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ABSTRACT

This tool demo features an original approach to model inference
or schema extraction from collections of JSON documents: We
automatically detect tagged unions, an established design pattern
in hand-crafted schemas for conditionally declaring subtypes.
Our “Tagger” approach is based on the discovery of conditional
functional dependencies in a relational encoding of JSON objects.
We have integrated our prototype implementation in an open
source tool for managing data models in schema-flexible NoSQL
data stores. Demo participants can interactively apply different
schema extraction algorithms to real-world inputs, and compare
the extracted schemas with those produced by “Tagger”.

1 INTRODUCTION

JSON is a highly popular format in data exchange, and JSON
Schema is the de facto standard for declaring schemas for collec-
tions of JSON data. Scenarios for employing JSON Schema are
manifold [17]. In this tool demo, we target the problem of model
inference, specifically the extraction of a JSON Schema declara-
tion from a collection of JSON documents, an active research
field [3, 10, 22]. We focus on the so far unexplored discovery of
tagged unions. Tagged unions are also known as discriminated
unions, labeled unions, or variant types, and constitute a recom-
mended design pattern in JSON Schema modeling [9]. They have
been confirmed to appear in real-world schemas [4].

We next motivate tagged unions by an example. In the Geo-
JSON data to the left of Figure 1, the array beginning in line 2
holds several objects which are distinguished by the value of
property type, i.e., Point and LineString. Point coordinates
are encoded as an array of numbers, while line coordinates are
encoded as an array of points. In such tagged unions, one prop-
erty serves as the tag (in our example, property type), and im-
plies a subschema for its sibling properties (in our example, the
coordinates). In GeoJSON, the tag type distinguishes six differ-
ent “geometries” [6].

Thus, compared to plain union types, tagged unions describe
not only which different subschemas a property may have, but
also under which conditions certain subschemas apply.

To the right of Figure 1, we show a matching subschema where
if-then-else operators declare a tagged union. We informally
describe the schema semantics: If the object in question has a
property labeled type with the value Point, then the value of
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property coordinates (should the property exist) must be an
array of integers. If the property type exists and has the value
LineString, the value of coordinates (if present) must be an
array of points, and hence, an array of integer arrays.

Approach and contribution. In this tool demo, we target the au-
tomated discovery of tagged unions in JSON documents. Our
approach relies on the discovery of conditional functional depen-
dencies (CFDs) [5], based on a relational encoding of the JSON
objects reachable by the same path. To prevent overfitting, filter-
ing heuristics are applied to the detected CFDs. The recognized
CFDs are then translated to JSON Schema.

While our running example is based on GeoJSON, our ap-
proach is not restricted to this specific format, and we also work
with further datasets in our tool demo.

Own prior work. We have integrated Tagger within Josch, an
open source tool that was developed by us in earlier work, and
that has been the subject of earlier tool demos [11, 12]. Josch
integrates several schema extraction libraries, and allows to con-
figure a sample size. The extracted schemas can be edited and
input data can be validated against the schemas. Additionally,
Josch integrates different libraries for JSON Schema containment
checking, allowing to compare the extracted schemas.

We extended Josch by integrating Tagger, so that users may
conveniently compare the schemas extracted by Tagger against
other libraries within the same tool.

An article describing the theory behind Tagger in greater detail
than possible here, as well as first experiments with real-world
data, was presented at the DEco workshop [14].

Artifact availability. The demoed tool is open source:
https://github.com/sdbs-uni-p/tagger-edbt2023

2 TAGGED UNIONS IN JSON SCHEMA

We assume that our readers are familiar with JSON syntax and
semantics. The JSON Schema language also uses JSON syntax.
We refrain from formally introducing its full semantics, and in-
stead defer to Pezoa et al. [19], and make do with an informal
introduction of the operators relevant in our context.

