
Smart Derivative Contracts in DatalogMTL
Andrea Colombo

Politecnico di Milano°

Luigi Bellomarini

Banca d’Italia
∗

Stefano Ceri

Politecnico di Milano°

Eleonora Laurenza

Banca d’Italia
∗

ABSTRACT
Derivative contracts, either from traditional finance or repro-

duced in the crypto world in the form of smart contracts, are

a very popular financial instrument widely used in the indus-

try and of great interest to supervisors, financial intermediaries,

and investment banks. With the expansion of Decentralized Fi-

nance (DeFi) environments, where no or little intermediation is

involved, these contracts are also being deployed into a techno-

logical infrastructure, the blockchain, in the form of executable

scripts. Unfortunately, these scripts are often criticized as their

business logic is very complex, also due to the need to handle the

temporal dimension, the implementations are hard to explain and

communicate, and the adopted languages are highly procedural

and very technical. Consequently, DeFi derivatives are often un-

trusted by non-IT users and hard to supervise. This joint work of

the researchers of the Central Bank of Italy and the Polytechnic

University of Milan aims at bridging this gap by presenting the

first declarative, logic-based, and executable implementation of

a DeFi derivative contract. In particular, leveraging the extensive

experience of the database and reasoning-based AI communi-

ties about logical languages for knowledge representation and

reasoning, we adopt the DatalogMTL language for temporal rea-

soning to encode the Ethereum Perpetual Future (ETH-PERP)

smart contract. We show how the language conveys simplicity,

understandability, and transparency for non-technical users. To

validate our implementation, we execute the smart contract in

Vadalog, a modern reasoner supporting DatalogMTL.

KEYWORDS
derivatives, smart contracts, Datalog, DatalogMTL, reasoning

1 INTRODUCTION
A derivative can be defined as a financial instrument that de-

rives its value from one or more underlying variables [23]. This

instrument takes the form of a contract between counterparts

who agree on some terms and schedules. The underlying vari-

able of the contract can be any object, also digital. In most cases,

the underlying variables are the prices of traded assets, such as

stocks or indexes [37]. There are many different types of deriva-

tives, which differ in terms and conditions. Futures are a type

of derivative contract, where the parties agree to buy (or sell)

a standardized asset with a predetermined date and price. For

example, futures are used in the energy market by distribution

companies that wish to secure a price and the supply of raw ma-

terials, such as gas, from producers for a future month, covering

the risk of high increases in prices. However, derivatives are also

very frequently used for mere trading purposes, without any real

interest in the underlying asset. With the spread of blockchain

° Department of Electronics, Information and Bioengineering.

∗
The views and opinions expressed in this paper are those of the authors and do

not necessarily reflect the official policy or position of the Bank of Italy.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

technology and Decentralized Finance (DeFi), new technologies

and ways of trading derivatives are emerging. DeFi refers to fi-

nancial transactions conducted without any intermediation but

through a computer code on a decentralized public ledger [31],

which has become extremely popular with its applications in the

crypto world. Central to the functioning of a DeFi application

is the formulation of contracts in a machine-readable format, a

so-called smart contract [38]. The standard way of writing such

contracts is by using a procedural language that encodes each

contractual term and defines what the program should do in

each step, addressing the hard challenge of explicitly handling

all the time-related aspects. Many stakeholders are investigat-

ing the potential of deploying traditional derivative contracts

in the form of smart contracts and in a DeFi environment, with

efforts mainly dedicated to the implementation of financial smart

contracts in existing popular imperative languages such as the

scripting language Solidity for the Ethereum ecosystem [29] or

in new ad-hoc ones such as Daml [24]. However, existing ap-

proaches are receiving increasing criticisms from the community

because of overly complex business logic, little explainability and

consequential lack of transparency of the contract, which is also

hard to describe and communicate, being often unsuitable for

non-IT users [12, 25, 36]. From their perspective, also supervision

authorities, including central banks and other national authori-

ties, would greatly benefit from increased transparency of these

objects in their manifold roles, such as enhancing the stability in

financial markets [9]. Nevertheless, little is being done in the lit-

erature and in the technical community to address such concerns,

with more focus on developing ways and tools to use existing

paradigms more easily rather than exploring new ones [42].

Contribution. This joint work of the researchers of the Central

Bank of Italy and the Polytechnic University of Milan capitalizes

on the growing experience about logic-based languages for tempo-
ral reasoning from the database and AI communities and proposes

the first declarative implementation of a derivative contract, the

ETH Perpetual Future (ETH-PERP) smart contract, developed by

the Syntethix community on the Kwenta platform [18]. In particu-

lar, our main contributions are:

• An encoding of the ETH-PERP that uses the recently in-

troduced DatalogMTL language for temporal reasoning [39].

DatalogMTL is an extension with Metric Temporal Logic (MTL)

of the famous Datalog language of databases [11]. Through

the ETH-PERP industrial case study, we show how thanks to

a non-trivial joint use of temporal operators and recursion, with
DatalogMTL we can seamlessly handle the complex temporal

aspects of a derivative smart contract.

• A systematic description of our rules, showing in practice

that our approach achieves the goal of building an explainable
and executable derivative contract. As a side-product, we offer
a simple reformulation and a walk-through of the ETH-
PERP business logic, which we consider valuable for the

broader community and has been so far unavailable, given the

only presence of a Solidity encoding of the ETH-PERP contract.

Industrial & Applications Paper

Series ISSN: 2367-2005 773 10.48786/edbt.2023.65

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.65

• A validation of our implementation by executing the Dat-

alogMTL code within Vadalog [7], a state-of-the-art system

supporting temporal reasoning.

Organization. The rest of the paper is organized as follows. In

Section 2 we lay out the preliminaries about DatalogMTL, its

implementation in the Vadalog system and we introduce some

relevant concepts about derivatives and their implementation as

smart contracts. In Section 3 we provide the core contributions,

describing our DatalogMTL implementation of the ETH-PERP

contract. Section 4 is dedicated to the empirical evaluation. Sec-

tion 5 concludes the paper.

2 PRELIMINARIES
In this section, we recall the syntax and semantics of DatalogMTL

and we briefly introduce the Vadalog reasoner, which will be used

in our experiments. We then give some general concepts about

derivatives and their implementation as smart contracts.

2.1 DatalogMTL
DatalogMTL [8, 41] is a recently introduced extension of Dat-

alog [11] with operators from Metric Temporal Logic (MTL) in-

terpreted over the rational timeline and with stratified negation

under stable model semantics. In this section, we recap the syntax

and semantics of DatalogMTL.

Syntax. DatalogMTL uses the MTL operators ⊟, ⊞, −̂ , +̂ , S,
andU to extend Datalog to perform temporal reasoning tasks.

These operators are indexed with intervals 𝜚 with non-negative

bounds [39]. An interval is of the form ⟨𝑡1, 𝑡2⟩, with parentheses

and square brackets allowed in all possible combinations and

𝑡1, 𝑡2 ∈ Q ∪ {−∞,∞}, such that 𝑡1 ≤ 𝑡2; it is punctual if 𝑡1 = 𝑡2.

A relational atom is an expression of the form 𝑃 (𝑠), where 𝑃 is

a predicate of arity 𝑛 and 𝑠 is a tuple of variables or constants

matching the arity. Ametric atom𝑀 extends a relational atom by

allowing MTL operators. It is defined by the following grammar:

𝑀 ::= ⊤| ⊥ |𝑃 (𝑠) | ⊟𝜚 𝑀 | ⊞𝜚 𝑀 | −̂𝜚𝑀 | +̂ 𝜚𝑀 |𝑀S𝜚𝑀 |𝑀U𝜚𝑀

where 𝑃 (𝑠) is an atom and 𝑠 is a positive interval. A rule is an

expression of the form:

𝑀1 ∧ · · · ∧𝑀𝑘 ∧ ¬𝑀𝑘+1 ∧ · · · ∧ ¬𝑀𝑘+𝑚 → 𝑀′

for 𝑘,𝑚 ≥ 0 and where𝑀1, . . . , 𝑀𝑘+𝑚 are literals (jointly referred
to as the rule body) and𝑀′

(rule head) is specified as:

𝑀′
::= ⊤| ⊥ |𝑃 (𝒔) | ⊟𝜚 𝑀′ | ⊞𝜚𝑀′

where 𝑃 (𝑠) ranges over relational atoms and 𝜚 over positive

intervals. The literals𝑀1, . . . , 𝑀𝑘 are positive body literals of the

rule, and𝑀𝑘+1, . . . , 𝑀𝑘+𝑚 are the negated ones. If each variable

occurs in some positive body atom, the rule is safe. If no variable

occurs, the rule is called ground. A DatalogMTL program is a

finite set of safe rules. In the rest of the paper, we will refer to

DatalogMTL
FP

[40] programs, where only the ⊟, −̂ operators

are allowed and will not make use of the S, and U operators.

