
WedgeBlock: An Off-Chain Secure Logging Platform for
Blockchain Applications

Abhishek Singh

UC Irvine

abhishas@uci.edu

Yinan Zhou

UC Irvine

yinanz17@uci.edu

Sharad Mehrotra

UC Irvine

sharad@ics.uci.edu

Mohammad Sadoghi

UC Davis

msadoghi@ucdavis.edu

Shantanu Sharma

New Jersey Institute of Technology

shantanu.sharma@njit.edu

Faisal Nawab

UC Irvine

nawabf@uci.edu

ABSTRACT
Over the recent years, there has been a growing interest in

building blockchain-based decentralized applications (DApps).

Developing DApps faces many challenges due to the cost and

high-latency of writing to a blockchain smart contract. We pro-

poseWedgeBlock, a secure data logging infrastructure for DApps.
WedgeBlock’s design reduces the performance and monetary cost

of DAppswith its main technical innovation called lazy-minimum
trust (LMT). LMT combines the following features: (1) off-chain

storage component, (2) it lazily writes digests of data—rather

than all data—on-chain to minimize costs, and (3) it integrates

a trust mechanism to ensure the detection and punishment of

malicious acts by the Offchain Node. Our experiments show that

WedgeBlock is up to 1470× faster and 310× cheaper than a baseline
solution of writing directly on chain.

KEYWORDS
Blockchain, Off-chain systems, secure logging, smart contracts

1 INTRODUCTION
Blockchain-based

1
decentralized applications (DApps) are ap-

plications that operate on blockchain smart contracts. A smart

contract is a program that runs on blockchain where the pro-

gram’s logic, requests, and data are recorded and processed on

chain. The interest in DApps grew over the recent few years

and DApps have amassed hundreds of thousands of users and

hundreds of millions of dollars in assets [3]. DApps span many

areas including decentralized finance, supply-chain, and gaming.

Developing DApps faces many daunting challenges. The first

is in terms of the monetary cost to write to smart contracts. Every

request that is sent to the DApp smart contract incurs a monetary

fee—called gas—that needs to be paid using the corresponding

chain’s cryptocurrency (this amount fluctuates but as of the writ-

ing of this paper, the average fee to process a transaction on

Ethereum is around $2.23 [4].) For this reason, it is discouraged

for DApps to write large amounts of data to smart contracts.

There has been a number of prior works that explored the

problem of performing data logging for DApps [34, 41, 49, 51, 64].

Some of these efforts rely on writing logging data to blockchain

smart contracts directly which leads to high monetary cost and

performance latency overhead [49]. Alternatively, recent work

explored the idea of utilizing an off-chain component to store the

logging data while only storing digests of logs on-chain [34, 51].

1
In this paper, we consider permissionless blockchain technologies such as

Ethereum as they are the ones used predominately for DApps.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

This approach avoids writing raw logs on-chain which reduces

themonetary cost overhead. The log digests written on-chain cost

a fraction of the original cost of writing all data on-chain. At the

same time, these digests allow clients to verify the authenticity

of off-chain data by comparing it with the on-chain digest.

However, these prior approaches suffer from a high latency

overhead that is due to the need to write the digests to the

blockchain smart contract before the data can be used by other

users. This is because before the digest is written to blockchain,

users cannot verify the authenticity of the off-chain data—and

a malicious node may lie to users by responding with different

data logs. The latency overhead is significant as it can be in the

order of a few minutes to hours [44]—part of this overhead is the

time needed to wait for the request to be included in a blockchain

block and the time to wait for the block to be propagated across

the network. In addition to their performance latency drawback,

prior blockchain-based logging approaches [34, 41, 51] target a

single-producer/single-consumer model that limits their use in

DApps that require the ability for many users to interact concur-

rently with the log.

We proposeWedgeBlock, a data logging platform for DApps

that aims to overcome the challenges of existing bockchain-

based logging solutions. Most notably, WedgeBlock overcomes

the high latency overhead by utilizing a concept that we call

Lazy-Minimum Trust (LMT). In LMT, the off-chain node writes

the digest of a log entry 𝐸 lazily (i.e., asynchronously in the

background) on-chain. Before the digest digest(E) is being writ-

ten to the smart contract,WedgeBlock allows the off-chain node

to respond to the user requests for 𝐸. This is possible by inte-

grating a trust-proof and penalty mechanism. Specifically, the

off-chain node when responding with 𝐸 (that is not yet written

on-chain), provides a signed proof to the user that the off-chain

node promises to write it on-chain. If the off-chain node lies and

writes a different entry 𝐸′, then the user can use the received

signed proof from the off-chain node to impose a punishment

on the off-chain node, such as paying a penalty. By setting this

punishment to be severe enough to outweigh the gain of lying,

the off-chain node would not be incentivized to lie.

WedgeBlock’s technical contribution is on the realization of

the concept of LMT for secure DApp logging using the following

three design principles.

The first principle is to utilize Offchain Nodes—machines that

are not part of the blockchain network—to perform computations

and/or storage on behalf of the smart contract [1, 34, 34, 41, 51].

This enables overcoming the performance and monetary cost

overheads of writing on-chain.

The second design principle is minimum writing on-chain. Al-
though logs are written in the off-chain component, WedgeBlock

Series ISSN: 2367-2005 526 10.48786/edbt.2023.45

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.45

needs to retain the trust properties of the blockchain smart con-

tract. For this reason, WedgeBlock writes a digest of each log

entry to blockchain so that clients can verify the authenticity of

a log entry by comparing it with the on-chain digest.

The third design principle is lazy trust. The goal of lazy trust

is to enable a user to trust the response of an off-chain node

even before the digest of its request is written to blockchain.

To this end, the untrusted off-chain node signs its responses to

clients so that clients can prove receiving such response. Then,

if it turns out that the off-chain node lied in its response, the

user can use the signed response from the off-chain node to

invoke a penalty smart contract to punish the Offchain Node. The
assumption we make in the paper is that if the penalty is high

enough to outweigh the benefit of acting maliciously, then this

mechanism will act as a deterrent against malicious acts.

It is worth noting that the first two principles have simi-

lar counterparts in prior work (as described above and as we

overview in Sections 7.1and 7.3.) Although similar, the novelty of

WedgeBlock stems from the combination of the three principles.

Combining the three principles lead to unique design challenges

and performance gains compared to applying the first two prin-

ciples in isolation. In terms of design challenges, the off-chain

design needs to include an initial setup phase for the punishment

and escrow smart contracts as well as a complex payment strat-

egy for the off-chain node’s services. These components are not

necessary for many existing off-chain nodes. As we show in the

design section, applying these additions involves complexities as

they need to be performed carefully to avoid security risks. Also,

the minimality aspect of on-chain interactions now needs to be

extended so that digests are sufficient to prove maliciousness

which makes the punishment and payment smart contracts more

complex.

WedgeBlock can be integrated into DApps in various ways.

In the typical case, we envision that it can be integrated as a

library used in the DApp. We also extend the utilization and

usage model of WedgeBlock to a service model: DApp-logging-as-
a-service. In this model, a node can act as a service provider to

DApps that wish to maintain a DApp log off-chain. To enable

this model, we construct a Payment smart contract as an auto-

matic payment system between the DApp application owner and

the DApp logging service provider. This smart contract enables

potential DApp service providers to easily set up a subscription

based micropayment channel to the logging service provider to

compensate the service provider for its services (i.e., maintaining

the log and responding to requests.) We describe the design and

implementation of DApp-logging-as-a-service in Section 4.5.

In the rest of the paper, we present background information

in Section 2. Then, we present WedgeBlock’s design (Sections 3

and 4) followed by evaluation results (Section 5 and 6). We discuss

related work in Section 7 and conclude in Section 8.

2 BACKGROUND
2.1 Merkle Tree
Merkle trees [39] allow us to prove the integrity of the data stored

by a server. Specifically, they have a mechanism to enable a user

to detect whether a data item has been modified (or reordered)

since it was initially stored. An example of how the Merkle Tree

stores data is shown in Figure 1. The Merkle tree stores data

on the leaves. The non-leaf nodes of the merkle tree store the

concatenated hash values of their child nodes. Each non-leaf

node is also computed using a one-way hash function, thus pre-

venting collision attacks. The order of the data in the Merkle

Figure 1: An example of a Merkle Tree.

Tree is captured by the concatenation process while forming the

intermediate nodes all the way to the root hash at the top of

the tree. Consider node 𝑋1, shown in Figure 1. 𝐻1 is formed by

hashing 𝑋1, and 𝐻2 is formed by hashing 𝑋2.

Merkle Trees provide the property that if any data in the leaf

nodes are changed or reordered, this would result in a completely

different root hash. This enables using Merkle Trees to ensure

that data that is served from an untrusted server is correct. This is

done by returning a merkle proof as part of the server’s response.

As shown in Figure 1, if a client queries for data 𝑋1, the server

responds with the data and nodes shaded in green in the figure.

These nodes constitute the merkle proof. The client can use

the nodes in the merkle proof to compute the merkle root and

validate that the data was not modified in any way by comparing

it with the original merkle root that was computed during the

construction of the Merkle Tree.

2.2 Blockchain and Smart Contracts
Many public blockchains allow the creation of decentralized pro-

grams called Smart Contracts [13, 67]. A Smart Contract consists

of state (e.g., allocated memory and variables) and functions

that can be called to change the Smart Contract state. After be-

ing deployed, a Smart Contract is maintained in the blockchain

network—i.e., the state and code of the Smart Contract is main-

tained as part of the ledger. Functions can be called by an external

user or by a Smart Contract. Being part of the blockchain ledger, a

Smart Contract inherits the tamper-free and immutable nature of

blockchain, i.e., any changes made to the smart contract via func-

tion calls will be publicly recorded on chain. Typically, a Smart

Contract also maintains a balance of cryptocurrency. Another

important functionality of Smart Contracts is emitting events.
Smart contract events can be viewed as a push-based notification

system that transmits information from on-chain smart contracts

to off-chain subscribers.

2.3 Use Cases
We present two example use cases ofWedgeBlock.

For the first use case, consider a decentralized IoT solution

that aims to create a marketplace for IoT data by connecting IoT

publishers with data consumers. This is a growing trend of cre-

ating decentralized marketplaces for data [1, 6, 25, 52, 70], some

of which focus on IoT data [1, 6, 25]. In these applications, the

blockchain application aims to connect IoT data publishers with

consumers. WedgeBlock helps in such applications by providing

an off-chain logging solution that can be used by such applica-

tions to store published IoT data for future access by consumers.

