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ABSTRACT
The dawn of multi-model data has brought many challenges
to most aspects of data management. In addition, no standards
exist focusing on how the models should be combined and man-
aged. This paper focuses on the problems related to multi-model
querying. We introduce MM-quecat, a tool that enables one to
query multi-model data regardless of the underlying multi-model
database or polystore. Using category theory, we provide a uni-
fied abstract representation of multi-model data, which can be
viewed as a graph and, thus, queried using a SPARQL-based query
language. Moreover, the support for cross-model redundancy en-
ables the choice of the optimal multi-model query strategy.

1 INTRODUCTION
More than 60% of existing most popular database management
systems (DBMSs) can be denoted as multi-model1 reflecting the
still growing share of multi-model applications.

Example 1.1. An example of a multi-model scenario is shown in Fig-
ure 1. The graph data (blue) represents customers, whereas the relational
data (purple) is redundant to the graph data. Order details are captured
in the document data (green). □

 { _id : 2022001, customerId: 1,
   items: [
     { productId: P5, name: Sourcery, price: 250 },

     { productId: P7, name: Pyramids, price: 200 },
     { productId: P29, name: Night Watch, price: 300 }
   ] }

 { _id : 2022007, customerId: 2,
   items: [
     { productId: P11, name: Reaper Man, price: 250 },
     { productId: P29, name: Night Watch, price: 300 }
   ] }

 { _id : 2022019, customerId: 3,
   items: [
     { productId: P11, name: Reaper Man, price: 250 },
     { productId: P29, name: Night Watch, price: 300 },
     { productId: P7, name: Pyramids, price: 200 }

   ] }
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Figure 1: An example of multi-model data

Unfortunately, according to our extensive survey [8], the par-
ticular set of models, the way they are combined, or the queries
and storage strategies supported vary greatly. This situation is
given by the fact that (1) the multi-model DBMSs are based on
the different original core single model as well as distinct target
application domains, (2) the combined models often have even
contradictory features, and (3) there is no acknowledged stan-
dard on how to support a combination of models, cross-model
querying, multi-model indices, etc.
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The described situation brings many new challenges to data
management. The primary problem is how to “grasp” all the
models and their specifics. For this purpose, we have proposed a
so-called schema category [5] based on category theory. It enables
to view the multi-model data at an abstract level as a small cate-
gory naturally backed by a graph. At the same time, the theory
behind it enables us to cover all existing models, their specifics,
and types of combinations. Around this representation, we have
already built several tools: MM-cat [7] for multi-model modeling
and transformations,MM-infer [6] for inference of a multi-model
schema from sample instances, and MM-evocat [4] for evolution
management of multi-model data.

This paper focuses on the next natural step towards unified
management of multi-model data – multi-model querying. As no
standards exist, the query languages over multi-model databases
also vary greatly [8]. E.g., there are declarative and imperative
approaches. Or usually, there exists a (non-standard) extension of
SQL or an SQL-like language, but there are also various system-
specific query languages. Another system-specific difference is
in the model representing the result – the systems usually only
use the original core model.

To address the indicated problems, we introduce a new mem-
ber of our multi-model family – a tool called MM-quecat2 which
enables to query the abstract categorical representation and re-
turn the result in the abstract categorical model. The main con-
tributions can be summarised as follows:

• The unifying categorical representation enables us to rep-
resent all popular data models (relational, key/value, doc-
ument, column, array, and graph) and all types of their
combinations (embedding, references, and redundancy).

• The categorical representation can be viewed as a graph
and thus queried using a standard and verified graph query
language. For this purpose, we introduce the Multi-Model
Query Language (MMQL) based on well-known and user-
friendly SPARQL [10] notation.

• We target a wide range of users. The SPARQL notation
is popular amongst advanced database/web users. Fur-
thermore, we introduce a graphical notation of the query
language for less technically skilled users, who can access
the data using a manual graph exploration.

