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ABSTRACT
Stream Processing Engines (SPEs) execute long-running queries
on unbounded data streams. They mainly focus on achieving
high throughput and low-latency for a single query. This focus
neglects the possible sharing opportunities of data and compute
among multiple, long-running queries. Common approaches in
batch-oriented systemsmainly utilize simple and fast querymerg-
ing algorithms based on syntactic similarities as the overhead of
more extensive approaches would not amortize over the short
query runtime. In contrast, streaming queries are continuous and
long-running, such that extensive approaches, like taking the
semantics of queries into account, may pay off. Furthermore, the
long-running nature of streaming queries requires the merging of
existing and newly arriving queries, unlike batch queries where
merging is performed only among a batch of arriving queries.

In this paper, we propose Incremental Stream Query Merging
(ISQM), an end-to-end solution to identify and maintain sharing
among thousands of stream queries. ISQM captures the semantic
information of stream queries to enable merging even in the pres-
ence of syntactic differences. Our evaluation shows that ISQM
exploits up to 65x more sharing opportunities than the naive
baseline using hash-based signatures, scales linearly for thou-
sands of queries, and saves a significant amount of resources
compared to state-of-the-art approaches.

1 INTRODUCTION
A wide variety of stream processing engines (SPEs), e.g., Flink,
Spark, or Storm, have been proposed to address the needs of mod-
ern data processing applications in the area of mobility, health
care, or manufacturing [29, 44]. Cloud vendors offer managed
stream analytics services that address the needs of millions of
users [33, 35, 42]. The resulting workloads contain thousands of
potentially overlapping queries and thus have a high potential to
reduce redundant computation. A recent study revealed that over
45% of the daily data processing jobs submitted by approximately
65% of the users have commonalities, resulting in millions of
sub-expression overlaps [23].

Despite this trend, commercial SPEs focus mainly on achiev-
ing high throughput and low-latency processing for individual
queries [20, 25]. Some guidelines even suggest exclusively run-
ning one compute cluster per stream query [12]. This focus ne-
glects the possible resource efficiency improvements from shar-
ing data and compute resources among long-running queries.
In the future, redundancy reduction will be the key enabler to
achieve high scalability for real-time applications [4, 27]. Poten-
tial applications where such optimizations provide benefits are
traffic congestion detection, fleet management, or surveillance
within a smart city [13, 30, 41].

As motivation, consider real-time analytics over traffic streams
within a smart city. In particular, traffic analysts utilize specialized
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Q1: QUERY::FROM("TRAFFIC").MAP(SPEED=SPEED *1.6)
.FILTER(SPEED >100 && COLOR == 'RED')

.TUMBLINGWINDOW(MINUTES ,5).KEYBY("COLOR")

.APPLY(MAX(SPEED));
Q2: QUERY::FROM("TRAFFIC").FILTER(SPEED *1.6 >100)

.MAP(SPEED=SPEED *1.6)

.SLIDINGWINDOW(MINUTES ,5,5).KEYBY("COLOR")

.APPLY(MAX(SPEED)).FILTER(COLOR == 'RED');

Listing 1: Two equivalent queries to find in every 5 min a
red vehicle havingmax speedmore than the speed limit.

frameworks (e.g., FLOW [38]) to monitor suspicious activities.
Such queries help prevent or detect untoward situations during
a public gathering or near sensitive installations [31, 34]. To this
end, it is imperative to allow efficient resource utilization that
enables large-scale deployment of such queries. Such special-
ized frameworks support declarative query languages that allow
analysts to define syntactically different queries that produce
the same result, i.e., semantically equivalent. This declarativity
within query languages introduces additional complexity while
identifying sharing opportunities among deployed queries to
reduce redundant data processing and transmission.

Listing 1 shows two syntactically distinct but semantically sim-
ilar stream queries for traffic surveillance of suspicious vehicles.
Q1 first transforms speed into miles per hour (mph) and then se-
lects red-colored vehicles with a speed above 100 mph. On the re-
sulting stream, Q1 then applies a 5 min tumbling window to group
vehicles by their color and find the maximum speed keyed per
group. In contrast, Q2 first selects vehicles with a speed above 100
mph and then transforms their speed. On the resulting stream, Q2
applies a sliding window of 5 min length and slide (equivalent to
a 5 min tumbling window) to find a vehicle with maximum speed
keyed by their color and selects only red colored vehicle. Despite
being syntactically different (i.e., applying different operators in
a different order), both queries produce the same result stream.

On the one hand, research proposes query containment [21, 43,
45, 49] as a means to merge stream queries. Containment-based
approaches do not perform well for queries with structural and
syntactic differences as they require queries to be structurally
similar (i.e., apply the same operator order) [21, 49]. On the other
hand, current approaches that allow sharing identification among
structurally different queries, such as SPES [48] or EQUITAS [47],
are designed for batch queries. Stream queries introduce unique
challenges, such as special semantics, ad-hoc submissions, and
long-running lifetime.

The unique challenges for stream queries in an SPE that aims
to exploit sharing potential among thousands of queries are as fol-
lows. First, an SPE should be able to handle the special semantics
of stream operators and exploit their unique sharing opportuni-
ties. In particular, stream queries might contain special window
semantics to define joins and aggregations over an unbounded
stream of data. Second, an SPE should consider both running and
newly arriving queries for sharing identification. Unlike batch
queries, stream queries are usually long running and thus, the
system needs an efficient mechanism to identify sharing oppor-
tunities among them. Third, an SPE should be able to efficiently
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represent and maintain sharing opportunities for thousands of
stream queries during run-time by using highly efficient data
structures. Combining these factors with a large volume of struc-
turally distinct stream queries invites a fresh look into sharing
identification and representation in this unique setup.

In this paper, we propose Incremental Stream Query Merg-
ing (ISQM), an end-to-end approach to identify and maintain
sharing opportunities among thousands of concurrent stream
queries. ISQM utilizes special signatures that allow it to capture
operations performed by both relational and special stream oper-
ators, such as window joins or aggregations. As these signatures
capture semantic information, ISQM can identify sharing opportu-
nities even in the presence of syntactic and structural differences.
In addition, this allows ISQM to act as a preprocessing step for
containment-based approaches in the presence of structurally
distinct queries. ISQM maintains a Global Query Plan (GQP) that
enables exploration of sharing opportunities among both newly
arriving and already running queries. In addition, ISQM enables
low-latency sharing identification by using special indexes to
prune the search space for sharing identification. Overall, ISQM
uses heuristics, candidate pruning, and adaptive selection of shar-
ing identification strategies to trade off optimization time and
sharing identification efforts. ISQM identifies sharing opportuni-
ties among thousands of stream queries, independent of their
syntactical structure, and efficientlymanages thousands of shared
query plans. Our experiments show that ISQM finds up to 65x
more sharing opportunities, within a reasonable amount of time.
Furthermore, the exploitation of sharing opportunities in ISQM
leads to significant resource savings during run-time (up to 5.4x
less compute and 16x less network resources).

In summary, we propose ISQM, a novel end-to-end solution for
scalable query merging in SPEs, with the following contributions:

(1) We propose a new approach to capture transformations
within a streaming data flow using signatures.

(2) In addition to complete sharing, ISQM enables the exploita-
tion of partial sharing opportunities across stream queries.

(3) We propose SM+ which is a novel adaptive technique that
seamlessly switch between a fast and a more extensive
sharing identification based on the query workload.

(4) We introduce a solution to efficiently maintain identified
sharing under continuous arrival and removal of queries.

We organize remainder of the paper as follows: Sec. 2 presents
the relevant background. Sec. 3 describes the system overview
of ISQM, Sec. 4 presents the signature computation and represen-
tation, and Sec. 5 introduces the internal representation of our
global query plan. Then, in Sec. 6, we outline our approaches to
identify sharing and present details on managing evolving global
query plan in Sec. 7. Finally, we evaluate our approach in Sec. 8,
present related work in Sec. 9 and conclude in Sec. 10.

2 BACKGROUND
Stream Processing. Long-running stream processing queries
allow for real-time analytics over an unbounded stream of tu-
ples. To discretize an unbounded stream, stream queries employ
special stream semantics, i.e.,Windows, to process a collection
of tuples together. A window W defines potentially overlapping
subsequences of stream tuples and is commonly characterized
by window type (e.g., tumbling, sliding, or session) and by mea-
sure (time-based or count-based) [40]. A window type defines
the frequency and the length of a window. Tumbling and sliding
windows define the frequency using a slide size (ls) and a length
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Figure 1: System overview of ISQM.

(l). A tumbling window is a particular case of a sliding window
where the slide size and length are the same, i.e., ls = l. In contrast,
a sliding window with ls < l creates overlapping subsequences
from a stream. A window measure determines the termination of
an active window. A time based window uses timestamps (mts)
to determine the termination of a window, i.e., mts > l.