In particular, IoT publishers send their data to WedgeBlock Of-
fchain Nodes instead of directly to the blockchain. The Offchain
Nodes establish the authenticity of the logged data by committing

digests to the blockchain and providing standardized query APIs

for consumers. In many real-life scenarios, the Offchain Node is

527

a third-party service provider that is independent of the publish-

ers and consumers. To support the economical model of such

applications, WedgeBlock includes an optional Payment smart

contract that can be used to manage payments from publishers

to Offchain Nodes.
For the second use case, we look at gaming applications. DApp

games use on-chain smart contracts for storing game items as

Non-Fungible Tokens (NFTs) which can be bought and sold by

players through the game or through online secondary markets.

Transactions on these NFTs must be recorded on-chain to keep

track of ownership globally. The game itself is hosted on off-

chain servers. Due to the high cost of transactions and storage

limitations of the blockchain, game data—including user infor-

mation and game logs—are stored on off-chain servers. Since this

data is stored off-chain, the security of this data is dependent

on secure logging techniques used by application developers.

WedgeBlock provides an interface to ensure that these logs are

stored securely on Offchain Nodes while having the verifiability

that is offered if data were stored on-chain. An important fea-

ture required by DApp gaming applications is correct ordering

of events in the log. If two users performed conflicting game

actions, the ordering of these events (i.e., which one happened

first) is important to maintain.WedgeBlock ensures that the or-

der of events that is committed off-chain will be the same one

committed on-chain.

3 WEDGEBLOCK OVERVIEW
3.1 System Model and Interface
System Components.

• Blockchain and Smart Contracts: A public blockchain is

used to maintain the state of a tamper-proof smart contract.

• Offchain Node: An Offchain Node which provides logging

services. An Offchain Node receives requests to add data to the
log and read data from the log.

• Clients: We use the term client to include all nodes which

use the logging service provided by the Offchain Node.

We assume an asynchronous communication model and that all

exchanged messages are cryptographically signed.

Programming Interface. WedgeBlock provides two main

functions in its interface: (1) Append(in: entry; out: index, proof):
this function appends the input entry to the log and returns

the index of where it is appended. Entries are batched into log

positions. Therefore, the returned index contains information

about both the log position (that contains the batch with the

entry) as well as the location of the entry inside the batch. In

addition to the returned index, the function returns a proof of
the append operation. (2) Read(in: index; out: entry, proof): this
function returns the entry that corresponds to the input index.
Also, it includes a proof of the authenticity of the returned entry.

3.2 Commit Phases
As part of LMT, operations proceed in two phases. The first phase

(called off-chain committed) denotes when the operation has been

received by the off-chain node and a signed response is sent back

to the client. At this stage, the entry digest is not yet committed to

the blockchain smart contract. Therefore, the only proof returned

to the user is a local proof that the Offchain Node has received
the entry and promises to add it to the corresponding index. At

this stage, the Offchain Node might lie. However, we guarantee

that such a lie is going to be detected and a penalty will be

imposed. We assume that with a severe enough penalty, this will

be a deterrent for malicious acts. The second phase (blockchain
committed) denotes when the entry’s digest is committed to the

blockchain smart contract. This means that a proof of being in the

blockchain committed phase cannot be fabricated by the malicious

Offchain Node. Once a user receives such proof (called blockchain
proof), then it is guaranteed to be correct.

Off-chain commitment—before blockchain commitment—

provides a weaker notion to the client. This is because it is still

possible that the response is fabricated and that a malicious off-

chain node would blockchain-commit another entry. However,

any such malicious act (i.e., blockchain-committing an entry dif-

ferent than what is off-chain-committed), will result in the client

being able to both detect and prove the malicious act. Section 4

shows the details of guaranteeing this property.

3.3 Security and Safety models
InWedgeBlock, the Offchain Node and clients are not trusted. This
means that they can act in any malicious/arbitrary way. This is

similar to the byzantine fault-tolerance model [32]. We assume

that all communication between clients and Offchain Nodes is
cryptographically signed. We also assume that the integrity of

the blockchain network is maintained and that malicious nodes

cannot perform attacks to break the immutability and tamper-

proof nature of blockchain.

We define the following safety guarantees for WedgeBlock:

Definition 3.1. Off-chain-commit Safety:Any off-chain com-

mitted response for an index 𝑖 and entry 𝑒 pair (called i-e pair)
from an Offchain Node to a client satisfies the following: Either

(1) the i-e pair will be the same as the one that will eventually be

blockchain committed, otherwise (2) the client (or auditor) can

prove that the Offchain Node lied and blockchain committed an

i-e’ pair where 𝑒 ̸=𝑒′.
If the Offchain Node lied, the proof that the client constructs

can be used by the penalty smart contract—that we present later—

to withdraw an escrow fund deposited by theOffchain Node. Next,
is the safety condition for blockchain-committed operations:

Definition 3.2. Blockchain-committed safety:Any two clients
receiving a blockchain-committed response for an entry with the

same index (client 1 receives an i-e pair and client 2 receives an

i-e’ pair), then it is guaranteed that 𝑒 = 𝑒′.

This safety guarantee means that no two clients can disagree

about the contents of a log position if they receive a blockchain-

committed response.

Security model and attack vectors. we assume a stringent

model for malicious behavior which is the byzantine failure

model [32], where off-chain nodes can act in arbitrary and ma-

licious ways. We adopt this model as it is a standard model in

distributed systems with potentially malicious nodes and utilize

it when we discuss the correctness (safety) of the system in Sec-

tion 4.6 and liveness in Section 4.7. Choosing such a stringent

model makes various attack vectors be treated within it—since

the byzantine failure model allows arbitrary behavior.We provide

examples of this in Sections 4.6 and 4.7.

Punishments. WedgeBlock utilizes the concept of decentral-

ized punishments as a deterrent to malicious activity. An impor-

tant aspect of introducing a punishment mechanism in DApps, is

that they need to be decentralized punishment mechanisms. Hav-

ing a central authority to enforce punishments would contradict

the goal of building a DApp. To this end, WedgeBlock relies on

enforcing punishments using smart contracts on blockchain. A

node or client that observes a malicious act invokes the punish-

ment smart contract with proof of the malicious act. The smart

528

contract imposes a penalty—if the proof is correct—by withdraw-

ing from an escrow fund of the malicious node. This requires

an initial setup step where the participating nodes setup pun-

ishment smart contracts with escrow funds. This mechanism

enables a punishment strategy without having to introduce cen-

tral points of authority. In Section 4.4, we provide more details

of the punishment smart contract.

The punishment model that is followed in WedgeBlock is

an all-or-nothing (AoN) punishment strategy. In AoN punish-

ments, once a single malicious act is detected, the full punishment

amount is invoked, and the contract with the off-chain node is

terminated. Because we adopt a lazy detection model—where the

time to detection might allow for many malicious acts to be done

before the first detection—the configuration of punishment and

deposit would be proportional to the window of time where the

malicious acts may happen. In WedgeBlock Logging-as-a-Service

model, our periodic payment mechanism also acts as a bound

on how much time a malicious act can go undetected. The AoN

strategy is different than prior punishment mechanisms—such

as some layer 2 and Proof-of-Stake algorithms—that rely on 1-

to-1 punishment where a punishment corresponds to a single

malicious act.

3.4 Design Overview
We now present an overview of the design ofWedgeBlock (the de-
tailed design is in Section 4.) The core architecture ofWedgeBlock
utilizes off-chain components [8, 15, 23, 40, 68]. In this architec-

ture, the on-chain component represents a blockchain network

that processes smart contracts and blockchain transactions. Of-
fchain Nodes extends the operation of on-chain components by

performing compute and/or storage functions.

In WedgeBlock, the Offchain Node aims to provide data and

log storage for clients. Clients send data and log operations to

Offchain Node and can later access it using read operations. The

goal of WedgeBlock is to provide the following properties: (1)

fast ingestion of data: this aims to overcome the high latency

of writing directly on-chain. (2) minimum writing: this aims to

reduce the monetary cost of utilizing blockchain by minimizing

the amount of data written on chain. Here, we use the term mini-
mumwriting to refer to only needing to write a digest of arbitrary
size data on-chain. As we show in the design, the designer can

control the batch size inWedgeBlock which leads to controlling

the ratio between the size of the digest written on-chain and

that data represented by the digest off-chain. Digests are small in

size and the batches they represent can be made large to reduce

the ratio between the size of on-chain digests and off-chain raw

data. (3) trust: this aims to enable utilizing untrusted Offchain
Nodes to achieve the aforementioned goals while ensuring data

integrity, hence the data is not tampered with and the safety

conditions—defined in Definitions 3.1 and 3.2—are satisfied.

WedgeBlock achieves all the aforementioned properties via

lazy-minimum trust (LMT), where the Offchain Node performs

operations locally and provides a proof of the local operation and

a promise that a digest of the local operation will be committed

to the blockchain smart contract. The purpose of committing

the digest to blockchain is to ensure that all clients will agree

on the blockchain-committed data. If the Offchain Node does not
commit the digest of the data to blockchain, then a client can

trigger a punishment smart contract using the proof received

from the Offchain Node that will draw funds from the Offchain
Node’s escrow account.

As part of initialization, the Offchain Node deploys three smart

contracts on-chain.

• Root Record smart contract: This contract is used to store the

digests of the log entries. Each log position can have at most

one digest associated with it.

• Punishment smart contract: The Offchain Node deposits to this

contract funds that are withdrawn if a client provides a proof

of a malicious act.

• Payment smart contract: If a DApp-logging-as-a-service model

is deployed, the Payment contract is used to manage payments

to the Offchain Node.

Processing an operation inWedgeBlock proceeds in two phases

that correspond to the two commit phases—off-chain commit-

ment and blockchain commitment. In the first phase, the entry

is written locally and a proof is sent back to the client. In the

second phase, the Offchain Node writes a digest of the entry to

the Root smart contract.

Example. consider writing a log entry, 𝑒 , in log position and

index 𝑖 . In phase 1, theOffchain Nodewrites 𝑒 locally and responds
with a proof to the client. This proof is a signed message that

includes the log position and digest of 𝑒 . Then, the Offchain Node
sends a request to write the digest of 𝑒 to the blockchain smart

contract in the 𝑖𝑡ℎ position of a data structure that is maintained

by the Root Record smart contract. This write operation can be

only performed once for any log position. Therefore, after the

digest of 𝑒 (or the batch containing 𝑒 if batching is performed)

is written to the 𝑖𝑡ℎ position in the Root Record smart contract,

all clients will agree that 𝑒 is the only blockchain-committed

entry in position 𝑖 . If the Offchain Node acted maliciously and

blockchain-committed another entry, 𝑒′, to log position 𝑖 , then

the client can trigger a punishment. This is done by sending the

signed proof to a punishment smart contract that matches the

proof with the log position in the Root Record contract.