Moreover, we will always refer to the [1, 1] interval and therefore
omit the respective operator subscript.

A stratification of a program Π organizes Π in layers of sub-

programs, the strata, and can be formally defined as a function 𝜎

that maps predicates ofΠ into positive integers such that, for each

rule 𝑟 ∈ Π and all predicates P: 𝜎
(
𝑃+

)
≤ 𝜎 (𝑃), 𝜎 (𝑃−) < 𝜎 (𝑃),

where 𝑃+ is a positive body literal, 𝑃− is a negated body literal

and 𝑃 is the head of the rule [19]. A fact is an expression of the

form 𝑃 (𝒔)@𝜚 , where 𝑃 (𝝉) is ground and 𝜚 a non-empty interval.

A database is a finite set of facts.

Semantics. The semantics of a DatalogMTL
FP

program (and we

shall omit the FP superscript from hereinafter) is given by an

interpretation 𝔐 that specifies for each time point 𝑡 ∈ Q and for

each ground atom 𝑃 (𝒂), whether 𝑃 (𝒂) is satisfied at 𝑡 , in which

case we write𝔐, 𝑡 |= 𝑃 (𝒂). An interpretation𝔐 is a model of a

fact 𝑃 (𝒂)@𝜚 , if𝔐, 𝑡 |= 𝑃 (𝒂) for all 𝑡 ∈ 𝜚 and a model of a set of

facts (or a database) 𝐷 if it is a model of each fact in 𝐷 .

This notion extends to ground literals𝑀 . Informally speaking,

the temporal operators −̂𝜚 (diamond minus) and ⊟𝜚 (box minus)
define the satisfaction of𝑀 by 𝔐 at 𝑡 , based on the satisfaction

of𝑀 by 𝔐 in some past time intervals. In particular, 𝔐 satisfies

⊟𝜚𝑀) at 𝑡 , if𝔐 continuously satisfies𝑀 in the interval ⟨𝑡−𝜚+, 𝑡−
𝜚−⟩ and 𝔐 satisfies −̂𝜚𝑀 at 𝑡 , if 𝔐 satisfies 𝑀 at least once in

the interval ⟨𝑡 − 𝜚+, 𝑡 − 𝜚−⟩, where 𝜚− and 𝜚+ are the lower

and upper bounds of 𝜚 . In this sense, the “minus operators” are

forward propagating, whence the superscript FP. More formally:

𝔐, 𝑡 |= ⊤ for each 𝑡 ∈ Q
𝔐, 𝑡 |=⊥ for no 𝑡 ∈ Q
𝔐, 𝑡 |= ⊟𝜚𝑀 iff 𝔐, 𝑠 |= 𝑀 for all 𝑠 with 𝑡 − 𝑠 ∈ 𝜚
𝔐, 𝑡 |= −̂𝜚𝑀 iff𝔐, 𝑠 |= 𝑀 for some 𝑠 with 𝑡 − 𝑠 ∈ 𝜚

Also,𝔐 satisfies ¬𝑀 (𝔐, 𝑡 |= ¬𝑀), if𝔐, 𝑡 ̸ |= 𝑀 . An interpreta-

tion𝔐 is a model of a rule if it satisfies every possible grounding

of the rule, and a model of a program, if it satisfies every rule in

the program and the program has a stratification.

Is it easy to observe that in the presence of punctual intervals,

the semantics of −̂ and ⊟ coalesces and either operator can be

adopted interchangeably. Towards understandability, our prefer-

ence is to use both, and let the choice be guided by the conceptual

meaning of the operator from case to case, which may either refer

to a continuous validity (⊟) or to an eventual one (−̂).
A program Π and a database 𝐷 entail a fact 𝑃 (𝒂)@𝜚 ((Π, 𝐷) |=

𝑃 (𝒂)@𝜚) if 𝔐 |= 𝑃 (𝒂)@𝜚 for each model of both Π and 𝐷 . In

operational and informal terms, we will refer to the execution
(or run) of a program Π with a database 𝐷 as the process of

augmenting𝐷 by adding to it all the facts entailed by Π and𝐷 . To

do so, reasoning systems typically adopt chase procedures [26].

2.2 Temporal Vadalog System
Vadalog is a Datalog-based engine for performing complex logic

reasoning tasks [6]. The system adopts the Vadalog language,

an extension of the Warded Datalog± [22] tractable fragment of

the Datalog
±
[10] family of languages. In particular, it features

existential quantification, full recursion, aggregations, and other

features of practical utilities. A recent evolution of the system,

the Temporal Vadalog System, supports DatalogMTL, allowing

full recursion and aggregation also in the temporal context [5, 7].

2.3 Derivative Contracts
Derivatives represent a very relevant instrument in the financial

world. The latest figures by the Bank for International Settle-

ments (BIS) report a total notional value of all derivatives trades

amounting to $600 trillion at the end of 2021 [33]. These trades

refer to either exchange markets, where standardized contracts

are traded, or over-the-counter markets (i.e., outside the market),

where counterparts can agree on their own terms or define new

contracts. Traditional futures are standardized contracts where

parties agree to sell or buy an asset at a specific price and date in

the future. These terms are usually predefined by exchange mar-

kets, which offer these instruments to their customers. However,

it is always possible to trade futures over-the-counter under the

same or different conditions. One way to do so can be through

the use of smart contracts, computer programs consisting in a

774

set of rules which are run on a blockchain [27]. Smart contracts

are widely used in the crypto world for a variety of purposes,

such as for writing derivatives whose underlying is a crypto as-

set (mostly cryptocurrencies, such as Ether or Bitcoin). These

kinds of derivatives are called Smart Derivative Contracts and are
attracting the interest of the financial industry, which is explor-

ing the possibility of applying this technology also in traditional

derivatives like futures [28]. In the rest of the paper, we will fo-

cus on a “future-like” derivative contract (i.e., a perpetual future)
written in the form of a smart contract in Solidity, the scripting
language of the Ethereum ecosystem [20].

Futures, Perpetuals and Spot Market. Choosing a derivative

instead of a spot market (i.e., directly buying an asset like Ether)

and, in particular, a perpetual future, allows speculating on the

future price of a given asset by buying (“going long”) or selling

(“going short”) those contracts. Leverage is the most common

reason why traders are attracted to futures: it works as a so-

called capital multiplier, which implies that to take a position, the

entire sum of money need not be provided, but a fraction of it is

sufficient. The difference between perpetual and typical futures is

that the latter have an expiration date, while the perpetual ones do

not expire until the trader closes her position. Consequently, there

are no daily settlement events (i.e., daily computation and settling

of returns until the expiration date) that ensure convergence

between future price and underlying asset. Perpetual futures

have instead a funding rate mechanism, which incentivizes the

market skew to remain balanced (equal long/short open interest),

ensuring convergence on a regular basis [21].

RelatedWork. The idea of using DatalogMTL to encode generic

smart contracts has been recently suggested [32]. We position

ourselves in that line. We move a step forward and look into a

real-world smart contract in the financial field. To the best of

our knowledge, with this work, we offer for the first time an

executable declarative implementation of a real smart derivative.

The interest in smart derivative contracts does not limit to the

stakeholders wishing to offer a new way of conducting trading.