Satisfiability Modulo Theory. Satisfiability Modulo Theory
(SMT) is used to determine if a mathematical formula is satisfiable.
The software verification community uses SMT solvers [10] to
automate the verification and validation of complex programs [1,
11]. They convert these complex programs into Symbolic Repre-
sentations (SRs), which represent first-order logic formulas. In
particular, an SR is an expression consisting of various arithmetic,
logical, constant, or variable symbols. To solve the formula, an
SMT solver substitutes different values in the variables of the SR
and determines its satisfiability. For example, the SR “2𝑦=𝑦+𝑦"
contains a logical expression “= ”, an arithmetic expression “+”, a
constant value “2", and a variable “𝑦”. A SMT solver substitutes “𝑦”
with different constant values to determine the expression’s satis-
fiability (e.g., when𝑦=1). In particular, the SMT solver returns sat-
isfiable if it finds a solution, otherwise, it returns unsatisfiable. For
example, it determines that the SR (𝑥 >0∧𝑥 <0) is unsatisfiable as
there exists no value of 𝑥 for which the SR satisfies. Additionally,
we can configure an SMT solver with a predefined time budget af-
ter which it terminates and marks the expression as unsatisfiable.

3 SYSTEMOVERVIEW
This section gives an overview of ISQM. Figure 1 shows how ISQM
extends the query optimizer of an SPE with additional phases
to identify and exploit sharing opportunities across queries. In
essence, ISQM operates after optimizing query plans (e.g., ap-
plying rewrite rules) and before mapping queries to nodes in a
cluster (e.g., operator placement [5]). For query merging, ISQM
introduces three phases, i.e., Signature Computation, Sharing
Identification, and Global Query Plan Update. In Figure 1 we
highlight these new phases in green and the existing phases in
grey. In a preliminary step (not shown), an SPE transforms a sub-
mitted query into a graph of connected operators, the so-called
query plan, and delivers this plan to the optimizer. Overall, ISQM
is a general-purpose framework that allows easy integration of
other sharing identification approaches, e.g., structural analy-
sis of query plans ([14, 19, 24]) or signatures-based analysis on
syntactic properties of queries ([6, 23, 27]).

In the following, we will describe the optimization process in
detail. First, the Query Rewrite phase 1 applies a set of rules to
normalize input query plans. This normalization eliminates some
syntactic differences (e.g., redundant expression elimination) and
optimizes query plans (e.g., join-order optimization). The rewrite
rules vary across different systems and query plans [32]. Second,
the query plan enters our Signature Computation phase 2 . In this
phase, ISQM constructs a set of signatures (SIGs). In particular,
this phase traverses the query plan bottom-up, i.e., from source to
the sink operator. For each operator, the phase creates a signature
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based on the operator properties and the signatures of its up-
stream operators. A common approach is to compute signatures
based on the hash of syntactic properties of operators [26, 27]. We
call these approaches sharing identification based on hash-based
signatures (HB). However, such strategies identify limited sharing
opportunities and rely on rewrite rules to resolve syntactic am-
biguities among the queries. In ISQM, the signature computation
phase captures all syntactic and semantic transformations within
a streaming data flow and represents signatures using SRs. As a
result, a signature covers all semantic transformations performed
by the operator and its upstream operators. We present more
details on these signatures and their representation in Sec. 4.

Third, the query plan enters our Sharing Identification phase 3 .
In this phase, ISQM uses the signatures of newly submitted and
already active queries to identify sharing opportunities. In con-
trast, state-of-the-art approaches for batch systems consider only
new queries for sharing identification ([14, 15, 47, 48]). ISQM con-
stantly maintains GlobalQuery Plan (GQP) that represents all run-
ning and merged queries. When a query plan enters the GQP, we
refer to it as a SharedQuery Plan (SQP). We present internal repre-
sentations of GQPs in Sec. 5. Our sharing identification phase con-
sists of two steps. First, it extracts a collection of candidate SQPs
from the GQP and considers them for exploring sharing oppor-
tunities. This extraction allows ISQM to reduce the overall search
space for sharing identification at the cost of reduced sharing
opportunities. Second, this phase checks for equality across can-
didate SQPs and the new query plan using the signatures the cap-
tures not just syntactic but also semantic information, a collection
of heuristics, and an SMT solver. We refer this approach of shar-
ing identification as Semantic-based-query-Merging approach
(SM). Note that the sharing identification phase can be extended to
implement other strategies that use structural analysis instead of
signatures (e.g., graph-isomorphism techniques) on query plans
for sharing identification. We call these approaches sharing iden-
tification based on structural analysis (SA) in the remainder. If the
phase finds a sharing opportunity, it forwards a pair of matched
operators to the next phase. Otherwise, ISQM forwards the entire
new query plan to the next phase. We present more details about
how ISQM’s sharing identification phase works in Sec. 6.

Fourth, the query plans enter our Global Query Plan Update
phase 4 . Based on the result of the previous phase, this phase
updates the existing SQP (in case of a match) or adds a new SQP
based on the query plan. This phase is also responsible for updat-
ing an SQP when a query leaves the system. The phase marks the
resulting SQP for placement and deployment. We present details
on the global query plan update phase in Sec. 7. Finally, the Query
placement phase 5 receives the updated SQP and performs the
operator placement for its execution [17].

Overall, the goal of ISQM is to enable computation and data
sharing among new query plans and already running SQPs. As a
result, existing resources are better utilized, and the overall effi-
ciency of an SPE improves. In the following sections, we describe
the newly introduced phases in detail.

4 SIGNATURECOMPUTATION PHASE
In this section, we present the Signature Computation Phase (SCP)
of ISQM. This phase captures semantic information of operators
in a query plan and represents the information as signatures. It
supports full ANSI SQL syntax for stream queries. Supporting
UDF [18] signatures is out of the scope of this paper. We describe

the internal representation of signatures in Sec. 4.1 and show
how SCP constructs signatures for different operators in Sec. 4.2.

4.1 Signature Representation
ISQM uses signatures to represent the semantics of operators in
stream queries. These operators apply predicates, perform trans-
formations, and compute windowed operations on tuples from
upstream operators. Similar to [16, 36, 47], ISQM extracts inter-
esting properties from these operators and computes a signature
based on them. To this end, ISQM represents a signature using
the following triplet: SIG= (PRED, ®TT, ®WIND).

PRED represents the SR for all predicates of an operator and
its upstream operators. In particular, it captures the conjunction
of all predicates that an output tuple has to satisfy.

®TT represents a vector of tuple transformations (tt)s. A tt cap-
tures all manipulations on a stream tuple using SRs. For example,
a Map updates an attribute, a Project removes or renames a set
of attributes, and a Join merges attributes from two potentially
distinct streams. Thus, a tt maps attribute names (where a trans-
formation is applied) to corresponding SR (what transformation is
applied). Note that, binary operators receive tuples from multiple
streams, thus we store tt in a vector ®TT, i.e., one entry per stream.

®WIND represents a vector of SRs, one for each window operator
observed until and including the current operator. Each window
operator contains a window definition and either a transforma-
tion (Window Aggregation) or a predicate (Window Join). An
SR for a window operator represents conjunction of window
definition (i.e., window size, slide, optional key-by attribute, time
attribute) and its operation. In this paper, we focus on sliding
and tumbling windows with time as the measurement.

In contrast to existing approaches designed for batch queries [47,
48], our approach captures special window semantics in query
signatures. Figure 2 presents an example query and shows cor-
responding signatures in a purple box. Throughout this section,
we will use this example query to introduce SCP.

4.2 Signature Computation
In general, SCP computes and assigns signatures to each operator
in a query plan. This signature assignment to individual opera-
tors in a query plan allows for identifying sharing opportunities
even among partially equal queries. To this end, SCP traverses
the query plan operators in an upstream-to-downstream fashion
and performs the following three steps for signature computation.
First, SCP extracts information about the operations performed
by the current operator, such as transformations, predicate evalu-
ations, or window operations, and computes SRs based on them.
Figure 2 shows these SRs in the purple rectangles connected to an
operator. This step captures all the operations performed by an
operator. Second, SCP updates these SRs by substituting transfor-
mations from the signatures of the upstream operators. Figure 2
shows the relationship between upstream signatures and an op-
erator’s signature using the direct dotted arrow. This step allows
the updated SRs to represent the operations performed on the
transformed attributes. Third, SCP constructs a new signature by
combining the updated SRs with the signatures from its upstream
operators. This step allows a signature to collectively represent
semantic transformations performed by an operator and its up-
stream operators. As a result, SCP reuses newly computed signa-
tures when computing the signatures of downstream operators.

Extracting information from an operator into SRs (first step)
and merging updated SRs with upstream signatures (third step)
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is operator-dependent. However, the step to substitute SRs with
transformations from upstream operators (second step) is com-
mon across operators. To this end, we describe the second step in
the following and refer to it as the SRSubstitution process in the
remainder of the paper. The SRSubstitution process takes as in-
put an SR and the ®TTs from its upstream signatures. For each tt in
a ®TT, SRSubstitution updates an SR by substituting its symbolic
attribute with the transformation from the tt. The updated SR
constitutes the combination of the operator’s and its upstream op-
erator’s semantic information. Finally, SRSubstitution returns
a collection of updated SRs, one for each tt.

