Demonstration Paper

O

proceedings

REQUIRED: A Tool to Relax Queries through Relaxed
Functional Dependencies

Loredana Caruccio, Stefano Cirillo, Vincenzo Deufemia, Giuseppe Polese, Roberto Stanzione
Department of Computer Science
University of Salerno
Fisciano, Salerno, Italy
{lcaruccio,scirillo,deufemia,gpolese,rstanzione}@unisa.it

ABSTRACT

Query relaxation aims to relax the query constraints in order to
derive some approximate results when the answer set is small.
In this demo paper, we present REQUIRED, an automatized,
portable, and scalable query relaxation tool leveraging metadata
learned from an input dataset. The intuition is to use relation-
ships underlying attribute values to derive a new query whose
approximate results still meet the user’s expectations. In par-
ticular, REQUIRED exploits relaxed functional dependencies to
modify the original query in two different ways: (i) relaxing
some query conditions by replacing the equality constraints with
ranges and/or collections of admissible values, and (ii) rewriting
the original query by replacing some or all the attributes involved
in the conditions of the query with attributes related to them.
Our demonstration scenarios show that REQUIRED is effective
in properly relaxing queries according to the considered strategy.

1 INTRODUCTION

With the proliferation of devices capable of connecting to the In-
ternet, the Web has become populated with numerous platforms
that integrate data from different sources and enable users to
conduct even complex searches in a few steps. For instance, it is
not unusual for a user to buy products on e-commerce platforms
among thousands of available products, after performing several
queries based on his/her needs.

Motivation. Considering the scenario provided above, it is
worth to highlight that the capability of gathering proper results
from a large amount of available data is not a trivial task, even
for expert users (users, in the following), such as DBA and/or
researchers, which would use such platforms for different kinds
of analysis processes. In this scenario, since the user might not
know the entire data collection, it is not uncommon to receive
none or few results upon entering a query on a dataset. In such
cases, the user must manually modify the query parameters until
the desired results are obtained. This kind of operation is time-
consuming, also providing an uncomfortable user experience.
To address these issues, Query Relaxation techniques aim to
automatically relax the parameters of a query in order to obtain
additional results related to the ones of the original query [5].

Contribution. In this paper, we present REQUIRED (RElaxing
QUerles through RElaxed Dependencies), a query relaxation tool
leveraging metadata extracted from the dataset to extend and
relax the user’s query and derive a larger answer set, which is
still compliant with the intent expressed by the user. Through
its simple graphical user interface, REQUIRED allows to execute

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Series ISSN: 2367-2005

823

queries on a dataset and visualize the obtained results. Moreover,
it provides the possibility to enlarge the query answer set by
considering a set of Relaxed Functional Dependencies (RFDs),
which can be directly loaded from the tool interface. Notice that,
REQUIRED does not prescribe to use a specific RFD discovery
algorithm, but it is able to parse collections of automatically
discovered RFDs and rank them based on a proper utility strat-
egy (see Section 2.2). Thus, the user can select an RFD that will
then be used for automatically deriving the relaxed query. As a
consequence, REQUIRED is able to (i) extend the user’s original
query by replacing the equality constraint in accordance with
the thresholds defined by the selected RFD, and/or (ii) completely
rewrite the original query by replacing attributes recalled in the
query conditions with those determined by the considered RFD.
With respect to the first version of the methodology underlying
REQUIRED [5], which has proven effective on several real-world
datasets, in this work we enable the possibility to simply extend
the query conditions, and define a proper RFD ranking strategy
to allow users to first focus on RFDs that are more compliant with
the conditions of the original query.