• In both cases, the SPARQL query is decomposed and trans-
lated to the query languages of the underlying DBMSs,
and the intermediate results are then merged to the final
result. The categorical representation of the result can
then be transformed into any (combination of) models.

• Since the multi-model databases naturally support cross-
model redundancy, there can exist multiple decomposition
plans. We enable to view the plans and let users choose
their preferred one.

2https://www.ksi.mff.cuni.cz/~koupil/mm-quecat/ (including a demo video)
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• We present a prototype implementation of MM-quecat
demonstrating the indicated advantages and general user-
friendliness of the approach shielding the user from the
implementation specifics of particular DBMSs.

Note that the unifying categorical representation does not
need to distinguish whether the multiple models reside in a single
DBMS or a set of DBMSs (a polystore). Hence, we shield the user
from the need to know system-specific query languages, both
when migrating data and when using more than one DBMS.

Paper Outline. In Section 2, we review related work. Section 3
introduces the categorical representation of multi-model data.
Section 4 describes the presented multi-model querying tool. In
Section 5, we outline its demonstration.

2 RELATEDWORK
According to our survey [8], the supported query languages
in existing multi-model databases vary significantly. The most
common approach is an extension of SQL or an SQL-like language.
Besides non-standard proposals, such as SQL++ [9], only two ISO
standard extensions exist for multi-model querying of relational
and documentmodel – SQL/XML [2] and SQL/JSON [3]. However,
such an approach requires the user to distinguish the underlying
data representation.

As we have mentioned, we base the unification of the multi-
model data on its categorical representation, whereas a (small)
category can be viewed as a graph. Several approaches already
inspired us in this effort, together with the support for their
querying. Spivak et al. [11] utilize category theory to represent
relational data and their querying using the Categorical Query
Language (CQL). It is based on a set of operations with categori-
cal schemas and functors that realize, e.g., join, intersection, or
deletion. Similarly, CGOOD [13] utilizes a categorical abstraction
of the object-relational data model. The respective query lan-
guage is based on graph pattern matching. The authors compose
composite operations (e.g., projection, join, or difference) from
a set of basic operations (e.g., addition and deletion). Similarly,
the Algebraic Property Graph [12] (APG), an abstract categorical
representation of a property (labeled) graph and RDF data, can
be queried using SPARQL. However, all these approaches do not
consider multi-model data in its full generality.

Besides our proposal [5], multi-model data is also considered
in paper [14], which extends Spivak’s approach for relational
data towards other models. The authors also propose the usage
of complex categorical constructs, namely pullbacks, for join-
ing intermediate results of a complex multi-model query. A tool
based on these formal basics, enabling querying of multi-model
data using Haskell, is introduced in [15]. However, the complex-
ity of this robust proposal can be seen as the main drawback
since the user-friendliness and, thus, expected wide usability is
questionable. The redundancy is also not considered.

3 CATEGORICAL CONCEPTUAL MODEL
Let us first remind the basic notions of the category theory. A
category C = (O,M, ◦) consists of a set of objects O, set of
morphisms M, and a composition operation ◦ over the mor-
phisms. Each morphism is modeled as an arrow 𝑓 : 𝐴 → 𝐵,
where 𝐴, 𝐵 ∈ O. We must also ensure transitivity (𝑔 ◦ 𝑓 ∈ M for
any 𝑓 , 𝑔 ∈ M, 𝑓 : 𝐴 → 𝐵, 𝑔 : 𝐵 → 𝐶), associativity (requiring
ℎ ◦ (𝑔 ◦ 𝑓 ) = (ℎ ◦ 𝑔) ◦ 𝑓 for any suitable 𝑓 , 𝑔, ℎ ∈ M), as well
as introduce an identity morphism 1𝐴 for each object 𝐴 such
that 𝑓 ◦ 1𝐴 = 𝑓 = 1𝐵 ◦ 𝑓 for any 𝑓 : 𝐴 → 𝐵. A category can

be visualized as a multigraph, where objects act as vertices and
morphisms as directed edges.