4 WEDGEBLOCK DETAILED DESIGN
4.1 Data Model
An append-only log is maintained by the Offchain Node to store

data. To optimize performance and consolidate operations, the

Offchain Nodeprocesses received append requests in batches.

Each log position contains the following fields:

(1) Log ID: A monotonically increasing number that uniquely

identifies the log position.

(2) Data List: Batch of data objects appended by clients.

(3) Merkle Root (MRoot): The merkle root corresponds to the

Merkle Tree that is constructed using the Data List.

The append request (𝐴) is defined as 𝐴 = (𝑆𝑝 , [𝑛,𝑋]), where

[𝑛,𝑋] represents the payload of the appended data; 𝑋 is a data

object and 𝑛 is a client-side monotonically increasing sequence

number. The sequence number 𝑛 allows a future reader to specify

which data object to read based on the sequence number. 𝑆𝑝 is

the signature of the client using the tuple [𝑛,𝑋].

Once the Offchain Node receives the append request, it gener-

ates a stage 1 proof of the log entry comprising of the correspond-

ingmerkle root and the Log ID (denoted as 𝑅𝑇𝑖 and 𝑖 , respectively).

Specifically, a response from the Offchain Node contains the fol-
lowing tuple (𝑅): 𝑅 = (𝑆𝑒 , [𝑋, 𝑃

𝑋
𝑖
, 𝑖]), where 𝑆𝑒 is the signature of

the Offchain Node on the tuple [𝑋, 𝑃𝑋
𝑖
, 𝑖]; 𝑃𝑋

𝑖
is the Stage 1 proof

associated with the data object 𝑋 ; and, 𝑖 is the index where data

object 𝑋 is stored. The client can use the Stage 1 proof and index

529

Figure 2: WedgeBlock system model and operation flow.
to later verify that the proof matches the digest (MRoot) that is

committed to the Root Record contract for index 𝑖 .

The merkle root 𝑅𝑇𝑖 and the index 𝑖 act as a proof of the

integrity of the data in index 𝑖 and is committed to the blockchain

as a stage 2 commit request. The stage 2 commitment record is

the tuple 𝑉 : 𝑉 = (𝑖, 𝑅𝑇𝑖), where the tuple 𝑉 is committed to the

Root Record contract during Stage 2 commitment. A client can

query the Root Record contract deployed at the blockchain and

verify that the merkle root stored at the blockchain for index 𝑖

matches the one received as the Stage 1 proof.

4.2 Client Protocols
A Client can perform operations based on three roles. As a Pub-

lisher, it sends append operations to the Offchain Node. As a User,
it sends read operations to the Offchain Node. As an Auditor, it

sends audit operations, which is a special form of read operations.

Publisher Append Requests. When the publisher wants to

append a list of entries, it first transforms the list into append
requests (𝐴s) and assigns each operation 𝐴 a unique sequence

number 𝑛 and signs each individual tuple. Then, it sends the list

of append requests to the Offchain Node to be committed. When

the Offchain Node responds with a list of responses (𝑅s as defined

in the Data Model), the publisher verifies each 𝑅 to ensure its

proof and signature are valid. If the publisher receives a valid 𝑅

for every 𝐴, the stage 1 commitment is complete. This procedure

is demonstrated in Figure 2 as link #1.

After the first stage, the publisher verifies if the reconstructed

merkle root 𝑅𝑇𝑖 is consistent with the recorded value in the Root

Record contract, shown in Figure 2 as Link #4. Depending on the

verification result, the publisher takes one of two actions to com-

plete the second stage of the write request. If the reconstructed

root matches the recorded value in the Root Record contract, the

request is considered blockchain committed. In the case of any

inconsistencies, the publisher invokes the Punishment contract

with the conflicting 𝑅 to claim a compensation from the escrow

fund. These actions are shown in Figure 2 as Link #5.

Read Requests. The client can issue a read request of a group

of indices together in one operation to the Offchain Node. The
response from the Offchain Node has an identical format to the

response for append requests: a list of responses 𝑅s as defined in

the data model section. Figure 2 Link #6 represents this action.

The client can then verify that the read items are blockchain-

committed by verifying with the Root Record contract.

The Auditor can audit a range of log entries. The auditor sends

a signed message specifying the log positions to be audited to the

Offchain Node. It gets back a response 𝑅 for every entry stored at

the specified log positions. Using these 𝑅s, the auditor examines

if the requested log has been properly maintained by the Of-
fchain Node. If the auditor detects any discrepancies between the

Offchain Node and the Root Record contract—either an invalid

merkle tree or a conflicting merkle root—it provides the found

evidence to the Punishment contract.

4.3 Offchain Node Protocols
Append Requests. All append requests (𝐴) from different pub-

lishers are processed in batches. When a publisher sends an

append request 𝐴 (link #1 in Figure 2), the request is buffered

as part of a special staging batch called the current batch. Once
batching is complete, the process of commitment begins. Append

requests are processed in two stages as the following.

In stage 1, the new log entry is created for the current batch
with a new Log ID 𝑖 . The batch of requests is added to the Data
List portion of the log entry. The list of requests is then hashed

and used to construct a Merkle Tree. Once all the requests have

been added to the Merkle Tree, the merkle root 𝑅𝑇𝑖 is formed

for log entry 𝑖 . The log entry is then persisted to local storage

(link #2 in Figure 2). Then, the Offchain Node responds to the

clients with the tuple 𝑅 for each append request 𝐴 processed in

the batch. This is done by computing the Merkle Proof (similar

to the example in Figure 1) for each data object 𝑋 in the Data
List. This completes the two-way communication shown as link

#1 in Figure 2. This completes stage 1 commitment (i.e., off-chain

commitment).

For state 1 commitment, the client only needs to ensure that its

operations are recorded correctly in the batch that corresponds

to 𝑅𝑇𝑖 . This is done by checking the Merkle Proof of the client’s

operation (that contains the leaf node with the operation and the

path to the Merkle root.) The client does not need to verify the

other operations in the batch. These other operations are either

(1) correct and will be validated by their clients, (2) incorrect

and will be detected by the clients issuing them, or (3) arbitrary

(garbage) data added by the Offchain Node that does not corre-
spond to client requests. In the case of arbitrary data, these will

not impact non-malicious clients since this is data that is not

issued or signed by clients and thus will not be read or used.

Offchain Nodes are not incentivized to include such garbage data

as it will increase their costs without being compensated for it.

After off-chain-commit, the stage 2 commitment (i.e., blockchain-

commitment) process begins. In stage 2 commitment, theOffchain
Node takes the Log ID 𝑖 and the merkle root 𝑅𝑇𝑖 to form a tuple

(𝑖, 𝑅𝑇𝑖). This tuple is sent to the Root Record contract to be writ-

ten in the ledger. The process is performed as a smart contract

transaction. Once the transaction is committed to the blockchain,

stage 2 commitment is complete (link #3 in Figure 2).

Read Requests. There are two types of read requests: The

first type is a simple lookup of one or more data objects. For each

data object in the request, the Offchain Node creates a response
tuple 𝑅 and adds it to the final response message. The second

form of the read request is a scan of the log sent by an Auditor.

The Offchain Node forms a response tuple 𝑅 for each data object

in the requested range and sends it back to the auditor.

4.4 Smart Contract Design
Root Record Smart Contract. The Root Record smart con-

tract serves as an on-chain data store. It has three variables

and two methods. The first variable 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 is ini-

tialized to a specific Ethereum address—that corresponds to the

address of the Offchain Node—and is immutable. The second vari-

able 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝 is a hash table that maps log entry digests (i.e.,

530

MRoots) each to its corresponding unique log position. The third

variable 𝑡𝑎𝑖𝑙_𝑖𝑑𝑥 , initialized to 0, is used to keep track of the most

recently updated log index.

The first method 𝑈𝑝𝑑𝑎𝑡𝑒 − 𝑅𝑒𝑐𝑜𝑟𝑑𝑠 , shown in Algorithm 1, is

triggered when the Offchain Node sends a request to add a new

digest (MRoot) or group of digests. It modifies the 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝

by adding a list of received MRoots and their corresponding log

position into the 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝 . Line 1 restricts the method to be

only callable by the predefined 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . Line 4 checks

to ensure that the input 𝑠𝑡𝑎𝑟𝑡_𝑖𝑑𝑥 matches the state variable

𝑡𝑎𝑖𝑙_𝑖𝑑𝑥 . This is to ensure MRoots are written on-chain sequen-

tially according to the monotonically increasing log indexes. If

both checks are passed, the 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝 and 𝑡𝑎𝑖𝑙_𝑖𝑑𝑥 are updated

accordingly, as shown in the rest of the algorithm.

The second method𝐺𝑒𝑡 −𝑅𝑜𝑜𝑡 −𝐴𝑡 − 𝐼𝑛𝑑𝑒𝑥 is a simple getter

function for 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝 . It takes an arbitrary key and returns

the mapped MRoot value in 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝 .

Algorithm 1: The Update-Records Function in the Root

Record Contract

Context: This method is invoked by a Ethereum Transaction

𝑇𝑥𝑛.

Input: A list [𝑟𝑜𝑜𝑡𝑖], 𝑖 = 0, 1, · · · , 𝑛, where each 𝑟𝑜𝑜𝑡𝑖 is a
sequence of bytes.

A starting index 𝑠𝑡𝑎𝑟𝑡_𝑖𝑑𝑥 .

Output: None
1 if 𝑇𝑥𝑛.𝑠𝑒𝑛𝑑𝑒𝑟 ̸= 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 then
2 Method call fails. Returns.

3 end
4 if 𝑠𝑡𝑎𝑟𝑡_𝑖𝑑𝑥 ̸= 𝑡𝑎𝑖𝑙_𝑖𝑑𝑥 then
5 Method call fails. Returns.

6 end
7 for 𝑖 ← 0; 𝑖 < 𝑛; 𝑖 ← 𝑖 + 1 do
8 𝑟𝑒𝑐𝑜𝑟𝑑_𝑚𝑎𝑝[𝑠𝑡𝑎𝑟𝑡_𝑖𝑑𝑥 + 𝑖]← 𝑟𝑜𝑜𝑡𝑖

9 end
10 𝑡𝑎𝑖𝑙_𝑖𝑑𝑥 ← 𝑠𝑡𝑎𝑟𝑡_𝑖𝑑𝑥 + 𝑛

11 // Method call succeeds. Smart contract state changes.

Punishment Smart Contract. A response 𝑅 can be incorrect

in two ways: first, its merkle root can be different from what was

actually stored in the Offchain Node’s log. Second, the merkle

proof can produce a different merkle root than what is provided.