Related Work. In recent years, many proposals have explored
the problem of query relaxation from a methodological point of
view. Some of these works are based on the generation of special
statistical summaries to support the rewriting of the user’s query
[13], whereas other approaches rely on the use of machine learn-
ing models. In particular, in [10] the authors use a sample of the
dataset to learn decision rules, which are then considered by a
nearest-neighbor model to generate an alternative query if the
original one did not yield results. This method has been subse-
quently revisited in [11], as the previous version tended to gener-
ate queries that were too simple when the algorithm was trained
on small datasets. A first proposal entailing the exploitation of
data dependencies, i.e., Approximate Functional Dependencies
(AFDs) [7], to capture relationships holding among the attributes
and to pick a heuristic for the relaxation process, has been de-
fined in [12]. In particular, the authors’ intuition was that the
attributes with the least influence on the other attributes should
be relaxed first aiming to preserve the semantics of the original
query as much as possible. On the other hand, other approaches
involve the user in an interactive relaxation process, leading to
the definition of semi-automatic tools. Among these, Albarrak et
al. [1] proposed a Web-based prototype for refining range queries,
while [9] introduces a Web application based on a probabilistic
framework. More recent works explore the relaxation of queries
on spatiotemporal data [2], and study the application of query
relaxation for similarity search of RDF nodes [6]. Furthermore, Li
et al. [8] applied query relaxation for semantic association search,
which returns an entity-relation subgraph. With respect to these
approaches, REQUIRED provides, to the best of our knowledge,
both a high level of automation and a simple user interface, which
better motivates users to engage in query relaxation processes.

10.48786/edbt.2023.74

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.74

2 RELAXING QUERIES THROUGH
METADATA

In this section, we introduce the concepts of Functional Depen-
dency (Fp) and Relaxed Functional Dependency (RFD). Then, we
present the query relaxation problem and the proposed solution.

2.1 Preliminaries

Consider R to be a relation schema defined over a set of attributes
attr(R), where each attribute A € attr(R) has a domain dom(A).
Given an instance r of R, a Functional Dependency (FD) X — Y (X
implies Y) is an integrity constraint among two sets of attributes
X,Y € attr(R). X is referred to as left-hand side (LHS), while Y
is the right-hand side (RHS). Thus, by denoting with t;[X] the
projection of the tuple ¢;, the functional dependency X — Y is
said to be satisfied if and only if for every pair of tuples (¢1, t2),
whenever t1[X] = t2[X], then ¢1[Y] = £2[Y]. Over the years,
the concept of ¥p has been extended since the equality constraint
is too strict for real-world data, and, then, generalized under the
concept of Relaxed Functional Dependencies (RFD), which can be
classified in two categories: RFD. relaxing the equality constraint
by means of a similarity/distance operator, and RFD,s allowing
for the tolerance of a limited number of tuples that violate the
dependency. Notice that, since the methodology underlying the
proposed tool only uses RFD.s, in what follows we provide only
the definition of this type of RFDs. For a more general definition
of RFD see [4]. Formally, an RFD, is defined as follows:

¢ : Xo, — Yo,
where X = {Xj,..., X} and Y = {Y3,..., Y, } are attribute sets,
and ®1 = {¢x,,...,Px, } and &2 = {dy,,..., Py, } are conjunc-

tions of predicates, each defining a similarity/distance constraint
to be satisfied over the attribute value comparison process.

2.2 Exploiting RFD.s in query relaxation

A query relaxation process requires the modification of some of
the constraints of a query with the likelihood that the database
will contain more tuples satisfying them than those resulting
from the original query.

More formally, given a relation instance r of a relation R, and a
query Q whose answer set Q(r), |Q(r)| < |r| is derived through
a set of query conditions I' = {yg,, ..., yB, } such that yg, has the
form (B; = b;), a query relaxation process aims to find a query
Q" whose answer set Q’(r), |Q(r)| < |Q’(r)| < |r| is derived
through a novel set of query conditions I/, such that each tuple
tj € Q'(r) either satisfies conditions in T (ie., t; € Q(r)), or
satisfies conditions related to those in T'. To this end, we propose
a query relaxation methodology that exploits the concept of RFD.
in order to derive the set of related conditions I".