Big financial groups, banks, and clearing houses are also bound to

benefit from smart derivatives as well, as reflected in the different

ongoing research tracks. Some of them focus on the automation

of the risk management activities related to derivatives, such as

the timely adjustment of the collateral to fulfill margin require-

ments [28]. Interesting debates on which parts of a derivative

contract should be automated are ongoing [13]. A clear advantage

of full automation is the reduced time and resources spent for

fulfilling regulatory report obligations [29], with benefits for all

actors involved, from intermediaries to authorities. This is espe-

cially true when automation meets flexible tools and technology

that can be effectively integrated with AI-based solutions [4].

Looking further, related research tracks are those pursuing

the legal aspects of implementing derivatives in a blockchain

technology, which could deeply affect the work in this area [34].

3 CASE STUDY: ETH-PERP IN DATALOGMTL
Kwenta [17] is a decentralized derivatives trading platform, de-

ployed in a blockchain, which offers access to real-world syn-

thetic assets. In particular, Kwenta allows traders to get exposure

to a decentralized future market of cryptocurrencies, especially

the Ether one. The main product the Kwenta platform offers is

the ETH-PERP smart contract, which is a perpetual future on

the Ether cryptocurrency deployed in the Optimism Mainnet [1]
(i.e., one of the Ethereum blockchains) under a Solidity encoding.

In particular, the original implementation in Solidity involves

over 3k lines of code [15]. As discussed in specialized forums, a

Solidity-based implementation of a smart contract—and similarly

for any other major language used in the crypto world—does

not allow a common understanding for all the parties involved:

a contract should in fact “provide natural language terms that
are already used and understood in the real world, with the aim
of easing human reasoning” [36]. In this work, we want to lever-

age the clarity, understandability, modularity, simplicity, and

shared-semantics characteristics of a declarative database lan-

guage like Datalog to address this issue. In particular, we look

at DatalogMTL to open up a new way forward for the encoding

of derivative smart contracts, using the ETH-PERP as a use case

that we claim to be representative of the complex time-dependent

business logic governing these kind of contracts.

The ETH-PERPmarket. Kwenta launched the ETH-PERP smart

contract in March ’22 and, as of November ’22, it has attracted

the interest of a large community, with 27k unique traders, who

have performed around 100k trades for a total volume of 3.4$

billions. The market is continuously growing, with many new

traders joining in, especially since September ’22 [14].

3.1 The DatalogMTL Program for ETH-PERP
We first lay out the domain constraints related to our specific

case—perpetual futures on Synthetix, the protocolKwenta is based
on—and then illustrate our implementation strategy.

Domain Constraints. A position on the Kwenta smart contract

may be long or short. If its sign is positive, the position is consid-

ered long and it increases in value as the price of the underlying

asset rises. If it is negative, the position is called short and its

value increases as the underlying asset loses value. The Kwenta

protocol requires that all trades are opened against a so-called

pooling counterparty (i.e., the smart contract itself) and that a

specific account cannot open more than one position at once (but

an existing one can be modified). The price of the ETH-PERP is

obtained from an external oracle, as usual in smart contracts.

Implementation Strategy. We implement ETH-PERP as a Dat-

alogMTL program Π. We adopt a memory-resident execution

model, in which the program runs in a Vadalog process that

continuously takes as input the actions that the users (=traders)

send to the smart contract, namely methods, and updates mul-

tiple state amounts as a consequence, such as users’ positions,

margins as well as the overall market along with its metrics. This

simulates the usual functioning of a smart contract, which ba-

sically operates as a stateful system. More in detail, the state of

Π is represented by a database 𝐷 of temporal facts, where the

user inserts the input facts to call the methods. Method calls are

encoded by relational facts of the predicates representing the

method. As a result of its execution (see Section 2), Π augments

𝐷 by adding the entailed facts, which represent state updates.

Notice that, importantly, the adoption of DatalogMTL allows

an entirely monotone reasoning process, in which neither dele-

tions nor updates of facts in 𝐷 are needed: as they are temporally

annotated, insertions are sufficient to model the state evolution.

Example 3.1. For example, let us assume that 𝐷 currently con-

tains the factmargin(123abc,97$)@2022-11-09, which specifies the

margin in dollars for the account 123𝑎𝑏𝑐 as of yesterday, 2022-11-

09. Today, the user owning that account calls the method tranM
by adding the following fact to 𝐷 : tranM(123abc, 3$)@2022-11-10.
It represents an order of deposit of 3 dollars on the account 123abc.
The program applies its internal business logic and updates the

current status by adding the fact margin(123abc,100$)@2022-11-
10 to 𝐷 , to mean that the margin of the account 123𝑎𝑏𝑐 has risen

to 100$ as of today.

775

Figure 1: Simplified dependency graph of our DatalogMTL pro-

gram. Arrows denote rule application.

Overview of the DatalogMTL Program. We organized the

DatalogMTL programs into the following different modules:

• MARGIN. Opening a position in the ETH-PERP smart contract

requires a margin account. In other words, before entering the

market, each user should have some funds transferred into a

sort of investing account, which we call margin. Only after this

action, a position, either long or short, can be opened. This

module captures the logic to handle margin (Section 3.3).

• POSITION. Whenever a trader sends an order, she is changing

her position size. We want to track in each time point the state

of the system and execute orders. All of this is possible through

the use of an order-book (Section 3.4).

• RETURNS. When closing a position, the returns derived from

the trading activity are computed (Section 3.5).

• F-RATE. The funding rate is a balancing incentive for the two
sides of themarket and replaces the daily settlement mechanism

of traditional futures. According to this mechanism, positions

on the heavier side of the market are charged a funding rate,

while positions on the lighter side receive funding. The side

depends on the skew of the market: if the skew is positive (i.e.,

the sum of the long positions is greater than the sum of the short
ones), the heavier side will be the long one and they will be

charged funding, while accounts in a short position will receive

funding. We operationally define the individual funding as the

one computed with an instantaneous funding rate charged over

time against the notional value of each position, and paid into or

out of its margin. This means that funding accrues continuously

until the trader closes its position (Section 3.6).

• FEES. Each interaction with the smart contract is subject to a fee.

This is generally in line with all financial transactions, although

in DeFI the purpose of fees is different, as they are charged for

the prevention of spam actions and for the maintenance of the

blockchain infrastructure [35], instead of being a remuneration

for the intermediation role. This is also true within the ETH-

PERP smart contract, in which two kinds of fees are charged: a

taker fee rate, 𝜙𝑡 , and a maker fee rate, 𝜙𝑚 (Section 3.7).

Before delving into the modules, we start in Section 3.2 by

showing the predicates capturing methods and state amounts.

3.2 Input Methods and State Amounts
A traderwhowants to interact with the ETH-PERP smart contract

and open a position will use the followingmethods:
• Transfer Margin. A call to this method, encoded as a fact of the

form tranM(A, M)@t, is an order of transferring some funds (𝑀)

into the smart contract issued by user 𝐴 at time 𝑡 . For example,

tranM(123abc,20$)@2022-11-03 is an order to deposit 20$ at time

2022-11-03 into the account with ID 123abc.
• WithdrawMargin. A withdrawal order at time 𝑡 ,withdraw(A)@t,
indicates that the account is being closed and all available funds

are withdrawn. For example, the fact withdraw(123abc)@2022-
11-13 implies the shutdown of account 123abc.

• Modify Position. A fact modPos(A, S)@t entails that an account

𝐴 is opening a new position (either long or short depending on

the sign) or modifying an existing one by 𝑆 units. For example,

with the atom modPos(123abc, 0.5)@2022-11-06 we mean an

order of opening a long position of size 0.5 for 123abc.
• Close Position. A fact closePos(A)@t is an order by user𝐴 to close

its position implies the computation of returns, funding, and

fees. For example, closePos(123abc)@2022-11-16 is an order by

the trader to close its previously opened position at 2022-11-16.
Moreover, we use facts price(P)@t to track the ETH-PERP price.

