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ABSTRACT
Extract, Transform, and Load (ETL) pipelines are widely used
to ingest data into Enterprise Data Warehouse (EDW) systems.
These pipelines can be very complex and often tightly coupled
to a given EDW, making it challenging to upgrade from a legacy
EDW to a Cloud Data Warehouse (CDW). This paper presents a
novel solution for a transparent and fully-automated porting of
legacy ETL pipelines to CDW environments.

1 INTRODUCTION

An Enterprise Data Warehouse (EDW) ecosystem typically
consists of two distinct solution stacks. On the one hand is the
Extract, Transform, and Load environment (ETL), responsible for
ingesting data from various sources and integrating it into the
EDW. On the other hand are the Business Intelligence (BI) and re-
porting tools, which issue complex analytical queries against the
EDW. Each solution stack typically consists of a deeply integrated
collection of native client drivers and utilities, third-party tools
and applications, and custom-built applications containing many
SQL queries. Figure 1 depicts such a typical EDW environment.

Data warehouse replatforming is when an enterprise replaces
its legacy backend data warehouse with a new modern one.
This task has sparked interest with the emergence of Cloud
Data Warehouses (CDW) such as Amazon Redshift [14], Google
BigQuery [20], Microsoft Synapse Data Warehouse [23], and
Snowflake [11]. Legacy EDW systems are seen by many as ex-
pensive and inflexible to handle the ever-growing volumes of
data in today’s world. CDWs free enterprises from procuring
and managing their infrastructure and data warehouse systems,
reducing upfront costs and staffing needs. However, replatform-
ing is a lengthy, costly, and risky undertaking due to the high
complexity of the EDW environment, as many of the compo-
nents are vendor-specific and not easily portable to a new data
warehouse. Mismatched data types and formats, incompatible se-
mantics of transformation logic, discrepancy in data load/export
APIs, and impedance mismatch of bulk loading utilities are only
a few challenges to mention in this context.

Datometry introduced the concept of Adaptive Data Virtual-
ization (ADV) to support replatforming of legacy EDW environ-
ments to novel cloud data warehousing solutions [6, 7, 26]. In a
nutshell, ADV virtualizes access to the database by intercepting
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the application’s communication with the database, translating,
and redirecting it to the newCDW.Datometry’sHyper-Q is based
on a powerful algebraic framework for query translation [7], that
maps incoming SQL queries to a system-agnostic abstraction and
applies the necessary transformations to make the query exe-
cutable on the new system. Additionally, Hyper-Q supports the
emulation of unsupported features like stored procedures, macros,
and recursive queries [26]. It allows customer tools and applica-
tions to work out of the box with minimal changes, reducing the
cost and duration of the replatforming project significantly.

Our earlier work focused on reporting queries and presented
a solution for replatforming legacy BI environments. This paper
focuses on howwe extendedHyper-Q to handle ETL pipelines. In-
gestion pipelines are typically written using a proprietary script-
ing language, making them very difficult and expensive to rewrite
for CDWs. Some of the unique challenges when replatforming
ETL pipelines are as follows:

• There is a large discrepancy between the loaders avail-
able in the different CDW environments. These are often
vendor-specific and non-portable. Examples include Ama-
zon’s AWS S3 cp [5] and Microsoft’s AzCopy [21], each of
which has its own configuration options and formats.

• Third-party tools often reuse and build on existing data
load/export APIs the EDW provides. In this paradigm,
tightly coupled software components work hand-in-hand
to implement various fine-tuned business use cases.

• ETL tools and applications support the injection of cus-
tomized SQL into the data pipelines. As a result, there is a
large volume of legacy SQL sprinkled around almost all
of the business processes.

• Some legacy EDW allow per-tuple error handling and
reporting. A tuple that has a data format issue or causes
a uniqueness constraint violation gets excluded from the
load job and is instead recorded in an error table for later
review. This tuple-at-a-time processing clashes with the
set-oriented nature of query processing in modern CDW.