When either one of the two cases occurs, the receiving end can

provide the evidence to the Punishment contract to financially

punish the Offchain Node.
When the smart contract is deployed, it is initialized with the

address of the Client node 𝑐𝑙𝑖𝑒𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 and the address of the

Root Record smart contract 𝑟𝑜𝑜𝑡𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 . These addresses are

immutable after initialization. The Offchain Node deposits ether
into the smart contract as an escrow for future punishment. If

no punishment occurs throughout the Offchain Node’s service,
the Offchain Node will be refunded the full escrow deposit after

the smart contract’s termination. Otherwise, the deposit will be

transferred to 𝑐𝑙𝑖𝑒𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 as compensation.

The punishment smart contract’s core logic is in the 𝐼𝑛𝑣𝑜𝑘𝑒 −
𝑃𝑢𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 method (Algorithm 2). The input parameters for this

method correspond to the components of an 𝑅 response. The

method’s logic flow is similar to how the Client node verifies 𝑅

locally, verifying that the merkle root matches the corresponding

root in the Root Record contract and verifying that the merkle

proof is authentic by verifying that it corresponds to the request’s

merkle root. When an inconsistency is identified in the input

arguments, the smart contract balance is sent to 𝑐𝑙𝑖𝑒𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠

as Shown in Lines 7 and 11.

Algorithm 2: Invoke-Punishment

Input: An integer 𝑖𝑛𝑑𝑒𝑥

A byte string𝑚𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡

A list of byte strings𝑚𝑒𝑟𝑘𝑙𝑒𝑃𝑟𝑜𝑜 𝑓

A string 𝑟𝑎𝑤𝐷𝑎𝑡𝑎

A bytes string 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

Output: None
1 𝑚𝑠𝑔𝐻𝑎𝑠ℎ ← ℎ𝑎𝑠ℎ(𝑖𝑛𝑑𝑒𝑥,𝑚𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡,

𝑚𝑒𝑟𝑘𝑙𝑒𝑃𝑟𝑜𝑜 𝑓 , 𝑟𝑎𝑤𝐷𝑎𝑡𝑎)

2 if 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑆𝑖𝑔𝑛𝑒𝑟 (𝑚𝑠𝑔𝐻𝑎𝑠ℎ, 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒) ̸=Offchain_Address
then

3 Punishment fails. Signature is not from the Offchain Node.
Returns.

4 end
5 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑𝑅𝑜𝑜𝑡 ← 𝑟𝑜𝑜𝑡𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑔𝑒𝑡𝑅𝑜𝑜𝑡𝐴𝑡𝐼𝑛𝑑𝑒𝑥 (𝑖𝑛𝑑𝑒𝑥)

6 if 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑𝑅𝑜𝑜𝑡 ̸=𝑚𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 then
/* Punishment succeeds. */

7 𝑐𝑙𝑖𝑒𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠.𝑐𝑎𝑙𝑙 {𝑣𝑎𝑙𝑢𝑒 : 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 }
8 end
9 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝑅𝑜𝑜𝑡 ← reconstruct root using𝑚𝑒𝑟𝑘𝑙𝑒𝑃𝑟𝑜𝑜 𝑓

and 𝑟𝑎𝑤𝐷𝑎𝑡𝑎

10 if 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑𝑅𝑜𝑜𝑡 ̸=𝑚𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 then
/* Punishment succeeds. */

11 𝑐𝑙𝑖𝑒𝑛𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠.𝑐𝑎𝑙𝑙 {𝑣𝑎𝑙𝑢𝑒 : 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 }
12 end

4.5 DApp-Logging-as-a-Service Model
We present the payment model and implementation of the Pay-

ment smart contract to enable a DApp-logging-as-a-servicemodel.

In this model, an Offchain Node processes the requests in ex-

change for monetary compensation. The Payment smart contract

generates, manages, and settles all the micro-payments needed

to be made from the Publisher Client to the Offchain Node.
Although blockchain networks like Ethereum allow two par-

ties to make direct payment transactions without needing to do

it through a smart contract, such payments are limited in fre-

quency and size due to the high overhead of transaction fees and

confirmation delay. Using smart contracts as a medium, existing

works on micro-payment channels [20, 21] are able to overcome

such limitations. However, micro-payment channels assume the

payments to be discrete and require the payer to actively take

actions, such as revealing the pre-image of a hashed value to the

payee, to unlock the next payment. This assumption do not fit

with WedgeBlock because WedgeBlock needs a micro-payment

system that resembles the subscription model where payments

are automatically generated continuously until the payer decides

to terminate. Therefore, we took a different approach in our

payment contract design.

The Payment smart contract maintains the configuration of the

subscription payment such as payment frequency and amount.

More importantly, the Payment smart contract can acquire times-

tamps on method invocations from the Ethereum network by

reading the blocks’ timestamps. These timestamps are used to

calculate how much time has elapsed between two method calls.

With such information, the Payment smart contract can easily

derive the most updated deposit distribution across all involved

parties at any given time. When any party attempts to withdraw,

the Payment contract guarantees to prevent overdraws. In the

remainder of this section, we will explain the relevant variables

and methods that enable the Payment contract to achieve this.

The Payment smart contract, at the time of deployment, is ini-

tialized with the following variables: 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 ,

𝑐𝑙𝑖𝑒𝑛𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 , 𝑝𝑒𝑟𝑖𝑜𝑑 , 𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 and

𝑚𝑎𝑥_𝑜𝑣𝑒𝑟𝑑𝑢𝑒_𝑝𝑒𝑟𝑖𝑜𝑑𝑠 . The first two variables store the

531

Ethereum addresses of the two participating parties, the Offchain
Node and the Client (Publisher) node. (If there are multiple

Publishers, they can set up a shared address.) The 𝑝𝑒𝑟𝑖𝑜𝑑 and

𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑 variables control the payment frequency

and amount. The last variable sets a limit on how long the

smart contract will tolerate the Client for not paying before

considering the Client to be violating the contract. The unit

for 𝑝𝑒𝑟𝑖𝑜𝑑 is seconds while the unit for 𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑝𝑒𝑟_𝑝𝑒𝑟𝑖𝑜𝑑

is wei—the smallest denomination of ether. For example, if the

payer agrees to pay 100 wei per minute and the payee waits at

most 120 minutes for overdue payments, the last three variables

would be set to 60, 100 and 120, respectively.

After verifying the Offchain Node has completed Stage 2 Com-

mitment, the Client node deposits a pre-defined amount of ether

into the Payment smart contract and invokes the 𝑠𝑡𝑎𝑟𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡

method to start paying for the service. The 𝑠𝑡𝑎𝑟𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 method

initializes 2 additional variables:𝑎𝑚𝑜𝑢𝑛𝑡_𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑓 𝑜𝑟_𝑒𝑑𝑔𝑒 and

𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 . Variable 𝑎𝑚𝑜𝑢𝑛𝑡_𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑓 𝑜𝑟_𝑒𝑑𝑔𝑒 , ini-

tially 0, is used to indicate what amount of Payment contract

balance is withdrawable only by the Offchain Node. Variable
𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 stores the timestamp on when the current

stream of micro-payments started.

Once 𝑠𝑡𝑎𝑟𝑡𝑃𝑎𝑦𝑚𝑒𝑛𝑡 is executed, the Payment smart contract

balance is divided into two portions. One is reserved to be

withdraw-able only by the 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 while the remain-

ing still belongs to the 𝑐𝑙𝑖𝑒𝑛𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 . As time progresses, bal-

ance in the second portion virtually moves into the first at a

constant rate. However, this process is not done continuously

in the background but rather done retrospectively when the

Payment contract method 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑢𝑠—shown in Al-

gorithm 3—is invoked. The core logic of this method calcu-

lates the correct value for 𝑎𝑚𝑜𝑢𝑛𝑡_𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑓 𝑜𝑟_𝑒𝑑𝑔𝑒 based on

the Payment contract’s configuration and current state. When-

ever any party tries to withdraw from the smart contract,

𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑢𝑠 is always invoked first internally to up-

date 𝑎𝑚𝑜𝑢𝑛𝑡_𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑_𝑓 𝑜𝑟_𝑒𝑑𝑔𝑒 which directly determines the

withdraw-able amount. When the Offchain Node withdraws, the
𝑝𝑎𝑦𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 is also updated to the timestamp of the

block that confirmed the call transaction, essentially resetting

the payment calculation.

The 𝑢𝑝𝑑𝑎𝑡𝑒𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑢𝑠 method also emits important

blockchain events under certain conditions. These events are

broadcast to subscribed on-chain and off-chain parties so they

can react in time. The PaymentStateUpdated event at Line 7 is

emitted when there remains enough deposit and it notifies the

subscribers about how many more payment periods it can last

for. On the other hand, when there are overdue payments, the De-

positInsufficient event at Line 10 is emitted to remind the Client

node. Lastly, if the accumulated overdue payments exceed the

threshold specified by𝑚𝑎𝑥_𝑜𝑣𝑒𝑟𝑑𝑢𝑒_𝑝𝑒𝑟𝑖𝑜𝑑𝑠 , the smart contract

deems it a violation by the Client node. It will transfer all the

remaining balance to 𝑜 𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 before terminating itself

with a notification event at Line 14.

4.6 Correctness
We provide a proof sketch of WedgeBlock satisfying the safety

properties in Definitions 3.1 and 3.2.

Theorem 4.1. WedgeBlock ensures that any offchain-committed
request satisfies the safety condition in 3.1.

Proof. Definition 3.1 states that an offchain-committed re-

quest of an i-e pair (where 𝑖 is the index in the log and 𝑒 is the

entry) must satisfy either one of two properties: (1) the i-e pair is

Algorithm 3: updatePaymentStatus

Context: The Ethereum transaction that invoked this method is

confirmed in block 𝑏𝑙𝑜𝑐𝑘 which was mined at

𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 .

