
Efficiently Archiving Photos under Storage Constraints
Susan B. Davidson

University of Pennsylvania

susan@cis.upenn.edu

Shay Gershtein

Meta

shayg@meta.com

Tova Milo

Tel Aviv University

milo@post.tau.ac.il

Slava Novgorodov

Meta

slavanov@meta.com

May Shoshan

Tel Aviv University

mayshoshan@mail.tau.ac.il

ABSTRACT
Our ability to collect data is rapidly outstripping our ability to

effectively store and use it. Organizations are therefore facing

tough decisions of what data to archive (or dispose of) to effec-

tively meet their business goals. We address this general problem

in the context of image data (photos) by proposing which photos

to archive to meet an online storage budget. The decision is based

on factors such as usage patterns and their relative importance,

the quality and size of a photo, the relevance of a photo for a usage

pattern, the similarity between different photos, as well as policy

requirements of what photos must be retained. We formalize the

photo archival problem, analyze its complexity, and give two

approximation algorithms. One algorithm comes with an optimal

approximation guarantee and another, more scalable, algorithm

that comes with both worst-case and data-dependent guaran-

tees. Based on these algorithms we implemented an end-to-end

system, PHOcus, and discuss how to automatically derive the in-

puts for this system in many settings. An extensive experimental

study based on public as well as private datasets demonstrates

the effectiveness and efficiency of PHOcus. Furthermore, a user

study using business analysts in a real e-commerce application

shows that it can save a tremendous amount of human effort and

yield unexpected insights.

1 INTRODUCTION
Although the Big Data revolution has enabled incredible advances

in areas such as medicine, commerce, transportation, and science,

we are facing an inflection point [34]: The ability to collect data

outstrips our ability to effectively use it and will eventually out-

strip our ability to store it [9]. Organizations must therefore

determine which data to move to larger, cheaper, and typically

slower storage (or dispose of) to meet an online storage budget

based on factors such as usage patterns (workflows) and rela-

tive importance of the workflows, the quality and size of data
as well as the similarity between different data, requirements

on the quality of input data to the workflows, as well as policy
requirements, e.g. GDPR [15] regulations or document retention

regulations for banks. Due to the volume of data, these disposal

decisions must be automated.

Image data is an important special case of this problem due to

the large file sizes as well as its abundance: it is estimated that

up to three billion images are shared on the internet daily[20].

As a concrete example of the need to reduce the amount of

image data, consider an e-commerce application such as XYZ
1
.

1
Company name omitted due to privacy considerations.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

XYZ has a huge archive of images of products that are displayed

throughout a hierarchy of landing pages of product categories.

For each page, there is a pre-defined subset of images that are

relevant for the product category, out of which a small set are

displayed. Each image may be relevant for a large number of

different pages, and its value may differ between pages. For ex-

ample, an image of an iPhone which shows the model number

may be very valuable for a page which compares different models

of iPhones, but not as valuable for a page which displays smart-

phones in general. Some of the images may also be required to

appear on certain pages due to legal contracts (policies). For ex-
ample, a company may require only approved images to be used

on pages that are specific to their products. Finally, the landing

pages themselves may vary in importance, reflecting the relative

popularity of product categories. To speed up the page display,

images that are used on pages are stored in a fast-access cache,

which is much smaller than the size of the archive. The problem

is to find a set of images that can fit in the cache, meet the con-

tent and policy requirements of each of the landing pages, and

maximize the value over all pages.

The e-commerce example is just one among many instances

of what we call the Photo Archive Reduction problem (PAR). At

a personal level, you may encounter it as the need to delete

photos locally on your smartphone to meet some storage budget,

relying on cloud storage for your full set of photos. You may

have explicitly organized subsets of the photos in albums, or

implicitly organized them by labeling photos with the same tag.

Image tagging software may also automatically organize photos

by features such as date, location and facial recognition. You may

require that some of your photos remain in local storage for fast

access, for example, photos of your passport, vaccination record

and recent favorite photos of your family. Again, the problem is

to automate the (local) deletion (and uploading to the cloud) of

photos to maximize the value across these pre-defined subsets

of photos and satisfy retention requirements to meet storage

constraints.

Note that, although we present data disposal in the context of

photos (PAR), the general problem shares many of the same char-

acteristics: queries (rather than landing pages) generate subsets

of data (rather than photos), queries may vary in terms of impor-

tance, data may have varying degrees of importance for queries,

and certain data may be required to be retained for legal reasons

(see [10]). We choose to focus on the special case of photos in

this paper since it is an important problem in e-commerce, for

which we can show how to automatically generate the problem

inputs and provide an effective user study.

We start by presenting a formal model of PAR, its inputs, and

the optimization goal. We then show that, although an exact

solution for PAR is not computationally feasible, we can combine

methods from submodular optimization and sparsification to

give two approximation algorithms. One algorithm comes with

Series ISSN: 2367-2005 591 10.48786/edbt.2023.50

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.50

optimal worst-case approximation guarantees that match our

hardness bound. Another algorithm, based on the scheme of [30],

has somewhat lower guarantees in the worst case, however, it is

much more scalable and also comes with data-dependent bounds

that enable providing performance guarantees that far exceed the

a priori worst-case guarantee. To further optimize the running

time of the latter algorithm we also generalize sparsification

techniques presented initially in the more restricted setting of

[32], to accelerate nearest-neighbour computations with a small

error.

To show the effectiveness of our solution, we evaluate PHOcus

using both private e-commerce datasets from XYZ, and public

datasets derived from the Open Images dataset [28]. For each

dataset, we show how the inputs to PAR can be automatically

obtained. Some of the inputs are straightforward – the input set

of photos, the size of each photo, retention requirements, and the

overall storage constraint. Other inputs – the pre-defined sub-

sets of photos, the relative importance of pre-defined subsets of

photos, and the value of a photo for a pre-defined subset – seem

difficult to obtain. However, we show that there are, in fact, com-

mon practical solutions for obtaining these inputs automatically,

not only for the datasets we used but more generally for other

applications. In addition to extensive experiments on datasets of

different sizes and budgets that show the quality and efficiency

of PHOcus, we also discuss concrete examples of datasets and

budgets in the e-commerce domain to emphasize the practical

importance of our approach.

Finally, since we were fortunate enough to have access to busi-

ness analysts at XYZ, we were able to perform a user study for a

real application. In particular, we evaluated PHOcus within XYZ

on several different product categories (suggested by our collab-

orators based on its business value). Each product category was

tested separately using expert XYZ analysts, with its own space

constraint. The results show that PHOcus significantly reduces

manual work and resulted in better quality solutions. Specifi-

cally, analysts reported that it took them less than 10 minutes

on medium size datasets using PHOcus compared to hours of

manual work invested without PHOcus, and that quality of the

solution was 15-25% higher. As a result, they gained unexpected

insights in terms of which photos to retain. We also validated

our quality metrics using a gold standard based on the domain

experts.

Contributions. The contributions of this paper can be sum-

marized as follows:

(1) A formulation of the Photo Archive Reduction problem

(PAR), which accounts for pre-defined subsets of photos,

the relative importance of a pre-defined subset of photos,

the value of a photo for a pre-defined subset, the size

(number of bytes) of photos, retention requirements, and

an overall storage constraint in terms of size.

(2) A study of the theoretical computational complexity of

PAR, and proof of its NP-hardness and approximation

hardness. We also provide an optimal approximation al-

gorithm based on the scheme of [45] that also proves the

tightness of the hardness bound.

(3) A much more efficient approximation algorithm to solve

PAR, based on the submodular optimization scheme of

[30] which despite its lower worst-case guarantee also

comes with data-dependent bounds that enable providing

much better guarantees in practice.

(4) An optimization based on sparsification methods that ac-

celerate nearest neighbor computations, originally pro-

posed in the context of the facility location problem [32].

(5) An implementation of the optimized algorithm in PHOcus,

and discussion of how inputs to PHOcus can be automati-

cally derived in many settings.

(6) An extensive experimental study based on eight datasets

from two different sources, one publicly available and the

other provided by a large e-commerce site, which demon-

strate the effectiveness and efficiency of our algorithms.

(7) A real user study using XYZ data and analysts focusing

on qualitative metrics and the scope of manual interven-

tion required for implementing our human-in-the-loop

approach.

Novelty. As we discuss in the related work (Section 2), similar

work has been done in various settings (e.g., [35, 43]). The key

novelty of our approach stems from two critical properties that

are addressed simultaneously: 1) the budget is more general than

a specified number of photos; and 2) the input to the problem can

include pre-defined subsets of photos rated by importance. To our

knowledge, existing solutions take at most one of the properties

into account, but not both at the same time, and cannot be easily

adapted to our setting.

We note that the prototype of PHOcus was first demonstrated

in [11]. This demo paper provided only a high-level overview

of its capabilities and user interface whereas the present paper

details the model and algorithms underlying our solution as well

as their experimental evaluation.

Paper Organization. We start in Section 2 by reviewing

related work. Section 3 formally defines the Photo Archive Re-

duction problem, PAR, and gives the hardness result. Section 4

presents the optimized algorithm for PAR and its implementation

in PHOcus. Section 5 presents experimental results. We conclude

in Section 6.

2 RELATEDWORK
We start by comparing with related work on image and data

summarization, and then describe somewhat related work on ma-

terialized view selection. Finally, we discuss complementarywork

on caching and compression schemes that could offer relevant

architectures for efficiently storing and retrieving the selected

photos.