• Replatforming the ETL pipelines has to go hand in hand
with replatforming the BI environment. Any decision about
how data is modeled must be consistent across both sides
of the ecosystem since they operate on the same data.

This paper presents a solution for virtualizing legacy ETL
pipelines based on the idea of Adaptive Data Virtualization and
presents the following novel contributions:

• We describe a novel solution for real-time virtualization of
legacy ETL constructs. We show how they can be mapped
transparently to the primitives and APIs of CDWs.

• We present techniques for optimizing the client to server
data transfer and the transformation part of ETL pipelines.
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Figure 1: EDW environment: ETL (top) and BI (bottom)

• Our solution includes an integrated component for error
handling, which achieves configurable granularity of error
reporting without sacrificing performance.

• We present an experimental study using real-world jobs,
illustrating the impact of our solution in practical settings.

• We report on a customer case study and the lessons we
learned during this experience.

2 BACKGROUND
In this section, we give background on legacy ETL pipelines. ETL
jobs in a legacy EDW environment rely on proprietary and/or
third-party client tools that interact with the data warehouse
server to import/export large data volumes in a scalable manner.
Client tools are typically used to define and execute ETL work-
flows coded using proprietary scripting languages. At a high
level, an ETL job script specifies input/output data files, target
database tables where data needs to be imported to or exported
from, and the transformations that need to be applied to the data
before being imported/exported.

Example 2.1. The following ETL script loads data from input file
input.txt into target table PROD.CUSTOMER. The job defines a simple
transformation that uses an SQL insert command to load data from input
fields and apply trimming and formatting logic before data is imported.
.logon host/user ,pass;

.layout CustLayout;

.field CUST_ID varchar (5);

.field CUST_NAME varchar (50);

.field JOIN_DATE varchar (10);

.begin import tables PROD.CUSTOMER

errortables PROD.CUSTOMER_ET PROD.CUSTOMER_UV;

.dml label InsApply;

insert into PROD.CUSTOMER values (

trim(: CUST_ID), trim(: CUST_NAME),

cast(: JOIN_DATE as DATE format `YYYY -MM-DD ') );

.import infile input.txt

format vartext `|' layout CustLayout

apply InsApply;

.end load □

Example 2.1 shows an ETL script to load data from an input
file into a target table after applying data transformations. It

is written using a proprietary scripting language that is inter-
preted using a legacy ETL client. During the script execution, the
following sequence of operations is performed:

(1) Client requests the EDW server to create error tables to
store any data/constraint violations in these tables.

(2) Client starts a number of data-loading sessions connected
to the EDW server.

(3) Client extracts data from the input data file, splits it into
chunks, and sends it to the EDW server through the paral-
lel data loading sessions. Over the wire, data is formatted
according to the format and protocol of the EDW system.

(4) Server loads data into a staging (work) table.
(5) Server executes the job transformation (insert statement)

to transform and load data from the staging table into the
target table.

(6) Client logs off data loading sessions and queries the server
to extract any errors recorded in the job error tables.

The legacy ETL import job consists of two main phases:

Data Acquisition. The data is pumped in at high speed from
client to server. The server caches the raw data it receives and
waits to be instructed by the client on what to do next.

DML Application. The client sends the transformation logic to
the server, expressed in SQL, and then it gets applied to the loaded
data. Data and constraint violations are recorded in appropriate
table structures that can be queried to get the job status.

An ETL client follows a specific protocol to communicate with
the EDW server. Based on this protocol, the client can formulate
certain requests, send them out to the server, and interpret the
server’s responses. If ETL scripts need to be ported or migrated
to a new data warehousing environment, the legacy protocol will
be incompatible; legacy client tools will not be functional and
will no longer be able to execute the ETL scripts. This means
that client scripts and tools must be rewritten and replaced to
construct a functional pipeline using the APIs and constructs of
the new environment.

There are multiple technical problems involved in this migra-
tion process such as porting incompatible features in the new
environment, bridging mismatching data types and formats, and
rewriting the legacy SQL to maintain the same business logic
implemented in the legacy environment. This process can be
overwhelming, time-consuming, and error-prone since it typi-
cally involves rewriting, testing, and integrating many complex
data processing pipelines.