Schema and Instance Category. The core of conceptual mod-
eling of multi-model data in our tools is formed by the schema
category. To simplify the understanding, we explain it using the
terms known from the ER model, though we do not need to
distinguish them, as they are all treated in the same way.

A schema category S is defined as a tuple (OS,MS, ◦S). Objects
in OS correspond to the ER model’s entity types, attributes, and
relationship types. Morphisms in MS connect appropriate pairs
of objects. The explicitly defined morphisms are denoted as base,
those obtained via the composition ◦ as composite.

An instance category 𝐼 = (OI,MI, ◦I) is defined to represent
data instances in a unified way. This category structurally corre-
sponds to the schema category, i.e., a functor 𝐹 : 𝐼 → 𝑆 assigns
a schema to the data, similar to [13], but it bears the particular
data instances.

(For precise formal definitions with technical details see [5].)

Example 3.1. Figure 2 depicts the schema category of sample data
from Figure 1 and the instance category of its respective part. □
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Figure 2: An example of schema category (a) and instance
category (b) of data from Figure 1

Mapping. The decomposition of a schema category S, eventu-
ally partial or overlapping, is defined via a set of mappings, as
also formally defined in [5] and omitted for paper length. Each
mapping describes where and how data instances of a subgraph
of S (following specific conditions) are stored in a selected single-
/multi-model DBMS.

Example 3.2. The colors in Figure 2 depict the decomposition into
distinct models indicated in Figure 1. □

Since the terminology within the particular popular models
differs, we provide the unification of respective model-specific
terms in [7]. For instance, a kind corresponds to a class of items
represented in each model, e.g., a relational table or a collection
of JSON documents. For each kind, the mapping specifies the
respective DBMS, its name, its root object in S, and an access
path which recursively describes the structure of a kind, i.e.,
its (simple or complex) properties, relatively to the root object.
The description is rich enough to cover various specifics of the
underlying models and their combinations, such as properties
with user-defined, anonymous, or dynamically-derived names;
properties inlined frommore distant parts of the categorical graph
(via composite morphisms); auxiliary properties used, e.g., for
logical grouping of a set of properties; order-preserving/order-
ignoring sets of sub-properties, etc.
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4 QUERY ENGINE MM-QUECAT
To enable a robust and user-friendly way of querying over the
categorical graph, we have implemented a prototype tool called
MM-quecat. It is an extensible modular framework that belongs to
our family of tools built on top of the categorical representation of
multi-model data. Currently it supports the following models and
DBMSs: PostgreSQL3 (relational and document, i.e., multi-model),
Neo4j4 (graph), MongoDB5 (NoSQL document), and Apache Cas-
sandra6 (columnar model). For the purpose of expressing the
query, we proposed a modification of SPARQL, i.e., a popular lan-
guage for querying graph data, called MMQL (see Section 4.1). To
extend the target group of users, we also introduce its graphical
expression/visualization.

Figure 3: A screenshot ofMM-quecat

In Figure 3 we provide a screenshot of MM-quecat. On the left,
we can see a similar categorical model and decomposition as in
Figure 2. Note that for simplicity, we define the decomposition
at the level of DBMSs, which can be single- or multi-model. On
the right, there is an MMQL query accessing the data. The col-
ors of the nodes represent the objects used in the query (blue),
projections (purple), aggregation (red), and filtering (orange).

In general, MM-quecat evaluates a query naturally: The speci-
fied query is first mapped to the schema category, and, depend-
ing on its decomposition, it is decomposed into particular query
parts. The query parts are then translated into the Domain Spe-
cific Languages (DSLs) and evaluated in the respective DBMSs.
The returned intermediate results are then transformed into the
categorical representation and merged into the resulting schema
category. Eventually, the remaining part of the query evaluation
is applied to the merged data. Depending on the user require-
ments, it can be transformed into the selected (multi-model)
representation.