Next, we present in detail how SCP computes SRs for an opera-
tor, updates SRs by calling SRSubstitution, and combines them
with signatures from upstream operators. We first discuss unary
operators and then extend the discussion for binary operators.

4.2.1 Operators SharedWith Batch Processing Systems. In
the following, we briefly discuss signature computation for the
source, map, filter, project, and sink operators.

A Source operator contains the stream name and the schema
of the tuples it produces. In the first step, SCP extracts the unique
stream name and schema from the source operator. As a source
operator contains no upstream operators, SCP skips the remain-
ing two steps and uses the extracted information to construct the
signature. In particular, SCP computes a PRED representing an
equality predicate on the stream name and a ®TT based on source
schema. SCP then initializes the signature with the PRED and ®TT
and leaves the ®WIND empty.

A Map operator adds or updates an existing tuple attribute by
applying a transformation expression. A transformation expres-
sion represents the semantic changes that the operator performs
on an attribute of a tuple. To compute the signature, SCP extracts
the assignment expression and computes an SR for it. Then, SCP
calls SRSubstitution to update the newly computed SR using
the tts from the upstream signature’s ®TT. After that, SCP con-
structs a new signature by combining the updated SRs with the
signature of its upstream operator. To this end, SCP assigns each
updated SR to the assignee attribute in the tts from the upstream
signature. Finally, SCP assigns the updated ®TT and the upstream
signature’s PRED and ®WIND to the new signature.

A Filter operator applies predicates on tuples from an up-
stream operator and outputs the tuples that satisfy the predicate.
To compute the signature, first, SCP constructs an SR for the
filter predicate. Second, SCP calls SRSubstitution to update the
newly constructed SR using tt’s from the upstream signature’s
®TT. SCP unifies all updated SRs by computing the disjunction
among them. This unified SR represents the filter predicate ap-
plied on tuples from different upstreams. Third, SCP computes
a new signature by assigning the conjunction of the unified SR
from previous step and the upstream signature’s PRED to the cur-
rent PRED. Additionally, SCP assigns the ®TT and the ®WIND of the
upstream signature to the new signature.

A Project operator can prune or rename the tuple attributes
from a stream. The operator defines a list of attributes to retain
and optionally their new attribute names. First, SCP extracts the
list of attributes and their new names from the project operator.
SCP skips the second step to preserve the transformations from
upstream operators. Third, SCP computes a new ®TT by pruning
upstream ®TT for attributes not in the projected attribute list and
renaming the retained attribute names to corresponding new
names (without changing SRs, i.e, only keys are changed). SCP

Source("src1",
<a,b,c>) Union WindT(1min)(Join(b=h)) 

Sink() 

Source("src2",
<d,e,f>) 

Source("src3",
<g,h,i>) 

PRED: src1==true
TT:[{a=a,b=b,c=c}]
WIND: [ ]

PRED: src2==true
TT: [{d=d,e=e,f=f}]
WIND: [ ]

PRED: src1==true && 
src2==true
TT: [{a=a,b=b,c=c}, 
 {a=d,b=e,c=f}]
WIND:[ ]

PRED: src3==true
TT: [{g=g,h=h,i=i}]
WIND: [ ]

PRED: src1==true && src2==true && 
src3==true
TT: [{a=a,b=b,c=c,g=Sum(g),h=h,ts=ts},
{a=d,b=e,c=f,g=Sum(g),h=h,ts=ts}]
WIND: [{partKey==h && timeKey=="ts" && 
windSize=="60000" && windSlide=="60000" 
&& Agg=Sum(g)}, {windKey=="non-keyed" 
&& timeKey=="ts" && windSize=="60000" 
&& windSlide=="60000" && b==h && e==h}]

SIGWindowJoin 

(b) SIGUnion

(c) SIGWindowJoin

WindowT(1min)(h,Sum(g)) 

PRED: src3==true
TT:[{g=Sum(g),h=h,ts=ts}]
WIND:[{partKey==h && timeKey
=="ts" && windSize=="60000" 
&& windSlide=="60000" &&
Agg=Sum(g)}]

(a) SIGWindowAgg

Figure 2: Signature creation example.

then computes a new signature by using the new ®TT and retaining
the PRED amd ®WIND from upstream signature.

A Sink operator defines the configurations and location where
output tuples are written. In our approach, we skip merging sink
operators to allow writing output tuples for all submitted queries.
To this end, SCP ignores sink operators for signature computation
and instead assigns the signature of its upstream operator to it.

4.2.2Window Aggregation. A stream query defines a Window
Aggregation operator to perform aggregations over unbounded
stream of data. To this end, a window aggregation operator con-
tains a window definition (to prepare the collection of tuples) and
an aggregation function (to apply a processing on the collection).
A window definition contains the type, the measure, and the
partition key (indicating if results are grouped). An aggregation
function defines an aggregation type (e.g., MIN, MAX, or AVG)
and the attribute to aggregate.

To compute the signature of a Window Aggregation operator,
SCP computes SRs for the window definition and aggregation
function. In particular, SR combines its type, measure, partition
key, and converts window measures into milliseconds to repre-
sent time under a common unit. If a partition key is not present,
SCP uses “non-keyed" as the partition key in the SR. Addition-
ally, SCP computes a separate SR for the aggregation function.
Second, SCP calls SRSubstitution to update all SRs using trans-
formations from its upstream operator. Third, SCP constructs
the signature by combining the updated SRs with the upstream
signature. In particular, SCP assigns the updated SRs of the ag-
gregation function to the respective aggregation attribute in tts.
As Window Aggregation operator only outputs the partition key,
the time key (for time measure), and the aggregation attribute,
SCP removes from each tt all other attribute entries. Thus, SCP
computes a new ®TT containing these updated tts. Next, SCP
computes the conjunction of all updated SRs and assigns the
new SR to ®WIND from upstream signature. Finally, SCP assigns
the updated ®WIND, the updated ®TT, and the upstream signature’s
PRED to the new signature.

Stream queries might contain multiple cascading windows.
Our approach encapsulates this case by extending the window
signature to include tuple information. This approach allows
us to calculate the outcome of any aggregate window, without
knowing the actual values of tuples. For simplicity, we skip the
cascading window part in our explanation and focus on the sig-
nature of a single window.

Example. Figure 2(a) shows the SIGWindowAgg for the Window
Aggregation operator. SCP computes the updated SRs Sum(g) for
the aggregation function and (partKey==h && timeKey ==ts
&& windSize==60000 && windSlide== 60000) for the window
definition. SCP then updates the ®WIND of the upstream signature
by adding to it the conjunction of both updated SRs. Similarly,
SCP updates the ®TT of the upstream signature with the SR for
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the aggregation function, the partition key h, and the time key
ts. Finally, SCP assigns the updated ®TT, updated ®WIND, and the
upstream signature’s PRED to the new signature.

4.2.3 Union. A stream query defines a Union operator to in-
terleave tuples from two input streams and produce a single
unified stream. Tuples from both input streams have to have the
same schema and thus, their attribute number and types match.
However, attribute names can potentially differ among schemas.
Similar to existing work [39], SCP chooses the attribute names
from its left upstream operator. To this end, the union operator
renames the attributes from the right upstream operator to match
with the attribute names from the left upstream operator.

To construct the signature of a Union, SCP skips the first and
second steps as the operator performs no filter or transformation.
In the third step, SCP combines the signatures from both up-
stream operators to compute a new signature. In particular, SCP
initializes a new ®TT using the ®TT of the left upstream signature.
This initialization captures that the Union operator performs no
transformations on the left upstream tuples. Next, SCP updates
the ®TT of the right upstream signature by replacing its keys with
the attribute names from the left upstream operator’s schema.
Thus, SCP merges the newly constructed and the updated ®TTs.
Merging these ®TT𝑠 captures that a Union operator receives tuples
from two different streams. After that, SCP combines the PREDs
and ®WINDs from both the upstream signatures. In particular, SCP
computes the conjunction of the two PREDs and merges the two
®WINDs from both upstream signatures. Finally, SCP computes a

new signature by assigning to it the merged ®TT, the conjunction
of PREDs, and the merged ®WINDs.

Example. Figure 2(b) shows the SIGUnion of the Union operator.
SCP computes a new ®TT by merging ®TTs from both upstream sig-
natures and replacing the keys in the ®TT from the right upstream
signature with the attribute names from the left tuple schema,
i.e., [{a=a,b=b,c=c},{a=d,b=e,c=f}]. Next, SCP computes a
conjunction of PREDs and merges ®WINDs from both upstream sig-
natures. Then, SCP assigns the new ®TT, the conjunction of PREDs,
and the merged ®WINDs to the new signature.

