
On Handling Catastrophic Forgetting for Incremental Learning
of Human Physical Activity on the Edge

Jingwei Zuo

Technology Innovation Institute

Abu Dhabi, UAE

jingwei.zuo@tii.ae

George Arvanitakis

Technology Innovation Institute

Abu Dhabi, UAE

george.arvanitakis@tii.ae

Hakim Hacid

Technology Innovation Institute

Abu Dhabi, UAE

hakim.hacid@tii.ae

ABSTRACT
Human activity recognition (HAR) has been a classic research

problem. In particular, with recent machine learning (ML) tech-

niques, the recognition task has been largely investigated by

companies and integrated into their products for customers. How-

ever, most of them apply a predefined activity set and conduct

the learning process on the cloud, hindering specific personal-

izations from end users (i.e., edge devices). Even though recent

progress in Incremental Learning allows learning new-class data

on the fly, the learning process is generally conducted on the

cloud, requiring constant data exchange between cloud and edge

devices, thus leading to data privacy issues. In this paper, we

propose PILOTE, which pushes the incremental learning process

to the extreme edge, while providing reliable data privacy and

practical utility, e.g., low processing latency, personalization, etc.

In particular, we consider the practical challenge of extremely

limited data during the incremental learning process on edge,

where catastrophic forgetting is required to be handled in a prac-

tical way. We validate PILOTE with extensive experiments on

human activity data collected from mobile sensors. The results

show PILOTE can work on edge devices with extremely limited

resources while providing reliable performance.

1 INTRODUCTION
Human activity recognition (HAR) has gained, in recent years, a

great interest from both the research community and industry

players. The activity data can be collected from multiple data

sources, such as images [30], videos [15], GPS trajectories [9],

smart sensors [4], etc. Among which, the activity data collected

from wearable sensors are widely studied and applied in real-life

products by almost all tech giants, e.g., Huawei-Sussex locomo-

tion datasets [11], Google platform [23], Samsung health activity

trackers
1
, and Apple CMMotionActivity [7]. However, these

centralized and cloud-based solutions usually lack of flexibility

to user’s personalization needs. Since data exchanges between

cloud and edge devices are usually required, data privacy and

processing latency issues may also occur.

Edge ML [19] has brought the processing inML to the edge of

the network and intends to adapt AI technologies to the edge en-

vironments. Generally, Edge environment refers to the end-user

side pervasive environment composed of devices from both the

base station and end device levels. As shown in Figure 1, mov-

ing ML from a centralized cloud server to edge devices brings

benefits, such as reduced communication cost or latency and pre-

serving data privacy. However, it is challenging for the learning

1
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Figure 1: Incremental Human Activity Learning on the
Edge: a brief context overview of PILOTE.

process because of the limited computational resources and data

availability in each edge device to train a decent ML model [10].

Learning on the Edge exposes new problems that were not

necessarily taken care of in the classical ML domain. The most

evident issue is undoubtedly the dynamics of the data. In fact,

Edge learning assumes that the observed world is (i) partial, i.e.,

not all the situations are observed, and (ii) dynamic, i.e., new

situations may emerge. The assumptions impose new challenges

on ML methods to incrementally learn new situations without

forgetting previously acquired knowledge. In other words, ML

methods on the Edge have to handle the catastrophic forgetting

problem [17]. In the context of human activity recognition, since

activity data are generated on the fly but not in a batch mode,

class imbalance is also a practical challenge when learning from

the dynamic streams.

The problem of catastrophic forgetting has a long history in

machine learning and has recently been largely studied in deep

learning [5]. Some of the most recent works have addressed

this problem from multiple perspectives, which can be divided

into three categories: Replay methods (i.e., store data samples)

[27], regularization-based methods [25] and parameter isola-

tion methods [28]. However, these proposals are all designed

for centralized/cloud-based solutions and not applicable in Edge

learning context with limited resources.