The program encodes the following state amounts.
• Margin. Facts margin(A,M)@t track an open margin account

over time, updating𝑀 in case of later events, such as deposits.

For example, the fact margin(123abc,75$)@2022-11-08 means

that the margin account 123abc is open and it amounts to 75$.

• Position. The position(A,S,N)@t facts follow the evolution of

each user’s position. For example, the fact position(123abc, -0.14,
-68$)@2022-10-16 implies that the account 123abc has a short
position and that its notional value is −68$.

• Skew of the market. We use facts skew(K)@t to track the updates
of the market. For example, if 𝐷 contains skew(354.8)@2022-10-
03, it means that on that day the skewness is positive.

We now have all the ingredients to describe the rules of the

modules, in the next sections. Figure 1 summarizes the main de-

pendencies between the predicates of our DatalogMTL program.

We finally provide some further discussion in Section 3.8.

3.3 Margin Management (MARGIN)
The following rules of the MARGIN module model the first time

an account is opened as well as the later deposits.

tranM (𝐴,𝑀) → isOpen(𝐴) (1)

⊟isOpen(𝐴),¬withdraw(𝐴) → isOpen(𝐴) (2)

tranM (𝐴,𝑀),¬ ⊟ isOpen(𝐴) → margin(𝐴,𝑀) (3)

withdraw(𝐴) → changeM (𝐴) (4)

tranM (𝐴,𝑀) → changeM (𝐴) (5)

closePos(𝐴) → changeM (𝐴) (6)

−̂margin(𝐴,𝑀),¬changeM (𝐴) → margin(𝐴,𝑀) (7)

⊟isOpen(𝐴), −̂margin(𝐴,𝑋),
tranM (𝐴,𝑌), 𝑀 = 𝑋 + 𝑌 → margin(𝐴,𝑀) (8)

−̂margin(𝐴,𝑋), PNL(𝐴, 𝑃𝐿),
finalFee(𝐴,𝐶), funding(𝐴, 𝐼𝐹),

𝑀 = 𝑋 + 𝑃𝐿 −𝐶 + 𝐼𝐹 → margin(𝐴,𝑀) (9)

Rules 1 and 2 define the predicate isOpen that holds when the

margin for user𝐴 is first opened. It is then recursively propagated

over time until there is a withdraw method call, which may close

the account. Rule 2 shows a pattern of non-trivial but elegant

and light joint use of recursion and temporal operators, which

will be extensively adopted in our implementation: the idea is

shifting the validity interval of facts binding to the body atom

with the temporal operator (in this case facts for isOpen, holding
at 𝑡 − 1 as specified by the ⊟ operator) by generating a new fact

776

of the same atom that holds as of 𝑡 . The recursion makes this

propagation progress, until the body applies, which in this case

is controlled by the ¬withdraw condition.

The atom isOpen is instrumental in understanding if a tranM
call is a first-time deposit or a later one. In fact, rule 3 activates

only when the margin account is being opened, initializing it

with the to 𝑀 . Rules 4, 5 and 6 specify alternative conditions

indicating amargin update. Rule 4 stops the temporal propagation

of the margin when a withdrawal happens. Rule 5 accounts for

additional deposits or partial withdrawals. Rule 6 together with

rule 9 adds or subtracts returns, funding, and fees to the margin

derived from the participation in the market. These rules interact

with many predicates that will be defined in later modules. Rule 7

recursively propagates the margin over time when no changing

event is occurring. Rule 8 deals with later deposits and updates

the margin accordingly, activating in combination with rule 5. We

have already seen some of these rules in action in Example 3.1.

3.4 Order-book and Positions (POSITION)
The ORDER module comprises the rules governing the order-

book and the tracking of each position over time:

tranM (𝐴,𝑀),¬ ⊟ isOpen(𝐴),
𝑆 = 0, 𝑁 = 0 → position(𝐴, 𝑆, 𝑁) (10)

modPos(𝐴, 𝑆) → order (𝐴, 𝑆) (11)

closePos(𝐴), 𝑆 = 0 → order (𝐴, 𝑆) (12)

−̂position(𝐴, 𝑆, 𝑁),¬order (𝐴, _),
isOpen(𝐴) → position(𝐴, 𝑆, 𝑁) (13)

−̂position(𝐴,𝑌, 𝑍), price(𝑃),
modPos(𝐴,𝑋), 𝑆 = 𝑋 + 𝑌,

𝑁 = 𝑍 + 𝑋 ∗ 𝑃 → position(𝐴, 𝑆, 𝑁) (14)

closePos(𝐴), 𝑆 = 0, 𝑁 = 0 → position(𝐴, 𝑆, 𝑁) (15)

Rule 10 initializes the position of account 𝐴 as soon as the mar-

gin account has been opened. 𝑆 is the size of the position; the

notional value 𝑁 is the corresponding value in USD, allowing the

computation of returns from the trading activity. Rules 11 and 12

collect into a single predicate all the orders from the counterparts

(i.e., the order-book): in case of a modPos call, the position will

be modified by 𝑆 units while, when a closePos order is sent, the
order-book will register a reset of the position. Rule 13 activates

in all time points when there are no orders and so shifts existing

positions over time until the margin account is closed. Rule 14

deals with the modification of the position size and updates both

𝑆 and 𝑁 . Rule 15 closes a position, resetting 𝑆 and 𝑁 .

Example 3.2. Let us suppose a user sends a tranM(123abc,
60$@2022-11-10 order, a modPos(123abc, 0.4)@2022-11-12 order,
and that 𝐷 does not contain a isOpen(123abc)@2022-11-10 fact,
which means, from the previous block, that the margin has

not been opened yet. The first order generates the atoms po-
sition(123abc, 0, 0$)@2022-11-10 and position(123abc, 0, 0$)@2022-
11-11, while the latter adds position(123abc, 0.4,28$)@2022-11-12
to 𝐷 , with 28$ being the notional value (computed using the

price) of a position of size 0.4.

3.5 Profits and Losses (RETURNS)
Let 𝑞 be the position size measured in units of the base asset (i.e.,

ETH), and let 𝑝𝑡 be the price of the asset (i.e., the ETH-PERP

contract) at time 𝑡 . The notional value 𝑣𝑡 can be computed as

𝑣𝑡 = 𝑞𝑝𝑡 . In other words, 𝑣𝑡 is the (signed) dollar value of the base

currency units on a position. Long positions will have positive

notional, shorts will have negative notional. Using the subscript

𝑒 to define the entry time point, the profit or loss of a position at

time 𝑡 can be defined as 𝑟𝑡 = 𝑣𝑡 − 𝑣𝑒 .
Hence, the computation of returns (PNL) from the trading

activity can be defined by a single rule:

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁), price(𝑃),
𝑃𝐿 = 𝑆 ∗ 𝑃 − 𝑁 → PNL(𝐴, 𝑃𝐿) (16)

Rule 16 activates when the settlement takes place (i.e., a close-
Pos call) and computes the returns as a difference between the

current notional value and the starting one.

Example 3.3. Let us suppose that 𝐷 contains the facts posi-
tion(123abc, 0.7, 39$)@2022-10-06, price(47$)@[2022-10-07] and
closePos(123abc)@2022-10-07. Rule 16 adds the atom PNL(123abc,-
6.1$)@2022-10-07 to𝐷 , computing the loss generated by the trade.

3.6 The Funding Rate Mechanism (F-RATE)
Before formally explaining the mechanism, we introduce in Fig-

ure 2 some market metrics that will ease understanding.

Metric Formula

Market Size 𝑄 =
∑
𝑐∈𝐶 |𝑞𝑐 |

Market Skew 𝐾 =
∑
𝑐∈𝐶 𝑞

𝑐

Max Funding Rate 𝑖𝑚𝑎𝑥 = 0.1

Max Proportional Skew 𝑊𝑚𝑎𝑥 = 300000000

𝑝𝑡

Istantaneous Funding Rate 𝑖𝑡 = clamp(−𝐾𝑡−1
𝑊𝑚𝑎𝑥

,−1, 1) 𝑖𝑚𝑎𝑥

86400

Figure 2: Market metrics.