Image summarization. The problem of selecting a represen-

tative subset of photos has been considered in many different

settings [35, 42–44, 46]. The models and solutions proposed se-

lect a subset of photos with an objective of summarization as

opposed to our goal of reducing space usage. This leads to several

key differences: First, work on summarization aims to maximize

not only coverage, as in our objective, but also the diversity of

the summary. As a result, the objective function is not mono-

tone [44, 46] since solutions may be penalized for partial redun-

dancy. In contrast, while diversity is a by-product of the objective

in our setting, if the most diverse set includes similar photos then

no penalty is incurred as long as the space constraint is satis-

fied. Therefore, the objective function is monotone, which allows

improved approximation guarantees (see Section 3). Second, in

summarization the size constraint is on the number of photos
[42–44, 46], whereas in our setting the bound is on the sum of
sizes of the photos. Moreover, our input includes a specification

of the relevant photo subsets (along with importance weights), in-

stead of attempting to derive this implicitly based on embedding

592

Table 1: Comparison between various image summariza-
tion systems and PHOcus.

Paper Space Coverage Approximation

Constraint Focus Guarantee

Canonview [42] × × ×
Personal photologs [44] × × ×
Submodularmixture [46] × ✓ ✓
Fantom [35] × ✓ ✓
Image corpus [43] × × ×
PHOcus ✓ ✓ ✓

similarity or clustering [42, 44]. Note that the complementary

work of [46] focuses solely on learning the importance weights in

settings where only the photo subsets are given or automatically

derived, and that some summarization works also assume that

the input consists of disjoint photo categories [35]. Lastly, while

we embed the images into a metric space to derive similarity

scores (as done, e.g., in [44]), an important novelty is that the

embedding is contextualized by the predefined subset, i.e. there is

a different embedding of the same photo for different predefined

subsets based on common contextual embedding methods (e.g.,

[26, 47]).

Table 1 compares our proposed system, PHOcus, to a repre-

sentative selection of image summarization solutions (Canon-

view [42], Personal photologs [44], Submodular mixture [46],

Fantom [35] and Image corpus [43]) along the dimensions dis-

cussed above: whether the space constraint is the number of

photos (×) or the sum of sizes (✓), whether or not the coverage
focus of the algorithm can be specified (this is done in PHOcus

via the predefined subsets and weight parameters), and whether

or not it provides a worst-case approximation guarantee.

Other summarization settings. In text summarization [3],

the inherent semantic constraints require using fundamentally

different models from image summarization, and solutions are

based on state-of-the-art NLP methods [1]. In summarization

of network traffic, submodular optimization techniques are com-

monly used [2] as in our solution. However, the scale and sum-

mary objectives are much different and the focus is on streaming

algorithms [5].

View materialization. In Materialized View Selection (𝑀𝑉𝑆)

[17, 27, 36] the goal is to materialize a set of views that optimize

the execution time of an expected query load while adhering to

space constraints. At a high level, 𝑀𝑉𝑆 is similar to 𝑃𝐴𝑅, with

views having roughly the same role as predefined subsets, and

tuples corresponding to photos. Moreover, as in our solution,

submodular optimization techniques are often used [22]. How-

ever, there are several important differences. Most importantly,

in𝑀𝑉𝑆 there is no notion of similarity so tuples cannot be omit-

ted from the view. In 𝑃𝐴𝑅, however, space usage is reduced by

identifying partial redundancies, as the utility of retaining an

image is partially assessed by how similar it is to other photos in

given contexts. Additionally, in𝑀𝑉𝑆 the view result (or a super-

set of the result) is cached [18]), therefore the same tuple may

appear in multiple views. In contrast, in 𝑃𝐴𝑅 there is no analo-

gous redundancy as we are not precomputing query results, but

rather removing some of the data over which the query results

are computed.

Caching. For optimizing retrieval time there is much research

on caching schemes (e.g., multi-level caching [48]) both on the

server/cloud, as in the𝑀𝑉𝑆 setting above, and on the client-side,

as in semantic caching [40, 41], where the cache includes both

retrieved query results and semantic descriptions that may help

avoid unnecessary future queries. We note that these caching

solutions are not relevant for 𝑃𝐴𝑅, since similarities are not lever-

aged to save space, i.e., the decision of which items to retain is not

based on any redundancy in the data, but on frequency/recency

of the use.

Secondary storage solutions. Our research is focused on

identifying the optimal set of photos to retain. What is done

subsequently with the removed photos is outside the scope of

our model. One may either delete these photos or archive them

in secondary storage. In the latter case, there are many relevant

complementary works on architectures that optimize specific

trade-offs between securing privacy, efficient space consumption,

and optimizing retrieval time. For example, there are recent works

on approximate image storage [49] and compression schemes for

cold storage [12].

Getting rid of data. Our work is related to a line of work that
address the general problem of getting rid of unnecessary/unused

data. This problem has interest in the DB community for the past

several years (e.g., [10, 23, 24, 34]). Specifically, [24] introduces

a notion of databases with amnesia - DBMSs that selectively

forget tuples (by marking them inactive) for the sake of storage

management and responsiveness. Different strategies to retain

information while forgetting tuples are examined, and a num-

ber of metrics for quantifying information retention are defined.

[34] is a vision paper that discusses the logical, algorithmic, and

methodological foundations required for the systematic disposal

of large-scale data, for constraint enforcement and for the devel-

opment of applications over the retained information. In particu-

lar, it highlights new research challenges and potential reuse of

existing techniques. Our paper can be viewed as a first step in

implementing this vision.

Data reduction in E-Commerce. Our work complements

a highly related line of work that focuses on data reduction in

e-commerce. Large e-commerce companies deal with a lot of

data of different types and from various sources that needs to be

efficiently and effectively managed and (at times) disposed [10].

Working with such data frequently requires solutions that are

specific for the particular e-commerce application. Some recent

work in this domain includes efficient inventorymanagement and

reduction to reduce the maintenance costs [16]; summarization

of large amounts of texts, such as reviews [31]; and generation of

short product descriptions that can fit on mobile devices screens

[39].

3 MODEL AND HARDNESS RESULT
As described in the introduction, our model must capture factors

such as usage patterns (which we capture as pre-defined subsets
of photos) and the relative importance of the pre-defined subsets,

the quality and size of photos as well as the similarity between
different photos, the relevance of input photos to each pre-defined
subset, as well as policy requirements. These requirements were

derived from e-commerce problems, but have broad applicability

within the context of photos. In this section, we formalize the

model and state the optimization goal of PAR. We then show

that an optimal solution to PAR is not computationally feasi-

ble. We also show through an example that many of the inputs

to our model are straightforward to obtain, and will discuss in

Section 5.1 how other inputs can be automatically obtained.

593

3.1 Model
The inputs to our problem are as follows: The set of photos is

denoted by 𝑃 , and the set of photos that must be retained due

to policy requirements by 𝑆0. The number of input photos is

denoted by 𝑛 = |𝑃 |. The cost of each photo is its size (in terms

of the disk space required to store it) and is given by the cost

function C : 𝑃 ↦→ R+. For a subset of photos 𝑆 ⊆ 𝑃 , we denote

its cost, which is defined as the sum of the individual costs, by

C(𝑆) = ∑
𝑝∈𝑆 C(𝑝). The set of pre-defined subsets of photos is

denoted by 𝑄 ⊆ 2
𝑃
.

The functionW : 𝑄 ↦→ R+ assigns a positive weight to each

pre-defined subset, to reflect its importance (i.e. how valuable it is

to retain the photos in this subset). Given any specific 𝑞 ∈ 𝑄 , the

relevance function R : 𝑄 ×𝑃 ↦→ R+ assigns a score to each photo

𝑝 in 𝑞 that reflects how relevant it is for this pre-defined subset

(the score for photos in 𝑃 \ 𝑞 is 0). The relevance scores of all

photos in a pre-defined subset are normalized (in advance) to sum

up to 1: ∀𝑞 ∈ 𝑄 :

∑
𝑝∈𝑞 R(𝑞, 𝑝) = 1. A (contextualized) similarity

function SIM : 𝑄 × 𝑃 × 𝑃 ↦→ [0, 1] produces a normalized

measure of the similarity of any given pair of photos, w.r.t. a

given pre-defined subset. Note that the similarity of any pair of

photos differs based on the pre-defined subset, which is referred

to as the context of the similarity. In particular, if at least one of

the two photos is not in the context subset, then the similarity

score is defined to be 0. Moreover, the similarity of any photo to

itself is 1. However, a similarity score of 1 does not necessarily

imply that the pair of photos are identical. Lastly, the storage

budget 𝐵 is an upper bound on the cost of the solution.

Putting everything together, the input for a PAR instance

consists of the tuple ⟨𝑃, 𝑆0, 𝑄, C,W,R,SIM, 𝐵⟩. Although the

parameter set seems large, each one is needed to capture the

the real world setting of efficient photo archival. As we later

show in Section 5, solutions that ignore or simplify some of the

parameters (e.g., simpler SIM function) achieve lower quality.

Example 3.1. Consider the e-commerce application introduced

earlier. 𝑃 is the image archive. 𝑆0 is the set of images that are

required to appear on certain pages due to legal contracts. 𝑄

represents the set of landing pages (sets of images). C gives the

size of each image.W represents the relative importance of a

landing page. R represents the relevance of each image to the

landing page. Finally, SIM is the similarity between images.

Note that 𝑃 , 𝑆0, C and 𝐵 are straightforward to obtain; we will

show in Section 5.1 how the inputs Q,W, R and SIM can be

efficiently obtained.

