list of retrieved facilities for
a client 𝑐, where 𝑑𝐴 ≥ 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑒), then the client can be pruned
because the query answer 𝐴 can not improve 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑒). At any
time, 𝐺𝑑 ≥ 𝑑𝐴 (from definition). Thus, 𝐺𝑑 ≥ 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑒). □

5.3 Algorithm
Algorithm 2 shows the pseudocode of our efficient approach to
solve the IFLS query. The inputs to the algorithm are the set of
existing facilities 𝐹𝑒 , the set of candidate locations 𝐹𝑛 , and the set
of clients 𝐶. The algorithm returns the optimal candidate location
of the new facility 𝐴 that minimizes the maximum of the distances
of the clients from their nearest facility.

The algorithm starts with checking whether a client is located
inside a facility. Specifically, if the partition where a client 𝑐𝑖 is
located is an existing or a candidate facility, i.e., included in 𝐹𝑒
or 𝐹𝑛 (Line 2), then the algorithm adds 𝑐𝑖 .𝑝 to the client’s list
𝐿𝑖 of retrieved facilities from the database (Lines 1–5). If the
condition in Line 2 is true, then 𝑐𝑖 .𝑝 is the nearest facility of 𝑐𝑖
with 𝑖𝐷𝑖𝑠𝑡 (𝑐𝑖 , 𝑐𝑖 .𝑝) equal to 0. At this stage, if a partition of any
client 𝑐𝑖 is an existing facility then according to Lemma 5.1, 𝑐𝑖
can be safely pruned because 𝐴 cannot further improve the 𝑐𝑖 ’s
distance from its nearest facility, which is already 0. Thus, in Line
6, the algorithm prunes such clients for whom one of the retrieved
facilities is an existing facility from 𝐶 and 𝐶′, and their 𝐿𝑖 from 𝐿

using function prune. The parameters of this function are 𝐿,𝐶′,𝐶,
and 𝑑𝑙𝑜𝑤 , where 𝑑𝑙𝑜𝑤 is set to 0.

Next in Line 7, the algorithm checks whether the closest facility
(existing or candidate) for all clients have been identified using
Function 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 . The parameters of the function are 𝐿, 𝐶 and

𝐺𝑑 , where 𝐺𝑑 is now set to 0 as the algorithm has only retrieved
facilities for a client which are located in the same partition as
the client. For each list in 𝐿, the function only considers those
facilities in the list whose distances are smaller than or equal to
𝐺𝑑 and sets the flag 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 to 1, if there is at least one facility in
every list of 𝐿. Otherwise, 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 is set to 0.

If 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 is 1, the algorithm (Line 9) checks if the answer 𝐴
is already found using Function 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 . The parameters of
the function are 𝐿, 𝐶 and 𝐺𝑑 . Flag 𝑖𝑠𝐴𝑛𝑠 is set to 1, if 𝐴 is found;
0 otherwise. Function 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 works as follows:

• If 𝐶 is empty then no answer exists for the query.
• If the remaining clients in 𝐶 have a common retrieved

nearest candidate facility in every list of 𝐿 for the remaining
clients and this common facility has distances less than or
equal to 𝐺𝑑 , this facility is returned as the answer.

If the answer is not found, the algorithm executes 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑇𝑟𝑒𝑒
function, which is shown using Algorithm 3. Algorithm 3 uses a
priority queue 𝑄 to explore the VIP-tree, where facilities in both
𝐹𝑒 and 𝐹𝑛 are indexed. Each entry of 𝑄 consists of a partition
𝑝 where at least one client is located, I, and 𝑖𝑀𝑖𝑛𝐷 (𝑝,I). The
entries in 𝑄 are ordered based on 𝑖𝑀𝑖𝑛𝐷 (𝑝,I)s.

For each partition 𝑝 with at least one client in it, Algorithm 3
initially enqueues 𝑝, its parent 𝑁 (the VIP tree leaf node that 𝑝
is located in) and 𝑖𝑀𝑖𝑛𝐷 (𝑝, 𝑁 ). Next the algorithm iterates until
the query answer is identified (Lines 7–36). In each iteration, the
algorithm dequeues an entry and updates 𝐺𝑑 (Lines 8–9). If the
dequeued I is a facility, the algorithm adds I to 𝐿𝑖 for each client
𝑐𝑖 located in the dequeued partition 𝑝 (Lines 10–13). On the other
hand, if I is a VIP tree node, the algorithm enqueues entries to 𝑄

by considering parent and child nodes of I (Lines 14–22). While
enqueueing, the algorithm ensures that the node has not been
visited before (i.e., 𝑁 ′ ← 𝑝𝑎𝑟𝑒𝑛𝑡 (I) in Line 15 or 𝑐ℎ ≠ 𝑝 in Line
19). To clarify, given the fact that I represents either an indoor
partition or a VIP tree node, 𝑁 ′ will always be a VIP tree non-leaf
node, whereas 𝑐ℎ can be either a partition or a VIP tree node.