3 SYSTEM ARCHITECTURE
This section describes the ETL pipelines virtualization system we
built as part of Hyper-Q [6, 7, 26]. Hyper-Q’s ability to follow
the same communication protocol of a legacy system is key to
enabling virtualization. Hyper-Q listens to connection requests
coming from the legacy ETL client and creates a pipeline of
connected processes to serve each client session.

Import. Figure 2(a) shows how Hyper-Q virtualizes import
jobs. In this case, the legacy client opens a number of data loading
sessions to efficiently transmit a large data volume. Then, the
client sends a SQL transformation to be applied to data before it
gets loaded into the target table. The SQL transformation can be
a DML operation to insert/upsert/delete data in the target table
(cf. Example 2.1).
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Figure 2: System Architecture

Each client message is captured by a network port listener
implemented by the Alpha process, which interacts with a Co-
alescer process to form complete TCP messages from the raw
bytes received over the wire. Each client message is then passed
to a Protocol Cross Compiler (PXC) process that decodes the
message to extract several pieces of information. For example, a
client message that carries a SQL payload requires extracting the
SQL statement to be transformed so that it can be executed in
the new environment.

When the client sends out a data message, the binary format
of the legacy system is used to encode data values in the message.
This can be different from how the CDW system interprets and
stores data. Hyper-Q handles this mismatch by converting data
messages on-the-fly, to create serialized data compatible with the
CDW system. We discuss data conversion in Section 4.

The cross-compiler process XC initiates a DataConverter pro-
cess for each data session. It asynchronously submits each re-
ceived data chunk and immediately switches back to waiting
for the client’s next data message. It is crucial to perform data
processing in the background while not slowing down data acqui-
sition from the client. We describe data acquisition in Section 5.

In the background, each DataConverter process conducts bi-
nary conversion of the data from the format of the legacy system
to the CDW system format. After a data chunk is converted, it is
sent to the FileWriter process, which receives converted chunks
from parallel sessions and serializes them into a disk file. There
are multiple FileWriter processes working in parallel, creating a
number of disk files from the data chunks received from different
sessions. When the file size reaches a threshold, the CDW bulk
loader is invoked to copy the local disk file into the cloud store.
After data is completely consumed, Hyper-Q initiates an in-the-
cloud COPY operation to move data to a staging table in the
CDW. We discuss integration with CDW interfaces in Section 6.

Afterward, the client starts the application phase, where it
sends a DML transformation to be applied to the loaded data.
Hyper-Q transforms the incoming DML statement to create an
equivalent rewrite compatible with the CDW system. The rewrit-
ten DML statement uses the staging table as its source in order
to affect data in the target table. The Beta process handles the
execution of the transformed statement and the decoding of its
returned results. After execution completes, Hyper-Q reports
to the client the results of ETL jobs in terms of the number of
added/updated/deleted rows in the target table and the number of
errors detected in input data or violations of integrity constraints.

Export. Figure 2(b) shows the architecture when virtualizing
an export job. In this case, data needs to travel in the reverse
direction. The client starts a number of export sessions to receive
a large volume of data from the server efficiently. The data to
be exported is retrieved by executing a SELECT statement in

Export 
Client

Hyper-Q

Data Converter
Data Msg

Query Msg TDF Cursor

Import 
Client

Result Msg

…
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…

Figure 3: Import/Export Data Conversion

the CDW. Hyper-Q uses a TDFCursor process which allows on-
demand retrieval and buffering of result chunks received from the
CDW system. TDF (Tabular Data Format) is an internal binary
data message representation designed to be an extensible format
that can handle arbitrarily large nested data.

Each client export session sends a request number for the
chunk order in the full query results. Hyper-Q buffers chunks
received by the TDFCursor process in advance and associates
each chunk with its order to serve client sessions requesting
different chunks. For each request, the data chunk needs to be
encoded using the format of the legacy system allowing the
client to interpret the returned data correctly and dump it into
an exported file.