The function clamp restricts the first term to be in the range

(−1, 1) and 86400 are the epochs in seconds that make up 1 day.

The funding rate 𝑖 can be either positive or negative, depending

on the skew of the market, and it changes whenever someone

interacts with the smart contract. When 𝑖 is positive, it means that

“longs pay shorts”, while when it is negative “shorts pay longs”.

The funding flow per base unit at time 𝑡 is then 𝑓 (𝑡) = 𝑖𝑡𝑝𝑡 .
As funding accrues continuously, the individual (cumulative)

funding to be paid to a position opened at 𝑡𝑖 and closed at 𝑡 𝑗 is:

IF𝑞 = 𝑞

∫ 𝑡 𝑗

𝑡𝑖

𝑓 (𝑡)𝑑𝑡 = 𝑞 [𝐹 (𝑡 𝑗) − 𝐹 (𝑡𝑖)] (a)

with 𝑗 > 𝑖 . The funding flow between 𝑡𝑖 , 𝑡 𝑗 can be easily computed

with a summation of smaller intervals, such that in each of them

the skew and the price are constant. We can rewrite:∫ 𝑡 𝑗

𝑡𝑖

𝑓 (𝑡)𝑑𝑡 =
∑︁
𝑘∈𝐾

𝑖𝑡𝑘𝑝𝑡𝑘 (𝑡𝑘 − 𝑡𝑘−𝑚) (b)

where 𝐾 is the set of time points 𝑘 ∈ [𝑖, 𝑗] corresponding to

interactions with the smart contract;𝑚 is the difference between

two consecutive 𝑘 values. To simplify the computation of the

individual funding, ETH-PERP lets the cumulative funding flow

be updated only when the skew changes. The base asset price can

in fact change between two events, but any inaccuracy induced

as a result of this assumption can be neglected [16]. Therefore,

the accumulated funding per base unit can be simply seen and

computed as a finite time series, namely, the funding rate sequence
(FRS), which is the set of 𝐹 (𝑡𝑘) =

∑𝑘
𝑛 𝑖𝑡𝑛𝑝𝑡𝑛 (𝑡𝑛 − 𝑡𝑛−𝑚) since

the market started, and is updated any time someone interacts

with the contract. Individual funding will be then computed

by accessing the correct epochs of the time series and settled

777

whenever a position is closed. Let us see how individual funding

can be computed with the next examples.

Example 3.4. Let us assume that the market opened at 𝑡0 and

that the account 𝐴 opens a position 𝑞𝑎 at 𝑡1 and closes it at

𝑡4. Now, 𝐵 interacts with the contract at 𝑡2: the funding rate

sequence will be consequently updated at 𝑡1, 𝑡2, and 𝑡4, generating

𝐹 (𝑡1), 𝐹 (𝑡2) and 𝐹 (𝑡4), respectively. The first value 𝐹 (𝑡1) will be
computed as 𝐹 (𝑡1) = 𝑖𝑡1𝑝𝑡1 (𝑡1 − 𝑡0). The second value of the

funding rate sequence is 𝐹 (𝑡2) = 𝐹 (𝑡1) + 𝑖𝑡2𝑝𝑡2 (𝑡2 − 𝑡1) and the

third one is 𝐹 (𝑡4) = 𝐹 (𝑡2) + 𝑖𝑡4𝑝𝑡4 (𝑡4 − 𝑡2). Therefore, computing

the individual funding accrued by account 𝐴 can be easily done

as 𝐼𝐹𝐴 = 𝑞𝑎 [𝐹 (𝑡4) − 𝐹 (𝑡1)].

Example 3.5. Let us consider again Example 3.4 and suppose

that position 𝑞𝑎 has been modified at 𝑡3 by 𝑠 units and closed at

𝑡4. In this case the total individual funding accrued is computed

as 𝐼𝐹𝐴 = 𝑞𝑎 [𝐹 (𝑡3) − 𝐹 (𝑡1)] + (𝑞𝑎 + 𝑠) [𝐹 (𝑡4) − 𝐹 (𝑡3)].

We are now ready to focus on encoding the computation of

the set of 𝐹 (𝑡𝑘) (i.e., the funding rate sequence). This is the main

object needed for computing any individual funding. The rules

in the first subset (rules 17 to 20) aggregate in one unique predi-

cate all the interactions that took place with the smart contract,

regardless of the user.

tranM (𝐴,𝑀), 𝑆 = 0 → event (sum(𝑆)) (17)

withdraw(𝐴), 𝑆 = 0 → event (sum(𝑆)) (18)

modPos(𝐴, 𝑆) → event (sum(𝑆)) (19)

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁) → event (sum(−𝑆)) (20)

These events define all the time points when the funding rate se-

quence is going to be updated. In addition, they enable the update

of the market skew. Rules 17 and 18 refer to interactions with

the smart contract related to margin updates and, therefore, they

are not influencing the market skew (i.e., the skew is modified by

𝑆 = 0). Rule 19 collects all the modified position events, which

exactly updates the skew by 𝑆 units. Conversely, a close position

order does not include the size 𝑆 : the system has to derive this

value from the position atom it has computed at the previous

epoch, changing its sign (rule 20). In case multiple events occur
at the same time point, a temporal sum, aggregating all values of

𝑆 of all accounts 𝐴 and grouping by 𝑡 , is applied. Aggregations

appear in multiple logical contexts and the need for a careful

definition of their semantics (procedural and model-based) arose

in all of them. In this work, we adopt a simple stratified seman-

tics [30], which is enough for our purposes. Such semantics easily

extends to the temporal context, and temporal aggregations have
been recently introduced in DatalogMTL [5] and are supported

by the Vadalog system. The second subset of rules, 21 and 22,

updates the market skew and is defined as follows:

−̂skew(𝐾),¬event (_), isOpen(_) → skew(𝐾) (21)

−̂skew(𝑋), event (𝑆), 𝐾 = 𝑋 + 𝑆 → skew(𝐾) (22)

The predicate skew(𝐾)@𝑡 is initialized at the start of the market

with 𝐾 = 0 (or with the value 𝐾 at the start of the interval under

analysis). Rules 21 and 22 check whether an event took place

at each time point and update the skew 𝐾 accordingly. With

𝐾 and the price available, the only missing element needed for

the update of the funding rate sequence is the time difference

in seconds between two consecutive events, (𝑡 𝑗 − 𝑡𝑖). A simple

way to obtain it is by subtracting Unix timestamps. The Unix

timestamp is the number of seconds that have elapsed since

January 1, 1970, and it is an alternative way to represent time

through integers. In the Vadalog implementation of DatalogMTL,

we will adopt a unix(t) cast operator for conversions.

start@𝑡 → Tdiff (unix (𝑡), unix (𝑡)) (23)

−̂Tdiff (𝑇 1,𝑇 2),¬event (_),
isOpen(_) → Tdiff (𝑇 1,𝑇 2) (24)

−̂Tdiff (𝑇 1,𝑇 2), event (𝑆)@𝑡 → Tdiff (𝑇 2, unix (𝑡)) (25)

Tdiff (𝑇 1,𝑇 2), event (𝑆) → Diff (𝑇 2 −𝑇 1) (26)

Rule 23 initializes the predicate Tdiff (𝑇 1,𝑇 2) from a fact bind-

ing to start@𝑡 that denotes the market starting point (or, as for

the skew, the starting point of the interval under analysis). The

two arguments of Tdiff denote the lower and upper bounds of

an interval, respectively. Observe that in this rule we are “pro-

moting” a temporal annotation to a ground value in the head,

which is beyond the possibilities offered by DatalogMTL theoret-

ical fragment, but supported by Vadalog for practical purposes.

Rule 24 shifts the facts for Tdiff over time in case no interaction

with the contract takes place and the market is open. When an

interaction takes place, rule 25 activates and updates the interval

bounds: the lower bound will now be the time point of the previ-

ous event, while the upper bound will be the time point of the

current event. Finally, rule 26 computes the interval length since

the last interaction and filters only the facts related to events.