□

Objective. Given an input instance, the goal is to find the

“best" subset of photos to retain subject to the online budget 𝐵,

i.e a solution 𝑆 ⊆ 𝑃 such that C(𝑆) ≤ 𝐵, 𝑆0 ⊆ 𝑆 , and the score

of 𝑆 is maximized. Informally, the score of a subset 𝑆 of photos

for a pre-defined subset 𝑞 is how relevant the best match in 𝑆 is

for each photo in 𝑞, as measured by SIM. For example, if 𝑞 ⊂ 𝑆

then 𝑆 has a perfect score for 𝑞. The overall score of 𝑆 is taken

over all pre-defined subsets in 𝑄 .

More formally: given a solution 𝑆 ⊆ 𝑃 , a pre-defined sub-

set 𝑞 ∈ 𝑄 , and a photo 𝑝 ∈ 𝑞, the nearest neighbour of 𝑝 in

𝑆 w.r.t. 𝑞 is the most similar photo in 𝑆 ∩ 𝑞 to 𝑝 , denoted by

𝑁𝑁 (𝑞, 𝑝, 𝑆) = arg max𝑝′∈𝑆∩𝑞 SIM(𝑞, 𝑝, 𝑝′) (if there are several
such photos, we choose one arbitrarily). Observe that if 𝑝 ∈ 𝑆 ,
then 𝑁𝑁 (𝑞, 𝑝, 𝑆) = 𝑝 .

We define the score of a solution 𝑆 w.r.t. a given pre-defined

subset 𝑞 ∈ 𝑄 as

G(𝑞, 𝑆) =
∑︁
𝑝∈𝑞
R(𝑞, 𝑝) · SIM(𝑞, 𝑝, 𝑁𝑁 (𝑞, 𝑝, 𝑆)).

Recall that the relevance scores of all photos in a pre-defined

subset 𝑞 are normalized to sum up to 1 (

∑
𝑝∈𝑞 R(𝑞, 𝑝) = 1) so

that the scores do not depend on the size of 𝑞.

Abusing notation, the overall score of a solution 𝑆 is defined

as the weighted sum of the scores w.r.t. pre-defined subsets:

G(𝑆) =
∑︁
𝑞∈𝑄

𝑊 (𝑞) · G(𝑞, 𝑆) .

Thus, the optimization problem of 𝑃𝐴𝑅 is to produce a solution

that maximizes the objective function. That is, the goal is to

produce

arg max

𝑆0⊆𝑆⊆𝑃,C(𝑆)≤𝐵
G(𝑆) .

Unfortunately, we can show that providing a solution which

optimizes this score is computationally infeasible.

3.2 Hardness Result
To show the approximation hardness of the optimization problem

of PAR, we use the classical Maximum Coverage problem which

is provably hard to approximate [14].

Definition 3.2. Given a set of sets over a universe of elements

and an integer 𝑘 , the goal of theMaximum Coverage problem
(𝑀𝐶) is to select 𝑘 sets such the cardinality of their union is

maximized.

Theorem 3.3. [14] The𝑀𝐶 problem is 𝑁𝑃-hard to approximate
beyond a (1 − 1/𝑒) ≈ 0.63 factor.

Theorem 3.4. The 𝑃𝐴𝑅 problem is NP-hard to approximate
beyond a (1 − 1/𝑒) factor.

Proof. We next present the proof sketch, based on a reduc-

tion from the Maximum Coverage (𝑀𝐶) problem (Definition 3.2).

Concretely, in the derived 𝑃𝐴𝑅 instance, every set 𝑠 becomes

a photo 𝑝𝑠 , and for each element 𝑒 in the 𝑀𝐶 instance we add

to the 𝑃𝐴𝑅 instance a pre-defined subset 𝑞𝑒 , that consists of all

the photos that correspond to the sets that contain 𝑒 . The cost

of each photo is 1 and the budget is 𝐵 = 𝑘 . The weight of each

pre-defined subset is 1. For each pre-defined subset 𝑞𝑒 , the rele-

vance score of every photo in it is 1/|𝑞𝑒 |. The similarity of any

two photos appearing in the same pre-defined subset is 1 (and

0 otherwise). This implies that selecting at least one photo of a

given pre-defined subset ensures a maximum score of 1 for that

pre-defined subset (same as selecting at least one set that covers

a given element is sufficient to ”fully cover” the element in the

𝑀𝐶 setting). It is straightforward to show that the two problem

formulations are equivalent, and any 𝛼-approximation of the

𝑃𝐴𝑅 instance implies the same performance ratio for the 𝑀𝐶

instance (by selecting all the sets that correspond to the photos

in the 𝑃𝐴𝑅 solution). □

In light of this hardness result, we give in the next section

an algorithm which achieves a (1 − 1/𝑒)-approximation of 𝑃𝐴𝑅.

This is therefore optimal for a PTIME algorithm.

594

Algorithm 1:𝑀𝑎𝑖𝑛𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

1 𝑟𝑒𝑠1 = 𝐿𝑎𝑧𝑦𝐺𝑟𝑒𝑒𝑑𝑦 (𝑈𝐶)
2 𝑟𝑒𝑠2 = 𝐿𝑎𝑧𝑦𝐺𝑟𝑒𝑒𝑑𝑦 (𝐶𝐵)
3 return 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑟𝑒𝑠1, 𝑟𝑒𝑠2)

4 ALGORITHM
We now present our algorithm for 𝑃𝐴𝑅, which combines meth-

ods from submodular optimization and data sparsification. We

first prove that the 𝑃𝐴𝑅 objective satisfies properties that allow

employing the submodular optimization scheme of [45] to de-

rive a (1 − 1/𝑒)-approximation, which is optimal according to

Theorem 3.3. The algorithm in [45], however, is not scalable, and

we therefore leverage the much more efficient algorithm of [30]

which was originally proposed in the context of outbreak detec-

tion. Importantly, while the worst-case guarantee of the latter

algorithm is (1 − 1/𝑒)/2, [30] also proposes a method to provide

online bounds on the output of any algorithm, which we leverage

to empirically show that the performance ratio in practice is far

better than this bound. To further optimize the efficiency of this

algorithm, we extend it by adapting sparsification methods that

accelerate nearest neighbor computations, originally proposed

in the context of the facility location problem [32]. We show em-

pirically that sparsification significantly improves the running

time, with only a negligible effect on the performance ratio.

The remainder of this section is organized as follows. We first

prove the theoretical properties of 𝑃𝐴𝑅 necessary to apply the

submodular optimization algorithms stated above. We then pro-

vide the implementation of the algorithm of [30], adapted to our

context. Afterwards, we present the complete 𝑃𝐴𝑅 algorithm,

that extends algorithm of [30] with sparsification methods. Fi-

nally, we demonstrate the operation of the algorithm on a small,

yet real world, example.

4.1 Submodular optimization algorithms
To apply the approximation schemes of [45] and [30], we first

need the following definitions and results relating to set functions

(𝑓 : 2
𝑈 → R, given a universe𝑈).

Definition 4.1. 𝑓 is nonnegative if ∀𝑆 ⊆ 𝑈 : 𝑓 (𝑆) ≥ 0.

Definition 4.2. 𝑓 ismonotone if ∀𝑆 ⊆ 𝑈 ,∀𝑣 ∈ 𝑈 :

𝑓 (𝑆 ∪ {𝑣}) ≥ 𝑓 (𝑆).

Definition 4.3. 𝑓 is submodular if ∀𝑆 ⊆ 𝑇 ⊆ 𝑈 ,∀𝑣 ∈ 𝑈 :

𝑓 (𝑆 ∪ {𝑣}) − 𝑓 (𝑆) ≥ 𝑓 (𝑇 ∪ {𝑣}) − 𝑓 (𝑇).

Theorem 4.4. [25, 45] Let 𝑓 denote a nonnegative, monotone,
and submodular set function over a universe𝑈 , where each element
in the universe has a positive cost. There exists a PTIME (1 − 1/𝑒)-
approximation algorithm for the problem of maximizing 𝑓 , subject
to the Knapsack constraint that the sum of the costs of the selected
elements does not exceed a specified budget upper bound 𝐵.

Wenext prove that the 𝑃𝐴𝑅 objective satisfies all the properties

defined above.

Lemma 4.5. The objective function of 𝑃𝐴𝑅 is nonnegative, mono-
tone and submodular.

Proof. The function is nonnegative by definition. The func-

tion is also monotone nondecreasing, as adding a photo to a

solution (without exceeding the budget) may only increase the

similarity score of the most similar photo of each non-selected

photo. Finally, to show that the function is submodular, consider

Algorithm 2: 𝐿𝑎𝑧𝑦𝐺𝑟𝑒𝑒𝑑𝑦 (𝑡𝑦𝑝𝑒)
1 𝑆 ← 𝑆0

2 𝐵 ← 𝐵 − 𝐶 (𝑆0)
3 foreach 𝑝 ∈ 𝑃 do
4 𝛿𝑝 ←∞
5 while ∃𝑝 ∈ 𝑃 \ 𝑆 : 𝐶 (𝑆 ∪ {𝑝 }) ≤ 𝐵 do
6 foreach 𝑝 ∈ 𝑃 \ 𝑆 do
7 𝑐𝑢𝑟𝑝 ← False
8 while True do
9 if 𝑡𝑦𝑝𝑒 = 𝑈𝐶 then
10 𝑝∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝑃\𝑆,𝐶 (𝑆∪{𝑝}) ≤𝐵 (𝛿𝑝)
11 if 𝑡𝑦𝑝𝑒 = 𝐶𝐵 then
12 𝑝∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑝∈𝑃\𝑆,𝐶 (𝑆∪{𝑝}) ≤𝐵 (

𝛿𝑝

𝐶 (𝑝))
13 if 𝑐𝑢𝑟𝑟𝑝 then
14 𝑆 ← 𝑆 ∪ 𝑝∗
15 break
16 else
17 𝛿𝑝 ← G(𝑆 ∪ {𝑝 }) − G(𝑆)
18 𝑐𝑢𝑟𝑝 ← True
19 return 𝑆

two sets 𝑆 ⊂ 𝑇 ⊆ 𝑃 and a photo 𝑝 ∈ 𝑃 . Clearly, the increase

in the overall score resulting from adding 𝑝 to 𝑇 is bounded by

the analogous increase of adding 𝑝 to 𝑆 , as the set of photos in

𝑃 \ {𝑆 ∪ {𝑝}} for which 𝑝 is the nearest neighbor is a superset of

the analogous photos in 𝑃 \ {𝑇 ∪ {𝑝}}. □

From Lemma 4.5 and Theorem 4.4, it follows that we can use

the algorithm in [45] to derive a (1− 1/𝑒)-approximation of 𝑃𝐴𝑅,

which, following Theorem 3.4, is optimal for a PTIME algorithm.