The ability to follow the legacy system protocol and cross-
compile ETL script statements was achieved by extending Hyper-
Q’s protocol engine. We designed and implemented the Dat-
aConverter, FileWriter, and TDFCursor components to ensure
high performance, allowing ETL jobs to function as if they were
running in the legacy environment. No changes in job scripts,
load/export utilities, and configurations are needed. This provides
enterprise customers the solution to run legacy ETL pipelines
out-of-the-box in foreign CDW environments with minimal mi-
gration effort. In order to conform to this ability, Hyper-Q does
not use CDW-specific export techniques that do not match the
expected data format by the legacy systems.

4 DATA CONVERSION
CDWs use different data representations and formats compared
to legacy ones. To bridge discrepancies andmake ETL jobs database-
agnostic, Hyper-Q intercepts the data communication, converts
data formats, and redirects converted data to its destination. Fig-
ure 3 shows the data conversion process inHyper-Q. Data conver-
sion needs to handle both data messages received during import
jobs and query messages received during export jobs.

Hyper-Q captures data messages and converts them on-the-fly
to create serialized data compatible with the CDW system. These
messages are handled by parallel DataConverter processes, one
per client session. Depending on the target system and input
data, the data conversion process can vary from a simple conver-
sion of binary data formats to a more sophisticated conversion
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that includes detecting null values, handling empty strings, and
escaping special characters. After a message is converted, it is
sent to the FileWriter process to be serialized into a disk file.

Query messages include requests to perform staging/error
table operations as well as executing SELECT statements as the
source of data to be exported in export jobs. As Hyper-Q reports
back query results, it needs to convert them into the representa-
tion the legacy client expects. Hyper-Q retrieves query results
on demand through a TDFCursor process that connects to the
CDW. The result is retrieved in batches and packaged according
to the TDF format (cf. Section 3). The PXC process then unwraps
TDF packets to extract result rows and convert them into the
legacy system’s format.

Even when the data volume is large, ETL jobs need to perform
as if running in the legacy environment with negligible overhead.
To achieve this, Hyper-Q does lazy parsing of data messages
and parallel conversion of query results. To avoid slowing down
data acquisition from the client, when the PXC process receives a
data message as part of an import job, it does not parse the data
synchronously, i.e., it does not block the client from sending more
data messages while previous messages are still being processed.
Instead, it pushes data messages to a DataConverter process
that performs the conversion in the background asynchronously,
while the PXC returns to the client to request the next data
message. As a result, a back-pressure mechanism is needed to
avoid overwhelming the system with unprocessed data messages.

5 DATA ACQUISITION
Achieving high throughput during the acquisition phase is im-
portant, given the large volumes of data involved in ETL. Hyper-
Q needs to mimic the performance characteristics of the EDW.
For example, an ETL client might use parallel sessions to transmit
data to the EDW.Hyper-Q supports this pattern by allowing mul-
tiple sessions to run in parallel for the same ETL job, with each
session being handled by a separate internal worker. Similarly,
loading into the CDW must also be optimized. The performance
characteristics of the EDW and CDW often differ, and bridging
the gap between the two can be challenging.

To maximize throughput, Hyper-Q processes incoming data
using a pipelining model. The first stage reads each chunk of
incoming data. ETL clients typically use a synchronous protocol
requiring an acknowledgment of one chunk before sending the
next. Hyper-Q does minimal processing on the chunk before
sending an acknowledgment and handing the chunk to the sec-
ond stage, the DataConverter. Data conversion on a chunk may
take longer than receiving a chunk, so to avoid letting conversion
become a performance bottleneck, several chunks are converted
concurrently. Converted chunks are ordered and passed to the
next stage, the FileWriter. The FileWriter serializes converted
data chunks to the disk; performing this task in a separate stage
prevents fluctuations in I/O performance from stalling the Data-
Converter workers.