The proposed methodology provides users with the possibil-
ity to select an RFD, ¢ involving at least one attribute included
in the conditions defined by Q, and exploits ¢ to automatically
define Q’ according to correlations among data contained in ¢.
In what follows, we describe the two implemented query relax-
ation strategies, which permit to (i) extend query conditions by
including similar values, and (ii) change query conditions by
considering some others defined on alternative attributes, but
related to those involved in Q. Finally, we present the RFD, rank-
ing strategy enabling the user to properly select the RFD. that
will drive the query relaxation process.

Extending query conditions through RFD.s. Given a query Q
and an RFD¢ ¢ : Xp, — Ag,, foreach Be Xifyp=(B=b) €T

824

(i.e., yp is one of the conditions in Q), then we might rewrite Q in
Q' by replacing yg with y, = (b” like b), where like means that
either b — ¢ < b’ < b + ¢ (if B is a numerical attribute), with ¢
derived from the rFD, threshold on B, or " IN {b1,...,b;} (if B
is a textual attribute), where {b1, ..., b;} represent a collection of
values similar to b according to the similarity/distance constraint
associated to B in ¢.

Changing query conditions through RFDs. Given an RFD,
¢ : Xp, — Ay, and the answer set Q’(r) obtained from the
previous query extension strategy, then we might rewrite Q’
in Q" by replacing the condition y; from I according to the
following formula:

’’

Yp ¢’ like t[C]

teQ’ (r) \CEXUA A ycel

In other words, given the selected RFD. ¢, yj; rewrites yj, by
considering each tuple ¢ in Q(r) (ie., ¢ satisfies yg), and by con-
sidering each other attribute C involved in ¢ from which it is
possible to define a new condition according to the similarity/dis-
tance constraint associated to C and the value ¢[C]. Notice that,
no conditions are included for the attributes C involved in the
original query (i.e., yc € T), since these attributes are already
involved in the query relaxation process started from yc. Thus,
yp represents a disjunction of new conditions (i.e., one for each
tuple in Q’(r)), each rewriting y; with a conjunction of new
conditions over alternative attributes included in ¢ but not in Q.

Ranking and filtering RFD.s. The number of RFD.s holding on a
given dataset can be high. For this reason, it is important to have a
strategy for identifying the most useful ones holding on a relation
r. In the proposed methodology, we rank the collection of RFD.s
according to the following criteria that maximize the original
semantics of the query: (i) minimizing the LHS cardinality, (ii)
maximizing thresholds for the LHS attributes, (iii) minimizing
the threshold for the RHS attribute [3], and (iv) maximizing the
number of attributes involved in the original query conditions.
Moreover, a filtering strategy imposes the removal of all the
RFDs that do not include at least one attribute involved in the
conditions defined over the original query.

3 THE REQUIRED TOOL

The REQUIRED tool implements the methodology defined in
the previous section, and enables the user to perform a query
relaxation process driven by a set of RFD.s holding on the con-
sidered dataset. The system architecture and functionalities of
the proposed tool are described in the following subsections.

3.1 System Architecture

REQUIRED relies on a microservice architecture in which data is
exchanged through REST APIs by means of the JSON standard
format in order to guarantee high portability, scalability, and
maintainability of components. Although in this demo paper we
present a WebApp, the Back-end component of REQUIRED can
be integrated with a plugin into other systems, such as DBMS
clients. Figure 1 shows an overview of the system architecture. As
we can see, REQUIRED is separated into two containers: one in-
cluding the user interfaces (REQUIRED UI) and the other contain-
ing the services required for executing the system functionalities
(REQUIRED Back-end). The components of the user interfaces
access the REQUIRED services in the back-end through the APT
Client component. The latter interacts with the REQUIRED ser-
vices in the other container by invoking the Server component,

Docker Container Docker Container

NGINX Browser

WEB HJ|
APP

Lux

REQUIRED UI

Lo
Client

Figure 1: Overview of the REQUIRED Architecture.

REQUIRED Back-end

REST API
JSON

which is responsible for communicating with the other services
in the container and for executing their functionalities.