Theorem 4.6. There exists a tight PTIME (1−1/𝑒)-approximation
algorithm for 𝑃𝐴𝑅.

4.2 A more efficient algorithm
The time complexity of the algorithm in [45] is Ω(𝐵 · 𝑛4), where
𝐵 is the budget and 𝑛 is the number of photos, as this is the num-

ber of times it evaluates the gain of adding a specific photo to

the solution. We therefore leverage a more efficient algorithm

for maximizing a submodular function, subject to a knapsack

constraint, proposed originally in [30] in the context of outbreak

detection in networks. This algorithm is significantly more scal-

able, since the number of times it evaluates the gain from adding

a photo is𝑂 (𝐵 ·𝑛), and (more importantly) it uses lazy evaluation;

these were shown to improve the running time by a factor of

700. While using this algorithm reduces the worst-case approxi-

mation guarantee to (1 − 1/𝑒)/2, we also leverage the method

provided in [30] to bound the performance ratio a posteriori, and

show in Section 5 that the performance in practice far exceeds

the worst-case bound.

A high-level description of the approximation scheme of [30]

adapted to our context is shown in Algorithm 2, and we explain

its operation next. The complete algorithm, where we also use

sparsification methods, is presented in the following subsection.

Algorithm 1 runs two greedy procedures separately and out-

puts the best solution. The procedures are shown in Algorithm

2, and their implementations only differ based on the argument

of the type parameter passed from Algorithm 1. Each of the two

procedures iteratively selects the photo that produces the highest

marginal gain based on a specified objective (there is a different

objective for each procedure) and adds it to the current solution,

595

Predefined subsets: Subsets Importance:
q1 = {p1, p2, p3} [“Bikes”] w(q1) = 9
q2 = {p4, p5, p6} [“Cats”] w(q2) = 1
q3 = {p6} [“Bookshelf”] w(q3) = 3
q4 = {p6, p7} [“Books”] w(q4) = 1

p1 (1.2 Mb) p2 (0.7 Mb) p3 (2.1 Mb)

p4 (0.9 Mb) p5 (0.8 Mb) p6 (1.1 Mb) p7 (1.3 Mb)

Similarities:
SIM(q1, p1, p2) = 0.7
SIM(q1, p1, p3) = 0.8
SIM(q1, p2, p3) = 0.5
SIM(q2, p4, p5) = 0.7
SIM(q2, p4, p6) = 0.4
SIM(q2, p5, p6) = 0.7
SIM(q4, p6, p7) = 0.7

Relevance Score:
R(q1, p1) = 0.5
R(q1, p2) = 0.3
R(q1, p3) = 0.2
R(q2, p4) = 0.3
R(q2, p5) = 0.4
R(q2, p6) = 0.3
R(q3, p6) = 1
R(q4, p6) = 0.7
R(q4, p7) = 0.3

Figure 1: Sample input to PAR.

until no photos can be added without exceeding the budget. For

𝑡𝑦𝑝𝑒 = 𝑈𝐶 , the algorithm treats all photos as if they have unit
cost (i.e., it ignores the differences in cost) and selects in each

iteration the photo whose addition to the solution selected so

far maximally increases the value of the objective function G. In
contrast, for 𝑡𝑦𝑝𝑒 = 𝐶𝐵 the algorithm uses a cost-based approach,

and selects in each iteration the photo that maximizes the ratio

between the increase in the objective function G and its cost.

4.3 Input sparsification
We now explain how to optimize the efficiency of Algorithm 1

using a sparsification preprocessing step that reduces the time

necessary to compute each evaluation of the marginal gain of

selecting a given photo. Specifically, we modify the function 𝑆𝐼𝑀

by rounding down to zero all photo similarities that are below

a specified threshold 𝜏 , so that fewer neighbors are considered

for each photo in nearest neighbor computations. Importantly,

we prove a data-dependent bound on the error incurred by this

sparsification, which generalizes results proven in [32] for the

Facility Location problem, which is equivalent to a special case

of our problem. This bound to some extent allows one to control

the trade-off between efficiency and accuracy. To further facili-

tate efficiency, we use Locality Sensitive Hashing (LSH) [21] to

perform the sparsification without first computing all the pair-

wise similarities. This randomized method allows us, in roughly

linear time, to find with high probability almost all pairs whose

similarity exceed a specified threshold. Specifically, to perform

this optimization, the calculation of G in line 17 of Algorithm 2 is

modified in order to reduce the number of required comparisons.

A step-by-step demonstration of this algorithm can be found in

Section 4.4.

We first prove worst-case data-dependent bounds on the ratio

of the optimal solution to the original instance and the optimal

solution of the 𝜏-sparsified instance, where all similarities below

𝜏 are rounded-down to 0.

p1

p2

p3

p4

p5

(q1,p1)

TL TR

(q1,p2)

(q2,p4)

(q1,p3)

(q2,p5)

(q3,p6)

(q4,p6)

p6

p7

(q4,p7)

1.2

0.7

2.1

0.9

1.1

0.8

1.3

9 * 0.5

9 * 0.3

9 * 0.2

1 * 0.3

3 * 1

1 * 0.4

1 * 0.7

1 * 0.3

(q2,p6) 1 * 0.3

0.7
0.8

0.7

0.5

0.5

0.7
0.4

0.7

0.7

0.4 0.7

0.7

0.7

0.8

Figure 2: GFL formulation of PAR input.

To prove the error bounds on the sparsification, we use an

equivalent formulation of our problem which generalizes the

Facility Location problem [7]. To select the desired trade-off be-

tween the degree of the sparsifcation and the worst-case accuracy

loss, different values of the threshold 𝜏 can be tested. Moreover,

we show in the experiments that the actual accuracy loss in prac-

tice is much smaller then the above worst-cases bounds indicate.

Generalized Facility Location (GFL) problem. Consider aweighted
bipartite graph over the node set 𝑇𝐿 ∪ 𝑇𝑅 , where 𝑇𝐿 = 𝑃 and

𝑇𝑅 = {(𝑞, 𝑝) |𝑝 ∈ 𝑞}. The edges are a subset of𝑇𝐿×𝑇𝑅 , constructed
as follows: For every 𝑞 and every 𝑝1, 𝑝2 ∈ 𝑞, there exist two edges
that connect 𝑝1 (in𝑇𝐿) to (𝑞, 𝑝2) (in𝑇𝑅) and 𝑝2 to (𝑞, 𝑝1), each of

weight SIM(𝑞, 𝑝1, 𝑝2); if 𝑝1 = 𝑝2 then only one edge (of weight

1) is added. The weight of each node 𝑝 ∈ 𝑇𝐿 is𝑤𝐿 (𝑝) = 𝐶 (𝑝) and
the weight of each node (𝑞, 𝑝) ∈ 𝑇𝑅 is𝑤𝑅 (𝑞, 𝑝) =W(𝑞) · R(𝑞, 𝑝).
For simplicity of presentation, we define𝑤𝐸 (𝑆, (𝑞, 𝑝)) as the max-

imum weight of an edge incident to (𝑞, 𝑝) in the subset 𝑆 . The

optimization goal over this input is to find a subset 𝑆 ⊆ 𝑇𝐿
that maximizes 𝐹 (𝑆) = ∑

(𝑞,𝑝) ∈𝑇𝑅 𝑤𝐸 (𝑆, (𝑞, 𝑝)) and whose total

weight is at most 𝐵.

Example 4.7. An example of input to PAR is depicted in Figure

1. It consists of 4 predefined subsets (𝑞1 to 𝑞4) that correspond

to 4 natural language queries (shown next to the subsets) that

were executed over a small set of images (shown at the top with

their sizes). The relative importance of each subset is given as

𝑤 . The lower part of the figure contains the pairwise photos

similarities and the relevance of each photo to the predefined

subset. Note that the relevance scores are normalized, i.e., their

sum over each query equals 1. The GFL formulation of the sample

input is depicted in Figure 2. Note that all edges that connect

𝑝𝑖 to (𝑞, 𝑝𝑖) are of weight 1, and are omitted from the figure.. It

is easy to verify that this GFL formulation is equivalent to the

original formulation provided in Section 3.