Input: None
Output: None

1 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒 ← 𝑏𝑙𝑜𝑐𝑘.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 − 𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑆𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

2 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑𝑠 ← 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇𝑖𝑚𝑒

𝑝𝑒𝑟𝑖𝑜𝑑

3 𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛 ←
𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑃𝑒𝑟𝑖𝑜𝑑 ∗ 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑃𝑒𝑟𝑖𝑜𝑑𝑠

4 if 𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛 ≤ 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 then
5 𝑎𝑚𝑜𝑢𝑛𝑡𝑁𝑜𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑 ←

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒 − 𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛

6 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑𝑠 ← 𝑎𝑚𝑜𝑢𝑛𝑡𝑁𝑜𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑
𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑃𝑒𝑟𝑖𝑜𝑑

7 emit event

PaymentStateUpdated(𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛,

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑒𝑟𝑖𝑜𝑑)

8 else
/* Insufficient deposit */

9 𝑎𝑚𝑜𝑢𝑛𝑡𝑂𝑤𝑒 ←
𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛 − 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒

10 emit event DepositInsufficient(𝑎𝑚𝑜𝑢𝑛𝑡𝑂𝑤𝑒)

/* reserve all remaining balance to Offchain Node
*/

11 𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛 ← 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 .𝑏𝑎𝑙𝑎𝑛𝑐𝑒

12 𝑜𝑣𝑒𝑟𝑑𝑢𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑠 ← 𝑎𝑚𝑜𝑢𝑛𝑡𝑂𝑤𝑒
𝑝𝑎𝑦𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑃𝑒𝑟𝑖𝑜𝑑

13 if 𝑜𝑣𝑒𝑟𝑑𝑢𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑠 ≥ 𝑚𝑎𝑥𝑂𝑣𝑒𝑟𝑑𝑢𝑒𝑃𝑒𝑟𝑖𝑜𝑑𝑠 then
/* overdue for too long, smart contract

automatically terminates */
14 emit event LongOverdue(overduePeriods)

15 𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛𝐴𝑑𝑑𝑟𝑒𝑠𝑠.𝑐𝑎𝑙𝑙 {𝑣𝑎𝑙𝑢𝑒 :

𝑎𝑚𝑜𝑢𝑛𝑡𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝐹𝑜𝑟𝑂𝑓 𝑓 𝑐ℎ𝑎𝑖𝑛}
16 end
17 end

the same as the one that will eventually be blockchain-committed,

or (2) the client can prove that an entry 𝑒′ blockchain-committed

at i where 𝑒 ̸=𝑒′.
We prove this by contradiction. Assume to the contrary of the

two properties above that an offchain-committed request 𝑟 for an

i-e pair is not the same as the one that is eventually blockchain-

committed pair, i-e’ where 𝑒 ̸=𝑒′. Also, contrary to the second

property, the client cannot prove that the committed entry 𝑒′ at
𝑖 is different than 𝑒 . This is not possible because the Client can:

(1) read the state of the Root Record contract and identify that

the blockchain committed entry 𝑒′ is different from 𝑒 , and (2) the

Client has a signed response 𝑅 from the offchain node that shows

that the offchain node promised to commit the i-e pair. This is a

contradiction. □

Theorem 4.2. WedgeBlock ensures that any blockchain-
committed request satisfies the safety condition in Definition 3.2.

Proof. Definition 3.2 states that any two blockchain-

committed requests 𝑟1 and 𝑟2 for the same index 𝑖 would have

the same corresponding entry 𝑒 . We prove this by contradiction.

Assume to the contrary that there are two blockchain-committed

requests: 𝑟1 that results in the pair i-e, and 𝑟2 that results in the

pair i-e’, where 𝑒 ̸=𝑒′. Since the two values are different but are

in the same log position, this means that the MRoot read from

the Root Record contract by 𝑟1, 𝑀1, is different from the one

read by 𝑟2,𝑀2. Because𝑀1 and𝑀2 are the MRoots for the same

log position and the Root Record contract allows writing to the

MRoot of a log position only once with no future updates, then

𝑀1 = 𝑀2. This is a contradiction as this indicates that 𝑒 = 𝑒′. □

Since the proofs above assume a stringent byzantine failure

model that allows any arbitrary behavior by malicious nodes, this

532

means that various attack vectors cannot threaten the integrity

of the application as long as they fall within this definition of ar-

bitrary behavior from utmost 𝑓 nodes. For example, attacks such

as omission, repeating, and truncating attacks would not lead to

incorrectness. For example, an off-chain node that truncates the

log will be detected by the client that wrote the truncated entries

and punishment will be triggered. Due to space limitations, we

do not enumerate through the various attack vectors but rely on

the generality of the byzantine failure model.

4.7 Liveness
When utilizing untrusted nodes, there are risks in terms of the

responsiveness of these nodes. In particular, omission attacks de-
notes a class of attacks where an Offchain Node drops or delay
responses to requests. Due to the asynchronous communication

model we consider, when requests are dropped, it is impossi-

ble to determine if the Offchain Node is acting maliciously or if

the messages were dropped/delayed due to the network. This

is a common challenge in systems with malicious (byzantine)

nodes. The following are various ways that can be integrated

withWedgeBlock to reduce the impact of omission attacks:

The first way to tolerate omission attacks is to utilize a number

of nodes to act collectively as the Offchain Node. For example, a

byzantine fault-tolerant (BFT) protocol [17, 32] can be used with

a cluster of 3𝑓 + 1 Offchain Nodes that act collectively to perform

the tasks of an Offchain Node. This setup would tolerate having

up to 𝑓 malicious nodes that are performing omission attacks by

applying existing techniques [18].

The secondway is to rely on the economics of omission attacks.

In our model, the off-chain node is either run by the owner of

the smart contract application or by a third-party contractor that

is performing the compute/storage tasks for a monetary compen-

sation. In both cases, there is no incentive for the Offchain Node
to perform an omission attack. Omission attacks lead to hurting

the user experience (studies show that even a small delay would

drive users away from an online service [50].) If the Offchain
Node is operated by the application owner, then omission attacks

would lead to driving their customers/users away. Likewise, if the

Offchain Node is operated by a contractor, fewer users mean less

processing and monetary compensation and potentially being

replaced with another contractor that is faster.

An extreme case of omission attacks is for an Offchain Node
to remove/destroy the stored data or blockchain-commit invalid

MRoots. The two approaches above can be utilized for this type

of attack as well. However, there is an additional strategy that

can be utilized in decentralized environments—utilizing decen-

tralized storage solutions [59]. Decentralized storage is a family

of protocols that are used to store files across a decentralized

network of machines around the world. Decentralized storage

can be utilized to maintain a persistent copy of the log that can

be accessed even after an extreme omission attack of removing

data in the Offchain Node.
5 PRACTICAL CONCERNS
Implementation details. We built a prototype to validate

WedgeBlock’s design. The prototype implements the following

design components: the Offchain Node, the Publisher node, the
User node, the Auditor node and the Smart Contracts. We imple-

ment the four off-chain nodes using four Python programs. These

programs communicate with each other using the Python gPRC

framework [5]. We utilize parallel programming at some sections

of the code to improve the prototype’s processing speed. The

ECDSA signature and verification are applied independently to

a large number of data objects so they are executed concurrently

using all available CPU cores.

Blockchain network. We deploy WedgeBlock’s smart contracts

to the Ethereum Ropsten blockchain network. The Ropsten net-

work is one of the most widely used Ethereum test networks

that allow researchers and practitioners to test and validate their

prototypes. This is a standard approach that is utilized in many

academic works [7, 55]. The Ropsten network mining nodes run

identical software implementation as those in the Ethereummain

network (Mainnet). Executing the same stand-alone smart con-

tract from identical starting states on both Ropsten and Mainnet

would produce the same global state transfer and using the same

amount of gas. Meanwhile, the Ropsten network circulates free

(test) ether coins instead of real ether coins. Therefore we use it to

simulate interactions with the Ethereum Mainnet while avoiding

paying high fees for prototyping and evaluations.

Availability and traces. Our prototype implementation is avail-

able on Github
2
. The details of theWedgeBlock smart contracts

that we deployed as well as their transaction histories can be

viewed publicly on the Etherscan platform for the Root Record

smart contract
3
, Payment smart contract

4
, and Punishment smart

contract
5
.

Penalty amount configuration. One of the issues needed for a
practical deployment ofWedgeBlock is configuring the amount

of escrow funds and penalties during setup. This is an impor-

tant aspect; however, it is application specific (depending on the

workload, participants, off-chain nodes profit, etc) and cannot be

treated generally in the context of our current work that focuses

on the design ofWedgeBlock. We defer the question of specifying

the amount of penalties to other work that focuses on the eco-

nomic aspects of on-chain/off-chain interactions. Nonetheless,

specifying such amount is orthogonal to the rest of the design

and configuration ofWedgeBlock as long as such configuration

of penalties would be a deterrent to malicious acts.

6 EXPERIMENTS AND EVALUATION
6.1 Goals of the experiment
We conduct experiments to evaluate the performance ofWedge-
Block in terms of performance latency and monetary cost across

different system configurations. We also compare the perfor-

mance of WedgeBlock to baseline configurations that mimic the

off-chain and on-chain commitment aspects of prior blockchain-

based secure logging work [34, 41, 49, 51, 64].

We measure the following metrics. For the smart contracts, we

measure the monetary cost of performing stage 2 commitment.

For the Offchain Node, we measure the throughput of ingesting

log entries and the monetary cost. For Clients, we measure the

latency of performing append and read operations.

6.2 Experiment Setup
Two Chameleon Cloud machines [30] are used to run the off-

chain nodes, one hosting theOffchain Node program and the other

hosting the three Client programs. Each of the two machines

runs on two 64 bit Skylake CPUs with 48 threads each. Each

machine provides 192 GiB of RAM and around 300 GB of Storage.

Unless otherwise mentioned, we use the following default

parameters. In append experiments, the Publisher node sends

100 batches of append requests to the Offchain Node. One batch

2
https://github.com/alfredd/wedge-block

3
https://ropsten.etherscan.io/address/0x85bae3688d946d93ed4a31f6e2f60ed74c6035ba

4
https://ropsten.etherscan.io/address/0x16e07f2fb9d07dca12849f96f295ac1de9e0e681

5
https://ropsten.etherscan.io/address/0x38d2a28eaf717123c764058759c743bb51547cb0

533

consists of 10,000 append operations where each append oper-

ation contains a key-value pair with a 64-kilobytes key and a

1024-kilobyte value. Each of the 100 batches is measured indepen-

dently. Then the 100 sets of measurements are averaged to obtain

the final measurements for the Publisher. The default batching

size utilized by the Offchain Node is 2000.
The variables we vary in experiments are the batch size in the

Offchain Node and the write operation’s value size at the Pub-

lisher. For each variable, we make multiple runs using different

configurations while keeping the other one constant.

6.3 Experiment Result and Analysis
Varying the Batch Size. The first set of experiments measures

the performance and monetary cost ofWedgeBlock while vary-

ing the batch size. In this experiment, the size of each append

request—formatted as a key-value pair—is fixed to 64B (key) +

1024B (value) = 1088 bytes, approximately 1 KB. We did six runs

of experiments, varying the Offchain Nodes’ batch size between

500 and 10000 append requests per batch.

Figure 3 shows the impact of varying the batch size on the

Offchain Node’s throughput and monetary cost per operation. In

terms of throughput, as we increase the batch size, the throughput

decreases. This decrease is within 18% when increasing the batch

size from 500 to 10000. The reason for this is that when the batch

size increase, the Offchain Node produces fewer but larger Merkle

Trees. As the Merkle Tree size increases, the time to generate a

merkle proof for each write operation increases logarithmically.