The final subset of rules defines the unrecorded funds and
appends the new 𝐹 value to the sequence. The accrued fund-

ing sequence is initialized with the predicate FRS(𝐹)@𝑡 where
𝐹 = 0 when the market started. Each time an interaction occurs,

the accrued funding (i.e., the last element of the summation)

is computed and added to 𝐹 . This requires the computation of

the istantaneous funding rate, 𝑖𝑡 . The following rules formally

describe these steps:

event (𝑆),⊟skew(𝐾), price(𝑃),

𝐼 =
−𝐾
𝑊𝑚𝑎𝑥

𝑃 → rate(𝐼) (27)

rate(𝐼), 𝐼 > 1 → clampR(1) (28)

rate(𝐼), 𝐼 < −1 → clampR(−1) (29)

rate(𝐼),−1 < 𝐼 < 1 → clampR(𝐼) (30)

clampR(𝐼), price(𝑃),Diff (𝑇),

𝑈 𝐹 = 𝐼 ∗ 𝑃 ∗𝑇 𝑖𝑚𝑎𝑥

86400

→ unrFund (𝑈𝐹) (31)

−̂FRS(𝐹),¬unrFund (_), isOpen(_) → FRS(𝐹) (32)

−̂FRS(𝑋), unrFund (𝑈𝐹), 𝐹 = 𝑋 +𝑈𝐹 → FRS(𝐹) (33)

Rule 27 computes the rate that has to be passed to the clamp
function, as described in Section 3.6 and implemented in rules 28

to 30. Rule 31 computes the unrecorded funding UF generated

since the last interaction, which we add to the last value of the

funding sequence, as done by rules 32 and 33.

Individual Funding. With the funding sequence available, the

individual funding is defined as follows:

⊟position(𝐴, 𝑆, 𝑁), FRS(𝐹),
modPos(𝐴,𝐶), 𝑆 = 0, 𝐴𝐹 = 0 → indF (𝐴, 𝐹,𝐴𝐹) (34)

−̂ indF (𝐴, 𝐹,𝐴𝐹),¬order (𝐴, _) → indF (𝐴, 𝐹,𝐴𝐹) (35)

−̂ indF (𝐴, 𝐹, 𝑃𝐴𝐹), FRS(𝐹),
modPos(𝐴,𝐶),⊟position(𝐴, 𝑆, 𝑁),

AF = PAF + 𝑆 (𝐹 − PAF) → indF (𝐴, 𝐹,𝐴𝐹) (36)

−̂ indF (𝐴, 𝑃𝐹,𝐴𝐹), closePos(𝐴),
FRS(𝐹),⊟position(𝐴, 𝑆, 𝑁),

IF = AF + 𝑆 (𝐹 − PF) → funding(𝐴, 𝐼𝐹) (37)

778

Rule 34 initializes 𝑖𝑛𝑑𝐹 (𝐴, 𝐹,𝐴𝐹)@𝑡 , which stores the individual

funding 𝐴𝐹 for account 𝐴 and the corresponding 𝐹 (𝑡). Rule 35
shifts over time such facts in case no order is sent. Rule 36 acti-

vates when there is a𝑚𝑜𝑑𝑃𝑜𝑠 (𝐴, 𝑆)@𝑡 method call and computes

the intermediate individual funding 𝐴𝐹 . Rule 37 computes the

final individual funding 𝐼𝐹 after the closing of a trade, which we

add to the margin (Rule 9).

3.7 Exchange Fees (FEES)
The distinction betweenmaker fee and taker fee is used as another
mechanism to reduce the skew of the market: a maker is someone

that reduces the skew and will be applied the lower fee rate.

Conversely, a taker is someone that increases the skew and will

be charged a higher rate. So, when opening, modifying, or closing

a position in 𝑡 , different scenarios may apply, according to the

order of submission and the market conditions (i.e., the skew):

fee𝑡 =


|Δ𝑞𝑝𝑡𝜙𝑡 | if 𝐾𝑡 > 0,Δ𝑞 > 0

|Δ𝑞𝑝𝑡𝜙𝑚 | if 𝐾𝑡 < 0,Δ𝑞 > 0

|Δ𝑞𝑝𝑡𝜙𝑚 | if 𝐾𝑡 > 0,Δ𝑞 < 0

|Δ𝑞𝑝𝑡𝜙𝑡 | if 𝐾𝑡 < 0,Δ𝑞 < 0

where Δ𝑞 is the increase (decrease) in the size of the position

and 𝐾𝑡 is the market skew. In an opening position event, Δ𝑞 = 𝑞,

while, in case of a close position event, Δ𝑞 = −𝑞 .
In order to encode in DatalogMTL rules, we first initialize a

dedicated predicate that stores the total fees for each account:

tranM (𝐴,𝑀),¬ ⊟ isOpen(𝐴),𝐶 = 0 → fee(𝐴,𝐶) (38)

−̂ fee(𝐴,𝐶),¬order (𝐴, _), isOpen(𝐴) → fee(𝐴,𝐶) (39)

In detail, rule 38 creates the fee predicate once an account is first

created and initializes it with 𝐶 = 0, where 𝐶 is the cumulative

fees charged to account 𝐴. Rule 39 recursively shifts over time

the predicate fee, in case no event is triggered by the owner of the

account. In case an order is received, the following two chunks

of rules will compute the fees. First, we analyze the rules for a

modPos event, then we will focus on a closePos one.

modPos(𝐴, 𝑆), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
skew(𝐾), 𝐾 > 0, 𝑆 > 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑚 | → fee(𝐴,𝐶) (40)

modPos(𝐴, 𝑆), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
skew(𝐾), 𝐾 < 0, 𝑆 > 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑡 | → fee(𝐴,𝐶) (41)

modPos(𝐴, 𝑆), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
skew(𝐾), 𝐾 > 0, 𝑆 < 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑡 | → fee(𝐴,𝐶) (42)

modPos(𝐴, 𝑆), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
skew(𝐾), 𝐾 < 0, 𝑆 < 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑚 | → fee(𝐴,𝐶) (43)

We identify four possible cases depending on the order being long

or short and on themarket skewness. Rules 40 and 41 compute the

new exchange fees 𝐶 when the order is to increase (respectively,

decrease) a position and the skew is positive (negative). Rule 42

and 43 refer to the cases when the skew is negative, while the

order is respectively long and short.

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁),
skew(𝐾), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
𝐾 > 0, 𝑆 < 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑚 | → finalFee(𝐴,𝐶) (44)

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁),
skew(𝐾), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
𝐾 < 0, 𝑆 < 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑡 | → finalFee(𝐴,𝐶) (45)

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁),
skew(𝐾), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
𝐾 > 0, 𝑆 > 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑡 | → finalFee(𝐴,𝐶) (46)

closePos(𝐴),⊟position(𝐴, 𝑆, 𝑁),
skew(𝐾), price(𝑃), −̂ fee(𝐴,𝑂𝑙𝑑𝐶),
𝐾 < 0, 𝑆 > 0,𝐶 = 𝑂𝑙𝑑𝐶 + |𝑆𝑃𝜙𝑚 | → finalFee(𝐴,𝐶) (47)

closePos(𝐴),𝐶 = 0 → fee(𝐴,𝐶) (48)

Rules 44 to 47 are similar to the previous chunk but they deal

with a closePos event. However, as a first difference, here the size
of the order, which is unknown, is retrieved through the position
predicate (i.e., the size 𝑆). The second difference is that these rules

store the final result, i.e., the final fees from a completed trade,

into a new predicate, finalFee. In fact, rule 48 generates “reset”

fee facts, so as to store the fees if 𝐴 starts a new trade.

Example 3.6. Let us assume that𝐷 contains skew(1342.2)@2022-
11-19 and price(1200$)@2022-11-19, without any open position

(which means 𝐷 contains position(123abc, 0, 0$)@2022-11-18 and
fee(123abc,0)@2022-11-18). Let us consider an order to open a po-

sition, modPos(123abc, 0.02)@2022-11-19. As the skew is positive

and the order is long, the fees are computed through rule 40, gen-

erating the fact fee(123abc,0.084)@2022-11-19 (with 𝜙𝑚 = 0.0035).