596

𝛿𝑝1
= 7.83

T

𝛿𝑝2
= 6.74

T

𝛿𝑝3
= 6.75

T

𝛿𝑝4
= 0.7

T

𝛿𝑝5
= 0.82

T

𝛿𝑝6
= 4.61

T

𝛿𝑝7
= 0.78

T

Step 2:Step 1:

𝛿𝑝2
= 6.74

F

𝛿𝑝3
= 6.75

F

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.82

F

𝛿𝑝6
= 4.61

F

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝1 𝑝∗ = 𝑝3

𝛿𝑝2
= 6.74

F

𝛿𝑝3
= 0.36

T

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.82

F

𝛿𝑝6
= 4.61

F

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝2

𝛿𝑝2
= 0.81

T

𝛿𝑝3
= 0.36

T

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.82

F

𝛿𝑝6
= 4.61

F

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝6

𝛿𝑝2
= 0.81

T

𝛿𝑝3
= 0.36

T

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.82

F

𝛿𝑝6
= 4.6

T

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝6

𝛿𝑝2
= 0.81

F

𝛿𝑝3
= 0.36

F

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.82

F

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝5

𝛿𝑝2
= 0.81

F

𝛿𝑝3
= 0.36

F

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.12

T

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝2

𝛿𝑝2
= 0.81

T

𝛿𝑝3
= 0.36

F

𝛿𝑝4
= 0.7

F

𝛿𝑝5
= 0.12

T

𝛿𝑝7
= 0.78

F

𝑝∗ = 𝑝2

Step 3:Step 0:

𝛿𝑝1
= ∞

F

𝛿𝑝2
= ∞

F

𝛿𝑝3
= ∞

F

𝛿𝑝4
= ∞

F

𝛿𝑝5
= ∞

F

𝛿𝑝6
= ∞

F

𝛿𝑝7
= ∞

F

Set up

Figure 3: Step-by-step operation of Algorithm 2.

We note that if all weights are equal to 1, then we get the

Facility Location problem as formulated in [32]. The following

theorem generalizes the error bounds provided in [32] for 𝜏-

sparsification.

Theorem 4.8. Let 𝑂𝜏 be the optimal solution to a 𝜏-sparsified
GFL instance. Let𝑊𝑅 =

∑
(𝑞,𝑝) ∈𝑇𝑅 𝑤𝑅 (𝑞, 𝑝). If there exists 𝑆 ⊆ 𝑇𝐿

such that
∑
𝑝∈𝑆 𝑤𝐿 (𝑝) ≤ 𝐵 and

∑
𝑣∈𝑁𝜏 (𝑆) 𝑤𝑅 (𝑣) = 𝛼 ∗𝑊𝑅 (where

𝑁𝜏 (𝑆) denotes the set of neighbors of 𝑆 in the 𝜏-sparsified instance)
then

𝐹 (𝑂𝜏) ≥
1

(1 + 1/𝛼) ·𝑂𝑃𝑇

Proof. Let 𝑂 be the optimal solution to the original problem.

Let 𝐹𝜏 and 𝐹𝜏 denote the functions derived by restricting 𝐹 to

consider only the edges of weight at least 𝜏 and all remaining

edges, respectively. By definition,

𝐹 (𝑂) = 𝐹𝜏 (𝑂) + 𝐹𝜏 (𝑂)
and

𝐹𝜏 (𝑂) ≤ 𝜏 ·𝑊𝑅 .

From the assumption on the set 𝑆 we have

𝐹𝜏 (𝑆) ≥ 𝛼 · 𝜏 ·𝑊𝑅 .

Overall, we get

𝐹 (𝑂) = 𝐹𝜏 (𝑂) + 𝐹𝜏 (𝑂)
≤ 𝐹𝜏 (𝑂) + 𝜏 ·𝑊𝑅

≤ 𝐹𝜏 (𝑂) +
1

𝛼
· 𝐹𝜏 (𝑆)

≤ 𝐹𝜏 (𝑂𝜏) + 1/𝛼 · 𝐹𝜏 (𝑂𝜏)
≤ (1 + 1/𝛼) · 𝐹𝜏 (𝑂𝜏)

□

Note that the second to last inequality follows from the fact

that𝑂𝜏 is by definition the optimal solution with respect to 𝐹𝜏 (·).
Finding a set 𝑆 that maximizes the sum of weights of the

neighbors of 𝑆 , 𝑁 (𝑆), is exactly the Budgeted Maximum Cover-

age problem [25]. Note that the solution to this problem can be

reasonably approximated via schematically the same algorithms

as the PARproblem, however, the running time is much faster, as

in addition to the sparsification, to evaluate each solution one

only computes the total weight of covered items, without tak-

ing into account similarities or computing nearest neighbors at

each iteration (also recall that this faster sub-algorithm is exe-

cuted offline for the sake of evaluation if one seeks a posteriori

data-dependent bounds for the sparsification).

In our solution, we measure similarity between image em-

beddings using a cosine similarity function (see Section 5.1), a

common similarity metric for vector embeddings and images in

particular [38]. As mentioned earlier, one way to sparsify the in-

put is to first compute all the pairwise cosine similarities between

any two photos for each predefined subset, and then round down

to 0 the similarities below 𝜏 (equivalent to removing these edges

from the GFL formulation). However, to optimize the running

time for larger instances, we employ a randomized method based

on LSH that hashes each embedding vector a constant number

of times, and only considers similarities between vector pairs

corresponding to hash collisions. Given the correct tuning of

parameters, this yields with probability arbitrarily close to 1 all

vectors pairs of of similarity at least 𝜏 , except for an arbitrarily

small fraction of pairs. Since cosine similarity is our measure of

similarity, we use the LSHmethod SimHash [6] which is based on

random projections, since it is easy to compute and is widely used

for this purpose (e.g., [4, 13, 29]). This LSH approach allows us

to identify (almost) all sufficiently similar pairs in roughly linear

time, which is preferable when there are many large predefined

subsets. Empirical results pertaining to the speed-up gains and

incurred errors of this method are provided in Section 5.

4.4 Algorithm Demonstration
We conclude this section by demonstrating the operation of Al-

gorithm 2. For simplicity, we demonstrate it only for the case

where 𝑡𝑦𝑝𝑒 = 𝑈𝐶 ; for 𝑡𝑦𝑝𝑒 = 𝐶𝐵, the steps are identical, and the

only difference is the exact formula for computing 𝛿𝑝 .

Figure 3 depicts the step by step operation of the algorithm

on the input presented in Figure 1. The main data structure

used is a priority-queue (PQ) that allows the photo with the

largest marginal gain to be efficiently found. The algorithm starts

597

(Step 0) by initializing the marginal gain of each photo, 𝛿𝑝 , to∞,
and setting an indicator of whether or not 𝛿𝑝 was recalculated

since the last solution update, 𝑐𝑢𝑟𝑟𝑝 , to False. Next, the algorithm

computes the values of 𝛿𝑝 and updates all 𝑐𝑢𝑟𝑟𝑝 to True. Finally,

it picks the 𝑝 with highest value of 𝛿𝑝 , shown as 𝑝∗, and adds

it to the solution. In Step 1, 𝑝∗ is 𝑝1. Each time a new element

is added to the solution set, all values of 𝑐𝑢𝑟𝑟𝑝 are set to False

(shown at the beginning of Steps 2 and 3). This indicates that the

values of 𝛿𝑝 may be outdated and therefore require recalculation,

since the marginal gain of an additional photo depends on what

is already in the solution. Note that due to submodularity of the

objective function, the value of 𝛿𝑝 for each of the photos can

only decrease. Hence if the newly calculated value 𝛿𝑝 is at the

top of the priority queue (i.e., it is the largest among all other

photos) it can be selected without recalculating this value for

the rest of the photos. To do this, the algorithm takes the 𝑝 with

the highest value of 𝛿𝑝 , removes it from the PQ, recalculates 𝛿𝑝 ,

updates 𝑐𝑢𝑟𝑟𝑝 to True, and adds 𝑝 back to the PQ. If the updated

value is still the highest (i.e., it is 𝑝∗) the algorithm adds it to the

solution and continues to the next step. Otherwise, it repeats for

the next highest 𝛿𝑝 . In Step 2, the algorithm tests 𝑝3 and then 𝑝2,

but neither are selected since they do not have the highest the

highest 𝛿𝑝 after recalculation; intuitively, both are pretty well

covered by 𝑝1 which has already been selected. Therefore 𝑝6 is

selected as 𝑝∗, since after recalculation it still has the maximum

value of 𝛿𝑝 , and Step 2 ends. In Step 3, 𝑝5 is initially selected,

but after recalculation it turns out that 𝑝2 is again the highest.

After recalculation, 𝑝2 still has the highest value, and Step 3 ends

with 𝑝2 being selected as 𝑝
∗
. We showcase here only the first few

steps, but the algorithm would continue adding to the solution

until there are no more photos or the budget is exceeded.

5 EXPERIMENTAL EVALUATION
We begin this section by giving an overview of the architec-

ture of our system, PHOcus. We continue by explaining how to

derive and preprocess the input to best exploit our algorithms.

We then describe the datasets (both private and public) used for

the experiments, the algorithms we compared, and the quanti-

tative evaluation methods, followed by the evaluation results.

Lastly, we describe the setup, methodology and findings of a user

study, focusing on qualitative metrics and the scope of manual

intervention required for implementing our human-in-the-loop

approach.

5.1 System Architecture
The high-level architecture of PHOcus is shown in Figure 4, and

consists of a user interface and two modules: the Data Represen-
tation Module, which prepares the input to PAR; and the Solver,
which runs the optimization algorithm for PAR. Solver is imple-

mented using Python and Flask.

The user interacts with the system via the UI to specify the

input, as described below. Note that 𝑃 , 𝑆0, C and 𝐵 are straight-

forward to obtain; we show below that the inputs Q,W, R and

SIM can also be efficiently obtained.

The pre-defined subsets 𝑄 and relevance scores R may be

specified in one of three ways:

(1) Directly: each photo is tagged with all the subsets that

include it. The relevance scores, which are assumed to be

uniform by default, may be adjusted via the UI;

Table 2: Datasets.