The red curve shows the throughput of theOffchain Node if it first
replicates the received write requests to two other machines for a

stronger liveness guarantee. Since merkle tree construction takes

much longer time than forwarding data batches, the thoughput

shows a insignificant decrease when comparing to the Offchain
Node that only stores data locally.

The right-side plot in Figure 3 measures the monetary cost

per operation. As the batch size increases, the cost decreases

(increasing the batch size from 500 to 10000 decreases the cost

by 87%.) This is because a larger batch size amortizes the cost of

many operations into one write to the Root Record contract.

Figure 4 shows the impact of varying the batch size on the Pub-

lisher latency. The Publisher sends a batch of append operations

to the Offchain Node. Then, as append operations are processed,

off-chain-commit responses are sent back to the Publisher one by

one. The figure shows three lines: (1) First operation delay, which
represents the latency until the first off-chain-commit response

is received, (2) Last operation delay, which represents the latency

until all off-chain-commit responses are received, and (3) Stage
1 commitment delay, which represents the time needed to both

receive and process all off-chain-commit responses.

The figure shows that as the batch size increases, the latency

increases. This increase is due to the overhead caused by batching

at theOffchain Node’s side as we described abovewhen discussing
the throughput results. The impact of this overhead is different

for the first operation compared to the total delay. The increase

for the first operation response is higher due to the time needed

to generate the Merkle Tree, which is a step that needs to be

performed before sending the first response. Our experiments

also record the Stage 2 commitment latency at various batch sizes.

Since these measurements are mainly determined by the time it

takes for the blockchain network to update the smart contract,

they do not change significantly across our experiments. The

average Stage 2 latency we measure is 43 seconds. The following

experiments measure similar results.

500 1000 2000 4000 5000 10000
Batch size (operations per batch)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Th
ro
 g

hp
 t
 (M

B/
s)

Stage 1 thro ghp t
Stage 1 thro ghp t
(distrib ted storage)

500 1000 2000 4000 5000 10000
Batch size (operations per batch)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
st
 (e

th
er
 p
er
 o
pe
ra
tio

n)

1e−6
Stage 2 cost

Figure 3: Throughput and cost for various batch sizes

500 1000 2000 4000 5000 10000
Batch sizes (operations per batch)

4

6

8

10

De
la
y
(s
ec

on
ds

)

First operation delay
Last operation delay

Stage 1 commitment delay

Figure 4: Publisher side latency for various batch sizes

Varying the Value Size. This experiment studies the effect

of different write operation’s value sizes. In this experiment, the

Offchain Node always groups incoming operations into batches

of 2000 operations. We did four runs of experiments varying the

append operations’ value size between 512 and 4096 bytes.

Figure 5 shows the impact on off-chain throughput and mone-

tary cost. For throughput (left sub-plot of Figure 5), as the value

size increases, the throughput increases as well. This is because

as the value size increases, the total workload carries approxi-

mately double the amount of bytes to be committed. However,

the Offchain Node processing is not impacted significantly by

the increase in workload; Although larger leaf nodes in a Merkle

Tree make the initial hashing step longer to complete, its im-

pact is limited. Once the constant sized hashes are obtained, the

remaining time on Merkle Tree construction and proof genera-

tion remains the same. This leads to the throughput increase as

we increase the value size. We also did these experiments using

a Offchain Node with a replicated storage mechanism, the red

curve in Figure 5 shows that there is insignificant decrease on

the throughput. However, the drop in throughput is expected

to be larger as value size increases because data transmission

time from the Offchain Node to the replication nodes increases

proportionally with the data size.

In terms of cost per operation (right sub-plot of Figure 5),

increasing the value size does not show a significant impact on

cost
6
. This is because the size of the append value does not affect

the number of Merkle Trees and does not affect the size of merkle

roots. Consequently, the Offchain Node writes the same amount

of data to the Root Record contract in every run. Therefore, we

anticipate the total cost to stay relatively constant.

Figure 6 shows the impact of varying the value size on the

latency at the Publisher. The figure shows that when the value

size increases, the Publisher waits longer to receive all stage 1

6
Note that the small irregular change in total cost is mostly a reflection of the

fluctuation in the Ropsten network’s transaction fee.

534

commitment responses due to the increased communication over-

head. However, the verification time is not affected significantly.

Stage 1 commitment delay increases by 66% as a result of an

8-time increase of the value size. This shows a trade-off between

Publisher latency and Offchain Node throughput when the value

size changes. In the fourth experiment run with a 4096-byte value

size, the WedgeBlock runs over 30 minutes without running into

any errors, this demonstrates that theWedgeBlock is capable of

handling large workloads.

512 1024 2048 4096
Value sizes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
 o

ug
hp

ut
 (M

B/
s)

Stage 1 th oughput
Stage 1 th oughput
(dist ibuted sto age)

512 1024 2048 4096
Value sizes (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Co
st

 (e
th

e
 p

e
 o

pe
 a

tio
n)

1e−6
Stage 2 cost

Figure 5: Throughput and cost for various value sizes

512 1024 2048 4096
Value sizes (bytes)

4

6

8

10

12

14

De
la
y
(s
ec
on

ds
)

First operation delay
Last operation delay

Stage 1 commitment delay

Figure 6: Publisher latency for various value sizes

Varying the request frequency The third experiment stud-

ies the Offchain Node’s throughput under different workload. In
this experiment, the value size and the Offchain Node’s batching
size are fixed at 1024 bytes and 2000 respectively. In each run, the

Publisher node adjusts the number of append operations in each

of its 100 requests batches to achieve a certain overall request

frequency. For example, if the Publisher node sends 8000 append

operations in each batch, the overall request frequency observed

by the Offchain Node would be 800 requests per second.

Figure 7 shows how the request frequency affects Stage 1 com-

mit throughput. The curve peaks when the frequency is 900 per

second, meaning the Offchain Node reaches its computational

capacity around this point with the given hardware configura-

tion. With a lower frequency, the Offchain Node waits in idle

in between batches of append operations. When the frequency

is larger than 900, the throughput quickly declines due to an

accumulation of unprocessed append operations.

ComparisonWithPriorApproaches.WedgeBlock advances
the state-of-the-art in secure blockchain-based logging by de-

creasing the monetary cost overhead with minimum (digest)

writing on-chain and by decreasing the latency overhead with

lazy trust. Prior blockchain-based approaches can be divided

into three categories: (1) on-chain logging (OCL) [49]: these are

400 500 600 700 800 900 1000 1100 1200
Request frequency (#requests /s)

0.4

0.5

0.6

0.7

0.8

0.9

Th
ro

ug
hp

ut
 (M

B/
s)

Stage 1 throughput

Figure 7: Publisher latency for various request frequencies

approaches that suffer from high latency and monetary cost as

raw logs are written on-chain, and (2) synchronous off-chain

logging (SOCL) [51]: these are approaches where raw logs are

written off-chain and only a digest is written on-chain. How-

ever, unlike WedgeBlock, these approaches need to wait for

the corresponding digest to be written on-chain before read-

ing and trusting the off-chain record. (3) rollup-inspired hybrid

logging (RHL) [48]: this approach is inspired from Ethereum Op-

timistic Rollup and adapted to the problem of logging to allow

comparing withWedgeBlock. In RHL, the entries are sent to the

off-chain node. When the off-chain node responds to the client,

this denotes phase 1 commitment (and the latency reported in

experiments is this latency). The off-chain node may lie in this

response. To detect such malicious act, the client waits for the

off-chain node to write the operations and digest on-chain. The

client (and any other participant) can use the written entries to

verify that the computed digest is correct. If it is not correct, then

the client can trigger a challenge smart contract. This challenge

smart contract checks whether the digest matches the written

operations on-chain. If it does not match, then the challenge is

successful. To enable such challenges, there is a challenge period

to allow clients to check the accuracy of the digest that lasts for

hours to days. This makes the latency of stage commitment much

higher thanWedgeBlock. Also, because the challenge verification
relies on having the operations being written on-chain as well,

this makes it more costly thanWedgeBlock.
To compare with these three approaches, we implement the

following: for OCL, we implement a smart contract that writes

log records on-chain. For SOCL, we implement a client that waits

for the digest to be written on-chain to commit. For RHL, we

implement a smart contract that writes the operations on-chain.

We report two metrics, performance in terms of throughput and

monetary cost per operation. The throughput is calculated by

dividing the total size of committed data over the time it takes to

obtain a successful commitment receipt. For OCL and SOCL, this

receipt is the blockchain transaciton confirmation message from

the miner nodes. For Wedgeblock and RHL, the Stage 1 commit-

ment proof is used as such receipt as explained in Section 3.

The comparison is shown in Table 1. It shows that Wedge-
Block improves throughput by up to 1470-times compared to the

OCL approach (from 6.6e-4 MB per second to 0.97 MB per sec-

ond). This is because WedgeBlock batch operations, commit after

receiving the off-chain response, and write less data on-chain

which allows committing more operations. Although the SOCL

approach has a relatively higher throughput when compared to

OCL, WedgeBlock is able to achieve a 5-time increment on the

commitment throughput because of using lazy trust. Also, the

535

Value size Throughput

(MB/second)

Cost per

operation (ETH)

1024 (OCL) 6.6e-4 0.275

1024 (SOCL) 0.2 1.16e-3

1024 (RHL) 0.97 0.275

1024 (WB) 0.97 1.16e-3

2048 (OCL) 1.4e-3 0.367

2048 (SOCL) 0.46 1.18e-3

2048 (RHL) 1.67 0.367

2048 (WB) 1.67 1.18e-3

Table 1: Commitment throughput and cost of WedgeBlock (WB)
compared with prior approaches OCL and SOCL

table shows improvement of SOCL andWedgeBlock in terms of

monetary cost per operation by up to 310-times compared to OCL

(from 0.367 ETH to 1.18e-3 ETH). This is becauseWedgeBlock and
SOCL batch operations and only write their digest to the smart

contract. On average, when using WedgeBlock or SOCL to log

operations, each operation only incurs a monetary cost of around

one thousandth of an ETH. RHL achieves a throughput that is

close to th WedgeBlock since it also reports a fast stage 1 com-

mitment latency that does not involve writing to the blockchain.

The cost, however, is 310x higher for RHL because it requires

writing the operations on-chain.

In terms of latency, OCL and SOCL have a latency that is pro-

portional to the time needed to write on-chain. For RHL, its stage

1 latency is proportional to the time needed to obtain a response

from the off-chain node and its stage 2 latency is in the order

of hours to days (depending on the design configuration). For

WedgeBlock, the stage 1 latency—similar to RHL—is proportional

to the time to get a response from the off-chain node. However,

its stage 2 latency is similar to the latency of SOCL. Although

stage 2 latency of WedgeBlock is similar to SOCL, because stage

2 is performed asynchronously,WedgeBlock can achieve higher

throughput. Also, based on our deterrence method that aims to

prevent malicious acts from off-chain nodes, clients can rely on

stage 1 commitment as a response.