If 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 flag is false, in Line 24, the algorithm checks again
whether the closest facility (existing or candidate) for all clients
have been identified at this stage using Function 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 . If
𝑖𝑠𝐹𝑖𝑟𝑠𝑡 flag is still false, the algorithm prunes the clients from 𝐶′

and 𝐶 whose distances from an existing facility is smaller than
or equal to 𝐺𝑑 (Line 27) according to Lemma 5.1, because it is
guaranteed that the minimum distance of the clients from their
nearest facilities after the query answer is identified will not be
smaller than 𝐺𝑑 as the closest facility for all clients have not yet
been identified. The algorithm updates 𝑑𝑙𝑜𝑤 to 𝐺𝑑 (Line 28).

On the other hand, if 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 is true, the algorithm iterates
in a loop (Lines 31–35). In each iteration, the algorithm up-
dates 𝑑𝑙𝑜𝑤 using Function 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐷𝑖𝑠𝑡 as follows. Function
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐷𝑖𝑠𝑡 (𝐿,𝑑) sets 𝑑𝑙𝑜𝑤 to a distance of a facility, where the
the facility’s distance from any client is greater than current 𝑑𝑙𝑜𝑤
and smaller than or equal to 𝐺𝑑 , and the facility’s distance is the
smallest among all facilities that satisfy the above two conditions.

The intuition behind this step is as follows. Since, we consider a
partition instead of an exact location of a client while enqueueing
an entry to 𝑄 , 𝑄 is sorted based on 𝑖𝑀𝑖𝑛𝐷 instead of 𝑖𝐷𝑖𝑠𝑡 . As a
result, when a facility is added to a list of a client in Line 12, it
may happen that the client’s actual distance 𝑖𝐷𝑖𝑠𝑡 from the facility
becomes greater than 𝐺𝑑 . This facility is not eligible to consider
for the client while computing the answer in the current iteration
as there may be other facilities that have smaller distances from the
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Algorithm 2 IFLS_EA(𝐹𝑒 , 𝐹𝑛,𝐶)
1: for each 𝑐𝑖 ∈ 𝐶 do
2: if 𝑐𝑖 .𝑝 ∈ (𝐹𝑒 ∪ 𝐹𝑛 ) then
3: 𝐿𝑖 ← 𝑎𝑑𝑑𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 (𝑐𝑖 , 𝑐𝑖 .𝑝, 0)
4: end if
5: end for
6: 𝑝𝑟𝑢𝑛𝑒 (𝐿,𝐶′,𝐶, 0)
7: 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 ← 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 (𝐿,𝐶, 0)
8: if 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 = true then
9: 𝐴, 𝑖𝑠𝐴𝑛𝑠 ← 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 (𝐿,𝐶, 0)

10: end if
11: if 𝑖𝑠𝐴𝑛𝑠 = false then
12: 𝐴, 𝑖𝑠𝐴𝑛𝑠 ← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑇𝑟𝑒𝑒 (𝐹𝑒 , 𝐹𝑛,𝐶,𝐶′, 𝐿, 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 )
13: end if
14: return 𝐴

Algorithm 3 exploreTree(𝐹𝑒 , 𝐹𝑛,𝐶,𝐶′, 𝐿, 𝑖𝑠𝐹𝑖𝑟𝑠𝑡)
1: 𝑄 ← ∅
2: 𝑒𝑛𝑑,𝑑𝑙𝑜𝑤 ← 0
3: for each partition 𝑝 with |𝐶′ [𝑝 ] | > 0 do
4: 𝑁 ← 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝 )
5: 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝑝, 𝑁 , 𝑖𝑀𝑖𝑛𝐷 (𝑝, 𝑁 ) )
6: end for
7: while !𝑖𝑠𝐴𝑛𝑠 do
8: 𝑝, I, 𝑖𝑀𝑖𝑛𝐷 (𝑝, I) ← 𝐷𝑒𝑞𝑢𝑒𝑢𝑒 (𝑄 )
9: 𝐺𝑑 ← 𝑖𝑀𝑖𝑛𝐷 (𝑝, I)

10: if (I is a facility and |𝐶 [𝑝 ] | > 0) then
11: for each client 𝑐𝑖 ∈ 𝐶′ [𝑝 ] do
12: 𝐿𝑖 ← 𝑎𝑑𝑑𝐹𝑎𝑐𝑖𝑙𝑖𝑡𝑦 (𝑐𝑖 , I, 𝑖𝐷𝑖𝑠𝑡 (𝑐𝑖 , I) )
13: end for
14: else if (I is not a facility) then
15: if 𝑝𝑎𝑟𝑒𝑛𝑡 (I) ≠ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑝 ) then
16: 𝑁 ′ ← 𝑝𝑎𝑟𝑒𝑛𝑡 (I)
17: 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝑝, 𝑁 ′, 𝑖𝑀𝑖𝑛𝐷 (𝑝, 𝑁 ′ ) )
18: end if
19: for each child 𝑐ℎ of I, with 𝑐ℎ ≠ 𝑝 do
20: 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 (𝑄, 𝑝, 𝑐ℎ, 𝑖𝑀𝑖𝑛𝐷 (𝑝, 𝑐ℎ) )
21: end for
22: end if
23: if (𝑖𝑠𝐹𝑖𝑟𝑠𝑡 = false) then
24: 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 ← 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 (𝐿,𝐶,𝐺𝑑 )
25: end if
26: if (𝑖𝑠𝐹𝑖𝑟𝑠𝑡 = false) then
27: 𝑝𝑟𝑢𝑛𝑒 (𝐿,𝐶′,𝐶,𝐺𝑑 )
28: 𝑑𝑙𝑜𝑤 ← 𝐺𝑑