4.2.4Window Join. A stream query defines a Window Join
operator to perform joins over unbounded stream of data. To this
end, a window join operator first defines windows over streams
from two upstream operators and then a join predicate to join
tuples from both streams from the same window.

To compute the signature, SCP extracts the window definition
and the join predicate from the operator. Then, SCP constructs
SRs for the window definition and the join predicate. Second, SCP
calls SRSubstitution to update all computed SRs with transfor-
mations from both the upstream operators. Third, SCP constructs
a new signature by combining the updated SRs with the upstream
signatures. In particular, SCP computes a new ®TT by perform-
ing a cartesian product between ®TTs from both upstream signa-
tures. The cartesian product allows the construction of tts, which
captures transformations in all possible combinations of output
tuples. Next, SCP computes a new ®WIND by merging the ®WINDs
from both upstream signatures. Additionally, SCP computes the
conjunction of all updated SRs from the step two and adds it to
the ®WIND of the upstream signature. Finally, SCP assigns to the
new signature the newly computed ®WIND, the newly computed
®TT, and the conjunction of PREDs from both upstream signatures.
Example. Figure 2(c) shows the SIGWindowJoin for the Window

Join operator. Here, ®TT represents cartesian product between
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Figure 3: An example Global Query Plan.

both ®TTs from the upstream signatures, i.e., [{a=a, b=b,c=c,g=
Sum(g),h=h,i=i},{a=d,b=e,c=f,g=Sum(g),h=h,i=i}]. PRED
represents the conjunction of PREDs from both upstream signa-
tures. ®WIND adds ®WINDs from both upstream signatures and an
entry representing the conjunction of SRs for window definitions
and the join predicate.

5 GLOBALQUERY PLAN
This section presents the internal structure of our Global Query
Plan (GQP) that represents all running queries in an SPE. ISQM
utilizes the GQP for two purposes: 1) representing sharing oppor-
tunities among running queries and 2) accessing running queries
for future sharing identification. To this end, a GQP consists of a
collection of disjoint edges (so-called Shared Query Plans (SQPs)),
a Source Index, and a Query Index.

Shared Query Plan. An SQP represents a collection of query
plans such that all common operators among the query plans
are merged. The resulting SQP enables data sharing (queries on
the same streams) and compute sharing (queries with semantic
equivalence among operators). We present the sharing identifi-
cation process in detail in Sec. 6. As a design decision, we avoid
merging all queries into a single SQP to prevent creating one
large SQP containing potentially thousands of operators. In par-
ticular, a large SQP results in a slower sharing identification and
update process due to the large number of operators. To address
this issue, ISQM explores sharing opportunities for new queries
only among SQPs that operate on exactly the same streams. This
also allows a fast and parallel sharing identification at the cost
of reduced sharing opportunities.

Example. Figure 3 shows four example query plans on the left
and the GQP representing these example queries on the right.
Queries Q1 and Q2 share common source stream (i.e. A and B) and
operators as shown in green rectangle in the left of the figure.
ISQM computes SQP1 by merging shared operators as shown in
the green rectangle on the right side of the figure. Similarly, ISQM
computes SQP2 by merging shared operators between Q3 and Q4
(shown in blue). Note that, even though Q1, Q2, Q3, and Q4 share
a common stream A, ISQM does not merge these queries together.

Source Index. A source index maps an order-independent
hash of stream names to the SQPs that operate on those streams.
To find sharing opportunities, ISQM locates candidate SQPs op-
erating based on the streams in the new query. A source index
enables the following advantages: 1) it allows pruning the search
space during sharing identification, and 2) it enables combining
other interesting properties as search keys. For example, in a
multi-tenant environment, index keys can combine tenant ids
with stream names into a composite key. This composite key pre-
vents merging queries belonging to distinct tenants and provides
isolation during execution. Overall, the source index allows ISQM
to linearly scale in the presence of thousands of running queries.
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Example. Figure 3 shows the source index of the example GQP.
The source index contains entries for both SQP1 and SQP2. As
SQP1 operates on sources A and B, the source index contains
mapping between hash value represented by h(A+B) to SQP1.
Similarly, hash value h(A) for source A is mapped to SQP2.

Query Index. A query index maps the unique identifier of a
query to the SQP that contains it. Because GQP potentially con-
tains a large collection of SQPs involving thousands of queries,
ISQM uses a query index to fetch the respective SQP.

Example. Figure 3 shows the query index of the example GQP.
The SQP SQP1 contains queries Q1 and Q2. Thus, query index
contains entries mapping both queries with SQP1. Similarly for
queries Q3 and Q4, the query index contains entries mapping
them with SQP SQP2.

6 SHARING IDENTIFICATION PHASE
In this section, we present the sharing identification technique
that we apply in ISQM. Sec. 6.1 presents how ISQM performs
equality between a pair of signatures. Sec. 6.2 presents the over-
all process of identifying complete and partial sharing among
queries. Sec. 6.3 presents two variants that improves optimization
time for sharing identification.

6.1 Signature Equality
To identify sharing among queries, ISQM checks equality among
operators in their respective query plans. Two operators are equal
if they output same tuples. A naive approach for checking equal-
ity between two operators involves checking types, expressions,
and the order of the operators and their upstream operators.
However, operators that have different expressions and upstream
operator orders can still have semantic equivalence [47, 48] (e.g.,
Listing 1 shows two syntactically distinct but semantically equal
queries). To identify such equivalence, ISQM utilizes signatures
that capture the overall semantic information of an operator and
its upstream operators. The resulting signature identifies equality
independent of expressions and upstream operator orders.

ISQM utilizes a set of heuristics and an SMT solver to de-
tect equality among two signatures. Figure 4 shows the differ-
ent steps involved in the signature equality check. To use an
SMT solver, ISQM computes a formula representing inequalities
among SRs from a pair of signatures, i.e., SRSIG1!=SRSIG2. Note
that ISQM does not perform an equality check among SRs, i.e.,
SRSIG1==SRSIG2, which would be more natural, because the SMT
solver will return satisfiable even if it finds only one solution for
which the formula holds. In contrast, if the SMT solver returns
unsatisfiable for the formula representing inequalities, then the
two SRs cannot be unequal, and thus they are equal. Next, we
present details for each signature equality check step.

First, Heuristic Check 1 applies a set of pre-conditions on sig-
nature properties. This step aims to detect inequality between two
signatures without invoking the SMT solver. First, the length of
®TTs from both the signatures are checked for equality. The length
of a ®TT indicates the number of distinct transformed streams ob-
served by a query. Second, the number of keys in tts from both ®TTs
are checked. The number of keys in a tt indicates the number of
attributes in output tuples. Third, ISQM checks the length of ®WINDs
from both signatures for equality. The length of a ®WIND indicates
the number of windows observed until an operator. As a result,
for two operators to be equal, they must process the same number
of transformed streams, return tuples with the same number of
attributes, and have the same number of windowed operators. If

Not  
Equal

Equal

Pa
ss

SIG1

SIG2

1

H
eu

ris
tic

C
he

ck

T
T

C
he

ck

W
IN

D
C
he

ck

PR
E

D
 

C
he

ck

2 3 4

Failed

Pa
ss

Pa
ss

Pa
ss

Figure 4: Steps to compute equality between signatures.
any of the above checks fail, ISQM marks the signatures and thus
the operators as unequal. However, passing the heuristic check
can still result in unequal signatures and thus operators. For exam-
ple, two queries consuming tuples from same number of streams,
applying same transformations, and producing tuples with same
number of attributes can however consume data streams from
completely different sources. Thus, ISQM next invokes an SMT
solver to validate equivalence between the two signatures further.

Second, ®TT check 2 identifies equivalence among tuple trans-
formations captured by the signatures. Two equal operators must
apply the same transformation on their input tuples. To this end,
ISQM utilizes the SMT solver to check equality among ®TTs from
the two signatures. In particular, for each tt in one ®TT, ISQM finds
a matching tt in the other ®TT. A tt represents a mapping between
attributes in a tuple and the transformations applied to them.
As the attribute order among the tuples must be the same, ISQM
computes a formula for each pair of attributes representing in-
equality among their SRs. SMT solver returns unsatisfiable for
the formula with matching SRs. Two tts are equal if, for each
attribute pair, there exists a matching SR. ®TT check only vali-
dates if operators apply the same transformations on the tuples.
However, operators applying the same transformations can still
contain different windows in their upstream operator chains.

Third, ®WIND check 3 addresses these problems by checking
equivalence across windows definitions captured by the two sig-
natures. For equality, two operators must define windows with
the same types and measures and perform the same operation
(i.e., aggregation or join). To this end, ISQM checks equality be-
tween ®WINDs from the two signatures. In particular, for each SR in
one ®WIND, ISQM finds a matching SR in the other ®WIND. ISQM com-
putes a formula for the inequality among the two SRs. The SMT
solver returns unsatisfiable for the matching SRs. ISQM declares
the two ®WINDs equal if it finds matching SRs between them. How-
ever, operators applying the same transformation or containing
the same windows can still have different predicates.