Dataset name # Photos # Predefined subsets

P-1K 1000 193

P-5K 5000 1409

P-10K 10000 3955

P-50K 50000 14326

P-100K 100000 33721

EC-Fashion 18745 250

EC-Electronics 22783 250

EC-Home & Garden 19235 250

(2) Queries: users provide queries such as (“Paris vacation"),

and the subsets are computed via the PHOcus search en-

gine. The confidence scores of the engine are then con-

verted into the relevance scores; or

(3) Automatic tagging: Subsets are derived using automatic

tagging methods. The weights for subsets derived by all

methods may be adjusted using a dedicated UI.

The Data Representation module receives this input and, if it

contains user-provided queries, uses an internal search engine

to compute the pre-defined subsets and relevance scores. It then

normalizes the relevance scores (as described in Section 3), and

derives the contextualized similarities (SIM). This is done using

the approach in [44], which computes the distance between two

photos based on both quantitative and categorical attributes that

are derived via standardmethods, including, e.g., reading the EXIF

metadata and generating visual words via the SIFT algorithm

[33].

Another adaptation one could do to our setting is normalizing

the distances differently for each context subset. This is done

by dividing all distances by the maximum distance between any

two photos in the context. Intuitively, this emphasizes smaller

variations across photos formore granular predefined subsets. For

example, when searching for photos of all “trips", having many

photos of the same trip to Paris in 2016 may seem redundant.

However, when searching for this specific trip, photos are only

redundant if they are very similar in more specific features (e.g.,

many photos of Eiffel Tower taken on the same day).

The complete input is then passed to Solver, which runs the

optimization algorithm described in Section 3.

Example 5.1. Returning to the e-commerce application, which

we have implemented for use within XYZ:𝑄 is calculated directly

from the set of landing pages, each of which is defined by a set

of relevant images for the page as well as a title (e.g., “Nike

red shirts”, “Samsung smartphones” or “shoes”). The relative

importance of a landing page,W, is calculated based on the

landing page popularity, i.e. the number of visits in the last 90

days, normalized by sum of all visits to all landing pages. The

relevance function, R, which reflects how relevant a photo 𝑝

is for a pre-defined subset 𝑞, is computed based both on the

quality of the image (using ML model for image embedding, e.g.,

[8]) and the relevance score of the product represented in the

image (using the product title and the retrieval score). Finally,

the similarity between images, SIM, is calculated using cosine

similarity between image embeddings. The embeddings are based

on the ResNet-50 network [19] and is trained on over 50Mproduct

images from the XYZ site.

5.2 Experimental Setup
We evaluated Solver extensively using a server with 128GB RAM

and 32 cores. The experiments used eight datasets from two

598

Photos & Metadata

Modeled data Retained photos

Size Constraint

Data
Representation

Module

Solver

User Interface

Analysis

Figure 4: PHOcus - System Architecture

sources, one publicly available and the other provided by XYZ.

We used 6 different algorithms to form a comparison under a wide

range of different parameters such as dataset size and budget.

Datasets. The datasets used for our evaluation are:

• Public Photos Datasets (P) - The first source is a publicly
available dataset of photos [28]. It consists of millions of

labeled images; the label contains information about an

object that appears on the image and the confidence level.

To test the applicability of our approach in various do-

mains and dataset sizes, we extracted 5 datasets of various

sizes from this source in the following way. First, we ran-

domly selected 5 sets of photos of sizes 1K, 5K, 10K, 50K

and 100K. For each set, we then extracted the labels that

appeared on the photos, and used these labels to define

the predefined subsets. The confidence of a label repre-

sents the relevance score of the photo to the predefined

subset. The importance of the predefined subset is derived

from its frequency in the full dataset. Finally, to compute

the similarities between images we used cosine similarity

between image embeddings. For the embeddings we used

a commonly used pretrained ResNet-50 network [19].

It is important to note that, while one might think that us-

ing uniform sampling to construct the predefined subsets

and the resulting sets of labels would lead to little variance

between them, the large number of photos (in the millions)

together with the large number of labels (over 6000) in

practice yields sufficient variance to measure the quality

of the solution as well as for testing scalability.

• E-Commerce Dataset (EC) - The second source is pri-

vate, and comes from a large e-commerce company (XYZ).

It consists of photos of various product types from dif-

ferent categories, e.g., Smartphones, Running Shoes, and

Office Chairs. These products come from 3 major domains:

Electronics, Fashion, and Home & Garden. We therefore

extracted 3 separate datasets from this data source, one

for each domain. These domains were proposed by our

collaborators due to their business value.

The datasets were constructed as follows: First, in-house

XYZ business analysts extracted all search queries in each

of the three aforementioned domains from the query log

of the fourth quarter of 2021. Using these queries, the ana-

lysts then derived 250 predefined subsets that correspond

to the top-250 most frequent queries. The importance of

the predefined subsets was derived from the query fre-

quencies. The photos were then taken from the products

that appeared in the result sets of the queries, and the

relevance score derived from the retrieval score assigned

by the search engine. The similarity between photos was

calculated using cosine similarity between image embed-

dings (computed by XYZ analysts using an internal ML

model). The number of photos in the datasets is 18745

(Electronics), 22783 (Fashion) and 19235 (Home & Garden),

that are revtrieved using the 750 queries (250 per each

domain) that were mentioned above.

Details about the eight datasets from the two sources presented

above are summarized in Table 2.

Baselines.We compare our algorithm against four other al-

gorithms, including two variants of a simple random algorithm,

two greedy algorithms, and a variant of our algorithm without

the sparsification optimization step in Section 4.3.

• RAND-A - Starts with an empty set, and during each

iteration, randomly selects a photo, adds it to the set and

stops when the budget limit is met.

• RAND-D - Starts with a set of all photos, and during each

iteration, randomly selects a photo, deletes it from the set

and stops when the budget limit is met.

• Greedy-NR - An Iterative Greedy algorithm that in each

iteration finds the photo that maximizes the gain with-
out taking into account the effect of covering the other

photos, i.e. using the score function in Section 3.1 with

SIM(𝑞, 𝑝, 𝑝′) set to 1.

• Greedy-NCS - Another Iterative Greedy algorithm that in

each iteration finds the photo that maximizes the gain, tak-

ing into account the effect of covering the other photos us-

ing a non-contextual similarity function for all predefined

subsets. This is, using the score function in Section 3.1

with SIM(𝑞, 𝑝, 𝑝′) set to the similarity of (𝑝, 𝑝′) for all
𝑞.

• PHOcus-NS - Our proposed algorithm (Algorithm 1, see

Section 4), without the sparsification optimization.

• PHOcus - Our proposed algorithm with the proposed

sparsification optimization.

Note that for the case where all costs are uniform, the well-

known greedy algorithm of [37] is known to provide an optimal

599

0

500

1000

1500

5MB 10MB 25MB 50MB

Q
ua
lit
y

RAND G-NR G-NCS PHOcus

(a) P-1K dataset, various budgets

0

2000

4000

6000

8000

25MB 50MB 100MB 250MB

Q
ua
lit
y

RAND G-NR G-NCS PHOcus

(b) P-5K dataset, various budgets

0

10000

20000

30000

40000

50000

100MB 250MB 500MB 1GB

Q
ua
lit
y

RAND G-NR G-NCS PHOcus

(c) EC-Fashion dataset, various budgets

0

200

400

600

800

1000

1MB 2MB 5MB 10MB

Q
ua
lit
y

PHOcus Brute-Force

(d) Subset of P-1K dataset, various budgets

0

2000

4000

6000

8000

25MB 50MB 100MB 250MB

Q
ua
lit
y

PHOcus PHOcus-NS

(e) P-5K dataset, various budgets

0

100

200

300

25MB 50MB 100MB 250MB

Ti
m

e
(m

in
ut

es
)

PHOcus PHOcus-NS

(f) P-5K dataset, various budgets

0

10000

20000

30000

40000

Electronics Fashion Home & Garden

Q
ua

lit
y

PHOcus Manual

(g) User Study - Quality

1

10

100

1000

Electronics Fashion Home & Garden

Ti
m

e
(m

in
ut

es
)

PHOcus Manual

(h) User Study - Time (log scale)

Figure 5: Evaluation results

(1 − 1/𝑒) worst-case approximation. Since Algorithm 1 takes

the best out of two outputs produced by two sub-algorithms,

one of which is the greedy algorithm, when costs are uniform

Algorithm 1 is provably optimal. For this reason, we do not adapt

summarization algorithms devised for settings where there are

no explicit costs to include in our experimental evaluation. As ex-

plained in Section 2, these works either use the greedy algorithm

or an inferior algorithm that is instead focused on a more general

theoretical setting. For example, [35] makes several different as-

sumptions (e.g., the photo subsets are assumed to be disjoint) and

studies a more general problem with arbitrarily many knapsack

constraints with different types of budgets and costs.

5.3 Evaluation Results
The experiments measured the quality of the solution (G(𝑆) in
Section 3.1) as well as the feasibility of PHOcus compared to

stronger yet less practical baselines such as PHOcus-NS and the

Brute-Force algorithms.

Quality. Figures 5a, 5b, and 5c show the quality achieved by

each baseline over the public datasets of size 1K and 5K (P-1K and

P-5K, respectively) and over the private e-commerce dataset from

the Fashion domain (EC-Fashion), for a range of different budget

values. Note that PHOcus-NS has similar quality to PHOcus and is

therefore not included. Furthermore, both RAND-A and RAND-D
achieved almost identical quality scores, hence we omit RAND-D
and show only results for RAND-A (named RAND in all graphs).