The FileWriter is tuned to the needs of the CDW; themaximum
size of the serialized file is chosen to maximize the load perfor-
mance into the CDW. It also performs any operations needed
to finalize the serialized files, such as applying compression, to
prepare for transmission to the CDW. Handling these steps in
a separate, concurrent process further insulates the processes
from any momentary performance impacts that might occur as
these operations occur. Depending on which type of API will
be used to upload the data to the CDW, multiple FileWriter may
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Figure 4: Data Acquisition and back-pressure

run concurrently to parallelize the serialization process further.
Finalized files are passed to the final stage of the pipeline, where
they are uploaded to the CDW and imported.

A design challenge with any pipeline architecture is avoiding
an overload of the systemwhen a later stage is slower than earlier
stages. For example, if Hyper-Q reads chunks from ETL clients
faster than the FileWriter can write the converted chunks to the
staging files, converted chunks can pile up in memory as they
wait for the slow FileWriter to catch up.

One possible approach to prevent this would be to synchronize
the pipeline. For example, Hyper-Q could wait to acknowledge
each incoming data chunk until it’s beenwritten to disk. However,
this type of synchronization would delay the acknowledgment
of the chunk and slow data acquisition from the ETL client. To
avoid this slowdown, acknowledgment is sent immediately. An
internal watchdog CreditManager process was implemented to
provide a lightweight back-pressure mechanism that only kicks
in if the DataConverter and/or FileWriter processes fall behind.

Figure 4 illustrates the back-pressure mechanism. When a
new ETL job begins, a CreditManager starts with a set number
of credits in its pool proportional to the expected number of
concurrent sessions and FileWriter processes. When a session
process is about to pass another data chunk along for conversion,
it first requests a credit. If the credit pool is not empty, one will
be immediately returned, and the credit will then be passed along
to the DataConverter and then to the FileWriter, where it will be
returned to the pool just before the data is written to disk. If the
credit pool is empty, the session process requesting the credit
will block until a new credit becomes available.

Having a number of credits greater than the number of ses-
sions allows a buffer of several data chunks ”in flight” for each
session before back-pressure is applied. If we run out of cred-
its, data acquisition will be slowed until more credits become
available. With a small credit pool, the back-pressure might slow
down the throughput more than necessary. However, with too
many credits, too many parallel DataConverter processes may
run simultaneously, and Hyper-Q could be overloaded. Good
throughput can be maintained with the right balance without
overloading the system.

In real-world environments, several ETL acquisitions run con-
currently against a single Hyper-Q node. To maximize through-
put and avoid overloading the system in such situations, one
CreditManager is spawned per Hyper-Q node, with each Credit-
Manager being shared for all concurrent ETL jobs on the node.

6 INTEGRATIONWITH CLOUD
INTERFACES

Sections 4 and 5 describe how to efficiently generate intermediate
files in a format compatible with the cloud interface. Once the
data is ready, the next step is to upload the files to a remote storage
account. We extended Hyper-Q’s interface to support uploading
bulk data to the cloud store, e.g., [1, 2], using cloud bulk loaders.
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CDWs offer utilities to upload local data files to remote storage ac-
counts [5, 21, 22]. Some tuning may be needed to upload data files
efficiently. For example, data compression can improve upload
speed if the communication link between the Hyper-Q server
and the CDW is slow. It may also be more efficient to upload a
directory of files rather than individual files. Furthermore, tuning
the intermediate file size is important. A small file size allows
more data writing parallelism and fast uploading into the remote
storage. On the other hand, a large number of files could impact
the efficiency of data copying from the storage account to the
CDW staging tables. Hyper-Q exposes these different tuning pa-
rameters that the customers can configure according to different
ETL job requirements.

The next step is to trigger COPY operations to move uploaded
data files into the staging table. Staging tables are needed to apply
the transformation logic captured by DML statements in the ETL
job. We use a two-step approach to apply these transformations.
First, data is serialized and uploaded into the CDW staging table.
The staging table is constructed using data types corresponding
to what was used by the ETL script. For example, a Unicode char-
acter type in the source script could be mapped to the national
varchar type in the CDW type system. Hyper-Q transparently
performs type mapping and data conversion/serialization across
type systems to produce data compatible with the target system.
Then, Hyper-Q applies the required transformations by execut-
ing the transformed DML statement in the ETL script. The trans-
formation logic is written using the EDW’s legacy SQL syntax.
Hyper-Q parses and transforms the statement into equivalent
syntax compatible with the target CDW.