Lastly, PRED check 4 addresses this problem by identifying
equivalence among predicates represented by the two signatures.
Two equal operators must apply the same predicates on their
input streams. To this end, ISQM computes a formula representing
inequality among SRs from both PREDs. PREDs are equal if the
SMT solver returns unsatisfiable for the formula. Overall, ISQM
considers two signatures equal if all four checks pass.

6.2 Sharing Identification
The sharing identification phase utilizes the signature equality
check described in Sec. 6.1 to identify sharing among queries.
Signature equality between two operators indicates that the oper-
ators and their upstream operator chain (independent of operator
order) are equal and thus can be merged to share data and com-
putation. In contrast to previous work [47, 48], this phase enables
our approach to identify both complete and partial sharing iden-
tification. Complete-sharing compares two queries together and
only merges them if they are entirely equal. On the other hand,
partial sharing identifies the maximum possible sharing among
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Figure 5: Sharing identification between Q1 and SQP1.
queries. To this end, this phase performs a two-step process: 1)
selecting candidate SQPs and 2) sharing identification. First, it
fetches candidate SQPs from the GQP based on interesting prop-
erties (e.g., sources) for sharing identification. Note that our ap-
proach can establish a trade-off between faster optimization time
(by decreasing the number of candidate SQPs) and the amount of
sharing it may find (by increasing the number of candidate SQPs).
In our implementation, it computes an order-independent hash of
the sources consumed by the queries and looks up the source in-
dex in the GQP to fetch candidate SQPs. Note that we use sources
as an interesting property because queries must operate at least
on the same stream sources to be equal. Second, after fetching
candidate SQPs, the phase performs sharing identification for
complete or partial sharing.

For complete sharing, in the second step, the sharing iden-
tification phase iterates over the collection of candidate SQPs
and compares the signatures of each sink operators from both
the new query plan and the iterated SQP. If signatures are equal,
the matched operators and identifiers of the new query plan
and SQP are sent to the next phase (see Sec. 3). Otherwise, the
phase iterates to the next candidate SQP and repeats the signa-
ture comparison process until it finds a matching pair of sink
operators. If it finds no match, it forwards the new query plan
to the next phase for updating the GQP. We present more details
on updating the GQP in Sec. 7. Note that, approaches such as
query containment ([21, 22, 49]) can be applied on top of the
GQP prepared by ISQM after sharing identification. In particu-
lar, containment-based approaches derive a representative query
from a set of similar queries. In contrast, ISQM focuses on iden-
tifying and merging equal queries. Thus, ISQM is orthogonal and
complementary to containment-based approaches, and we leave
its integration for future work.

The first step returns only one candidate SQP that operates
on the same source stream as the new query plan for partial
sharing. In particular, the sharing identification phase iterates
over the new query plan and the candidate SQP in breadth-first
order. Iterating in the breadth-first order allows for identifying
the maximum sharing opportunities as the phase compares the
most downstream operators first for equality (in a top-down fash-
ion). For each iterated operator in the new query plan, the phase
iterates over the SQP until it finds an operator with a matching
signature. It then forwards the pair of matched operators and
identifiers of the new query plan and the SQP to the next phase
and terminates. However, if the phase finds no sharing for the
new query plan’s operator, it repeats the second step for the next
upstream operator in the new query plan. Overall, the source op-
erators from the new query and SQPs have matching signatures
as both process the same streams.

Example. Figure 5 shows how the sharing identification phase
performs sharing identification between Q1 and SQP1. First, the
signature SIG3 from Q1 is compared to the signatures from SQP1
in breadth-first order (i.e., SIG6,SIG5,SIG4). However, the phase
finds no matching signatures due to semantic differences (Fig-
ure 5(a)). Next, the signature SIG2 from Q1 is compared to the
signatures from SQP1 in breadth-first order. In this iteration, SIG2

matches to the signature SIG5 from SQP1 (Figure 5(b) green ar-
row). The phase then sends the pair of matched operators from
the query and SQP to the global query plan update phase. We
discuss more about the global query plan update phase in Sec 7.

6.3 Semantic based queryMerging Variants
ISQM utilizes the combination of semantic information (see Sec. 4.2),
a set of heuristics, and an SMT solver (see Sec. 6.2) to perform a
comprehensive sharing identification. We refer to this approach
as SM. However, SM incurs a high optimization time for two spe-
cific workloads during sharing identification.

First, for complete sharing identification in a query work-
load with many syntactically similar queries, SM can become
suboptimal due to using a more extensive SMT solver for sharing
identification. To mitigate this problem, we propose SM+ that
improves the optimization time for syntactically similar queries
during sharing identification. SM+ first applies a faster approach
(e.g., hash-based signatures [26, 27]) for sharing identification
and utilizes a more comprehensive SM approach only when the
fast approach finds no sharing. We present a detailed evaluation
of SM and SM+ in Sec. 8.2.

Second, for query workloads that only few operators (e.g., only
sharing sources), the default top-down approach (from sink to-
wards source operators) of SMmight result in a long optimization
time. In particular, for partial-sharing, SM starts with the sink
operator of a new query plan and compares it with each operator
in a candidate SQP for equality. In case SM finds no match, it
repeats the process for the next upstream operator (see Sec. 6.2).
However, this top-down approach (from sink towards source
operators) of SM can result in a long optimization time when
identifying sharing among queries that share few operators (e.g.,
only sharing sources). To address this problem, we modify SM to
perform a bottom-up equality check, i.e., starting from the source
to sink operators. We call this variant SM Bottom-Up or (SM-BU)
for short. SM-BU improves the optimization time compared to SM
by early identification of inequality and thus performing an early
termination of sharing identification process. On the downside,
SM-BUmight identify fewer sharing opportunities compared to SM
as it does not explore further downstream operators for equality.
We present a detailed evaluation of SM and SM-BU in Sec. 8.3.

7 GLOBALQUERY PLANUPDATE PHASE
In this section, we discuss the GQP update phase in detail. We
focus on identifying, representing, and managing sharing oppor-
tunities in a GQP for many continuously arriving and leaving
stream queries. This phase modifies running GQP by incremen-
tally adding matched/unmatched or removing running queries.
In contrast to previous work [47, 48], this phase enables ISQM to
manage sharing opportunities among running and newly arriv-
ing queries. ISQM redeploys updated GQP together for a batch
of changes to prevent frequent redeployment. We keep rede-
ployment out of the scope of this paper. However, ISQM can be
configured to use more specialized solutions, such as incremental
redeployment [27], for efficient query redeployment.

Incrementally Adding aMatched Query. The GQP update
phase receives the sharing opportunities identified between a
new query plan and an existing SQP. In particular, it receives a
pair of matched operators and updates the SQP using a two-step
process. First, this phase adds all downstream operators from the
new query plan to the matched operator of SQP. If the matched
operator from the new query plan is of type sink, the phase adds
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this operator to the upstream operator of the matched operator
from SQP. This addition of operators allows the SQP to serve both
already merged query plans and the new query plan. Second, this
phase updates the query index by linking the ID of the new query
plan to this SQP. This allows efficient removal of the query later.

Example. Figure 6 shows the addition of query plan Q5 to SQP1
in the GQP. The sink operator Snk5 of Q5 matches with the sink
operator Snk2 of SQP1 (shown in blue). As both operators are of
type sink, first the GQP update phase adds Snk5 to the upstream
operator U1 of Snk2. Second, the phase updates the query index
by adding an entry mapping Q5 to SQP1.

Incrementally Adding an Unmatched Query. The sharing
identification phase may find no sharing opportunity for newly
arriving queries. As a result, the GQP update phase would re-
ceive the newly arrived query plans instead. In this case, this
phase first computes a new SQP with all operators of the received
query plans. Second, it updates the query and source indexes
with information about the new query plan and the new SQP.

Example. In the bottom of Figure 6, we show a new SQP3 that
replicates the received query plan Q6. In addition, this phase up-
dates the query index by mapping Q6 to SQP3, and the source
index by mapping the hash value for source name 𝐶 to SQP3.

Incrementally Removing a Query. The GQP update phase
removes a query in four steps. First, it looks up the query index
and fetches the SQP serving the target query. Second, it looks up
an internal data structure to fetch the sink operator for the tar-
get query. Third, it removes the sink and the attached upstream
operators that exclusively serve the target query, i.e., operators
which are not shared with other queries in the SQP. In particu-
lar, this phase terminates the operator removal process when it
encounters an operator that is shared with another downstream
operator. This termination prevents removing operators which
are serving other running queries. Finally, it updates the query
indexes by removing the entries for the removed query.

Example. Figure 6 shows in red the removal of a query Q3
from the GQP. This phase updates SQP2 by removing the Snk
operators3, P1, and M3, which exclusively serve Q3. This phase
retains F4 and its upstream operators as they serve the running
query plan Q4. Finally, this phase updates the query index by
removing entries for the query Q3.