The user interacts with REQUIRED through a web browser
through which s/he can upload a dataset and submit queries.
Then, the user can upload the RFD.s holding on the dataset, so
that s/he can select the one best suited for relaxing the query.

Implementation details. The tool has been developed as an
application divided into multiple Docker containers. The Client
components have been designed as a monorepo architecture us-
ing Angular and NX frameworks, which permit to define reactive
interfaces and facilitate future updating of the functionalities
behind REQUIRED. The Server is a reactive RESTFul web service
that has been built as a Maven multi-module project using Java
and SpringWebFlux. Through Docker, both the SpringWebFLux
microservice and the Angular Ul application have been container-
ized in two Docker Images freely accessible on Docker Hub'.

3.2 Functionalities

REQUIRED is able to provide users with several functionalities,
requiring a minimum number of configurations for their execu-
tion, as shown in Figure 2. After uploading a dataset, REQUIRED
automatically identifies its attributes and their types, i.e., numer-
ical or textual, and it generates input fields with which the user
can interact (Figure 2a). Starting from this, REQUIRED provides
three main functionalities:

o Executing a query: We can execute a query by instantiat-
ing the attributes recalled in its conditions. REQUIRED au-
tomatically composes and enquires the dataset, and shows
the answer set within the table at the bottom of the in-
terface. Moreover, the percentage value on the top of the
table shows the rate by which occurrences contained in
the dataset match the executed query. Figure 2a shows
an example of the query performed on the Songs? dataset.
As we can see, we have set the values “Ed Sheeran” and
“80” for the attributes Artistname and Energy, respectively.
Consequently, REQUIRED enquires the dataset by execut-
ing the following query: “SELECT * FROM Songs WHERE
Artistname = ‘Ed Sheeran’ AND Energy = 80”.

e Extending a query: After executing a query, we can
upload a set of RFD¢s holding on the considered dataset.
Then, REQUIRED shows in a table, those automatically
ranks and, and shows the RFD.s in a table, after apply-
ing the ranking and filtering strategy (Figure 2b). After
that, we can select an RFD., and REQUIRED automati-
cally extends the query results according to the method-
ology described in Section 2.2. Figure 2c shows an ex-
ample of the extended query after selecting the RFD. ¢ :
Energy <y), Artistname <3) — Danceability(<3), leading
to the considerations of songs with similar Energy i.e., in

!https://hub.docker.com/u/rfdtoolbox/
2Spotify’s Top 50 Songs in 2019 available on Kaggle

825

the range [78, 82], and with similar Artistname, i.e., the
ones that have a Levenshtein distance < 3 with respect
to ‘Ed Sheeran’. As we can see, REQUIRED updates the
previous query by extending its conditions and rewrites it
in the following query: “SELECT * FROM Songs WHERE
Energy BETWEEN 78 AND 82 AND Artistname IN (‘Ed
Sheeran’)”. The extended query led to an increase in the
matching occurrences, reaching a rate of 4% with respect
to the whole dataset.

Relaxing a query: After extending a query, we can re-
lax some constraints according to the approach shown
in Section 2.2. In particular, after selecting the “Relaxed
Query” button, REQUIRED automatically re-defines some
constraints of the extended query by considering the RFD,
selected during the previous step. Figure 2d shows an ex-
ample of the relaxed query considering the selected RFD,
¢, which has led to the definition of the following new
relaxed query: “SELECT * FROM Songs WHERE Dance-
ability BETWEEN 69 AND 78”. As we can see, the resulting
occurrences have significantly increased with respect to
those achieved with the original query, reaching a match-
ing rate of 42% with respect to the whole dataset. Notice
that, if the query in the previous step already provides
more than 10 tuples in the results, REQUIRED triggers a
prompt warning to notify the user with a possible over-
relaxation of the query’s results in the application of this
relaxation step.