7 ERROR HANDLING
An important aspect of ETL workflows is the handling of errors.
Errors can occur for various reasons and can be broadly classified
into two categories:

• Data Errors: the input file could have an incorrect number
of fields or the wrong data format.

• Transformation Errors: applyingDML transformation could
raise errors such as violation of uniqueness constraints.

In interactive query interfaces, an error during query process-
ing is immediately reported to the user and the remainder of
the transaction is aborted. However, errors in ETL jobs do not
result in suspending the job. Instead, when an erroneous tuple is
encountered, it is skipped, an error is recorded in an error table,
and the ETL job proceeds. Later, the error tables are inspected
by the user.

Example 7.1. Consider the loading script in Example 2.1 and the
data file provided in Figure 5(a). Executing the loading script will result
in these errors during the application phase:

• The second and third rows do not contain valid dates in the third
field, so casting these values to the DATE type will fail.

• The fourth row violates the uniqueness constraint on the CUST_ID
column of the target table.

These errors are recorded in the error tables specified in the loading
script, PROD.CUSTOMER_ET and PROD.CUSTOMER_UV. Figure 5(b)
and (c) shows the error tables as populated by the legacy data warehouse.
The final result of loading is shown in Figure 5(d). It contains all tuples
that could successfully be loaded and transformed from the data file. □

Hyper-Q supports error handling by effectively wrapping the
application phase in a try-catch block. If an error is encoun-
tered during processing, an error tuple is formed and inserted
either into the transformation error table for general errors or the

uniqueness violation error table if the target table has a unique-
ness constraint defined and a violation of that constraint was
detected. The CDWmight not provide native support for unique-
ness constraints. In those cases, Hyper-Q enforces uniqueness
through emulation [26].

During the transformation phase, the bulk processing of tuples
poses challenges to reporting errors with tuple-level granularity.
For example, suppose a tuple violates a uniqueness constraint. In
that case, the error will be observed at the level of the chunk con-
taining the faulty tuple rather than at the tuple level. Moreover,
all remaining tuples in the chunk will be discarded, even if they
do not violate the constraint. However, applications often require
that as many tuples as possible are loaded into the target tables,
and the error tables record all errors together with the violating
tuples so that they can be corrected in a post-processing step.

We devised an adaptive error handling mechanism to satisfy
such requirements without sacrificing performance. When an
error is encountered, we recursively repeat the application step
on smaller data chunks. If transforming a chunk of the input
still results in an error, we split the chunk further and proceed
recursively. Adaptive error handling stops when the input chunk
can no longer be split or when the processing hits a preconfigured
limit. The former happens when the chunk contains an individual
tuple, in which case we record the tuple in the corresponding
error table.

Users can define the following control parameters: max_errors
and max_retries. The first one controls the maximum number
of individual errors to record before the retry logic is aborted.
The second one controls the maximum number of times an input
chunk is split before aborting. For datasets containing multiple
errors, using these parameters prevents the adaptive error han-
dling from spending a lot of time finding each error. Instead, it
reports ranges of tuples that cannot be transformed correctly.

Figure 6 shows an example error table after loading the data
file in Example 7.1 with adaptive error handling enabled and
max_errors=2. Note that after exhausting the allowed number
of individual errors, we recorded an error specifying that the
remaining chunk of rows (rows 4-5) include one or more errors
but will not be further split.

8 CASE STUDY
In this section, we report on implementing Hyper-Q in a pro-
duction environment at a large retail organization. They offer
a variety of businesses ranging from food retail and wholesale
to insurance services and employ over 63,000 employees at over
7,000 locations.