29: else
30: 𝑒𝑛𝑑 ← 0
31: while 𝑖𝑠𝐴𝑛𝑠 = false do
32: 𝑑𝑙𝑜𝑤 , 𝑒𝑛𝑑 ← 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐷𝑖𝑠𝑡 (𝐿,𝑑𝑙𝑜𝑤 ,𝐺𝑑 )
33: if (𝑒𝑛𝑑 = 0) then
34: 𝑝𝑟𝑢𝑛𝑒 (𝐿,𝑑𝑙𝑜𝑤 ,𝐶′,𝐶 )
35: 𝐴, 𝑖𝑠𝐴𝑛𝑠 ← 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 (𝐿,𝐶,𝑑𝑙𝑜𝑤 )
36: end if
37: end while
38: end if
39: end while
40: return 𝐴

client and have not yet been retrieved from the database. However,
in a later iteration, when 𝐺𝑑 is increased (Line 9), more than one
facility’s distances from a client may become smaller than or equal
to 𝐺𝑑 . This is why the algorithm increases 𝑑𝑙𝑜𝑤 in steps in a loop
instead of directly assigning 𝐺𝑑 to 𝑑𝑙𝑜𝑤 and checks whether the
answer is already identified for a newly considered facility.

𝑐.𝑝

𝑝

𝑐 𝑐.𝑝

𝑝

𝑐

𝑖𝑀𝑖𝑛𝐷
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𝑖𝐷𝑖𝑠𝑡

𝑐.𝑝

𝑝

𝑐

(a)
Figure 3: 𝑖𝐷𝑖𝑠𝑡 and 𝑖𝑀𝑖𝑛𝐷 calculation.

If no such facility is found, the function sets 𝑒𝑛𝑑 to 1, Other-
wise, if 𝑒𝑛𝑑 = 0, the algorithm prunes the clients that are eligible
according to according to Lemma 5.1 using Function 𝑝𝑟𝑢𝑛𝑒 (Line
34) and checks whether the answer is identified using Function
𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 (Line 35).

5.3.1 iMinD and iDist Calculation. Here, we explain the
steps of calculating 𝑖𝑀𝑖𝑛𝐷 (𝑝,I), the shortest distance between an
arbitrary partition and an indoor entity, and 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝), the shortest
distance between a client and an arbitrary indoor partition.

𝑖𝑀𝑖𝑛𝐷 (𝑝,I) calculation: We follow the same approach of
calculating the shortest distance between two arbitrary indoor
points proposed in [19] to calculate the shortest distance between
a partition 𝑝 and an indoor entity I. The only difference is the
distance between an indoor point and the door of the partition it is
located inside is either positive or 0, whereas the distance between
an indoor partition and its doors is always 0.

𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝) calculation: Let 𝑐.𝑝 be the partition where client 𝑐 is
located and 𝐷 (𝑐.𝑝) be that partition’s doors. Based on the number
of doors of partition 𝑐.𝑝, the shortest distance between an arbitrary
client 𝑐 and an arbitrary partition 𝑝 can be calculated as follows.

Case 1 (Figure 3a). If |𝐷 (𝑐.𝑝) | = 1, we have to use 𝑐.𝑝’s only
door to calculate 𝑖𝑀𝑖𝑛𝐷 (𝑐.𝑝, 𝑝) as client 𝑐 also has to use that door
to leave 𝑐.𝑝. Hence, we use the already calculated 𝑖𝑀𝑖𝑛𝐷 (𝑐.𝑝, 𝑝)
to calculate 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝) as follows, where 𝑑 ∈ 𝐷 (𝑐.𝑝).

𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝) = 𝑖𝑀𝑖𝑛𝐷 (𝑐.𝑝, 𝑝) + 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑑)

Case 2 (Figures 3b, 3c). When |𝐷 (𝑐.𝑝) | > 1, we get the in-
formation about the door client 𝑐 uses to leave partition 𝑐.𝑝

only after 𝑖𝐷𝑖𝑠𝑡 (𝑐, 𝑝) is calculated. Hence, the already calculated
𝑖𝑀𝑖𝑛𝐷 (𝑐.𝑝, 𝑝) can not be utilized in this case as the door used by
client to leave partition 𝑐.𝑝 may (Figure 3(b)) or may not (Fig-
ure 3(c)) be the same as the door used in calculating 𝑖𝑀𝑖𝑛𝐷 (𝑐.𝑝, 𝑝).
Thus, we follow the same approach of calculating the shortest dis-
tance between two arbitrary indoor points proposed in [19].