4 DEMONSTRATION PLAN

Our demonstration aims to show how REQUIRED can help users
in enriching the query answer set by exploiting RFD.s. In par-
ticular, REQUIRED permits to upload .csv datasets and RFD¢s
in JSON format resulting from an RFD, discovery process. We
use 5 datasets and the RFD.s extracted from them by using the
Domino algorithm [3]. In particular, starting from providing a
demonstration on the basic functionalities of REQUIRED, such
as loading a dataset and executing a query, we demonstrate two
scenarios: relaxing queries without and with REQUIRED.

Scenario 1. Relaxing query conditions without REQUIRED. Let
us suppose that we would like to execute a query in order to
collect and analyze several results concerning products, songs,
movies, and so forth. Thus, the user can set one or more selection
conditions, which should encounter desirable characteristics of
collected items. By focusing on queries that obtain no or few
results, it would be desirable to enable users to relax query con-
ditions in order to enlarge the output answer set. In this scenario,
the user can only consider the interface of REQUIRED shown in
Figure 2a to load a dataset and provide a query, then s/he can only
try to manually change query conditions in order to increase the
output answer set.

Scenario 2. Relaxing query conditions with REQUIRED. Starting
from the previous scenario, let us suppose that the user can use
REQUIRED in order to find good relaxation criteria based on data
correlations inferred from data, and/or consider alternative items
related to the ones characterized by the relaxed query conditions,
but by changing attributes involved in the query. This means that,
even though the provided query conditions possibly disappear
from the relaxed query, the user is sure that the relaxed result
set will contain items related to those under consideration. In
this scenario, the user can load a dataset and provide a query,
and then upload a set of RFD.s discovered through the Domino

= # © Query RFDs ExtendedQuery Relaxed Query

Original Query

Ed Sheeran

SELECT * FROM Songs WHERE Artistname = "Ed Sheeran" AND Energy = 80

EEED 0.00%

Trackname Artistname Genre Energy Danceability Liveness Length Acousticness Speechiness

Antisocial Ed Sheeran pop 82 72

Cross Me Ed Sheeran pop 79 75 7

= A © Query RFDs Extended Query

Relaxed Functional Dependencies

LHS RHS

(Energy < 2, Atistname = 3) 5 (anceabiliy<3)

(Energy < 2, Artistname < 3) > (lengths1)

>
CIETD 400%

Danceability

(Enerov < 2. Artistname < 4) (Liveness < 2)

Trackname Artistname Genre Energy Liveness Length Acousticness Speechiness

bad guy Bille Eilish electropop 43 70 10 194

bad guy Bille Eilish electiopop 45 67 12

(a) Interface for performing a query on a dataset.

(b) Interface for the selection of an rRFD.

= A O Query RFDs ExtendedQuery Relaxed Query

Extended Query

SELECT * FROM Songs WHERE Energy BETWEEN 78 AND 82 AND Artistname IN ("Ed Sheeran")

Extended Query Extent JEYUICY

Trackname Artistname Genre Energy Danceability Liveness Length Acousticness Speechiness

Antisocial Ed Sheeran pop. 82 72 36 162 13 5

Cross Me Ed Sheeran pop 79 75 7 206 2 12

= # @ Query RFDs ExtendedQuery Relaxed Query

Relaxed Query

SELECT * FROM Songs WHERE Danceability BETWEEN 69 AND 78

w2.00%

Trackname Artistname Genre Energy Danceabilty ~ Liveness Length Acousticness Speechiness

Senorita Shawn Mendes ~ canadian pop. 55 76 8 191 4 3
Ransom Lil Tecca trap music 64 75 7 131 2 2
bad guy Bille Eilish electropop 3 70 10 194 3 38
Otro Trago - Remix Sech panamanianpop 79 7 6

(c) Query extension interface.

(d) Query relaxation interface.

Figure 2: Overview of REQUIRED functionalities.

algorithm [3]. Then, REQUIRED shows the RFD.s involving at
least one attribute included in query conditions, which are ranked
according to their utility (see Section 2.2). The user can select
an RFD., which characterizes the relaxation criteria that will
be applied over the original queries, by analyzing occurrences
that satisfy the selected RFD.. Thus, REQUIRED redefines the
original query according to the selected RFD,, and shows the
relaxed result set. Thus, the user can obtain results related to
the ones of the original queries, by also considering correlations
over other parameters that have not been considered by the user.
This permits to increase the answer set and supports the user in
finding novel items hardly reachable from refinement processes
over conditions of the original query.