Tagged unions constitute a design pattern used in practice [4,
9]. There are various patterns how to encode tagged unions in
JSON Schema. In JSON Schema Draft 7 [24], we may employ
if-then-else expressions which are of the following form:

"if": {S1}, "then": {S2}, "else": {S3}
Here, Sy, Sy, and S3 are subschemas. If S is satisfied, Sy must be
satisfied as well, otherwise S3 needs to be satisfied. Naturally, the
else case may be omitted.

10.48786/edbt.2023.75


https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.75

1{ "type": "GeometryCollection", ="

2 "geometries": [ ’—"’

3 { "type": "Point",”

4 "coordinates": [30,10] },

5! { "type": "Point",

6 "coordinates": [40,15] },

7 { "type": "Point",

8 "coordinates": [50,20] 1},

9 { "type": "Point", =TT T T T
10 "coordinates": [70,40] },_,—‘——‘

11 { "type": "LineString",~ ~

12 "coordinates": [ [565,5], [10,30], [10,10] 1 1},
13 { "type": "LineString",

14 "coordinates": [ [30,4], [10,30], [40,40] 1 1},
15 { "type": "LineString",

16 "coordinates": [ [1,40], [8,20], [50,45] 1 } 1 }
17 { "type": "LineString",

18 "coordinates": [ [10,40], [8,20] 1 } 1 }

Pl TRETg

2 "properties": {

3 "type": { "const": "Point" } },

4 "required": ["type"] },

5 "then": {

6 "properties": {

7 "coordinates": { "type": "array",

8 "items": { "type": "integer" } } } 1},

9 "else": {
TOP» "if": {

11 "properties": {

12 "type": {

13 "const": "LineString" } },

14 "required": ["type"l },

15 "then": {

16 "properties": {

17 "coordinates": {

18 "type": "array",

19 "items": { "type": "array",

20 "items": { "type": "integer" } } } } } }

Figure 1: Left: GeoJSON sample. The value of property type (here "Point" and "LineString") determines the subschema of
property coordinates. Right: JSON Schema snippet declaring the tagged union. Dashed arrows map from data to schema.

Prior to Draft 7, tagged unions were often described by rewrit-
ing the implication A = B to —=A V B, using the already existing
expressions for disjunction and negation. While this leads to less
comprehensive schemas [9], it is actually one of the main use
cases for the operator not in real-world schemas [4].

Example 2.1. Let us consider our running example. Figure 1
shows an if-then-else expression in a JSON Schema declara-
tion for GeoJSON data. In the JSON documents on the left, the
value of property type determines the subschema of property
coordinates. Blue arrows point to the corresponding if-then
expressions in the schema on the right-hand-side.!

3 RELATED WORK

Our work on Tagger builds upon existing work on schema ex-
traction and dependency discovery. Accordingly, we review the
related work in these areas.

JSON schema extraction. Within the last decade, several ap-
proaches for JSON schema extraction have been proposed. How-
ever, tagged unions have received very little attention so far:
According to recent surveys [8, 23], each comparing the same
five approaches [3, 10, 13, 16, 21], by Izquierdo et al. [13], Klettke
et al. [15, 16], Sevilla et al. [21], Frozza et al. [10] and Baazizi et
al. [3], three of the five analyzed approaches are able to detect
union types. However, individual inspection reveals that none
of them targets tagged unions. Notably, Baazizi et al. [3] outline
how to extend their schema inference approach to include tagged
unions. However, they do not provide an implementation for this
particular feature. Moreover, our approach differs conceptually
from their work, which relies on typing.

To our knowledge, we present the first implementation of
JSON Schema extraction capable of detecting tagged unions.

Based on their approach, Baazizi et al. [2] further propose an
interactive tool for schema extraction, allowing the user to tune
the precision of the schema to the desired level.

A recent contribution by Spoth et al. [22] focuses on iden-
tifying and reducing ambiguities in schema extraction. While
addressing common encoding patterns found in real-world JSON
data, this approach does not feature the discovery of tagged
unions either.