Business locations contribute data (such as sales numbers)
daily. These data need to be ingested, cleaned, and pre-processed
for reporting. The high number of individual business locations
as well as the variety of product categories, result in a complex
ETL process, which was built and optimized for an existing on-
premises EDW over many years. 127 batch groups are executed
under a strict SLA, requiring ETL processing to begin after mid-
night and be complete by 6 a.m. Each group consists of a number
of sequential steps, ranging from custom file preparation to bulk
loading of data into the data warehouse and applying transforma-
tions inside the data warehouse. Between groups, dependencies
control the execution order. These dependencies also effectively
limit the degree of parallelism between batch groups and the
ability to run them independently.
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1 2 3 | Smith |2012 −01 −01
4 5 6 | Brown | xxxxx
7 8 9 | Brown | yyyyy
1 2 3 | J one s |2012 −12 −01
1 5 7 | J one s |2012 −12 −01

PROD.CUSTOMER_ET
SEQNO | ERRCODE | ERRFIELD

2 | 2 6 6 6 | JOIN_DATE
3 | 2 6 6 6 | JOIN_DATE

PROD.CUSTOMER_UV
CUST_ID | CUST_NAME | JOIN_DATE | SEQNO | ERRCODE

123 | J one s | 1 2 / 1 2 / 0 1 | 4 | 2 7 9 4

PROD.CUSTOMER
CUST_ID | CUST_NAME | JOIN_DATE

123 | Smith | 1 2 / 1 2 / 0 1
157 | J one s | 1 2 / 1 2 / 0 1

(a) Data file (b ) Transformation errors (c) Uniqueness violations (b) Successfully loaded tuples

Figure 5: Legacy Error and Target Tables in Example 7.1

ErrorCode | E r r o r F i e l d | E r rorMessage

3103 | JOIN_DATE | DATE conv e r s i on f a i l e d dur ing DML on PROD .CUSTOMER, row number : 2
3103 | JOIN_DATE | DATE conv e r s i on f a i l e d dur ing DML on PROD .CUSTOMER, row number : 3
9057 | NULL | Max number o f e r r o r s reached dur ing DML on PROD .CUSTOMER, row numbers : ( 4 , 5 )

Figure 6: Error Table for Example 7.1 with Adaptive Error Handling

Rewriting the ETL process from scratch would necessitate
unpacking the full complexity of the ETL process, from the high-
level dependencies down to custom date formats in the input files.
A rewrite was deemed infeasible, and they decided to use Hyper-
Q to migrate their on-premise EDW to Azure Synapse Analytics.
Hyper-Q allowed the migration to proceed without having to
rewrite the vast majority of their existing applications, including
the ETL processes. Hyper-Q’s support for existing bulk load
client tools, its ability to leverage modern bulk load technologies
on the target data warehouse for optimal throughput, and the
preservation of semantics for requests submitted through Hyper-
Q all combine to enable a seamless transition to the cloud.

Less than 1% of the queries in ETL jobs had to be rewritten
manually. Most manual rewrites are highly localized, i.e., they
concern a single construct within a query, and they typically
include clauses or data types not supported by the CDW. Rewrit-
ing ETL queries is time-consuming, especially during the later
stages of the migration process. We use qInsight [4] to identify
parts of ETL jobs that need to be rewritten upfront. The lessons
we learned during this migration process include establishing a
standard process to address query rewrites early on and realizing
that several of these rewrites are meaningful and effective for
the original EDW as well.

9 EXPERIMENTS
In this section, we present experiments to analyze the overall
performance and scalability of Hyper-Q’s ETL job virtualization
and the individual virtualization phases using real-world jobs
that we ran through Hyper-Q on Azure Synapse Analytics.