3.8 Discussion
To conclude the illustration of our solution, we provide some

final remarks about termination and negation.

Termination. We argue that our DatalogMTL program for ETH-

PERP eventually terminates. Datalog programs always terminate

also in the presence of recursion, by the finiteness of symbols

in 𝐷 [3]. However, since we adopt algebraic operations, more

care is needed as their joint use is a well-known cause of non-

termination, e.g., for infinite increments. Yet, this joint use is not

present in our program, where algebraic operators are confined

within recursive temporal rules that produce facts with shifted

validity intervals (e.g., rules 8, 9, etc.), in fact, breaking recursion.

With this premise, the only remaining cause of non-termination

in DatalogMTL is the creation of infinitely many facts with in-

creasing temporal validity, which may be the case, for instance,

of our temporal recursive rules 2, 7, and so on. Our working

assumption here is that, eventually, the market will be closed

and all the margins withdrawn. By construction, this implies that

none of the bodies of the temporal recursive rules will activate

any longer, in fact preventing non-termination. In simpler words,

our program runs indefinitely but shuts down gracefully.

Negation. A final informal remark about the use of negation is

required. By construction, the dependency graph of our program

(the one where nodes are atoms are edges denote rule-induced

dependencies) does not contain cycles involving negative edges

(those generated by rules having negations in the body). This

condition is enough to witness that the program has a stratifica-

tion [3] and therefore a consistent use of negation.

4 EXPERIMENTAL SETTINGS IN VADALOG
We evaluated our approach by executing the DatalogMTL pro-

gram in the Vadalog reasoner. The primary goal of our exper-

imental setting is validating the correctness of the approach by

letting ETH-PERP “live and evolve” in Vadalog throughout three
2-hours intervals having different initial conditions and comparing

the results of the trades with the real ones on the blockchain.

As a secondary goal, we also want to verify good performance

779

characteristics to confirm the possibility of realistically executing

the smart contract in a reasoning system like Vadalog.
1

HW and SW Configuration. We ran all the experiments on a

Windows 11 machine with AMD Ryzen 5 5500U and 8 GB 3200

MHz DDR4 memory. Vadalog has been compiled with JDK 17.0.4.

In Section 4.1 we describe the datasets we use as input and for

validation. In Section 4.2 we present the experimental results.

4.1 Input and Validation Datasets
Input Dataset. In order to let our implementation of ETH-PERP

realistically live and evolve in Vadalog in the given intervals, we

stimulated it with the real actions performed by the users. We

retrieved such actions from Optimism Mainnet [1], and mapped

them into method calls, i.e., by generating the corresponding

DatalogMTL facts (tranM, modPos, closePos, and withdraw).
Validation Dataset. To validate the results of our execution, we

compared the funding rate sequence (i.e., the set of 𝐹 (𝑡)) and the

results of the single trades (i.e., PNL, fee, and funding) with the

corresponding values from the blockchain. More precisely, we

obtained the real values by querying the Mainnet Subgraph [2],

which is a decentralized protocol for querying blockchain data

and extract measures that would be hard to obtain otherwise.

In Figure 3 we describe the input data and the analysed inter-

vals. The number of events represents the total number of inter-

actions with the contract that occurred during the time window.

The fourth column shows how many trades have been completed

during the corresponding interval. In the Skew column, there is

the skew at the beginning of the interval.

Date Interval (GMT) # events # trades Skew

2022-09-27 10.30 - 12.30 267 59 -2445.98

2022-10-07 18.00 - 20.00 108 16 1302.88

2022-10-12 14.00 - 16.00 128 29 2502.85

Figure 3: Input data.

4.2 Experimental Results
The analysis of the funding rate sequence computation is shown

in Figure 4: the Vadalog program reproduces the evolution of the

real FRS with differences in the order of 1𝑒−12, so with perfect

accuracy. Moreover, since FSR is a cumulative series, this might

result in an error trend, which however keeps insignificant.

Besides validating the overall correspondence of our run with

the real market, we also compared individual trades. To this end,

we computed some summary statistics on the errors between

values computed by the Vadalog program and the ones available

in the Subgraph. As Figure 5 shows, for all the analyzed intervals,

the DatalogMTL program returns the same results exhibiting

minimal errors. This means that not only does our system sim-

ulate the market, but reacts to any user interaction exactly like

the Kwenta ETH-PERP. It is finally worth remarking that this be-

havior is achieved through the use of temporal operators, which

manage to easily handle and track changes in each time point,

continuously adding temporal facts which are always up-to-date

and allow the computation of all metrics.

Performance. We point out that the main ambition of this work

is not high performance, but explainability, understandability

and all the other forces of a declarative approach, as we have

discussed. Nevertheless, to plausibly confirm a prospective execu-

tion of a smart contract in a reasoning environment, we verified

1
The full DatalogMTL program and all the used datasets are online: http://bitly.ws

/xhGq. Vadalog can be made available by the authors upon request.

Figure 4: Comparison between the Subgraph FRS and the Data-

logMTL FRS. In the third column we show the difference.

Returns Fee Funding

Mean 3.545513e-15 -9.093255e-17 -4.789471e-15

Std. Dev. 5.574446e-14 3.767407e-16 1.200630e-13

Figure 5:Mean and standard deviation of errors between metrics

computed with Vadalog and the Subgraph data.

that the computation for the three intervals under analysis took

1140, 540, and 420 seconds respectively. Hence, in all cases, the

runtime is much smaller than the corresponding interval, con-

firming the possibility to roll out the solution.

5 CONCLUSION
In this work we kept walking the thin line between database the-

ory and industrial practice, putting recent temporal extensions of

the famous Datalog language for databases into action to provide

a fully declarative implementation of a real smart derivative.

Paradigms that sustain understandability, transparency, and

ease of communication are of relevance for a Central Bank and for

financial authorities. Furthermore, we believe that the application

in complex financial areas of knowledge representation and rea-

soning formalisms conceived in the academic space encourages

once more to look at these languages and the uprising reasoning

systems as professional tools for core industrial settings.

In our case, given the complexity of the financial instrument

at hand, we believe our contribution can be easily replicated or

adapted for other derivatives and represents a step towards a

declarative paradigm for smart derivatives (and smart contracts

in general), which are too often obscure or anyway hard to un-

derstand, communicate, analyze, and simulate. Looking further,

extensions to our program could be adopted by private market

players for internal risk management activities, for instance, to be

able to swiftly react to the evolution of each margin account over

time, or for automatically reporting up-to-date data to authorities,

like the size of the position at each time point.

As a final consideration, it could be stimulating to debate

whether a blockchain deployment of a DatalogMTL—or any-

way logic-based / fully declarative / semantically unambiguous—

program is at the forefront of interest for the community and

we do believe this paper could help spur such discussion. In the

positive case, further hard challenges, which we considered out

of scope for this paper (e.g., which blockchains, which consensus

protocols; how to distribute computation at best between logical

nodes), will naturally arise and interest the database community.

780

REFERENCES
[1] 2022. Optimism Documentation. http://bitly.ws/xd7H. [Last accessed on

2022-11-28].

[2] 2022. Subgraph Documentation. http://bitly.ws/xd7C. [Last accessed on

2022-11-28].

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of
Databases. Addison-Wesley.

[4] Luigi Bellomarini, Giuseppe Galano, Markus Nissl, and Emanuel Sallinger.

2021. Rule-based Blockchain Knowledge Graphs: Declarative AI for Solving

Industrial Blockchain Challenges. In Proceedings of the 15th International Rule
Challenge, 7th Industry Track, and 5th Doctoral Consortium @ RuleML+RR 2021
(CEUR Workshop Proceedings, Vol. 2956), Ahmet Soylu, Alireza Tamaddoni-

Nezhad, Nikolay Nikolov, Ioan Toma, Anna Fensel, and Joost Vennekens (Eds.).