8 EVALUATION
In this section, we analyze the performance of ISQM using differ-
ent query sets. First, we describe overall experiment setup and
baselines (Sec. 8.1). Next, we analyze the overhead and sharing
efficiency of baseline approaches and compare them with SM and
its variants (Sec. 8.2 and 8.3). Afterwards, we analyze the overall
resource utilization incurred while running query plans gener-
ated by different approaches (Sec. 8.4). Finally, we discuss the
takeaways and limitations (Sec. 8.5).

8.1 Experiment Setup
Hardware and Software Setup. We run our micro-experiments
to analyze the amount of sharing identification and optimization
time taken by different sharing identification approaches. To this
end, we use a Linux server with an AMD EPYC 7742 CPU, 1TB of
main memory, and configure all techniques to use only a single
core on the machine. For SM we use Z3v4.8.12 as the SMT solver.
In our experiments, we observe that the time budget of Z3 SMT
solver is essential for both the sharing identification and optimiza-
tion time. Setting it too low or too high can result in either early
termination (low sharing identification) or longer evaluation time
(high optimization time) for signature equality check. We use a
time budget of 1 ms that leads to best results in our experiments.
We implement ISQM and all our baselines in NebulaStream [44]
to prevent performance differences due to underlying system.

We run macro-experiments to analyze the runtime implica-
tion of query plans generated by different approaches. To this
end, we deploy NebulaStream on a hierarchical cluster of eight
Linux servers with 2 Intel Xeon Silver 4216 CPU, 500 GB of main
memory, and 100 Gbit Infiniband connection. We configure each
NebulaStream worker to use only 4 threads.

Evaluation Metrics. We adopt two metrics to validate the
efficency of different sharing identification techniques: Sharing
Efficiency and Optimization Time. Sharing efficiency is the per-
centage of operators from new queries merged into the GQP.
Optimization time indicates the overall time taken between the
arrival of a query and its addition into the GQP.

Queries.We evaluate the scalability of ISQM by using various
syntactically and structurally distinct stream queries. As there
exists no common benchmark for these workloads, we analyzed
queries from open-source benchmarks, such as YSB [7], Stream-
Bench [37], and identified commonly used operators in stream
queries. Based on that, we develop an open-source Query Gen-
erator 1 that allows generating synthetic queries with different
characteristics.

Our query generator takes as input the number of queries to
generate, a set of source schemas, and configurations defining
the composition of similarities (complete or partial) among the
generated queries. First, the generator randomly selects one or
two input source schemas and computes a seed query using their
attributes. The generated seed query consists of a combination
of several unary and binary stream operators (see Sec. 4). Note
that the generator guarantees that all seed queries are seman-
tically distinct. Second, the generator uses the seed query, the
input configurations, and a collection of rewrite rules to compute
semantically equivalent queries. We detail the input configura-
tions for each query set together with each experiment. We refer
the reader to our open-source repository for details on various
rewrite rules used in query generation.

BaselinesTechniques. We evaluate the sharing identification
approach of ISQM against four baselines representative state-of-
the-art techniques. To this end, we extend various phases of ISQM
(e.g., signature computation, sharing identification) to implement
these baseline approaches. Sharing Identification based on Struc-
tural Analysis (SA). This approach detects sharing opportunities
by analyzing the structure of query plans for similarities. To
this end, it traverses the query plans from the source to the sink
operators and identifies equality among them. Systems such as
SQPR [24], SharedDB [14], QPipe [19] adopt this approach for
sharing identification.

1https://github.com/nebulastream/nebulastream-query-generator
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Sharing Identification based onHash-based Signatures(HB). This
approach performs sharing identification in two steps. First, it
computes signatures for each operator by traversing a query plan
from source to sink operators. The signature of an operator is
calculated based on the hash of the operator’s syntax and the
hash of its downstream operators. Second, HB compares operator
signatures among the query plans to identify sharing opportuni-
ties. Systems such as AStream [27], BIGSUBS [23], NiagaraCQ [6]
utilize HB for sharing identification.

Sharing Identification based on Improved Hash-based Signatures
(HB+). HB considers syntactic information to compute an oper-
ator’s signature. This consideration leads to different signatures
for queries with syntactically different but semantically same
operators. For example, HB computes different signatures for two
plans with Filter predicates (c*b<a) and (b*c<a) because of
the different attribute order. We address this issue by implement-
ing HB+. In particular, we apply the Attribute-Sort and Binary-
Operator-Sort rewrite rules to update input query plans. The
Attribute-Sort rule sorts alphabetically the attributes in a Map or
a Filter expression while retaining their semantic meaning. For
example, the rewrite rule transforms the predicates of both exam-
ple Filter operators to (a>b*c). The Binary-Operator-Sort rule
sorts the upstream operators of a binary operator alphabetically
based on their source names. For example, the rule swaps the
sources A and B in the Join operator (B Join A) to (A Join B).
Applying these rewrite rules eliminates simple sources of missing
sharing opportunities and makes this approach more practical.
Other than that, HB+ performs the same two steps as the HB for
sharing identification.

No Sharing Identification (NoShare). We additionally perform
all our experiments by disabling sharing identification. Using
NoShare, we show the overhead incurred by different sharing
identification approaches.

8.2 Identifying Complete Equivalence
The following micro-experiments evaluate different sharing iden-
tification approaches to detect complete equivalence among the
input query set. In particular, we analyze the performance of dif-
ferent sharing identification approaches for increasing number
of semantically equal queries 8.2.1, distinct sources 8.2.2, semanti-
cally distinct queries 8.2.3, and syntactically similar queries 8.2.4.
We repeat each experiment three times and report the average
sharing efficiency and aggregated optimization time.

8.2.1 Increasing Semantically EqualQueries. In this ex-
periment, we analyze the performance of our and other baseline
sharing identification approaches with an increasing number of
syntactically distinct but semantically equal queries. Additionally,
we analyze the effect of heuristics (see Figure. 4) in our approach.

Workload.We generate synthetic queries that operate on four
different streams. Overall, the query set consists of 100 distinct
query groups3. In this experiment, we increase the total number
of queries from 2K to 12K with increments of 2K. As a result, the
sharing opportunities within a query group increase.

Result. Figure 7 shows the sharing efficiency and the aggre-
gated optimization time for different sharing identification ap-
proaches. In general, the sharing efficiency and optimization time
increase with more queries. The baseline HB achieves the lowest
sharing efficiency across all query sets. In contrast, HB+ achieves
between 5.6x to 7.9x higher sharing efficiency in comparison to
3Queries are semantically equivalent but syntactically different within each distinct
query group.Across groups, queries are both semantically and syntactically different.
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Figure 7: Increasing semantically equivalent queries.
HB. Additionally, HB+ shows a similar optimization time as HB
for up to 4k queries, but outperforms HB for more queries. The
baseline SA is slowest among all approaches and achieves a lower
sharing efficiency than HB+ across all query sets. Our approach
SM outperforms all baselines in terms of sharing efficiency as the
number of queries increase. In particular, SM finds between 16.4x
to 59.8x more sharing opportunities than the least efficient ap-
proach (HB) and between 2.6x to 7.5x more sharing opportunities
than the most efficient baseline (HB+). In terms of optimization
time, SM is between 1.1x to 5.7x faster than the slowest approach
(SA) and between 1.7x to 4.2x slower than the fastest approaches
(HB and HB+). Finally, without heuristics our approach (SM-NOH)
takes between 2.5x to 3.2x longer optimization time.

Discussion. The increase in sharing efficiency and aggregated
optimization time occurs across all approaches as more semanti-
cally equivalent queries are present in the query set, and thus the
overall number of queries increase. HB and HB+ show the fastest
optimization time among other approaches as they use a fast hash-
based comparison for sharing identification. SA shows the longest
optimization time as it uses an exhaustive graph isomorphism al-
gorithm to identify sharing. As the number of equivalent queries
increases, SA performs more work for sharing identification; thus,
the overall optimization time also increases. This experiment con-
firms that SM identifies more sharing opportunities in comparison
to other approaches because it captures the semantic information
within a query and exploits it to identify sharing among queries
with syntactic differences. Furthermore, the use of heuristics al-
lows SM to efficiently detect inequalities among queries and thus
enables a speeds-up of up to 3.2x comapred to SM-NOH. Overall,
as SM utilizes an SMT solver to identify equality, it is up to 1.7x
slower than the fastest approach (HB+) for 12K queries. However,
for long-running stream queries, the cost of sharing identification
amortizes over runtime and thus a higher query latency may pay
off in terms of an overall improved resource utilization.

8.2.2 Increasing Distinct Streams. This experiment ana-
lyzes the impact of increasing the number of distinct streams on
the optimization time of sharing identification approaches. In
particular, we analyze the effect of indexing SQPs based on the
hash of stream names (Source Index) and pruning the candidates
during sharing identification process.

Workload.We generate queries that operate on varying num-
ber of distinct sources. For each source, we generate 400 queries
split in 10 distinct query groups. In this experiment, we increase
the total number of distinct sources from 2 to 256. Note that with
each new source, the total number of queries also increases.