In this paper, considering the aforementioned Privacy & Utility

challenges as shown in Figure 1, we propose PILOTE: Pushing
Incremental Learning On human activities at the exTreme Edge,
a method that contributes to reducing the effect of catastrophic

forgetting with a focus on a practical case: incremental human

physical activity recognition on the Edge. The Siamese Network-

based model [18] with supervised Contrastive Loss [16] allows

learning from extremely limited data with class imbalance. A

jointly optimizedDistillation Loss prevents themodel from forget-

ting the previously learned knowledge by guiding the embedding

space’s building. The performed experiments on our collected

human activity data demonstrate that the proposed approach

Industrial & Applications Paper

 

 

Series ISSN: 2367-2005 792 10.48786/edbt.2023.67

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.67


properly handles the addition of new classes while maintaining

good performance over the previously learned classes.

We summarize the paper’s main contributions as follows:

• Incremental Edge Learning:We introduce a new primi-

tive, PILOTE, for incremental human activity learning on

the Edge, which is rarely investigated by the community.

• Catastrophic Forgetting on Edge Learning: We study

and tackle the catastrophic forgetting problem in PILOTE

when learning on the Edge.

• Edge resource constraints:We consider the limited com-

putation resource and storage capacity in Edge devices.

PILOTE is designed to be with low computation and stor-

age costs.

• Extensive experiments on real-life data : We apply

PILOTE on real-life human activity data, which is collected

by volunteers in our data collection campaigns.

The rest of this paper is organized as follows: Section 2 presents

the most related work to our proposal. Section 3 shows the MAG-

NETO platform, where we deploy our Edge learning proposal

for real-life human activity learning. Section 4 introduces the

problem definition. Section 5 formalizes the proposed method.

An extensive set of experiments is performed and discussed in

Section 6. We conclude and show future work in Section 7.

2 RELATEDWORK
In this section, we show the most related work of our proposal

in the Incremental Learning and Edge Machine Learning, with

an application on Human Activity Recognition (HAR) task.

2.1 Incremental Learning
Incremental learning has been investigated for decades in the

machine learning community. It refers to integrating new knowl-

edge on the fly to the learned model, with unseen data coming in

the future. In different contexts, the incremental learning is illus-

trated differently with various terminologies. It is also referred

to as continual learning [5], lifelong learning [21] or sequential

learning [2]. According to the learning targets, or the input and

output distributions 𝑃 (X (𝑡 ) ) and 𝑃 (Y (𝑡 ) ) of an incoming batch

data at time 𝑡 , the incremental learning can be categorized into

three types [5]:

• Class incremental learning: {Y (𝑡 ) ⊂ Y (𝑡+1) } with {𝑃 (Y (𝑡 ) ) ≠
𝑃 (Y (𝑡+1) )}
• Task incremental learning: {Y (𝑡 ) ≠ Y (𝑡+1) }
• Domain incremental learning: {Y (𝑡 ) = Y (𝑡+1) }with {𝑃 (Y (𝑡 ) ) =
𝑃 (Y (𝑡+1) )}
Considering the newly emerged activities (i.e., classes) col-

lected by Edge devices, we focus our attention in this paper

on the class incremental learning task. A handful of works [17,

20, 24, 26, 29] are devoted to handling the catastrophic forget-

ting problem in the class incremental learning context. For in-

stance, as a regularization-based method, Learning without For-

getting (LwF) [20] learns new classes, meanwhile conserves

the learned information via knowledge distillation from the old

classes; iCaRL [26] keeps a set of class prototypes (i.e., memory

replay) for representing the old classes, which are combined with

new-class samples to update themodel. Similarly, GDumb [24] op-

timized the class prototype selection via Greedy Search; Instead

of building up a memory replay for old-class data, Generative

Replay [29] learns a generative model and a solver (i.e., classifier)

for learned data, that allows modeling the past class distribution

instead of conserving raw data instances.

However, to push the incremental learning paradigm to the

Edge, the above-mentioned methods are hardly applicable due to

their context-specificmodel structure for Cloud-based processing.