Reading Experiments.We experimented with two read func-

tionalities: random key queries and full log audits. The Offchain
Node is initialized with 10 million log entries with 64 bytes key

and 1024 byte value. The experiment on each functionality con-

sists of six runs in which the Offchain Node stores the log entries
in batches of different sizes, ranging from 500 to 10000.

For the random key query experiment, the User selects 50000

random entries. We measure the throughput of performing all

the read operations which includes communication with the Of-
fchain Node, receiving the response, and verifying it. The results

are shown in Figure 8. The figure shows that the throughput is

between 1800 and 2100 operations per second and that the batch

size does not affect the User’s read latency significantly.

For the log audit experiment, the Auditor reads and verifies

a number of operations. Figure 9 shows the results of reading

and verifying operations where the number of operations varies

from 10,000 to 200,000 operations. The latency increases linearly

with more operations to audit as more work is needed to read

and verify operations. The figure also shows how much of the

time is spent for verification out of the total latency. In average,

42% of the read time is spent in verification.

500 1000 2000 4000 5000 10000
Batch sizes (operations per batch)

0

250

500

750

1000

1250

1500

1750

2000

Re
ad

 th
ro
ug

hp
ut
 (o

pe
ra
tio

ns
 p
er
 se

co
nd

) Reading throughput

Figure 8: Query latency at various batch sizes

10000 20000 40000 80000 100000 200000
Total operations audited

0

20

40

60

80

100

120

140

160

La
te
nc

y
(s
ec

on
ds

)

Reading latency Verifying latency

Figure 9: Log audit latency

7 RELATEDWORKS
7.1 Blockchain-based Logging
The most related area of work to WedgeBlock is the area of

blockchain-based logging [9, 34, 35, 41, 49, 51, 64]. Some of these

prior works utilize the blockchain itself to write logs [9, 35, 49].

This can lead to high monetary costs and latency overhead

when utilizing permissionless blockchains. This lead work follow-

ing this approach [9, 35, 49] to utilize permissioned blockchain

such as HyperLedger [12]. However, permissioned blockchains

(i.e., blockchain systems that utilize traditional crash-tolerant or

byzantine-tolerant [17, 27, 32] systems) require strong assump-

tions on the number of failures that can be tolerated which limits

the decentralized nature of such protocols and consequently the

number of DApps deployed on such networks. An alternative

approach is to utilize off-chain nodes to store the raw logs and

store a digest of log entries on-chain [34, 41, 64]. hOCBS [41]

relies on a permissioned blockchain to overcome the latency and

cost overheads—which leads to the challenges we mentioned

above about using permissioned blockchains.

PrivacyGuard [64] and Blockchain-enabled Privacy Audit Log

(BPAL) [51]—likeWedgeBlock—use permissionless blockchains in

their on-chain/off-chain architecture. To overcome the problem

of an untrusted Offchain Node, PrivacyGuard [64] uses special

hardware (Trusted Execution Environments), while BPAL [51]

forces clients to wait until the digest of log entries is written

on-chain. These two pieces of work suffer from the limitation of

either requiring special hardware [64] or incurring a high latency

overhead [51].WedgeBlock, on the other hand, does not require

special hardware and allows fast ingestion.

7.2 Secure Logging and Data Processing
Related to WedgeBlock is the area of secure tamper-free log-

ging [16, 19, 36, 46, 58, 60]. In [36], for example, the authors

536

propose an Immutable Forward-Secure Aggregate Authentica-

tion (iFssAgg) algorithm. The algorithm builds the log state by

encrypting and linking each subsequent state of the log and

deleting the intermediate keys. This allows verifying the log by

decrypting from the start of the log. One notable application

of secure logging has been in cloud-based logging-as-a-service

systems, where a cloud service handles the logging functions on

behalf of an application [47, 60, 61].

There is a plethora of work in authenticated data and query

processing [2, 29, 33, 45, 57, 65, 66, 69]. These methods can be

utilized to provide digests and proofs for complex secure com-

putations. This is related to stage 1 commitment inWedgeBlock,
where such mechanisms can be used to perform more complex

processing. This is especially true for such solutions in the con-

text of querying and processing data in hybrid onchain-offchain

applications [11, 53, 54].

7.3 Authenticated Off-Chain Protocols
Utilizing off-chain nodes in blockchain has been an area of active

work [10, 24, 31, 40, 42]. One challenge that faces utilizing off-

chain nodes is that they might be untrusted. This led to a plethora

of work in the area of authenticated off-chain protocols[26],

where the data and operation that is performed off-chain are

augmented with an authenticating strategy. Specifically, this al-

lows off-chain nodes to provide a proof about the authenticity

of their data. This includes the use of authenticated and veri-

fiable data structures—such as Merkle Trees [39]—in off-chain

nodes [53, 56, 62, 63]. These solutions are orthogonal toWedge-
Block and we envision future directions of augmenting these

authenticated data structures into the lazy-minimum trust frame-

work ofWedgeBlock.
Blockchain layer-2 scaling solutions include rollups [38, 48]

that extend the utilization of authenticated and verifiable data

structures in blockchain. One type of rollups is called zero-

knowledge rollups (zk-rollups) [14] that utilizes zero-knowledge

proofs [22] to enable verifying off-chain computation. However,

this entails generating proofs in a complex computation process

that makes generating such proofs a lengthy task.

More related to WedgeBlock are optimistic rollups that rely

on the concept of fraud proofs. Optimistic rollups is used as a

layer-2 scaling solution of the blockchain itself where blockchain

transactions are grouped and committed together while provid-

ing a fraud proving mechanism to detect erroneous groupings.

Users have a pre-detrmined time period to challenge the out-

come of a rollup computation—and if the off-chain node did not

perform the correct grouping computation, then users can pro-

vide fraud proofs to the blockchain to retract the impact of the

rollup. Optimistic rollup, however, target general smart contract

and cryptocurrency processing. This generality leads to higher

overheads and undesirable characteristics such as: (1) rollup trans-

actions are not considered committed (ready) until a challenge

period is over to allow users to provide fraud proofs if necessary.

This period is suggested to be up to days, which imposes a sig-

nificant overhead. (2) rollup transactions still need to be written

on-chain since the computations they perform are arbitrary and

having them on-chain is essential for the fraud proving mecha-

nism. WedgeBlock, on the other hand, due to its domain-specific

target of data logging, does not suffer from these two challenges;

WedgeBlock operations are finalized once stage 2 commitment

is done (which is much faster than the challenge period), and

raw data does not need to be written on-chain for the penalty

mechanism (which makes WedgeBlock much more cost efficient.)

7.4 Monitoring-Based (Lazy) Trust
Prior work in distributed systems explored the concept of moni-

toring to detect malicious behavior in the context of byzantine

fault-tolerant systems [28, 37, 43]. In these works, the guarantee

of detecting malicious acts—with harsh enough punishments—is

used as a deterrent to malicious nodes. These works are specific

to distributed environments such as edge-cloud systems [43] and

distributed consensus [28, 37] which makes them unapplicable to

the decentralized blockchain environment we consider. Our work

extends these works by making the concept of moniroting-based

trust (lazy trust) applicable to decentralized blockchain environ-

ments in two ways: (1) it augments the concept of lazy trust

with blockchain, where the blockchain smart contract acts as the

trusted entity. This entails tackling challenges in performing lazy

trust with smart contracts as well as leverage opportunities of

monetary punishments through escrow funds. (2) it considers

the issue of minimum trust that is essential for the efficient uti-

lization of blockchain as a trusted entity. Without minimizing

the amount of data to be sent to the blockchain smart contract,

the cost of lazy trust would still be prohibitive.

8 CONCLUSION
We have presentedWedgeBlock: a blockchain-enabled secure log-

ging system.WedgeBlock creates a platform for users to store and

retrieve data from untrusted servers. It guarantees that that data

corruption can be easily identified and malicious servers pun-

ished. WedgeBlock also ensures that blockchain usage is cheap

and affordable by storing minimal amount of metadata on the

blockchain and minimizing the number of blockchain transac-

tions while continuing to provide secure logging services.Wedge-
Block is intended to become a secure logging component that

can be easily adopted by applications. Through our evaluations

we show that WedgeBlock provides high performance logging

service for storage, retrieval and verification of data.

9 ACKNOWLEDGMENTS
This research is supported in part by the NSF under grant CNS-

1815212 and a gift from Facebook. We would also like to thank

Professor Nalini Venkatasubramanian from the Information Sys-

tems Group at UC, Irvine, for her feedback and support for the

WedgeBlock project.

537

REFERENCES
[1] Anylog: Technology. https://anylog.co/technology/.

[2] Aws amazon quantum ledger database (qldb). https://aws.amazon.com/qldb.

[3] Dapp radar rankings. https://dappradar.com/rankings.

[4] Ethereum charts and statistics. https://etherscan.io/charts.

[5] Introduction to grpc. https://grpc.io/docs/what-is-grpc/introduction/.

[6] D. Abadi, O. Arden, F. Nawab, and M. Shadmon. Anylog: a grand unification

of the internet of things. In Conference on Innovative Data Systems Research
(CIDR ‘20), 2020.

[7] Z. Abou El Houda, A. S. Hafid, and L. Khoukhi. Blockchain-based reverse

auction for v2v charging in smart grid environment. In ICC 2021-IEEE Inter-
national Conference on Communications, pages 1–6. IEEE, 2021.

[8] J. Adler, R. Berryhill, A. Veneris, Z. Poulos, N. Veira, and A. Kastania. Astraea:

A decentralized blockchain oracle. In 2018 IEEE international conference on
internet of things (IThings) and IEEE green computing and communications
(GreenCom) and IEEE cyber, physical and social computing (CPSCom) and IEEE
smart data (SmartData), pages 1145–1152. IEEE, 2018.

[9] A. Ahmad, M. Saad, M. Bassiouni, and A. Mohaisen. Towards blockchain-

driven, secure and transparent audit logs. In Proceedings of the 15th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Net-
working and Services, pages 443–448, 2018.

[10] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic. Trustworthy

blockchain oracles: review, comparison, and open research challenges. IEEE
Access, 8:85675–85685, 2020.

[11] L. Allen, P. Antonopoulos, A. Arasu, J. Gehrke, J. Hammer, J. Hunter, R. Kaushik,

D. Kossmann, J. Lee, R. Ramamurthy, et al. Veritas: Shared verifiable databases

and tables in the cloud. In 9th Biennial Conference on Innovative Data Systems
Research (CIDR), 2019.