Results using the other 5 datasets in Table 2 are similar to those

shown, hence are omitted.

Figure 5a depicts the quality achieved over the P-1K dataset

for 4 different budget values. The ranking of the algorithms for all

budgets is the same: our PHOcus algorithm has the best quality,

followed by the two greedy variants,G-NR andG-NCS, and finally
by the random algorithm RAND. Note that the rightmost column

represents a budget that is large enough to retain all photos, hence

no photos are removed and all baselines achieve the maximum

possible score. The poor quality of the random algorithm using

lower budget settings is predictable, since the photos are selected

without using a “smart” strategy. Ignoring the similarity between

photos leads to worse performance, as can be seen by Greedy-
NR, e.g., if one good photo of an Eiffel Tower is already selected,

adding a second similar photo adds very little to the overall

quality of the solution. Using a contextual similarity function

improves performance slightly, as seen by the performance of

Greedy-NCS relative to Greedy-NR.
Figures 5b and 5c show similar trends to those in Figure 5a, i.e.,

PHOcus outperforms its competitors and RAND show the worst

performance. However, in several cases (e.g., budget of 250MB

in Figure 5c and budgets of 50MB and 100MB in Figure 5b) the

difference in performance between Greedy-NCS and Greedy-NR
is almost negligible, while in other cases Greedy-NCS strictly

outperforms Greedy-NR.
Recall that Algorithm 1 consists of taking the best out of two

outputs produced by two sub-algorithms. One of these algorithms

is optimal for the case of uniform costs, and takes costs into

account only for the stopping condition. However in our experi-

ments, the other subalgorithm (which explicitly accounts for the

weights) was superior in roughly 90% of the cases. This validates

600

Budget: 4MB

Predefined subsets:
{“(15) black shirt”: {

},
“(9) sports shirt”: {...},
“(5) black buttoned shirt”: {...},
“(4) women’s shirt”: {...},
“(3) black adidas shirt”: {...},
“(1) black dress shirt”: {...}}

Execution of
System

Retained photos:

Figure 6: Example of execution of PHOcus during the user study on subset of products in the Fashion domain.

our claim that algorithms without explicit costs are not suited

for our problem.

Comparison to the optimal algorithm. Figure 5d compares

PHOcus and the brute-force algorithm over a small subset of

the P-1K dataset that contains only 100 photos, as the brute-

force algorithm could not run over larger inputs in a reasonable

amount of time. Naturally, there is some loss in quality compared

to the (non-practical) exhaustive search. However, the loss is

always less than 15% (and in some cases even less then 10%).

The brute-force results over small subsets of other EC datasets

showed roughly the same trends, and are omitted.

Effects of sparcification. Finally, we studied the effects of

the proposed sparcification approach, which reduces the amount

of pairwise similarity computations needed. The relevant experi-

ments involved testing a wide range of budget values (including

a budget sufficient to cover all the predifined subsets). Concretely,

we compare PHOcus and PHOcus-NS (a modification of PHOcus

that does not apply the sparcification) algorithms both in terms

of the solution quality and the required running time.

Figure 5e shows the solution quality of PHOcus and PHOcus-

NS over the P-5K dataset with varying budgets. The results show

that, in practice, sparcification has a very small effect in terms of

quality (decrease of at most 5%), which is even far better the the

non-tight worst-case theoretical bounds provided in Section 4.

Figure 5f shows the running time of the PHOcus and PHOcus-

NS over the same dataset and the same budget values as in Figure

5e. The results show that, while the decrease in solution was

almost negligible, sparcification significantly reduces the running

time (from hours to tens of minutes).

Budget scenarios in practice. As can be seen in Figures 5a-

5c, the difference in quality decreases as the budget gets closer to

the cost of the full dataset. However, in the real-life e-commerce

scenarios that we worked with, the ratio of the budget to the

cost of the full dataset is much smaller, and corresponds to the

range where our algorithm is shown to have the largest quality

advantage in these figures. In particular, the budget for images on

landing pages in the Electronics domain was 2MB, due to a hard

limit of 100ms for loading all media on the web-page. These 2MB

(roughly 25 images) had to be selected out of 640 photos (roughly

50MB), i.e the budget was about 4% of the total dataset. With

these inputs, PHOcus achieved the best results (35% of the total

quality), while the closest competitors (Greedy-NCS and Greedy-
NR) reached only 18% and 16% of the total quality, respectively.

This showcases the practical importance of an efficient solution

for small budgets.

5.4 User Study
We were fortunate to have access to business analysts who work

for XYZ and face a problem that our proposed solution addresses,

hence we were able to perform a user study for a real application

using real data.

The user study consists of two parts. In the first (where we

consider only the PHOcus algorithm as it shows the best perfor-

mance compared to other baselines), we compare our solution

to the manual work of domain experts, both in terms of solution

quality and time invested. In the second, we evaluate our quality

function by using domain experts to generate the gold standard,

which is then used to compare different baselines. Since the ex-

perts cannot manually examine large datasets (otherwise our

solution would not be required), we asked them to repeat the

experiment 50 times on small subsets of roughly 100 photos.

Before delving into technical details of the user study, it is

important to mention that our industry collaborators helped us

to design the study. Specifically, they chose domains that had

the highest business value in a particular period of time and

decided how many experts would work with us and the size of

the provided datasets.

Setup. The user study involved 3 in-house business analysts

from XYZ, each of whom is an expert in one of 3 domains - Fash-

ion, Electronics and Home & Garden. The use case was the task

601

that the analysts perform in their daily job - generating land-

ing pages – which requires a lot of manual effort and takes a

lot of time. Based on the popular queries that are trending in

a given period of time, the goal is to generate a landing page

that contains a list of links to offers (products) that are relevant

to the query. In order to make the page more attractive to po-

tential buyers, the analyst carefully designs the page and adds

photo(s) of relevant product(s). These photos are typically stored

in a high-speed memory (cache) so they can be loaded quickly,

hence improving the browsing experience. The analyst manually

decides on a set of photos that will represent the landing pages

given a list of search queries and a budget constraint (which is

either the available memory or the number of allowed photos).

In many cases the predefined subsets (products of the landing

pages) intersect, hence some of the photos can be stored once

and used multiple times for different landing pages. Finding such

photos for as many landing pages as possible is desirable, and

finding other similar photos that could be removed is a challeng-

ing task. In this study we compare a manual execution of this

task as performed by an analyst to an execution of PHOcus with

final touches and approval by the analyst (semi-automatic).

Example 5.2. Consider the small example shown in Figure 6.

It contains 6 queries that yield 6 predefined subsets, each with

10 product photos (due to space constraints we show the actual

photos only for the first predefined subset). Next to each query we

show its importance
2
. Assume that all photos have roughly the

same size of 1MB and that the budget is 4MB, hence only 4 images

can be retained. Next to each query we indicate its importance

(derived from the frequency). Even in this tiny example, the

analyst needs to browse through up-to 60 different photos to find

the best photos to retain, which is time consuming. However,

using PHOcus, the result on the right is quickly returned. Note

that the 4 retained photos (an Adidas shirt, a women’s t-shirt,

a button-up dress shirt, and a polo shirt) are all included in the

first (and most important) predefined subset. The retained photos

also provide good coverage of the rest of the predefined subsets:

The Adidas shirt is also included in the sports shirt and Adidas

shirt predefined subsets; the women’s t-shirt covers the black

women’s shirt predefined subset; the button-up dress shirt cover

both the buttoned shirt and dress shirt predefined subsets. Finally,

polo shirt was the last that was chosen by PHOcus to retain since

it has the maximum marginal gain. This set of 4 photos is the

optimal solution that ensures that each of the landing pages

corresponding to the predefined subsets has at least one relevant

photo.

Results. In the first part of the study we measured the perfor-

mance of our system compared to the manual solution produced

by the analysts both in terms of the quality of the solution and

the time that it took.

Figure 5g depicts the quality achieved by both methods over

the three domains. We observe that PHOcus achieves a quality

that is 15-25% higher than the quality of the manual solution,

and that as a result the analysts gained unexpected insights in

terms of which photos to retain.

Figure 5h depicts the time it took for both methods over the

three domains, using a log scale. The time that it took for the

manual effort was anywhere from 6 hours (in the best cases) to

14 hours (in the worst case), compared to 10 minutes of running

2
While the provided list of queries is a subset of real-world set of queries, we do

not provide their real frequency values due to its sensitivity. Hence, the provided

importance values are for the demonstration proposes only.

time by PHOcus. These results show the applicability and benefit

of our proposed solution in various real-life scenarios.

In the second part of the study, we asked the experts to perform

50 iterations, and in each iteration to compare the solutions

generated by the two best performing methods - Greedy-NCS
and PHOcus, on a set of roughly 100 photos (larger sets are

harder for manual inspection). The experts then chose the best

solution or clicked the “cannot decide” button if the solutions

were similar. We then calculated how many times each of the

solutions was selected as the best. For the Fashion domain, the

solution generated by PHOcus was selected 35 times,Greedy-NCS
was selected 3 times, and “cannot decide” was selected 12 times

(meaning that the results were similar). For the Electronics and

Home & Garden domains the results were simiar (37, 4, 9 and 34,

5, 11 respectively). These results prove that the utility function

that we use for our evaluation is good.