5 CONCLUSION

In this demo paper, we presented REQUIRED, a query relaxation
tool that leverages Relaxed Functional Dependencies. Through
its user interface, REQUIRED offers the possibility to upload a
dataset and execute queries. To enlarge the result set, the user can
load a set of RFD.s, which are automatically ranked by the tool
according to a utility strategy. After selecting an RFD., REQUIRED
can extend the query conditions or even completely rewrite some
conditions of the user’s query. We showcased a demonstration
to illustrate how REQUIRED can represent an effective tool for
enriching the query results. In the future, we would like to extend
REQUIRED in order to admit the consideration of multiple tables,
join queries, and the integrity constraint compliance.

6 ACKNOWLEDGMENTS
This work was partially supported by project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU.

We thank Maurizio Casciano for his contribution to the devel-
opment of the first version of the REQUIRED tool.

826

REFERENCES

[1] Abdullah Albarrak, Tatiana Noboa, Hina A Khan, Mohamed A Sharaf, Xiao-
fang Zhou, and Shazia Sadiq. 2014. Orange: Objective-aware range query
refinement. In Proceedings of IEEE 15th International Conference on Mobile Data
Management, Vol. 1. IEEE, 333-336.

Luyi Bai, Xiaofeng Di, and Lin Zhu. 2022. Query relaxation of fuzzy spatiotem-
poral RDF data. Applied Intelligence (2022), 1-19.

Loredana Caruccio, Vincenzo Deufemia, Felix Naumann, and Giuseppe Polese.
2021. Discovering relaxed functional dependencies based on multi-attribute
dominance. IEEE Transactions on Knowledge and Data Engineering 33, 9 (2021),
3212-3228.

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. Relaxed
functional dependencies—A survey of approaches. IEEE Transactions on Knowl-
edge and Data Engineering 28, 1 (2016), 147-165.

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2017. Learning
Effective Query Management Strategies from Big Data. In Proceedings of 16th
IEEE International Conference on Machine Learning and Applications. IEEE,
643-648.

Sébastien Ferré. 2018. Answers partitioning and lazy joins for efficient query
relaxation and application to similarity search. In European Semantic Web
Conference. Springer, 209-224.

Yké Huhtala, Juha Karkkainen, Pasi Porkka, and Hannu Toivonen. 1998. Effi-
cient discovery of functional and approximate dependencies using partitions.
In Proceedings 14th International Conference on Data Engineering. IEEE, 392—
401.

Shuxin Li, Gong Cheng, and Chengkai Li. 2020. Relaxing relationship queries
on graph data. Journal of Web Semantics 61 (2020), 100557.

Davide Mottin, Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Pal-
panas, and Yannis Velegrakis. 2014. IQR: an interactive query relaxation
system for the empty-answer problem. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of Data. 1095-1098.

Ton Muslea. 2004. Machine learning for online query relaxation. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and
data mining. 246-255.

Ton Muslea and Thomas J Lee. 2005. Online query relaxation via bayesian
causal structures discovery. In AAAIL 831-836.

Ullas Nambiar and Subbarao Kambhampati. 2004. Mining approximate func-
tional dependencies and concept similarities to answer imprecise queries.
In Proceedings of the 7th International Workshop on the Web and Databases:
Colocated with ACM SIGMOD/PODS 2004. 73-78.

Viswanath Poosala and Venkatesh Ganti. 1999. Fast approximate query an-
swering using precomputed statistics. In Proceedings of the 15th International
Conference on Data Engineering (Cat. No. 99CB36337). IEEE, 252.

(2]
(3]

[4

(5]

(6

=

[7

—

8

—

(]

[10]

[11]
[12]

(13]