For instance, though LwF [20] does not require caching any past

data for building a new model, the model itself is huge enough

to be transferred or executed in Edge devices.

2.2 Edge Machine Learning (Edge ML)
Edge Machine Learning (Edge ML) emerges as a new paradigm,

owning to its unbeatable advantages on low latency and strong

privacy guarantee. In general, Edge ML can be characterized into

two categories: i) Inference on the Edge, ii) Training on the Edge.

For model inference on the Edge, past studies tend to optimize

the model’s scale and quantize its weights to reduce resource

costs. For instance, commonly existing in Deep Neural Networks

(DNNs), the model’s parameter redundancies can be investigated

to compress/re-design the model, while ensuring a low loss in

performance. Typical model optimization methods include pa-

rameter pruning [12], low-rank factorization [6], knowledge dis-

tillation [13], etc. Thesemethods can be applied to different DNNs

or be composed to optimize a complex model’s inference on the

Edge. Another branch of work [32] proposes to divide the DNN

models and perform distributed inference computation.

For model training on the Edge, the resource cost is much

higher than that in inference. Basically, the Edge training can

be either based on tiny models requiring minimal resources, or

splitting the training task via distributed/federated learning [31].

In this paper, we investigate the lightweight models which

can be applied on Edge devices with limited resources.

2.3 Human Activity Recognition (HAR)
As a classic research problem in Data Mining and Machine Learn-

ing, Human Activity Recognition (HAR) gathers enormous stud-

ies regarding the data format, pre-processing techniques, learn-

ing models, post-processing methods, and model deployments.

Among various data sources of HAR tasks, we consider human

physical activities collected fromwearable sensors. These activity

data are generally represented by Time Series, more precisely,

Multivariate Time Series (MTS) [34] on multiple sensors.

As a classification task, the HAR model can be designed dif-

ferently regarding data resources and targeted applications. For

instance, one can use handcrafted features to feed any general

ML models for downstream tasks, which is easy-to-deploy and re-

quires linear processing time. More advanced work has been pro-

posed in the Time Series Classification domain, where researchers

aim to build general ML models covering various application do-

mains [34], including HAR tasks. For instance, authors in [33]

extract interpretable Shapelet features from time series, and com-

bine with a kNN classifier; The recent end-to-end models [34]

have shown promising results on HAR tasks, that generally rely

on automatic feature extraction and selection [1, 8] with regard

to specific learning tasks, e.g., classification or forecasting.

However, these approaches aim to reach optimal model per-

formance with less attention on the model’s scale or complexity,

which are essential in the Edge context regarding the extremely

limited resources. In this paper, we consider the HAR task as an

application and focus on the Edge model’s incremental learning

behavior. Therefore, we adopt a primary feature extractor that
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relies on handcrafted statistic features, requiring linear process-

ing time. Nevertheless, more advanced feature extractors can be

explored and integrated into our framework, by considering the

Edge constraints. This is orthogonal to our work.

3 MAGNETO PLATFORM
MAGNETO, sMArt sensinG for humaN activity rEcogniTiOn, is
a platform that provides inference on an Edge device without

transferring user’s data to the Cloud. Figure 2 shows its main ar-

chitecture. The Cloud-based approach for Human Activity Recog-

nition (HAR) tasks generally relies on continuous data exchange

between Cloud and Edge, leading to high processing latency and

privacy issues. MAGNETO is built primarily with an Edge-based

structure, in which an initial HAR model is pre-trained on the

Cloud as a warm starting point [3] for the Edge learning pro-

cess. The pre-trained model benefits from the rich computation

resources on the Cloud computing center, meanwhile allowing

further adaptation for new-coming real-time data on the Edge.