5.4 A Working Example
We explain the steps of our approach using the same example
shown in Figure 1. Initially, the algorithm finds the partition a
client is located in and includes it as one of the retrieved facilities
for the client, if that partition is either an existing or a candidate
facility (Line 2-5 in Algorithm 2). In Figure 1, client 𝑐1 is located
in partition 𝑐1.𝑝 = 𝑝2, which is an existing facility (𝑒1). Hence,
𝑒1 is the nearest facility of client 𝑐1 with 𝑖𝐷𝑖𝑠𝑡 (𝑐1, 𝑒1) = 0 and
(𝑒1, 0) is inserted into 𝐿1. On the other hand, client 𝑐8 is located
in partition 𝑐8 .𝑝 = 𝑝4, which is neither an existing facility nor
a candidate location. Hence, no facility is retrieved for client 𝑐8.
Once this step is done for all clients in 𝐶, the algorithm moves
on to the next step of pruning clients which have an existing
facility in its 𝐿𝑖 , i.e., the nearest facility of whom are an existing
facility (Line 6 in Algorithm 2). The algorithm prunes clients
𝑐1, 𝑐17, 𝑐18, 𝑐52, 𝑐58 and 𝑐59, because the nearest facility of these
clients are an existing facility: 𝑒1, 𝑒2, 𝑒2, 𝑒3, 𝑒4, and 𝑒4, respectively.
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Figure 4: 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐷𝑖𝑠𝑡 calculation

Consequently, the list of the potential clients gets updated from
𝐶 to 𝐶 = 𝐶 − {𝑐1, 𝑐17, 𝑐18, 𝑐52, 𝑐58, 𝑐59}. 𝐶′ and 𝐶′ [𝑝]s are also
updated accordingly.

Next, the algorithm calls function 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 (𝐿,𝐶, 0), goes
through the 𝐿𝑖s’ for each client in 𝐶 and checks if the nearest
neighbours within distance 0 have been retrieved for all these
clients (Line 8 in Algorithm 2). For clients 𝑐8, 𝑐9 and 𝑐10, the near-
est neighbours within distance 0 have not been retrieved yet. So,
flag 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 is set to false, and function 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑇𝑟𝑒𝑒 (Algorithm 3)
is invoked (Line 12-14 in Algorithm 2).

Algorithm 3 first populates 𝑄 with (𝑝, 𝑁 , 𝑖𝑀𝑖𝑛𝐷 (𝑝, 𝑁 ))s,
where 𝑝 is a partition with |𝐶′ [𝑝] | ≥ 1 and 𝑁 is the leaf node
containing 𝑝. In Figure 1, |𝐶′ [𝑝1] | = 0. As a result, 𝑝1 is skipped.
However, |𝐶′ [𝑝4] | = 2, 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝4) = 𝑁1 and 𝑖𝑀𝑖𝑛𝐷 (𝑝4, 𝑁1) = 0.
Hence, (𝑝4, 𝑁1, 0) is enqueued. Once 𝑄 is populated (Line 3-6),
the algorithm iterates until 𝑖𝑠𝐴𝑛𝑠 = 1.

During the first iteration the algorithm dequeues (𝑝4, 𝑁1, 0)
and sets 𝐺𝑑 = 0. 𝑁1 is a leaf node of the VIP tree, so the algo-
rithm enqueues 𝑁1’s parent node 𝑁4 and children 𝑝1, 𝑝2, 𝑝3, 𝑝5, 𝑝6
into 𝑄 . As 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 was set to false previously, the algorithm in-
vokes 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 (𝐿,𝐶, 0) to recalculate the flag. Since no facilities
have been extracted in this iteration 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 remains false. As a
result, the algorithm starts the next iteration after invoking func-
tion 𝑝𝑟𝑢𝑛𝑒 (𝐿,𝐶′,𝐶, 0). During another iteration (𝑝15, 𝑝10, 7.23)
gets dequeued, hence 𝐺𝑑 is set to 7.23. Since partition 𝑝10 is
a facility and 𝐶′ [𝑝10] = {𝑐26, 𝑐27} , the algorithm calculates
𝑖𝐷𝑖𝑠𝑡 (𝑐26, 𝑝10), 𝑖𝐷𝑖𝑠𝑡 (𝑐27, 𝑝10) and includes 𝑝10 to 𝐿26, 𝐿27. It then
invokes 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 (𝐿,𝐶, 7.23) and updates 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 = 𝑡𝑟𝑢𝑒.