1JSON Schema employs a conditional semantics: Adding required in the if clause
causes it to be only true when the properties (here: type) are actually present.
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To the best of our knowledge, tagged unions were also not
addressed by work on XML schema discovery. An overview of
the literature on this topic is available in our earlier work [14].

Dependency discovery. Our approach relies on the discovery of
conditional functional dependencies in a relational encoding of
JSON objects. In the relational model, functional dependencies [1]
capture dependencies between attribute values. Conditional func-
tional dependencies [5] are a generalization and apply only to a
subset of tuples (commonly identified by a conjunctive query).

Mior [18] approaches the issue of finding nested functional
and inclusion dependencies in JSON data, adapting available
algorithms for relational data. However, this approach does not
consider the special case of conditional functional dependencies.

4 THE TAGGER APPROACH

Our discovery of tagged unions relies on a relational encoding
of all JSON objects reachable by the same labeled path from the
document root. The underlying assumption is that such objects
have related semantics. We next provide the intuition behind this
encoding, describe the discovery of dependencies, and finally,
how we can capture them as constraints in JSON Schema.

Relational encoding. The relational encoding assigns two
columns for each property: one for its value and one for its
type. For the GeoJSON data from Figure 1 (left), and the path
/geometries[*] (using JSONPath syntax, matching the array
starting in line 2), each object in the array of geometries corre-
sponds to one tuple, and is assigned some unique identifier. We
record the atomic value and subschema of properties type and
coordinates, such as type.value and type.type.

We encode each in a separate column, and restrict ourselves
to recording primitive values (consequently, coordinates.value
is not captured). We obtain the following tuples for the objects
starting in lines 3 and 11:

id  type.value type.type coordinates.type
3 "Point" "string" t
11  "LineString" "string" t’

Above, t and t’ encode the two distinct types of coordinates
occurring in Figure 1:

"o " on

: "array”,

t = {"type items": {"type": "integer"}}
t' = {'type": " integer"}}}

For further details, including examples, we refer to [14].

array”, "items": {"type":

now "on

array”, "items": {"type":
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Figure 2: An overview of the system architecture, consisting of Josch, MongoDB, third-party schema extraction tools and
Tagger. Contributions original to this demo are labeled as “New”. The Josch module labeled "Ext." has been extended by

several new third-party schema extraction tools.

Dependencies. From the relational encoding, we derive condi-
tional functional dependencies. We refer to Bohannon et al. [5]
for a formal definition, and remain on the level of intuition.

We restrict ourselves to unary dependencies of the form

[A.value = const] — [B.type = o]

with only one attribute on the left-hand and right-hand side,
where the left-hand-side denotes the value of the candidate tag,
and the right-hand-side a property with an implied subschema.
Above, A and B are distinct property labels, const is a basic-value
constant, and o the implied subschema.

Using state-of-the-art algorithms [7], we can then derive the
following dependencies, with t and ¢’ defined as above:

[type.value = "Point"] — [coordinates.type = ¢] (1)
[type.value = "LineString"] — [coordinates.type = ¢] )

These dependencies describe that if the value of type is the
string constant Point, the type of property coordinates must
be an array of integers (1) and if the value of type is LineString,
coordinates must be an array of integer arrays (2).

In working with real-world JSON data, not all detected depen-
dencies are meaningful. This is an inherent problem in depen-
dency discovery. We can apply a range of practical heuristics,
such as a configurable threshold and the removal of trivial con-
straints, to reduce overfitting to the input. We describe these
heuristics in more detail in our workshop paper [14]. Our demo
participants may interactively explore their effects.

Encoding in JSON Schema. Once the conditional functional
dependencies are discovered, it is straightforward to encode them
as constraints in JSON Schema, along the example in Figure 1.

Limitations. Generally, CFD discovery is computationally ex-
pensive [20], scaling exponentially in the number of attributes.
We therefore restrict our algorithm in the current state to unary
CFDs. Moreover, our current implementation is main memory
based, which imposes a restriction on the input size.