Example 4.1. Let us consider the following multi-model query over
the schema in Figure 2 and data in Figure 1: “For each pair of friends,
count the number of products ordered by both friends. Sort the results in
descending order according to the number of products.”

Figure 4 depicts the workflow of evaluation of the query. In Phase
I. the user specifies the MMQL query over the schema category. The
body of the SELECT clause describes the hierarchical structure of the
result, where we want to return the customer’s first and last name and the
number of common products ordered by both customers. The WHERE
clause describes the graph pattern that we match to the data. We also

3https://www.postgresql.org/
4https://neo4j.com/
5https://www.mongodb.com/
6https://cassandra.apache.org/_/index.html

have a filtering condition in clause FILTER to eliminate duplicate pairs of
friends in swapped order, we apply aggregation COUNT on DISTINCT
pairs, and we sort them using clause ORDER BY.

In Phase II., the query is decomposed into two query parts: the graph
(blue) model of Neo4j and the document (green) model of MongoDB.
In Phase III. the queries in the respective DSLs are provided, namely
the blue query for Neo4j and the green query for MongoDB. Phase IV.
involves evaluation of the queries and gaining the results. In Phase V. we
can see their representation as the instance categories whereas the query
is finalized, i.e., the data is merged, and the remaining query operations
are applied in Phase VI. In Phase VII. we can see its transformation to
the relational model, i.e., neither of the original models is used. □

SELECT {

    _:friendsOrders friend ?friendA ;

        friend ?friendB ;

        numProds COUNT(DISTINCT ?comProd)

            AS ?numProds .

    ?friendA name ?friendAName ;

        surname ?friendASurname .

    ?friendB name ?friendBName ;

        surname ?friendBSurname .         

} WHERE {

    ?friendA -4/5 ?friendB .

    FILTER(?friendA < ?friendB)


    ?friendA -9/19/-12/-13 ?comProd ;

        1 ?friendAName ;

        3 ?friendASurname .

    ?friendB -9/19/-12/-13 ?comProd ;

        1 ?friendBName ;

        3 ?friendBSurname .

} ORDER BY ?numProds DESC

Phase I: Multi-model querying

Phase II: Query decomposition into query parts

Phase III: Query parts translation into DSL

Phase IV: Evaluation of a translated query part (locally)
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MATCH (a:Customer)-[:Friends]->(b:Customer)

RETURN a.id, a.name, a.surname, b.id, b.name, b.surname;

db.order.find(

  { },

  { _id: 0, customerId: 1, "items.productId": 1 } );
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 { customerId: 1, items: [
     { productId: P5 }, { productId: P7 }, { productId: P29 } ] }

 { customerId: 2, items: [

     { productId: P11 }, { productId: P29 } ] }


 { customerId: 3, items: [
     { productId: P11 }, { productId: P29 }, { productId: P7 } ] }


Phase V: Transformation into unified representation

Phase VI: Finalization of query evaluation

Phase VII: Transformation into desired representation
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Figure 4: A workflow of query evaluation

As we can see, some phases of the evaluation process are per-
formed with an external tool. Namely, the evaluation of query
parts is ensured natively by the respective single/multi-model
DBMSs. Also, the process of transforming data from and to the
categorical representation is ensured by the multi-model trans-
formation library of MM-cat [7]. The core issue of the process
and the main contribution of MM-quecat is the decomposition
of the query into query parts, the translation of MMQL to DSLs,
and the merging of the intermediate results together with the
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eventual final evaluation of the remaining parts of the query. The
translation process corresponds to the mapping of constructs
of MMQL depicted in Table 1. Query decomposition reflects the
decomposition of the schema category. Inspired by [1, 13], for
merging and unified processing of the intermediate results, we
utilize categorical constructs, such as product (Cartesian product),
pullback (join), coproduct (disjoint union), or pushout (union),
to be formally described in a separate paper.