Since 𝑖𝑠𝐹𝑖𝑟𝑠𝑡 has been updated to true, it calculates a sorted
list of facilities 𝐿(𝑝𝑟𝑒𝑣𝐺𝑑 ,𝐺𝑑 ] the distance of which from a
client is within the range (𝑝𝑟𝑒𝑣𝐺𝑑 ,𝐺𝑑 ] = (6.80, 7.23]. Here,
𝑝𝑟𝑒𝑣𝐺𝑑 = the𝐺𝑑 during the previous iteration and 𝐿(𝑝𝑟𝑒𝑣𝐺𝑑 ,𝐺𝑑 ] =
{(𝑐12, 𝑛9, 6.98), (𝑐13, 𝑛9, 7.10), (𝑐19, 𝑒2, 7.18), (𝑐60, 𝑛5, 7.23)}. The
algorithm then starts iterating a loop. In the first iteration, it
removes the first element (𝑐12, 𝑛9, 6.98) off the list and sets
𝑑𝑙𝑜𝑤 = 6.98. Since 𝑛9 is a candidate location, client 𝑐5 is not
pruned and function 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 (𝐿,𝐶, 6.98) is invoked to re-
calculate the flag 𝑖𝑠𝐴𝑛𝑠 = false. On the other hand, in the third
iteration when it removes (𝑐19, 𝑒2, 7.18) client 𝑐19 is pruned be-
cause an existing facility 𝑒2 has been retrieved for this client and
𝐶 gets updated to 𝐶 = 𝐶 \ 𝑐19. Figure 4 shows all the iterations of
the loop after which 𝑖𝑠𝐴𝑛𝑠𝐹𝑜𝑢𝑛𝑑 still remains false.

As a result, the algorithm moves on to the next iteration and
follows the same procedure again. After 𝑠𝑖𝑥 more of these it-
erations, the algorithm finally sets 𝑖𝑠𝐴𝑛𝑠𝐹𝑜𝑢𝑛𝑑 to true when
it finds a common candidate facility 𝐴 = 𝑛5 for clients in
𝐶 = {𝑐5−𝑐7, 𝑐10−𝑐15, 𝑐21−𝑐25, 𝑐21−𝑐25, 𝑐28−𝑐35, 𝑐38−𝑐41, 𝑐42, 𝑐43}.

6 EXPERIMENTS
We present our experimental setup in Section 6.1. Then, we present
the performance of our proposed approach and compare it with the
modified MinMax-Alg for processing IFLS queries in Section 6.2.

6.1 Experiment Settings
We ran our experiments in an Intel (R) Core (TM) i5-3230M 2.60
GHz machine with 8 GB RAM running on Windows 10.

6.1.1 Datasets. We evaluate our model on four real world
indoor venues:
• Melbourne Central (MC)1. A large shopping centre in Mel-

bourne with 299 doors and 298 rooms spread over 7 levels.
• Chadstone (CH)2. The largest shopping centre in Australia

with 678 doors and 679 rooms spread over 4 levels.
• Copenhagen Airport (CPH)3. The ground floor of Copen-

hagen Airport, spanning over 2000m × 600m with 76 rooms
and 118 doors.
• Menzies Building (MZB)4. A landmark building at Clayton

campus of Monash University, with 1344 rooms and 1375 doors
spanning over 16 levels.
We use both real and synthetic setting to select/generate exist-

ing facilities, candidate facility locations.
• Real Setting. Client locations are generated using uniform and

normal distribution. Existing facilities and candidate locations
are selected from real data. We choose Melbourne Central (MC)
venue to run our experiments in real setting. Generally, the
partitions across an indoor venue can be categorized into differ-
ent categories based on the service they provide. For example,
the MC shopping center has different categories of partitions
such as fashion & accessories, dining & entertainment, health
& beauty, fresh food, banks & services and so on. For our ex-
periments, we select the partitions of one of such categories e.g.
dining & entertainment as existing facilities and the partitions
of the remaining categories are selected as candidate locations.
• Synthetic Setting. We choose all 4 venues: MC, CH, CPH,

MZB to run our experiments in synthetic setting. Unlike real
setting, existing facilities and candidate locations are selected
using uniform random distribution. Clients are generated using
uniform, and normal distribution.

6.1.2 Parameter settings. We vary the following parame-
ters: (i) the existing facility size |𝐹𝑒 |, (ii) the candidate location
size |𝐹𝑛 |, (iii) the client size |𝐶 |, and (iv) the standard deviation
of normal distribution 𝜎 for our experiments in synthetic setting.
For real setting, we only vary (i) the client size |𝐶 |, and (ii) the
standard deviation of Normal distribution 𝜎 . To select the set of ex-
isting facilities and candidate locations in real setting, we consider
the following five categories of partitions: fashion & accessories
(101), dining & entertainment (54), health & beauty (39), fresh
food (19) and banks & services (14). When we consider fashion &
accessories category, we select the 101 partitions of the mentioned
category as our existing facility set and the remaining 190 parti-
tions as the candidate location set. Table 2 shows the range used
for each parameter, where the default values are marked in bold.

1https://www.melbournecentral.com.au/centre-info/centre-map
2https://www.chadstone.com.au/directions/centre-map/
3https://www.cph.dk/en/practical
4https://www.monash.edu/virtual-tours/menzies-building

639



Table 2: Parameter settings for Indoor Facility Location Selection Query.
Parameters Range

Real setting Synthetic setting
Venue MC MC CH CPH MZB
Existing facility size (𝐹𝑒 ) 101, 54, 39, 19, 14 [25, 125], Δ = 25 [50, 150], Δ = 25 [10, 30], Δ = 5 [100, 500], Δ = 100
Candidate location size (𝐹𝑛) 190, 237, 252, 272, 277 [100, 200], Δ = 25 [100, 500], Δ = 100 [25, 45], Δ = 5 [300, 700], Δ = 100
Client size (𝐶) 1k, 5k, 10k, 15k, 20k
Normal Distribution:𝜇; 𝜎 0; 0.125, 0.25, 0.5, 1, 2

In synthetic setting, the existing facility size and the candidate
location size are varied within the range [a, b] with the defined
Δ and the mean of these values are used as the default value. To
observe the effect of a parameter in an experiment, the value of
the parameter was varied within its range, and other parameters
were set to their default values.