CEUR-WS.org. http://ceur-ws.org/Vol-2956/paper60.pdf

[5] Luigi Bellomarini, Markus Nissl, and Emanuel Sallinger. 2021. Monotonic

Aggregation for Temporal Datalog. In Proceedings of the 15th International
Rule Challenge, 7th Industry Track, and 5th Doctoral Consortium @ RuleML+RR
(CEUR Workshop Proceedings, Vol. 2956), Ahmet Soylu, Alireza Tamaddoni-

Nezhad, Nikolay Nikolov, Ioan Toma, Anna Fensel, and Joost Vennekens (Eds.).

CEUR-WS.org.

[6] Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog

system. Proceedings of the VLDB Endowment 11, 9 (May 2018), 975–987. https:

//doi.org/10.14778/3213880.3213888

[7] Nissl Bellomarini, Blasi and Sallinger. 2022. The Temporal Vadalog System. In

RuleML+RR 2022 [To appear].
[8] Sebastian Brandt, Elem Güzel Kalayci, Vladislav Ryzhikov, Guohui Xiao, and

Michael Zakharyaschev. 2018. Querying Log Data with Metric Temporal Logic.

J. Artif. Int. Res. 62, 1 (may 2018), 829–877. https://doi.org/10.1613/jair.1.11229

[9] R. Buenaventura and V. Ross. 2013. Transparency and financial stability.

Financial Stability Review 17 (April 2013), 111–119. https://ideas.repec.org/a/

bfr/fisrev/20111711.html

[10] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-

based framework for tractable query answering over ontologies. J.Web Semant.
14 (2012), 57–83.

[11] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always

Wanted to Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl.
Data Eng. 1, 1 (1989), 146–166.

[12] Giovanni Ciatto, Roberta Calegari, Stefano Mariani, Enrico Denti, and Andrea

Omicini. 2018. From the Blockchain to Logic Programming and Back: Research

Perspectives. In WOA. 69–74.
[13] Christopher D. Clack and Ciaran McGonagle. 2019. Smart Derivatives Con-

tracts: the ISDA Master Agreement and the automation of payments and

deliveries. https://doi.org/10.48550/ARXIV.1904.01461

[14] Synthetix Community. 2022. Data on Kwenta platform. http://bitly.ws/xd6U.

Last accessed on 2022-11-28.

[15] Synthetix Community. 2022. ETH-PERP Solidity code. http://bitly.ws/zxBa.

Last accessed on 2022-11-28.

[16] Synthetix Community. 2022. Kwenta Documentation. http://bitly.ws/xd7q.

Last accessed on 2022-11-28.

[17] Synthetix Community. 2022. Kwenta Website. http://bitly.ws/xd7w. Last

accessed on 2022-11-28.

[18] Synthetix Community. 2022. Synthetix System Documentation. http://bitly.

ws/xd7I. Last accessed on 2022-11-28.

[19] David J Tena Cucala, Przemysław A Wałęga, Bernardo Cuenca Grau, and

Egor Kostylev. 2021. Stratified Negation in Datalog with Metric Temporal

Operators. Proceedings of the AAAI Conference on Artificial Intelligence 35, 7
(May 2021), 6488–6495. https://doi.org/10.1609/aaai.v35i7.16804

[20] Chris Dannen. 2017. Introducing Ethereum and Solidity. Apress. https:

//doi.org/10.1007/978-1-4842-2535-6

[21] Alex Ferko, Amani Moin, Esen Onur, and Michael Penick. 2021. Who Trades

Bitcoin Futures and Why? SSRN Electronic Journal (2021). https://doi.org/10

.2139/ssrn.3959984

[22] Georg Gottlob and Andreas Pieris. 2015. Beyond SPARQL under OWL 2 QL

Entailment Regime: Rules to the Rescue. In IJCAI. AAAI Press, 2999–3007.
[23] John C. Hull. 2010. Options, Futures, and other Derivatives (7th ed.). Pearson.

[24] Shaul Kfir and Camille Fournier. 2019. DAML: The contract language of

distributed ledgers. Commun. ACM 62, 9 (2019), 48–54.

[25] Ming Li, Jian Weng, Anjia Yang, Jiasi Weng, and Yue Zhang. 2020. Towards

Interpreting Smart Contract against Contract Fraud: A Practical and Automatic

Realization. Cryptology ePrint Archive, Paper 2020/574. https://eprint.iacr.or

g/2020/574 https://eprint.iacr.org/2020/574.

[26] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Impli-

cations of Data Dependencies. ACM Trans. Database Syst. 4, 4 (1979), 455–469.
[27] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. 2018.

An Overview of Smart Contract and Use Cases in Blockchain Technology. In

9th International Conference on Computing, Communication and Networking
Technologies (ICCCNT). 1–4. https://doi.org/10.1109/ICCCNT.2018.8494045

[28] Massimo Morini. 2017. How the Business Model Must Change to Make

Blockchain Work in Financial Markets: A Detailed Example on Derivatives,

Two Years Later. SSRN Electronic Journal (2017). https://doi.org/10.2139/ssrn

.3075540

[29] Massimo Morini. 2020. Financial Derivatives with Blockchain and Smart

Contracts. Blockchain Research Institute (2020).
[30] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. 1990.

The magic of duplicates and aggregates. In VLDB.
[31] E. Napoletano and B. Curry. 2021. What Is DeFi? Understanding Decentralized

Finance. http://bitly.ws/xd7Y. Last accessed on 2022-11-28.

[32] Markus Nissl and Emanuel Sallinger. 2022. Modelling Smart Contracts

with DatalogMTL. In Proceedings of the Workshops of the EDBT/ICDT 2022
Joint Conference, Edinburgh, UK, March 29, 2022 (CEUR Workshop Proceed-
ings, Vol. 3135), Maya Ramanath and Themis Palpanas (Eds.). CEUR-WS.org.

http://ceur-ws.org/Vol-3135/EcoFinKG_2022_paper4.pdf

[33] Bank of International Settlement. 2022. Statistical release: OTC derivatives

statistics at end-December 2021.

[34] Randy Priem. 2020. Distributed ledger technology for securities clearing and

settlement: benefits, risks, and regulatory implications. Financial Innovation 6,

1 (Feb. 2020). https://doi.org/10.1186/s40854-019-0169-6

[35] Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and Arthur

Gervais. 2021. CeFi vs. DeFi – Comparing Centralized to Decentralized Finance.
Papers 2106.08157. arXiv.org. https://ideas.repec.org/p/arx/papers/2106.0815

7.html

[36] Emanuel Regnath and Sebastian Steinhorst. 2018. SmaCoNat: Smart Contracts

in Natural Language. In 2018 Forum on Specification and Design Languages
(FDL). 5–16. https://doi.org/10.1109/FDL.2018.8524068

[37] Sylvie Riederová and Kamila Růžičková. 2011. Historical development of

derivatives’ underlying assets. Acta Universitatis Agriculturae et Silviculturae
Mendelianae Brunensis 59, 7 (2011), 521–526. https://doi.org/10.11118/actau

n2011590705

[38] International Swaps and Derivatives Association. 2019. Legal Guidelines for

Smart Derivatives contracts: the ISDA master agreement.

[39] Przemyslaw Walega, Michal Zawidzki, and Bernardo Cuenca Grau. 2022.

Reasoning Techniques in DatalogMTL. In Proceedings of Datalog 2.0.
[40] Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and

Egor V. Kostylev. 2020. Tractable Fragments of Datalog with Metric Temporal

Operators. In IJCAI. ijcai.org, 1919–1925.
[41] Przemysław A. Wałęga, David J. Tena Cucala, Egor V. Kostylev, and Bernardo

Cuenca Grau. 2021. DatalogMTL with Negation Under Stable Models Se-

mantics. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning. 609–618. https://doi.org/10.24963/k

r.2021/58

[42] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian

Weng, and Muhammad Imran. 2020. An overview on smart contracts: Chal-

lenges, advances and platforms. Future Generation Computer Systems 105
(April 2020), 475–491. https://doi.org/10.1016/j.future.2019.12.019

781