With limited computation resources but high flexibility, the

Edge devices in MAGNETO platform provide the possibility for

real-time data collection,model adaptation/re-training/calibration,

and model inference. Importantly, all the operations are taking

place on the Edge, and should not have any data exchange with

the Cloud, considering data privacy issues. By adopting the MAG-

NETO platform, we are able to deploy PILOTE in a real industrial

pipeline for Edge learning on real-time human activities.
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Figure 2: MAGNETO processing steps: (left side: Cloud-
based architecture) (i) human activity data is captured on
the Edge device, (ii) edge data is transferred to the Cloud,
(iii) model training or inference on the Cloud, and (iv)
send predictions back to the Edge device. (right side: Edge-
based architecture) (i) an initial model is pretrained on the
cloud, (ii) data is collected on the Edge device, (iii) the Edge
device performs model’s updating (with new data samples)
or inference, (iv) the Edge device displays the predictions.

4 PROBLEM FORMULATION
We consider a warm-start problem [3] for learning new human

activities on the edge: a learning model is pre-trained on the

Cloud with its scalable resources, serving as a warm starting

point for incremental learning on the edge. Table 1 summarizes

the notations used in the paper.

Definition 1. (Incremental learning). Given a model Θ𝑜 trained

onD𝑜 , new sample setD𝑛 = (𝑋𝑠 , ..., 𝑋𝑡 ) with unknown activities
(𝑠, ..., 𝑡) will enrich Θ𝑜 incrementally, leading to a new model Θ𝑛 .

Table 1: Notation

Notation Description

D𝑜 = (𝑋 1, ..., 𝑋𝑠−1) Dataset of old classes 1, ..., 𝑠 − 1
D𝑛 = (𝑋𝑠 , ..., 𝑋 𝑡 ) Dataset of new classes 𝑠, ..., 𝑡

P = (𝑃1, ..., 𝑃𝑡 ) Class exemplar sets

𝜑 : X → R𝑑 Feature map function

Θ Model parameters

Definition 2. (Catastrophic forgetting). Given a newly updated

modelΘ𝑛 trained sequentially onD𝑜 andD𝑛 , the model tends to

learn more fromD𝑛 but forget what has been already learned on

D𝑜 , i.e.,
∑
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑜

L(𝑓Θ𝑛
(𝑥𝑖 ), 𝑦𝑖 ) >

∑
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑜

L(𝑓Θ𝑜
(𝑥𝑖 ), 𝑦𝑖 ).

Incremental learning of human physical activities on the edge

requires considering not only the effect of catastrophic forget-

ting when updating the learning model, but also the extremely

limited activity data collected by the edge devices, leading to

imbalanced data distributions among classes. Therefore, given

a model Θ𝑜 trained on D𝑜 , a new sample set D𝑛 comes with

a small size |D𝑛 | ≪ |D𝑜 |, the incremental learning at the ex-

treme edge aims to learn a model Θ𝑛 , that guarantees the per-

formance on D𝑛 : 𝑚𝑖𝑛(
∑
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑜

L(𝑓Θ𝑜
(𝑥𝑖 ), 𝑦𝑖 )), and main-

taining the performance on D𝑜 :
∑
(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑜

L(𝑓Θ𝑛
(𝑥𝑖 ), 𝑦𝑖 ) ≈∑

(𝑥𝑖 ,𝑦𝑖 ) ∈D𝑜
L(𝑓Θ𝑜

(𝑥𝑖 ), 𝑦𝑖 ).

5 PROPOSAL: PILOTE
In order to answer the aforementioned challenges for incremental

human activity learning on the edge, we propose PILOTE, a

method that updates the learning model with new knowledge

extracted from incoming new-class instances, while preserving

the learned knowledge from existing classes.

Figure 3 shows the global system structure of PILOTE. The

activity data collected from smartphone sensors are represented

as Multivariate Time Series (MTS) [34]. The preprocessing steps

(e.g., denoising, segmentation, normalization, etc.), with linear

time operations, are conducted equally on the Cloud and Edge de-

vices. In particular, following the architecture design of the MAG-

NETO platform, PILOTE learns a feature representation from

a data stream on the Edge, i.e., 𝑋 1, ..., 𝑋 𝑡
in a class-incremental

manner, where all examples of a set𝑋 𝑦 = {𝑥𝑦
1
, ..., 𝑥

𝑦
𝑛𝑦
} are of class

𝑦 ∈ N . An incremental contrastive loss is designed to integrate

new knowledge from D𝑛 , which forms the representation space

gradually with a minimal computation cost. Meanwhile, inspired

by knowledge distillation [25] for handling catastrophic forget-

ting problems, we propose a distillation loss which is designed

explicitly for conserving the learned knowledge from existing

datasets via guiding the representation space’s building. Joint

optimization of the distillation loss and contrastive loss allows

for building the representation space in an extremely efficient

manner.