Result. Figure 8 shows the aggregated optimization time for
SM and HB+. Note that the reported optimization time is the ag-
gregation of the time spent on identifying and merging sharing
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Figure 8: Increasing number of distinct streams.
opportunities for all queries in a query set (see top x-axis). For
individual queries, the optimization time is in the order of mil-
liseconds. We report numbers for only two sharing identification
approaches as the overall trend in optimization time remains
same across all approaches. We observe that the use of source
index results in reduction of overall optimization time across
both approaches as the number of sources (and queries) increase.
However, the difference in optimization time is not profound for
query sets with number of sources less than 8 with (HB+(Idx) &
SM(Idx)) or without (HB+(W/OIdx) & SM(W/OIdx)) using source
index. Overall, we observe that performing sharing identification
using source index results in an improvement in optimization
time between 1.8X and 5.7X for HB+ and between 2.2X and 48.8X
for SM when the number of sources varies from 8 to 256. We do
not report the numbers for sharing efficiency as the use of source
index has no impact on it.

Discussion. In general, as the number of sources increases, the
effect of using source index on sharing identification approaches
becomes more prominent. For each new query, GQP looks up
the source index to find candidate SQPs to identify sharing op-
portunities (see 6.2). For query sets with sources less than 8, the
reduction in optimization time is not significant as the overall
SQPs within the GQP remains low. Thus, lookup over all SQPs in
a GQP for sharing identification do not add significant overhead.
However, as the number of sources increases the overall candi-
date SQPs within the GQP also increases. Thus, using a source
index allows pruning of candidates during sharing identification
and results in significant reduction in overall optimization time
across both the approaches.

8.2.3 Increasing DistinctQueries. This experiment ana-
lyzes the impact of increasing the number of semantically distinct
queries on sharing identification approaches.With the increase in
the number of distinct queries, the overall sharing opportunities
will reduce in a query set. Thus, we observe the effect of reducing
sharing opportunities on sharing identification approaches.

Workload.We generate 4K queries that operate on four differ-
ent streams. Overall, the query set consists of 100 distinct query
groups for each stream. This experiment increases the percentage
of semantically distinct queries in the query sets from 0 to 100%.

Result. Figure 9 shows the sharing efficiency and aggregated
optimization time for all approaches. The sharing efficiency de-
creases with an increase in the percentage of semantically dis-
tinct queries across all approaches. Our approach SM outperforms
all baselines in terms of sharing efficiency. SM finds between
33x and 107x more sharing opportunities compared to the least
efficient baseline HB and between 5x and 13x more sharing op-
portunities than the most efficient baseline HB+. The aggregated
optimization time remains constant as the percentage of distinct
queries increases across all baselines. However, SM shows a linear
increase in the optimization time. Till 40% distinct queries, SM
shows between 1.4x to 2x faster optimization time compared to
the slowest baseline approach SA. However, as the percentage of
distinct queries increases by more than 40%, SM becomes up to
3.5x slower than SA.

0% 20% 40% 60% 80% 100%
% of Distinct Queries

0

25

50

75

Sh
ar

in
g 

 E
ffi

cie
nc

y(
%

) 80.1
67.9

53.1

32.5

10.7
0.0

11
.8

9.
2

6.
6

2.
8

0.
6

0.
015

.8

12
.3

8.
1

3.
5

0.
8

0.
0

2.
1

2.
0

0.
9

0.
4

0.
1

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

NoShare
HB
HB+

SA
SM

0% 20% 40% 60% 80% 100%
% of Distinct Queries

100

101

102

Ag
g.

 O
pt

im
iza

tio
n 

 T
im

e(
Se

c)
 (l

og
)

7.
1 10
.2

17
.2

26
.3

38
.2

36
.3

14
.5

14
.1

13
.5

14
.2

13
.4

10
.3

2.
3

2.
3

2.
2

2.
2

2.
1

1.
9

2.
2

2.
1

2.
0

2.
0

2.
0

1.
7

0.
6

0.
6

0.
5

0.
5

0.
5

0.
4

NoShare HB HB+ SA SM

Figure 9: Increasing number of distinct queries.

4k 8k 12k
Number of Queries

0

50

100

Sh
ar

in
g 

 E
ffi

cie
nc

y 
(%

)

89.4 89.5 89.589.4 89.4 89.4
SM SM+

4k 8k 12k
Number of Queries

101

Ag
g.

 O
pt

im
iza

tio
n 

 T
im

e 
(S

ec
) (

lo
g)

2.9
9.7

20.0

4.1
12.6

25.7SM
SM+

Figure 10: Increasing syntactically equal number of queries.

Discussion. The sharing efficiency decreases across all ap-
proaches with an increase in the percentage of distinct queries.
Across baselines, HB+ outperforms all other in terms of sharing ef-
ficiency by employing additional rewrite rules to rewrite queries
with only few syntactically differences into one similar query.
SM achieves the highest sharing efficiency across all approaches
as it exploits semantic relationships among queries for sharing
identification. However, the aggregated optimization time of SM
significantly increases as the number of distinct queries increases.
This increase in SM’s optimization time is because of the increase
in the number of SQPs (due to unmatched queries) in the GQP. In
contrast to the baselines HB and HB+, which use a fast hash com-
parison, or SA, which uses fail-fast graph isomorphism algorithm,
SM uses a more costly SMT solver. In particular, SM performs
more SMT calls to identify sharing for each incoming query as
the number of SQPs increase. This results in longer aggregated op-
timization time for SM. However, we target large query workloads
with hundrets of sources but thousands of queries in this paper
and thus we assume queries induce at least a minimal amount
of sharing opportunities. Furthermore, the optimization over-
head is not significant when queries are operating over distinct
streams (as shown in Sec. 8.2.2). Finally, the high cost of sharing
identification will amortize over time for long-running queries.

8.2.4 IncreasingSyntacticallyEqualQueries. We observe
that among the baseline approaches, HB+ achieves comparable
sharing efficiency to SA and takes considerably less optimization
time. Based on this observations, we prepare SM+ that combines
faster HB+ with SM. In particular, SM+ first applies the fast HB+ IFF
no sharing was found, it employs more comprehensive SM. In this
experiment, we investigate the performance of SM and SM+ using
query sets with syntactically equivalent queries.

Workload. We generate 4K, 8K, and 12K synthetic queries,
uniformly distributed across four different streams. Unlike pre-
vious experiments, the query sets contain syntactically equal
queries (before they were semantically equivalent).

Result. Figure 10 shows the sharing efficiency and optimiza-
tion time for SM and SM+. We observe no change in sharing effi-
ciency for both approaches but an increased optimization time
with the increasing number of queries. In particular, SM+ is be-
tween 1.2x and 1.4x faster than SM.
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Discussion. Both approaches achieve similar sharing effi-
ciency with an increase in the number of queries for two reasons.
First, the query sets consist of large volumes of syntactically equal
queries that both approaches can detect. Second, SM+ uses SM as a
backup check and thus achieves similar sharing efficiency as SM.
However, SM+ achieves a faster optimization time in comparison
to SM across all query sets. This improvement in optimization
time is because the cheaper HB+ renders the use of more compre-
hensive SM unnecessary as queries are syntactically the same.

8.3 Identifying Partial Equivalence
In this micro-experiment, we investigate the performance of var-
ious baselines and variants of SM for partially equivalent queries.

Workload.We generate 4K queries that operate on four differ-
ent streams. Overall, the query set consists of 100 distinct query
groups for each stream. In this experiment, we increase the per-
centage of partial overlap from 20 to 100%. Thus, the overall
sharing opportunities increase in the query set.

Result. Figure 11 shows the sharing efficiency and aggregated
optimization time for all sharing identification approaches. HB
achieves the least amount of sharing efficiency among all ap-
proaches and that do not conform to the trend of increasing shar-
ing efficiency with increasing overlap. Both SM and SM-BU achieve
higher sharing efficiency compared to the baseline approaches.
However, SM-BU achieves between 3.4 to 8.8% less sharing effi-
ciency in comparison to SM. Considering optimization time, HB
and HB+ are the fastest sharing identification approaches, while
SM shows the maximum optimization time across different ap-
proaches. However, we observe a decrease in optimization time
for SM as overlap among queries increases. Finally in compari-
son to SM, SM-BU shows a speed up between 2.4x and 29.2x in
optimization time.

Discussion. The sharing efficiency increases with the partial
overlap among queries as all approaches discover more sharing
opportunities. HB shows the least amount of sharing efficiency as
it only relies on syntactic similarities for sharing identification
and thus fails to find sharing in the presence of syntactic differ-
ences. SM achieves maximum sharing efficiency as apart from ex-
ploiting semantic information, it identifies sharing in a top-down
fashion and performs an exhaustive search to find sharing. In con-
trast, SM-BU achieves less sharing efficiency than SM, despite ex-
ploiting semantic information, as it identifies sharing in a bottom-
up fashion and terminates early if inequalities are detected.