6.1.3 Evaluation Metric. We evaluate the performance of
the efficient approach and modified MinMax algorithm on the
following two metrics: i) processing time, and ii) memory cost.
For each set of experiment, we ran 10 IFLS queries and then
recorded the average processing time, and memory cost.

6.2 Performance Evaluation & Parameter
Sensitivity

In this section, we present the experimental results by varying
different parameters.

6.2.1 Effect of Client Size. Figures 5 and 7a show that the
efficient approach comfortably outperforms the modified MinMax-
Alg by one order of magnitude in terms of the query processing
time with the increase of client size. For real setting (Figure 5), on
average the efficient approach achieves a speedup of 8.28 times
over the modified Min-Max algorithm, and reaches up to 24.96
times. For synthetic setting (Figure 7a), on average the efficient
approach achieves a speedup of 14.23, 2.75 and 4.02 times over the
modified Min-Max algorithm and reaches up to 22.26, 2.94, and
4.57 times for MC, CH and MZB dataset, respectively.

However, the efficient approach does worse than the Modi-
fied MinMax-Alg on CPH dataset due to its small size. The per-
formance gain of the efficient approach stems from its pruning
strategy which is dependent on the existing facility size. With a
smaller existing facility size, less clients are pruned which results
in the retrieval of more candidate locations for each client, thus
increasing the indoor distance computation. On the other hand, for
Modified MinMax-Alg, a smaller candidate location size ensures
that the initial candidate answer set is far smaller, which makes it
take less time to converge to the query answer.

As we increase the client size, the processing time of the ef-
ficient approach increases for both real and synthetic setting.
Though the efficient approach groups the nearby clients in a same
partition and enqueues these partitions in the priority queue (𝑄), it
still considers each client separately while calculating the indoor
distances. As the number of clients increase, the number of indoor
distance calculation operations also increase. Besides, with the
increase of client size the 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡 and 𝑝𝑟𝑢𝑛𝑒 operations become
more expensive since there are more clients to consider.As a result,
the processing time increases.

The processing time of the modified MinMax-Alg increases
sharply with respect to the client size |𝐶 |. Initially, the modified
MinMax-Alg computes the nearest existing facilities from each
client using VIP-tree based nearest neighbor and shortest distance
computation algorithms. Hence, for each additional client the

algorithm has to compute its nearest existing facility, which in
turn increases the query processing time.

In real setting the existing facilities are generally clustered,
whereas in synthetic setting the existing facilities are selected ac-
cording to uniform random distribution. Despite the difference in
the distribution of the existing facilities between real and synthetic
setting, the minimal performance discrepancy between the effi-
cient approach and the Modified Min-Max, as well as the similar
steepness of both curves, indicate that the distribution of existing
facilities has a negligible effect on IFLS query performance.

In terms of memory cost, the modified MinMax-Alg performs
better than the efficient approach with the increasing client size.
On an average the modified MinMax-Alg incurs 2.86 times less
memory in real setting and 2.34 (MC), 3.88 (CH), 17.82(CPH),
7.29 (MZB) times less memory cost in synthetic setting than the
efficient approach, respectively. However, the efficient approach
reports a maximum memory cost of 41 MB for real setting and
468.94 MB for synthetic setting (MZB), which is negligible.

Both the efficient approach and the modified MinMax-Alg
require more memory as the client size increases. However, com-
pared to the real setting there is a steep increase in the required
memory in synthetic setting with the increasing client size. This
is due to the difference in the number of facilities in two settings:
in synthetic setting, an additional client has to consider twice the
number of facilities than in real setting.

6.2.2 Effect of Standard Deviation. For normal distribu-
tion, varying the standard deviation, 𝜎 means varying the degree
of inclination for the data points to cluster at the central area of an
indoor venue. A smaller 𝜎 leads to more dense data points at the
center, whereas a larger 𝜎 leads to more dispersed data points. For
both synthetic and real setting we only generate the client data
using normal distribution.

For real setting (Figure 6(i)), on average the efficient approach
achieves a speedup of 545.03 times over the modified Min-Max
algorithm, and reaches up to 907.55 times in terms of the query
processing time. In case of synthetic setting (Figures 6(ii)- 6(v)),
on average the efficient approach achieves a speedup of 235.38
(MC) , 2.80 (CH), and 32.03 (MZB) times over the modified Min-
Max algorithm and reaches up to 644.33 (MC), 3.17 (CH), and
39.09 (MZB) times.