On the representation space, we apply the nearest class mean

(NCM) classifier for a given sample 𝑥𝑖 , which can be denoted as:

𝑦∗𝑖 = argmin

𝑦∈ (1,...,𝑡 )
dist

(
𝜑Θ (𝑥𝑖 ), 𝜇𝑦

)
,

𝜇𝑦 =
1

𝑛𝑦

∑︁
𝑝
𝑦

𝑖
∈𝑃𝑦

𝜑Θ (𝑝
𝑦

𝑖
),

(1)

where 𝜇𝑦 denotes the prototype of class 𝑦, 𝑃𝑦 is the exemplar set

of class 𝑦 and 𝑛𝑦 is the number of exemplars in class 𝑦.
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Figure 3: Global system structure of PILOTE

5.1 Incremental representation learning
Compared to large volumes of data adopted for training the learn-

ing model on the cloud, new human activities recorded at edge

devices usually show limited data samples. The imbalanced data

distribution will lead to training constraints for learning the latest

activities. To this end, instead of building an end-to-end classi-

fication model, we adopt the concept of Few-shot Learning: a

Siamese Network [18] is applied to learn a robust representation

space, for which much less data is required. Instead of learning

feature-label mappings, the Siamese Network only learns separa-

ble boundaries in the representation space between the activities.

In this space, the intra-class embeddings are clustered, whereas

the inter-class embeddings are clearly bounded. A set of class

prototypes are generated to reduce the computation cost of the

NCM classifier. The supervised contrastive loss [16] is applied to

the representation space:

𝐿
(
𝑥𝑖 , 𝑥 𝑗 , 𝑌

)
= 𝑌 ∗



𝜑Θ (𝑥𝑖 ) − 𝜑Θ
(
𝑥 𝑗

)

2
+ (1 − 𝑌 ) ∗

{
max

(
0,m2 − | |𝜑Θ (𝑥𝑖 ) − 𝜑Θ

(
𝑥 𝑗

)
∥2
)} (2)

wherem > 0 is the margin parameter, 𝑌 = 1 if 𝑥𝑖 , 𝑥 𝑗 are similar

(i.e., 𝑦𝑖 = 𝑦 𝑗 ), otherwise 𝑌 = 0.

As shown in Algo. 1, we first select the most representative

exemplars from old-class samples as a support set, referring to

the𝑚 closest samples to each class prototype 𝜇𝑦 . The support

set will be transferred along with a pre-trained model Θ𝑜 from

the Cloud to the Edge devices. Then, the representation space

is built over the support set and new-class samples. The exem-

plar sets and class prototypes are updated continuously with

newly integrated samples. Following this process, the approach

incrementally learns new classes. However, it suffers from the

limitation of forgetting past knowledge. Therefore, to comple-

ment this method, we investigate the problem and propose a

solution, discussed in the next section.