6 CONCLUSIONS
To address the “data deluge" [34] that is facing many organiza-

tions, in particular those in e-commerce, we focus on the im-

portant special case of image data. We formalize the problem of

deciding what images to archive to meet an online storage budget

as the Photo Archive Reduction (PAR) problem, and show that it is

NP-hard to approximate above a (1−1/𝑒) factor. Nevertheless, we
show that there is a highly scalable algorithm with a (1 − 1/𝑒)/2
approximation guarantee along with data-dependent guarantees

that in practice far exceed this a priori bound. To further optimize

the running time of our algorithm we also develop sparsification

techniques which significantly improve the running time while

incurring a negligible error in solution quality. Extensive experi-

ments based on eight different (public and private) datasets show

that our algorithm is not only efficient but yields high quality

results.

We also show the practical effectiveness of our approach, as

implemented in PHOcus. In particular, we show how the inputs

to PAR can be automatically obtained for a variety of different

applications, thus removing a barrier to its use.We also performed

a user study of PHOcus within the XYZ e-commerce company,

using expert XYZ analysts and mimicking what they were doing

on a regular basis. The results show that PHOcus dramatically

reduced the time it takes to arrive at a solution, and resulted

in better quality solutions. The experts also gained unexpected

insights in terms of which photos to retain. Finally, we give

concrete examples of datasets and budgets in the e-commerce

domain to emphasize the practical importance of our approach,

and discuss how our quality metrics were validated using a gold

standard based on the domain experts.

In future work, we plan to consider which photos to compress

(i.e., to sacrifice quality to gain space) rather than to remove.

While we believe that our model can already capture this problem,

it would be interesting to see how it performs practically.

Finally, although in this paper we present data disposal in

the context of photos, the general problem shares many of the

same characteristics. Hence, we also plan to expand the model to

include other forms of structured and unstructured data, as well

as processes, and consider techniques that not only archive data

but provide effective abstractions of the data given their intended

use.

602

REFERENCES
[1] Surabhi Adhikari et al. Nlp basedmachine learning approaches for text summa-

rization. In 2020 Fourth International Conference on Computing Methodologies
and Communication (ICCMC), pages 535–538. IEEE, 2020.

[2] Mohiuddin Ahmed. Intelligent big data summarization for rare anomaly

detection. IEEE Access, 7:68669–68677, 2019.
[3] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth D

Trippe, Juan B Gutierrez, and Krys Kochut. Text summarization techniques: a

brief survey. arXiv preprint arXiv:1707.02268, 2017.
[4] Daisuke Aritomo, Chiemi Watanabe, Masaki Matsubara, and Atsuyuki Mor-

ishima. A privacy-preserving similarity search scheme over encrypted word

embeddings. In Proceedings of the 21st International Conference on Information
Integration and Web-based Applications & Services, pages 403–412, 2019.

[5] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and

Andreas Krause. Streaming submodular maximization: Massive data sum-

marization on the fly. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 671–680, 2014.

[6] Moses S Charikar. Similarity estimation techniques from rounding algorithms.

In Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pages 380–388, 2002.

[7] Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The uncapici-

tated facility location problem. Technical report, Cornell University Opera-

tions Research and Industrial Engineering, 1983.

[8] Arnon Dagan, Ido Guy, and Slava Novgorodov. An image is worth a thousand

terms? analysis of visual e-commerce search. In SIGIR, 2021.
[9] Dataage 2025 - the digitization of the world, seagate us.

http://www.seagate.com/our-story/data-age-2025.

[10] Susan BDavidson, Shay Gershtein, TovaMilo, and Slava Novgorodov. Disposal

by design. IEEE Data Eng. Bull., 45(1), 2022.
[11] Susan B. Davidson, Shay Gershtein, Tova Milo, Slava Novgorodov, and May

Shoshan. Phocus: Efficiently archiving photos. Proc. VLDB Endow., 15(12):3630–
3633, 2022.

[12] Qianqian Fan, David J Lilja, and Sachin S Sapatnekar. Adaptive-length cod-

ing of image data for low-cost approximate storage. IEEE Transactions on
Computers, 69(2):239–252, 2019.

[13] Luyue Fang, Xiaoqiang Di, Xu Liu, Yiping Qin, Weiwu Ren, and Qiang Ding.

Quicklogs: A quick log parsing algorithm based on template similarity. In 2021
IEEE 20th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom), pages 1085–1092, 2021.

[14] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the
ACM (JACM), 45(4):634–652, 1998.

[15] General Data Protection Regulation (GDPR).

https://en.wikipedia.org/wiki/General_Data _Protection_Regulation.

[16] Shay Gershtein, Tova Milo, and Slava Novgorodov. Inventory reduction via

maximal coverage in e-commerce. In EDBT, pages 522–533, 2020.
[17] Himanshu Gupta and Inderpal SinghMumick. Selection of views tomaterialize

in a data warehouse. IEEE Transactions on Knowledge and Data Engineering,
17(1):24–43, 2005.

[18] Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. Implementing

data cubes efficiently. Acm Sigmod Record, 25(2):205–216, 1996.
[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[20] How Many Images Are On The Internet 2021. https://www.16best.net/how-

many-images-are-on-the-internet/.

[21] Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and Santosh Vempala.

Locality-preserving hashing in multidimensional spaces. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 618–625,
1997.

[22] Howard Karloff and Milena Mihail. On the complexity of the view-selection

problem. In Proceedings of the eighteenth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 167–173, 1999.

[23] Martin L Kersten. Big data space fungus. In CIDR, 2015.
[24] Martin L Kersten and Lefteris Sidirourgos. A database system with amnesia.

In CIDR, 2017.
[25] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum

coverage problem. Information processing letters, 70(1):39–45, 1999.
[26] Kun Ho Kim, Oisin Mac Aodha, and Pietro Perona. Context embedding

networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8679–8687, 2018.

[27] Yannis Kotidis and Nick Roussopoulos. A case for dynamic view management.

ACM Transactions on Database Systems (TODS), 26(4):388–423, 2001.
[28] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin,

Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Alexander

Kolesnikov, et al. The open images dataset v4. International Journal of Com-
puter Vision, 128(7):1956–1981, 2020.

[29] Young-Man Kwon, Jae-Ju An, Myung-Jae Lim, Seongsoo Cho, and Won-Mo

Gal. Malware classification using simhash encoding and pca (mcsp). Symmetry,
12(5):830, 2020.

[30] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne

VanBriesen, and Natalie Glance. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 420–429, 2007.

[31] Haoran Li, Peng Yuan, Song Xu, YouzhengWu, Xiaodong He, and Bowen Zhou.

Aspect-aware multimodal summarization for chinese e-commerce products.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,

pages 8188–8195, 2020.

[32] Erik Lindgren, Shanshan Wu, and Alexandros G Dimakis. Leveraging sparsity

for efficient submodular data summarization. Advances in Neural Information
Processing Systems, 29, 2016.

[33] David G Lowe. Distinctive image features from scale-invariant keypoints.

International journal of computer vision, 60(2):91–110, 2004.
[34] Tova Milo. Getting rid of data. ACM J. Data Inf. Qual., 12(1):1:1–1:7, 2020.
[35] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. Fast

constrained submodular maximization: Personalized data summarization. In

International Conference on Machine Learning, pages 1358–1367. PMLR, 2016.

[36] Hoshi Mistry, Prasan Roy, S Sudarshan, and Krithi Ramamritham. Materi-

alized view selection and maintenance using multi-query optimization. In

Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, pages 307–318, 2001.

[37] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis

of approximations for maximizing submodular set functions—i. Mathematical
programming, 14(1):265–294, 1978.

[38] Hieu V Nguyen and Li Bai. Cosine similarity metric learning for face ver-

ification. In Asian conference on computer vision, pages 709–720. Springer,
2010.

[39] Slava Novgorodov, Ido Guy, Guy Elad, and Kira Radinsky. Generating product

descriptions from user reviews. In The World Wide Web Conference, pages
1354–1364, 2019.

[40] Qun Ren and Margaret H Dunham. Using semantic caching to manage loca-

tion dependent data in mobile computing. In Proceedings of the 6th annual
international conference on Mobile computing and networking, pages 210–221,
2000.

[41] Qun Ren, Margaret H Dunham, and Vijay Kumar. Semantic caching and query

processing. IEEE transactions on knowledge and data engineering, 15(1):192–210,
2003.

[42] Ian Simon, Noah Snavely, and Steven M Seitz. Scene summarization for online

image collections. In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–8. IEEE, 2007.

[43] Anurag Singh, Lakshay Virmani, and AV Subramanyam. Image corpus rep-

resentative summarization. In 2019 IEEE Fifth International Conference on
Multimedia Big Data (BigMM), pages 21–29. IEEE, 2019.

[44] Pinaki Sinha, Sharad Mehrotra, and Ramesh Jain. Summarization of personal

photologs using multidimensional content and context. In Proceedings of the
1st ACM International Conference on Multimedia Retrieval, pages 1–8, 2011.

[45] Maxim Sviridenko. A note on maximizing a submodular set function subject

to a knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.
[46] Sebastian Tschiatschek, Rishabh K Iyer, HaochenWei, and Jeff A Bilmes. Learn-

ing mixtures of submodular functions for image collection summarization. In

Advances in neural information processing systems, pages 1413–1421, 2014.
[47] Canwen Xu, Zhenzhong Chen, and Chenliang Li. Obj-glove: Scene-based

contextual object embedding. arXiv preprint arXiv:1907.01478, 2019.
[48] Shao YiChuan and Xingjia Yao. Research of real-time data warehouse storage

strategy based on multi-level caches. Physics Procedia, 25:2315–2321, 2012.
[49] Hengyu Zhao, Linuo Xue, Ping Chi, and Jishen Zhao. Approximate image

storage with multi-level cell stt-mram main memory. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages 268–275.
IEEE, 2017.

603