4.1 Multi-Model Query Language (MMQL)
As we have mentioned, the multi-model query language sup-
ported in MM-quecat, called MMQL, directly re-uses the syntax
and semantics of SPARQL (for example, see Figure 4, Phase I)
with the following modifications: Instead of RDF graph data we
query the schema category, so, e.g., we do not use IRIs, but we
query over schema category, and the result is represented as an
instance category. For this purpose, we modify clause SELECT
inspired by clause CONSTRUCT. The other clauses’ semantics
remain unchanged (respecting the different domains).

The particular constructs supported in MMQL are listed in
Table 1 together with the comparison with the constructs com-
monly used in particular models and their database represen-
tatives. (Due to space limitations, we only compare with the
currently supported database representatives.)

Table 1: Comparison of constructs supported inMMQL and
in single-model query languages

MMQL PostgreSQL
(SQL)

Neo4j
(Cypher)

MongoDB Cassandra
(CQL)

FROM FROM - db.collection FROM
SELECT SELECT RETURN $project SELECT
WHERE WHERE WHERE $match WHERE
FILTER condition(s) condition(s) condition(s) condition(s)
COUNT, MIN,
MAX, AVG

GROUP BY ...
HAVING

COUNT, MIN,
MAX, AVG

aggregate(...) GROUP BY

graph pattern JOIN MATCH $lookup -
OPTIONAL OUTER JOIN OPTIONAL

MATCH
- -

UNION UNION UNION $unionWith -
ORDER BY ORDER BY ORDER BY sort ORDER BY
OFFSET OFFSET SKIP skip -
LIMIT LIMIT LIMIT limit LIMIT
DISTINCT DISTINCT DISTINCT distinct DISTINCT
AS AS AS "alias" : "$field" AS
{ SELECT ... } ( SELECT ... ) CALL

MATCH
- -

4.2 Redundancy and Query Plans
Another essential feature of the proposed categorical representa-
tion and thus all our related tools, including MM-quecat is the
support for redundancy. For more efficient query evaluation (a
part of) the data can be stored in multiple models, corresponding,
e.g., to classical materialized views. Consequently, the query can
be evaluated in different ways, i.e., using different evaluation
plans. MM-quecat supports this feature at the multi-model level,
i.e., it detects all query decompositions into query parts. Then it
evaluates the cost of such decomposition using a combination
of evaluation of the query parts and their merging. We assume
that either the underlying DBMS or a system-specific wrapper
provides such a cost to enable the estimation for a particular
query plan. The user can then analyze the query plans, including
their costs.

Example 4.2. In Figure 5 we provide an alternative evaluation of
the graph (blue) query part from Figure 4 Phase II using the relational
(purple) model. Its cost is higher due to the need to evaluate two joins. □

SELECT temp.id, temp.name, temp.surname,
    customer.id, customer.name, customer.surname
FROM (customer RIGHT JOIN friends
    ON customer.id = friends._from)
    AS temp LEFT JOIN customer
    ON temp._to = customer.id;

Id
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Name
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4 5

Figure 5: An alternative query part and its translation

5 DEMONSTRATION OUTLINE
In our demonstration, we will first briefly show the whole context
of MM-quecat, i.e., how the user can create a schema category.
Having explained the unifying graph representation, we will
demonstrate the usage of MMQL, i.e., the range of constructs that
can be used and the way they are translated into DSLs, i.e., the
query plans. For this purpose, we will create a representative set
of queries inspired by the multi-model benchmark UniBench [16].
Finally, we will demonstrate the support for multi-model redun-
dancy, i.e., different query plans.

As the tool is currently a prototype part of a robust research
aim targeting self-adaptation of multi-model databases with re-
gards to the efficiency of query evaluation, we will discuss not
only the advantages of the unifying categorical representation
but also the open problems and challenges of multi-model query-
ing.
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