5.2 Catastrophic forgetting at the extreme
edge

When learning from new activities, the model tends to forget

what has been learned from previous activities. Precisely, the

boundary between existing activities in the embedding space

becomes unclear after learning new activities. Therefore, it is

required to maintain the learned boundary between the old-class

Algorithm 1: Incremental Representation Learning con-

sidering Catastrophic Forgetting on the Edge

Input: Θ𝑜 ; /* Current model parameters */

Input: K ; /* Edge cache size */

Input: D𝑜 = (𝑋 1, ..., 𝑋𝑠−1) ; /* Old sample sets of

classes 1, ..., 𝑠 − 1 */

Input: D𝑛 = (𝑋𝑠 , ..., 𝑋 𝑡 ) ; /* New sample sets of

classes 𝑠, ..., 𝑡 */

Output: Θ𝑛 ; /* Updated model parameters */

Output: P = (𝑃1, ..., 𝑃𝑡 ) ; /* Exemplar support sets
*/

/* (Cloud) Exemplars selection from old-class

samples */

1 𝑚 = 𝐾/(𝑠 − 1)
2 for 𝑦 ∈ (1, ..., 𝑠 − 1) do
3 𝑋 𝑦 = (𝑥𝑦

1
, ..., 𝑥

𝑦
𝑛𝑦
)

4 𝜇𝑦 = 1

𝑛𝑦

∑𝑛𝑦

𝑖=1
𝜑Θ𝑜
(𝑥𝑖 )

/* Select m closest samples in the

embedding space */

5 for 𝑘 ∈ (1, ...,𝑚) do
6 𝑝

𝑦

𝑘
←

argmin

𝑥∈𝑋 𝑦




𝜇𝑦 − 1

𝑘

(
𝜑Θ𝑜
(𝑥) +∑𝑘−1

𝑗=1 𝜑Θ𝑜
(𝑝𝑦

𝑗
)
)




7 𝑃𝑦 ← (𝑝𝑦
1
, ..., 𝑝

𝑦
𝑚)

/* (Edge) Incremental Representation Learning

with new-class samples */

8 𝐷0 ←
⋃

𝑦=1,· · · ,𝑠−1 {(𝑥,𝑦) : 𝑥 ∈ 𝑃𝑦}
9 𝐷𝑛 ←

⋃
𝑦=𝑠,· · · ,𝑡 {(𝑥,𝑦) : 𝑥 ∈ 𝑋 𝑦}

10 Run network training with an updated parameter set Θ𝑛

with loss function 𝐿 = 𝛼 ×𝐿
disti
+ (1−𝛼) ×𝐿contra, where

11 𝐿
disti

=
∑
(𝑥𝑖 ,_) ∈𝐷0



𝜑Θ𝑛
(𝑥𝑖 ) − 𝜑Θ𝑜

(𝑥𝑖 )


2

12 𝐿contr =
∑
(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷0

∑
(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷𝑛

𝐿
(
𝑥𝑖 , 𝑥 𝑗 , 𝑌 ← 𝑦𝑖 == 𝑦 𝑗

)
13 return Θ𝑛

samples, while learning new activity embeddings by staying far

away from existing ones.

As a concept from Transfer Learning, Distillation Loss [13]

has been widely adopted for extracting key knowledge from a

trained neural network. We apply the Distillation Loss under the
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few-shot learning context, where the previously learned model

can be constrained while integrating newly learned knowledge

from extremely limited instances. Importantly, the introduced

constraints allow simplifying the computations of the Contrastive

Loss, thus reducing the time complexity of the incremental learn-

ing process. For instance, given 𝑛𝑡 new samples of class 𝑡 , the

number of pairs in Contrastive Loss can be reduced to
𝑛𝑡 !

2!(𝑛𝑡−2)! ,

instead of

∑
𝑦∈ (1,...,𝑡 ) 𝑡 ∗

𝑛𝑦 !

2!(𝑛𝑦−2)! , where 𝑛𝑦 is the number of

samples in class 𝑦. In the embedding space, the learned repre-

sentations from old-class instances are already constrained by

Distillation Loss.

Finally, by combining both the Distillation Loss from old-class

instances and the Contrastive Loss of new-class instances with

a balancing weight 𝛼 , we are capable of learning a robust incre-

mental learning model with constant memory.

6 EXPERIMENTS
In this section, we demonstrate the effectiveness of PILOTE with

real-life human activity datasets. The experiments were designed

to answer the following questions:

Q1 Catastrophic forgetting: How successful is our model at learn-

ing new activities while considering the catastrophic forget-

ting problem?