[12] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidharan, C. Murthy,

B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou,

M. Vukolić, S. W. Cocco, and J. Yellick. Hyperledger Fabric: A Distributed Op-

erating System for Permissioned Blockchains. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 30:1–30:15, New York, NY, USA, 2018.

ACM.

[13] A.M. Antonopoulos and G.Wood.Mastering ethereum: building smart contracts
and dapps. O’reilly Media, 2018.

[14] D. Augot, S. Bordage, Y. El Housni, G. Fedak, and A. Simonet. Zero-knowledge:

trust and privacy on an industrial scale. 2022.

[15] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia. A survey on

blockchain interoperability: Past, present, and future trends. ACM Computing
Surveys (CSUR), 54(8):1–41, 2021.

[16] M. Bellare and B. Yee. Forward-security in private-key cryptography. In

Cryptographers’ Track at the RSA Conference, pages 1–18. Springer, 2003.
[17] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings of

the Third Symposium on Operating Systems Design and Implementation, OSDI
’99, pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[18] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche.

Upright cluster services. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, SOSP ’09, page 277–290, New York, NY, USA,

2009. Association for Computing Machinery.

[19] S. A. Crosby and D. S. Wallach. Efficient data structures for tamper-evident

logging. In USENIX Security Symposium, pages 317–334, 2009.

[20] M. Elsheikh, J. Clark, and A. Youssef. Short Paper: Deploying PayWord on
Ethereum, pages 82–90. 03 2020.

[21] H. S. Galal, M. ElSheikh, and A. M. Youssef. An efficient micropayment channel

on ethereum. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, page 211–218, Berlin, Heidelberg. Springer-Verlag.

[22] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active proof-systems. In Providing Sound Foundations for Cryptography: On
the Work of Shafi Goldwasser and Silvio Micali, pages 203–225. 2019.

[23] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. SoK:

Off The Chain Transactions. Technical Report 360, 2019.

[24] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais. Sok:

Off the chain transactions. IACR Cryptol. ePrint Arch., 2019:360, 2019.
[25] P. Gupta, S. S. Kanhere, and R. Jurdak. A decentralized iot data marketplace.

CoRR, abs/1906.01799, 2019.
[26] S. Gupta, J. Hellings, and M. Sadoghi. Fault-Tolerant Distributed Transactions

on Blockchain. Synthesis Lectures on Data Management. Morgan & Claypool

Publishers, 2021.

[27] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. ResilientDB: Global scale

resilient blockchain fabric. Proc. VLDB Endow., 13(6):868–883, 2020.
[28] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical ac-

countability for distributed systems. ACM SIGOPS Operating Systems Review,
41(6):175–188, Oct. 2007.

[29] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases. In 2013
IEEE 29th International Conference on Data Engineering (ICDE), pages 529–540.
IEEE, 2013.

[30] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,

J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,

A. Rocha, and J. Stubbs. Lessons learned from the chameleon testbed. In

Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20).
USENIX Association, July 2020.

[31] R. Kumar, N. Marchang, and R. Tripathi. Distributed off-chain storage of

patient diagnostic reports in healthcare system using ipfs and blockchain.

In 2020 International Conference on COMmunication Systems & NETworkS
(COMSNETS), pages 1–5. IEEE, 2020.

[32] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[33] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated

index structures for outsourced databases. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of data, pages 121–132, 2006.

[34] J. C. López-Pimentel, O. Rojas, and R. Monroy. Blockchain and off-chain: A

solution for audit issues in supply chain systems. In 2020 IEEE International
Conference on Blockchain (Blockchain), pages 126–133. IEEE, 2020.

[35] N. Lu, Y. Zhang, W. Shi, S. Kumari, and K.-K. R. Choo. A secure and scalable

data integrity auditing scheme based on hyperledger fabric. Computers &
Security, 92:101741, 2020.

[36] D. Ma and G. Tsudik. A new approach to secure logging. ACM Trans. Storage,
5(1), mar 2009.

[37] S. Maiyya, D. H. B. Cho, D. Agrawal, and A. El Abbadi. Fides: managing data

on untrusted infrastructure. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS), pages 344–354. IEEE, 2020.

[38] O. Marukhnenko and G. Khalimov. The overview of decentralized systems

scaling methods. COMPUTER AND INFORMATION SYSTEMS AND TECH-
NOLOGIES, 2021.

[39] R. C. Merkle. A Digital Signature Based on a Conventional Encryption Func-

tion. In C. Pomerance, editor, Advances in Cryptology — CRYPTO ’87, Lecture
Notes in Computer Science, pages 369–378. Springer Berlin Heidelberg, 1988.

[40] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry. Sprites and

state channels: Payment networks that go faster than lightning. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 508–526.
Springer, 2019.

[41] K. Miyachi and T. K. Mackey. Hocbs: A privacy-preserving blockchain frame-

work for healthcare data leveraging an on-chain and off-chain system design.

Inf. Process. Manage., 58(3), may 2021.

[42] R. Mühlberger, S. Bachhofner, E. Castelló Ferrer, C. D. Ciccio, I. Weber,

M.Wöhrer, and U. Zdun. Foundational oracle patterns: Connecting blockchain

to the off-chain world. In International Conference on Business Process Man-
agement, pages 35–51. Springer, 2020.

[43] F. Nawab. Wedgechain: A trusted edge-cloud store with asynchronous (lazy)

trust. In 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pages 408–419. IEEE, 2021.

[44] M. Pacheco, G. A. Oliva, G. K. Rajbahadur, and A. E. Hassan. Is my trans-

action done yet? an empirical study of transaction processing times in the

ethereum blockchain platform. ACM Transactions on Software Engineering
and Methodology, 2022.

[45] D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos. Taking authenti-

cated range queries to arbitrary dimensions. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 819–830,
2014.

[46] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram. Secure logging

as a service—delegating log management to the cloud. IEEE Systems Journal,
7(2):323–334, 2013.

[47] I. Ray, K. Belyaev, M. Strizhov, D. Mulamba, and M. Rajaram. Secure logging

as a service—delegating log management to the cloud. IEEE systems journal,
7(2):323–334, 2013.

[48] T. Schaffner. Scaling public blockchains. A comprehensive analysis of optimistic
and zero-knowledge rollups. University of Basel, 2021.

[49] L. Shekhtman and E. Waisbard. Engravechain: A blockchain-based tamper-

proof distributed log system. Future Internet, 13(6), 2021.
[50] W. Stadnik and Z. Nowak. The impact of web pages’ load time on the con-

version rate of an e-commerce platform. In L. Borzemski, J. Świątek, and

Z. Wilimowska, editors, Information Systems Architecture and Technology: Pro-
ceedings of 38th International Conference on Information Systems Architecture
and Technology – ISAT 2017, pages 336–345, Cham, 2018. Springer International

Publishing.

[51] A. Sutton and R. Samavi. Blockchain enabled privacy audit logs. In C. d’Amato,

M. Fernandez, V. Tamma, F. Lecue, P. Cudré-Mauroux, J. Sequeda, C. Lange,

and J. Heflin, editors, The Semantic Web – ISWC 2017, pages 645–660, Cham,

2017. Springer International Publishing.

[52] M. Travizano, C. Sarraute, G. Ajzenman, and M. Minnoni. Wibson: A decen-

tralized data marketplace. CoRR, abs/1812.09966, 2018.
[53] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei. vchain+: Optimizing

verifiable blockchain boolean range queries. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pages 1927–1940. IEEE, 2022.

[54] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B. C. Ooi, and

P. Ruan. Forkbase: An efficient storage engine for blockchain and forkable

applications. Proceedings of the VLDB Endowment, 11(10), 2018.
[55] L. Widick, I. Ranasinghe, R. Dantu, and S. Jonnada. Blockchain based authen-

tication and authorization framework for remote collaboration systems. In

2019 IEEE 20th International Symposium on" A World of Wireless, Mobile and
Multimedia Networks"(WoWMoM), pages 1–7. IEEE, 2019.

[56] C. Xu, C. Zhang, J. Xu, and J. Pei. Slimchain: scaling blockchain transactions

through off-chain storage and parallel processing. Proceedings of the VLDB
Endowment, 14(11):2314–2326, 2021.

[57] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join

processing in outsourced databases. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, pages 5–18, 2009.

[58] A. A. Yavuz and P. Ning. Baf: An efficient publicly verifiable secure audit

logging scheme for distributed systems. In 2009 Annual Computer Security
Applications Conference, pages 219–228. IEEE, 2009.

[59] N. Zahed Benisi, M. Aminian, and B. Javadi. Blockchain-based decentralized

storage networks: A survey. Journal of Network and Computer Applications,
162:102656, 2020.

[60] S. Zawoad, A. K. Dutta, and R. Hasan. Seclaas: secure logging-as-a-service

for cloud forensics. In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, pages 219–230, 2013.

[61] S. Zawoad, A. K. Dutta, and R. Hasan. Towards building forensics enabled

cloud through secure logging-as-a-service. IEEE Transactions on Dependable

538

and Secure Computing, 13(2):148–162, 2015.
[62] C. Zhang, C. Xu, H.Wang, J. Xu, and B. Choi. Authenticated keyword search in

scalable hybrid-storage blockchains. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pages 996–1007. IEEE, 2021.

[63] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi. Gemˆ 2-tree: A gas-efficient

structure for authenticated range queries in blockchain. In 2019 IEEE 35th
international conference on data engineering (ICDE), pages 842–853. IEEE, 2019.

[64] N. Zhang, J. Li, W. Lou, and Y. T. Hou. Privacyguard: Enforcing private data

usage with blockchain and attested execution. In Data privacy management,
cryptocurrencies and blockchain technology, pages 345–353. Springer, 2018.

[65] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vsql:

Verifying arbitrary sql queries over dynamic outsourced databases. In 2017
IEEE Symposium on Security and Privacy (SP), pages 863–880. IEEE, 2017.

[66] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable sql for outsourced

databases. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1480–1491, 2015.

[67] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran. An

overview on smart contracts: Challenges, advances and platforms. Future
Generation Computer Systems, 105:475–491, 2020.

[68] Q. Zhou, H. Huang, Z. Zheng, and J. Bian. Solutions to scalability of blockchain:

A survey. Ieee Access, 8:16440–16455, 2020.
[69] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li. Veridb: An sgx-based

verifiable database. In Proceedings of the 2021 International Conference on
Management of Data, pages 2182–2194, 2021.

[70] K. R. Özyilmaz, M. Doğan, and A. Yurdakul. Idmob: Iot data marketplace

on blockchain. In 2018 Crypto Valley Conference on Blockchain Technology
(CVCBT), pages 11–19, 2018.

539