The optimization time of HB and HB+ is fast as they employ
cheaper hash-comparison for identifying sharing. In the case
of inequality, these approaches terminate early as they look for
sharing in a bottom-up fashion (similar to SM-BU). In contrast, SM
takes maximum optimization time as it utilizes SMT solver and
performs sharing identification in a top-down fashion. However,
the optimization time for SM improves with an increase in par-
tial overlaps as it identifies sharing early and terminates upon
detecting equality among operators. In comparison to SM, SM-BU
terminates early upon detecting inequality and thus achieves
faster optimization time.

8.4 Resource Utilization
In this macro-experiment, we investigate the impact of running
SQPs (generated by different sharing identification techniques) to
determine the overall compute and network resource utilization.

Setup.We run 1K synthetic queries that operate on four differ-
ent streams consisting of 10 distinct query groups. Overall, 50%
of queries contain windowed joins and remaining 50% contains
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Figure 11: Increasing partial overlaps among queries.
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Figure 12: Average compute and network resource con-
sumption for 8 node cluster over a runtime of 120 sec.

windowed aggregations and unions. We deploy the plans gener-
ated by each strategy on a NebulaStream cluster of 8 nodes (see
Sec. 8.1). Each source produces data at a constant rate of ≈100
KB/sec. Note that, each of the 1K queries consume from at least
two sources, resulting in an ingestion rate of over 100 MB/s.

Result. Figure 12 reports the average compute and network re-
source utilization of the overall cluster for the first 120 seconds of
the experiment. SQPs generated by NoShare and HB consume sim-
ilar compute and network resources. In contrast, SQPs produced
by HB+ consumes less compute (24%) and network resources (34%)
in comparison to NoShare. Furthermore, SQPs produced by SA
consumes 30% less compute and 42% less network resources in
comparison to NoShare. However, plans generated by SM con-
sumes the least amount of resources with 5.4x less compute and
16x less network resources in comparison to NoShare.

Discussion. In this experiment, we show that the increased
sharing efficiency of SM compared to other approaches has a real
run-time impact on resource utilization. It demonstrates that the
additional effort of finding sharing among queries pays off and
thus is a valuable technique for modern SPEs. Important use cases
for this are cloud environments where users pay based on re-
source consumption or to enable deployment of large workloads
on non-elastic infrastructure (e.g. private data centers).

8.5 Takeaways
We evaluated ISQM and other baselines using query sets with
different characteristics. We showed the runtime benefits of data
and compute sharing for large numbers of long-running stream
queries (see Figure 12). However, for a few short-running or
non-overlapping queries, ISQM only adds overhead without iden-
tifying any sharing opportunities (see Figure 9). In the following,
we recommend the best sharing identification techniques for
different workloads.

We recommend our approach SM for syntactically different but
semantically equivalent queries. SM captures semantic informa-
tion in its query signatures and identifies hidden sharing opportu-
nities resulting in a high sharing efficiency at the cost of increased
optimization time (see Figure 7). However, for long-running
queries, this increased optimization effort amortizes over time.
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We recommend our variant SM+ (a combination of HB+ and
SM) for a mix of syntactically similar and distinct queries. In par-
ticular, SM+ leverages fast HB+ to reduce optimization time while
utilizing SM to identify sharing even in the presence of syntactic
differences (see Figure 10). However, for partially overlapping
queries, we recommend using our variant SM-BU that uses a fail-
fast approach to improve the optimization time at the cost of
reduced sharing efficiency (see Figure 11).

Overall, across all techniques, we observe a positive impact of
using interesting properties for pruning the search space when
performing sharing identification. In particular, we use GQP’s
source index to prune the candidate SQPs that are considered for
sharing identification (see Figure 8). This reduction in the search
space makes our approach practical for sharing identification
among large numbers of queries.

9 RELATEDWORK
Signature-basedApproaches. Signature-based approaches com-
pute signatures based on the query syntax and compare them
with each other to identify sharing opportunities among queries.
NiagaraCQ [6] uses signatures to group shared selection or join
queries for thousands of batch queries. CSE [46] computes groups
of shared queries using signatures, a set of heuristics, and a greedy
algorithm. However, CSE scales only for tens of queries. BIG-
SUB [23] uses a mix of signatures and integer linear programming
to group together thousands of shared sub-expressions. These
three approaches target sharing identification among structurally
similar batch queries. In contrast, ISQM focuses on sharing iden-
tification among structurally distinct stream queries. Karimov
et al. [26, 27] use signatures for identification of sharing among
thousands of ad-hoc stream queries. They utilize hash-based sig-
natures to group together syntactically equivalent stream queries.
In contrast, ISQM utilizes semantic information to identify sharing
across thousands of syntactically different stream queries.

Structural Comparison. Another line of research proposes
structural comparisons to identify sharing among queries. QPipe
[19] compares query plans to maximize data and work shar-
ing across concurrent batch queries. SQPR identifies equiva-
lence among hundreds of stream queries by performing graph-
isomorphism for efficient placement [24]. Chaturvedi et al. [4]
propose an algorithm that computes a merged query plan by iden-
tifying the intersection of reusable tasks and streams. These ap-
proaches are designed for both batch and stream queries and can
identify partial and complete sharing only among structurally and
syntactically similar query plans. In contrast, ISQM utilizes seman-
tic information to detect sharing even in the presence of structural
and syntactic differences and scales for a large number of queries.

QueryContainment. Approaches using Query Containment
group a set of queries together and compute a representative
query. The output from the representative query requires further
splitting and filtering to serve individual queries. Zhou et al. uti-
lize a set of heuristic rules to compute a representative query for
Select, Project, Join, and Aggregate stream queries [49]. Hong et
al. perform a more fine-grained exploration of operator-level con-
tainment relationships for batch and stream queries [21]. These
approaches consider queries with syntactically different predi-
cates or windows for sharing identification. However, they only
group queries with structural similarities (same operator order)
and require frequent re-optimization of representative queries as
new queries arrive or old queries are removed. In contrast, ISQM
considers semantically equivalent stream queries with syntactic
and structural differences. Thus, ISQM can act as a pre-processing

step when applying query containment for queries with syntac-
tic and structurally differences. This allows ISQM to compliment
query containment and enable a greater sharing identification.

Semantic Analysis. Approaches using semantic analysis
check the semantic similarities among queries for sharing iden-
tification. Chu et al. propose COSETTE [9] and UDP [8] that
apply rewrite rules to transform queries into algebraic expres-
sions. However, these approaches do not scale as the application
of rewrite rules is compute-intensive and does not support some
widely used SQL features [47]. Zhou et al. propose EQUITAS [47]
and SPES [48] to overcome these limitations using an SMT solver.
However, these approaches are primarily designed for batch
queries and can not be naively adopted for stream queries. In
gernal, ISQM also uses an SMT solver but has several important
differences in contrast to [47, 48]. First, ISQM supports sharing
identification among stream queries by capturing window se-
mantics in the signatures. Second, ISQM uses a GQP to represent,
manage, and identify sharing opportunities among newly arriv-
ing and already running queries. Third, ISQM partitions a GQP
into logically grouped SQPs and uses index over SQPs (source
index) to prune the search space during sharing identification.
Fourth, ISQM utilizes heuristics for speeding up the sharing identi-
fication optimization time. Overall, ISQM presents an end-to-end
scalable solution for identifying, representing, and maintaining
sharing opportunities for thousands of stream queries.

General Approaches. Madden et al. (CACQ) [28] and Chand-
rasekaran et al. (PSoup) [3] present approaches that allow cross-
query work sharing for hundreds of queries. Both CACQ and
PSoup use predicate indexing to group shared expressions. How-
ever, these approaches work only for structurally similar batch
queries. In contrast, ISQM identifies sharing among stream queries
even in the presence of syntactic and structural differences. Gi-
annikis et al. present a combination of structural analysis and a
branch-and-bound algorithm to identify partial or complete shar-
ing opportunities among hundreds of batch queries [15]. In con-
trast, ISQM identifies partial and complete sharing among thou-
sands of stream queries. Candea et al. present CJoin that exploits
sharing opportunities among structurally similar data warehouse
queries joining different dimensions and fact tables [2]. In con-
trast, ISQM utilizes semantic information to identify sharing op-
portunities among thousands of new and already running queries.

10 CONCLUSION
In this paper, we presented ISQM, an end-to-end solution for merg-
ing thousands of streaming queries. ISQM computes signatures
that capture semantic information from a query. It utilizes these
signatures to identify partial and complete sharing among syn-
tactically distinct queries. Additionally, ISQM allows an efficient
representation of identified sharing opportunities using shared
query plans. This representation allows ISQM to exploit sharing
among thousands of newly arriving and already running queries.
Our evaluation showed that ISQM achieves a higher sharing effi-
ciency and shows significant resource saving in comparison to all
state-of-the-art baseline approaches. Additionally, we proposed
two variants that outperform ISQM for specific workloads.
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