Q2 Applicability on the edge: How well does our model perform

on the edge with limited storage and computing resources?

Q3 Extreme edge with minimal new-class samples: How does our

model perform when new-class samples are extremely lim-

ited?

6.1 Experimental settings
6.1.1 Dataset description. We base our experiments on real

human physical activity data collected on edge devices. We have

launched data collection campaigns, capturing an initial dataset

of more than 100GB of sensory data. Even though the preprocess-

ing was conducted on the cloud, the real-time coming data can

be processed instantly, as the preprocessing operation requires

linear time. Precisely, we split the sensory data into a one-second

recording window with roughly 120 sequential measurements

from 22 mobile sensors, e.g., accelerometer, gyroscope, and mag-

netometer. We extract 80 statistical features such as the average,

the variance for each feature, the average jerk, and the variance of

the jerk for each three-dimensional feature sensor. Currently, five

activities with ∼ 200𝑘 records are collected: ‘Drive’, ‘E-scooter’,

‘Run’, ‘Still’, ‘Walk’. To simplify the test scenarios and validate

the learning model, we design the incremental learning process

by setting one of the activities as the new-class data to be learned.

6.1.2 Execution and Parameter Settings. The proposed model

is implemented in PyTorch 1.6.0 and is trained using the Adam

optimizer. We set an adaptive learning rate regarding training

epochs, i.e., the learning rate starts from 0.01 and decreases by

half every training epoch. The backbone model is a simple Fully

Connected (FC) neural network with dimensions [1024 x 512 ×

128 × 64 × 128]. We apply Batch Normalization [14] and Rectified

Linear Units (ReLU) [22] activation functions on the first four

layers. The last layer projects the input samples into a repre-

sentation space with an embedding size of 128. The backbone

model can be any other advanced network structure. Here we

focus on the model’s incremental learning behaviors. We set the

balancing weight 𝛼 = 0.5 in all experiments. We split 30% of

the collected records as the test set. The validation split is set to

0.2 for both pre-training and incremental training. We set the

stopping condition to hold when the difference of validation loss

between epochs is less than a small threshold, 0.0001 for five

consecutive steps. We execute each model in five rounds and

report the average accuracy and the standard deviations.

6.1.3 Baselines. To the best of our knowledge, previous work
rarely considers the extremely limited learning data and cata-

strophic forgetting problem simultaneously in the Edge learning

context. Therefore, we compare PILOTE with two popular strate-

gies for human activity recognition on the edge:

1 Pre-trained model: The model is pre-trained on the cloud on

four activities. It is transferred to the edge with a support set.

The model generates class prototypes for new-class samples

and enriches the support set with random new-class data.

2 Re-trained model: The pre-trained model is re-trained on the

edge using the enriched support set with new-class samples.

6.2 Q1: Catastrophic forgetting
To validate the model’s robustness in handling the catastrophic

forgetting problem, we pick one of the five activities each time

as the new class to be learned. Table 2 shows the models’ per-

formance comparisons on the five new-class scenarios. The re-

trained model and PILOTE in each scenario are based on the

same pre-trained model. We report the average accuracy and

the standard deviations of five executions for both the re-trained

model and PILOTE.

Table 2: Accuracy comparison of learning models without
and with considering the catastrophic forgetting problem.

New class Pre-trained Re-trained PILOTE

Drive 0.8443 0.8825±0.0391 0.8837±0.0278
E-scooter 0.8744 0.9491±0.0089 0.9516±0.0074

Run 0.7856 0.9126±0.0321 0.9372±0.0319
Still 0.8213 0.9143±0.0288 0.9349±0.0340
Walk 0.8376 0.8909±0.0383 0.9193±0.0386

Table 2 suggests that PILOTE does achieve better performances

by conserving the learned knowledge from old-class samples. In

particular, for activities ‘Run’, ‘Still’, and ‘Walk’, PILOTE obtained

more than 2% performance improvement over the re-trained

model. These activities are more challenging to learn and distin-

guish than ‘Drive’ and ‘E-scooter’. This can also be illustrated

by Figure 4, which shows confusion matrices when learning the

new activity ‘Run’. The confusion matrices suggest that the re-

trained model tends to learn from ‘Run’ but forgets what has

been learned from ‘Walk’, leading to a massive amount of false

positives when predicting ‘Run’, and false negatives for ‘Walk’.