The query processing time of the efficient approach increases
with 𝜎 in real setting (Figure 6(i)). The existing facilities in real
setting are clustered. As a result when clients become more dis-
persed with the increasing 𝜎 , the distance between an existing
facility and a client rather increases. Hence, the number of pruned
clients decrease which in turn increases the number of locations
retrieved from the database. For the modified MinMax-Alg, this
increase in distance increases the size of the candidate location
set which requires more clients to be considered for the refine-
ment step. However, the increase of the candidate location size is
negligible, thus the processing time of the modified MinMax-Alg
almost remains constant in real setting.
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Figure 5: Effect of |𝐶 | (Real Setting).
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Figure 6: Effect of 𝜎 (Real & Synthetic Setting).

On the contrary, the processing time of both approaches de-
crease slightly with 𝜎 in synthetic setting (Figures 6(ii)- 6(v)). As
𝜎 increases, the clients become more dispersed while the existing
facilities and candidate locations remain uniformly distributed. As
the clients get more dispersed, the distance between an existing
facility and a client decreases. For the efficient approach, this
increases the number of pruned clients. For the modified MinMax-
Alg, this decreases the size of the candidate location set. As the
size of the candidate location set decreases, less number of clients
are considered for refining the candidate location set. Hence, there
is a decrease in query processing time.

In terms of memory cost, both the efficient and the modified
MinMax-Alg approaches perform similarly. However, in synthetic
setting the modified MinMax-Alg performs better than the ef-
ficient approach with the increasing standard deviation. On an
average the modified MinMax-Alg incurs 11 times less memory
cost than the efficient approach. It is also evident from Figure 6
that both approaches require almost a constant amount of memory
with the increase of 𝜎 .

6.2.3 Effect of Existing Facility Size. Figure 7b shows
that the efficient approach comfortably outperforms the modified

MinMax-Alg with the increase of existing facility size, in terms
of the query processing time. For synthetic setting, on average the
efficient approach achieves a speedup of 19.18 (MC), 2.88 (CH)
and 4.20 (MZB) times over the modified Min-Max algorithm and
reaches up to 35.02 (MC), 3.61 (CH) and 7.07 (MZB) times.

The gain in speed of the efficient approach over the modified
MinMax algorithm comes down to two reasons. First, the efficient
approach groups the nearby clients in the same partition and en-
queues the partitions in the priority queue 𝑄 as representatives of
the clients in stead of the actual clients themselves. Since the num-
ber of partitions in an indoor venue is always bounded, it reduces
the size of the priority queue which in turn decreases the number
of probable dequeue operations. Besides, we utilize the case when
a partition has a single door and use the already calculated indoor
distances for that partition to calculate the indoor distances for the
clients inside that partition. It reduces the computational overhead
of calculating the indoor distances for all the clients that are in that
partition from scratch. These factors combine together to reduce
the query processing time compared to the modified MinMax-Alg,
where each client is considered separately. Second, the efficient
approach refines the search space by pruning clients for whom a
candidate facility cannot improve its current distance to the nearest
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Figure 7: Effect of |𝐶 |, |𝐹𝑒 |, |𝐹𝑛 | on query processing time (Synthetic Setting).
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Figure 8: Effect of |𝐶 |, |𝐹𝑒 |, |𝐹𝑛 | on memory (Synthetic Setting).

existing facility. This eliminates the cost of retrieving candidate
facilities and calculating indoor distances for the pruned clients.

As the existing facility size increases, the processing time of the
efficient approach decreases in synthetic setting (Figure 7a). With
the increase of the existing facility size the distribution density
of the existing facilities increases, which shortens the distance
between each client and its nearest existing facility. As a result
the number of clients which are pruned increases. This reduces
the number of facilities or locations required to be retrieved from
the database and the computational overhead of calculating the
indoor distances for these locations.

On the contrary, the processing time of the modified MinMax-
Alg increases with the increase of existing facility size. Initially,
the modified MinMax-Alg computes the nearest existing facility
incrementally for each client from a fixed set of existing facilities.
As the existing facility size increases the computational overhead

of calculating the indoor distances for each client increases, thus
the increase in processing time.

In terms of memory cost, the modified MinMax-Alg per-
forms better than the efficient approach as the existing facil-
ity size increases. On average the modified MinMax-Alg incurs
2.20, 3.94, 19.70 and 7.24 times less memory cost than the efficient
approach for MC, CH, CPH and MZB dataset, respectively in syn-
thetic setting. However, the efficient approach reports a maximum
memory cost of 261.57 MB for synthetic setting (MZB), which
is negligible considering the size of memory in current machines.
This behavior is predictable considering the efficient approach
considers all the clients at a time, which requires more memory
to store all the clients and their retrieved facilities from the data-
base. On the other hand, the modified MinMax-Alg considers each
client separately and hence requires less memory. Figure 8b shows
that both the efficient approach and the modified MinMax-Alg
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require less memory as the existing facility size increases which
is down to the same reason discussed before.

6.2.4 Effect of candidate Location Size. Figure 7c shows
that the efficient approach achieves a speedup of 16.35 (MC), 2.94
(CH) and 4.14 (MZB) times over the modified Min-Max algorithm
and reaches up to 18.90 (MC), 3.29 (CH) and 4.44 (MZB) times
with the increase of candidate location size for the same reason
discussed in Section 6.2.3 in terms of the query processing time.