5 SYSTEM ARCHITECTURE

Figure 2 shows the overall system architecture, where the Tagger
approach is integrated into the tool Josch. The modular archi-
tecture makes it easy to integrate available schema extraction
tools. In our demo, we employ several tools for JSON Schema
extraction, such as the implementations of Klettke et al. [16],
Frozza et al. [10] and Spoth et al. [22].
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The collections of JSON documents are managed in a Mon-
goDB instance. The user selects a collection of JSON documents
(step 1), and initiates the extraction of a JSON Schema, leverag-
ing an integrated third-party tool of their choice (step 2). The
third-party tool performs schema extraction (step 3) and returns
the resulting JSON Schema S; to Josch (step 4).

Next, the extraction of tagged unions with Tagger is triggered
(step 5). Tagger extracts tagged unions from the same documents
as the third-party approach (step 6) and returns the JSON Schema
encoding of the tagged unions T (step 7). Finally, the conjunction
allof: [S;, TJofbothschemasis created, yielding a composite
schema that enforces the tagged unions on top of schema S;
(step 8). Thus, we can immediately leverage state-of-the-art tools
for schema extraction.

6 DEMONSTRATION OVERVIEW

Tagger offers an interactive GUI for extracting and comparing
JSON Schema. Figure 3 shows a screenshot of this GUL, with a
sample JSON document on the left and the extracted composite
JSON Schema on the right.

In addition, our demo participants may glimpse “under the
hood” of Tagger, and inspect the discovered dependencies before
and after applying heuristics for filtering.

Our demo uses several datasets, such as geo-spatial data (Geo-
JSON data from open government data and OpenStreetMap, data
in the related TopoJSON format, encoding maps of Germany
and the EU) or metadata about New York Times articles. We in-
clude data with missing properties, and discuss from case-to-case,
which patterns can be handled by Tagger, and which patterns
require further research.

Our planned demonstration scenario is as follows:

(1) We introduce JSON Schema, point out tagged unions oc-
curring in real-world schemas (e.g., as used in Minecraft,
and GitHub issue forms), and the concept of applying
subschemas conditionally using if-then-else.

(2) We give an overview of the capabilities of third-party
schema extractors and their limitations.

(3) We then present Tagger. Participants are invited to interact
with the GUI, extracting schemas from both synthetic and
real world JSON documents provided by us, as well as
ones they may enter and edit (see (D and (2) in Figure 3):
e A composite schema (2), consisting of the schema ex-

tracted by a third party tool 3) and Tagger, can be ex-
tracted from the JSON documents (6).
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5
6 "type": "Feature",
o "geometry": {
8 "type": "Polygon",
9 "coordinates": [
10 [
11 [
12 -1.8730637086,
13 53.8749068633
14 1,
15 [
16 -1.8730629564,
17 53.8749067727
18 1,
19 [
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160 "then": {

161 "properties"”: {
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Figure 3: The GUI for schema extraction with Tagger, highlighting the JSON input data (1), the extracted schema (2), selection
of the third-party schema extractor (3), settings for sampling (@), and Tagger heuristics (5), as well as buttons for schema
generation (6), random document selection (7) and validation of documents against the schema (8).

e Participants may experiment with the heuristics avail-
able in Tagger (3 and the sample size (@), extract-
ing coarse- to well-fitted, and ultimately, over-fitted
schemas. This reveals the difficulties in configuring suit-
able settings. Further, they may find that settings work-
ing well for one dataset yield poor results on another.

e We prepare a number of “negative” examples of JSON
documents that are not used during schema extraction.
These examples deliberately violate the schema to show-
case the added value of tagged unions over plain union
types. We insert these negative examples in the editable
text field D and validate them against the previously
extracted schema.

e Participants may peek under the hood of Tagger, inspect-
ing the dependencies detected by Tagger in a concise
format, similar to the notation used in Section 4, and
showing the number of detected dependencies before
and after heuristics-based filtering.

With our demo, we aim to inspire ideas for extracting schemas
that resemble hand-written schemas and therefore, are more
likely to be considered comprehensible to human consumers.
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