Whereas PILOTE allows separating the two similar activities by

conserving the knowledge learned previously from ‘Walk’. Figure

5 shows the visualization of the embedding spaces of the three

models, which further validates our claims: a re-trained model

can better separate ‘Run’ and ‘Walk’ than a pre-trained model,

but shows a more blurred boundary than PILOTE.

6.3 Q2: Applicability on the edge
With limited computing and storage resources on the edge, the

learning process is required to be efficient, and effective when

learning from a small amount of data. In Figure 6, we validate

the models’ performance regarding the support set’s size or the
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Figure 4: Confusionmatrices formodels trained on the new
class ‘Run’, with 200 exemplars per class in the support set.

edge devices’ storage space, e.g., 2500 exemplars in compressed

format would take 3.2MB of space. We show in Figure 6 as well

the impact on learning models of different exemplar selection

strategies.

From Figure 6, the learning models tend to have better per-

formance with more class exemplars. Except for the pre-trained

models, the performance stays stable regarding the number of

exemplars, as the old-class embeddings are clearly separated. The

representative exemplars impact PILOTEmore than othermodels,

especially for an extensive support set with more than 200 exem-

plars per class. This is probably caused by the deviation between

the randomly selected exemplars and class prototypes, affecting

PILOTE’s knowledge distillation. The re-trained model rebuilds

the embedding space, showing less dependence on the selected

exemplars. We can observe as well from Figure 6 that with a few

exemplars (e.g., < 50), the re-trained models perform even worse

than the pre-trained models, whereas PILOTE performs better.

This is mainly due to over-fitting the small amount of data while

forgetting the learned knowledge from old-class samples. When

adding learning constraints, PILOTE can mitigate the impact of

catastrophic forgetting and learn from a small sample set. With

less than 200 exemplars per class (i.e., < 256KB), PILOTE can

reach an accuracy of 93.72% within 20 training epochs, and each

epoch costs less than 0.5s. These features make PILOTE highly

suitable to be deployed on edge devices.

6.4 Q3: Extreme edge with a few samples
In practice, new activities are recorded on edge devices, the data

volume is not as large as that collected via a centralized man-

ner. Very limited data samples can be recorded at the extreme

edge for learning new activities, leading to an unbalanced data

distribution among classes. To validate the model’s performance

at the extreme edge, we vary the amount of new-class samples

(i.e., ‘Run’) in the support set, and select 200 representative exem-

plars for old-class samples. We need to note that the new-class

exemplars are randomly selected from new-class samples.

Figure 7 shows the performance comparison between PILOTE

and the re-trained model regarding the number of new-class ex-

emplars in the support set. We also show the pre-trained model’s

accuracy as a warm starting point [3]. The results suggest that

only with 30 exemplars in class ‘Run’, PILOTE can obtain a 90%

accuracy score. Globally, PILOTE performs better than the re-

trained model, particularly when the exemplar number is small

(e.g., < 50). When the previously learned knowledge is conserved,

the model requires less effort/data for updating the embedding

space, thus becoming more robust when new-class samples are

extremely limited.

7 CONCLUSION AND PERSPECTIVES
In this paper, we proposed PILOTE, an incremental learning

model applicable to the extreme edge, which considers both the

limited edge resources and the catastrophic forgetting problem.

In future work, we aim to launch more campaigns for collecting

more complex data with more human physical activities. The

enriched data would help validate PILOTE in more practical and

challenging scenarios. From a longer-term perspective, one can

consider the model’s scaling up or collaborative learning with

strong privacy-preserving guarantees, e.g., Federated Learning.
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