In synthetic setting, the processing time of the efficient ap-
proach increases steadily with the increase of candidate location
size |𝐹𝑛 | (Figure 7c). The increasing number of candidate loca-
tion increases the distribution density of the candidate locations,
i.e., the distance between each client and a candidate location de-
creases. This in turn increases the number of candidate locations
which are retrieved for each client before an answer is found. This
increased number of candidate locations increases the process-
ing overhead of operations such as 𝑐ℎ𝑒𝑐𝑘𝐿𝑖𝑠𝑡, 𝑝𝑟𝑢𝑛𝑒, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝐷𝑖𝑠𝑡 .
That’s why the query processing time of the efficient approach
increases with candidate location size.

The processing time of the modified MinMax-Alg shows a
similar trend. Once the modified MinMax-Alg completes step 1
(Nearest existing facility computation), it generates a candidate
answer set with respect to the client with the maximum distance
from its nearest existing facility. Candidate locations, which are
closer to the client than it’s nearest existing facility constitute the
candidate set. The algorithm then keeps on refining the candidate
set considering clients one by one in descending order of their
distances from the existing nearest facilities until all the clients
are considered or there is one or no facility in the candidate set at
all. As the number of candidate locations increase, the distance
between a client and its nearest candidate locations tend to de-
crease. Hence, the probable size of candidate set increases since
an increasing number of candidate locations now have shorter
distance than the client’s nearest existing facility. The algorithm
thus considers additional clients as the candidate location size
increases which results in an increase in query processing time.

In terms of memory cost, on average the modified MinMax-Alg
incurs 2.40, 4.05, 20.41 and 6.95 times less memory cost than the
efficient approach for MC, CH, CPH, and MZB dataset, respec-
tively in synthetic setting, where the efficient approach reports a
maximum memory cost of 261.57 MB for synthetic setting. Fig-
ure 8c shows that both the efficient approach and the modified
MinMax-Alg require more memory as the candidate location size
increases. This is due to the increase in the number of candidate
locations retrieved from the database for the reasons discussed
above for the respective algorithms.

7 EXTENSION
Our efficient solution for the IFLS query can be extended for
MinDist function that minimizes the average distance of the clients
from their nearest facilities. The only difference is the way in
which the candidate answer set is generated and 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟

function works. Other than that algorithm workflow proposed
in Section 5.3 and the client pruning technique proposed in
Lemma 5.1 remain the same.

Initially, the candidate answer set contains all candidate lo-
cations. Gradually, the candidate answer set is refined until the
query answer is found. Each element in the candidate answer set
consists of the total distance of the clients from the corresponding
candidate location and a flag indicating whether the total distance

is the actual distance or a lower bound. Initially the total dis-
tance is initialized with ∞ and the flag indicates a lower bound.
If a candidate location 𝑛 in the current candidate answer set is
included in the retrieved list of facilities for all the non-pruned
clients, and the distance between 𝑛 and all clients are less than the
global distance, then the actual distance can be calculated for this
candidate location. However, if for at least one of the non-pruned
clients the distance between 𝑛 and the client is unknown, then
the actual distance can not be calculated. In this case, we use
the global distance as the lower bound of the unknown distance
between 𝑛 and the client, and update the lower bound of the total
distance for 𝑛. In both cases (total distance or its lower bound), for
a pruned client if 𝑛 is not in its retrieved list of facilities, we use
the distance between the client and its closest existing facility. As
facilities are retrieved from the database, the candidate locations
that have greater distances (be it actual or not) than the candidate
facility with the smallest actual total distance are pruned from the
candidate answer set. Consequently, 𝑐ℎ𝑒𝑐𝑘𝐴𝑛𝑠𝑤𝑒𝑟 requires the
following modification:
• If𝐶 becomes empty, then the total distance for every candi-

date location included in the candidate answer set is known
and the candidate location in the candidate answer that
minimizes the total distance is returned as the answer.
• If𝐶 is non-empty and the total distance of at least one of the

candidate locations of the candidate answer set is known
and it is smaller than the distances of all other locations in
the candidate answer set, then that location is returned as
the query answer. If there are multiple such locations, all
of them are returned.

Another variant of IFLS query, MaxSum maximizes the number
of the clients who will have the new facility as the nearest one.
Similar to MinDist function, our efficient solution can be modified
for MaxSum function. For MaxSum function, the upper bound of
the total count can be used to refine the candidate answer set.

8 CONCLUSION
We have introduced a new query service, namely Indoor Facility
Location Selection (IFLS) query that finds the optimal location for
placing a new facility in an indoor venue such that the maximum
distance of all clients to their nearest facility is minimized. The
IFLS query has a number of real-life applications in many indoor
venues including hospitals, airports, universities, shopping malls,
etc. We have proposed an efficient solution for IFLS queries that
prunes the search space significantly and thus speed up the query
processing by reducing number of required total indoor distance
calculations. We have evaluated the performance our proposed
approach and compared it with the newly formed baseline, which
shows that our approach achieves a speedup from 2.84× to 71.29×
for synthetic data and 97.74× for real data over the baseline. In
future, we plan to consider moving clients for IFLS queries.
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