Performance with Dataset Size. The first experiment is to ana-
lyze system performance and scalability with different dataset
sizes in number of rows. Each row has data with an average
of 500 bytes. The objective of the tested ETL job is to extract,
transform and load raw data into a CDW target table. Figure 7
shows that the total job execution time (Y-axis) increases sub-
linearly with the increase in dataset size (X-axis). Also, it shows
that most overhead is concentrated in the data acquisition phase,
in which Hyper-Q needs to do data conversion and serialization.
The overhead of the application phase, where DML operations
run in the CDW comes next. It is clear that other steps, which
include startup and teardown, have minimal overhead that is
not affected by the data size. After analyzing the relative in-
crease in processing times of different phases with respect to a
baseline of the smallest dataset with a size of 25 million rows,
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Figure 7: Performance with Different Dataset Sizes

we observe the following. While each phase’s processing time
increases sub-linearly, the application phase shows a slower in-
crease rate compared to the acquisition phase. For example, for
100 million rows (4X larger), the increase in acquisition phase
time is 340%, while for the application phase, it is only 270%. This
is due to the bulk processing nature of the DML statements that
Hyper-Q generates. This allows the CDW to run DML operations
on the whole staging table to affect the target table using a few
SQL statements that are optimized by the CDW.

Scalability with Row Width. The second experiment measures
how the row width affects the overall performance. Four datasets
are used for this experiment. They have the same overall size,
while they differ in average row width. One dataset has an aver-
age row width of 250 bytes and 100 million rows, while another
dataset has 4X average row width and 25% of the number of rows.
Figure 8 shows that having larger row width results in better per-
formance. For the acquisition phase, the overhead decreased due
to the smaller number of iterations needed for data conversion
and serialization within each data chunk received by Hyper-Q.

Scalability with Compute Resources. ETL clients improve data
acquisition throughput by using parallel sessions to feed data
to the EDW. Using parallel sessions mitigates network and disk
latency. With Hyper-Q’s approach of acknowledging each chunk
of incoming data immediately, we utilize the resources of the
machine it resides on regardless of the number of client sessions.

Our experiments show that the acquisition rate is the same
when using 2, 4, 8, 12, or 16 parallel sessions. Figure 9 shows
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Figure 8: Effect of RowWidth on Bulk Load Performance
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Figure 9: Data Acquisition Scalability with No. CPU Cores

data acquisition scalability when using different numbers of CPU
cores on the Hyper-Q machine. The application phase is not
measured here since it is not affected by the number of cores.
The wall clock time is used in this experiment and is represented
as a time % of the 2 cores experiment and is shown on the left
Y-axis. The other measure is called the speedup efficiency (𝑆):

𝑆 = 𝑇𝑠/(𝑇𝑝 ∗ 𝑃)

where 𝑇𝑠 is the wall clock time of a job with the baseline set-
tings (using 2 cores), 𝑇𝑝 is the wall clock time using 𝑃 multiple
resources of the baseline setting. Figure 9 shows that Hyper-Q
can benefit from the available resources with a good speedup
efficiency until 16 cores are used, at which the speedup efficiency
degradation is caused by the setup and teardown overhead as-
sociated with the acquisition phase, which is done regardless of
the number of cores.

Scalability with CreditManager Pool Size. As discussed in Sec-
tion 5, the CreditManager provides a back-pressure mechanism.
Since there is a limit to the number of credits, it is of interest
to know more about the performance impact of varying this
limit. An experiment was performed wherein 100,000,000 records
comprising approximately 97GB of data were loaded through
Hyper-Q into a 50-column table. Figure 10 shows that the number
of credits did not affect the data acquisition rate up to a certain
point. This reflects the easily parallelizable workload involved;
there is minimal coordination cost added for each new DataCon-
verter process, and running more of them in parallel does not
automatically incur a significant performance penalty. However,
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Figure 10: Data Acquisition Scalability with No. Credits
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Figure 11: Error Handling Performance

eventually, the per-process overhead (i.e., context switching) in-
evitably begins to dominate the cost of the actual work. This
effect becomes apparent when the number of credits is pushed to
one hundred thousand and beyond. Finally, in one experimental
run not shown in Figure 10 where the number of credits was set
to one million, Hyper-Q ran out of memory and crashed before
all of the records could be loaded. These results demonstrate that
the CreditManager is not just beneficial to performance but is
essential for Hyper-Q to handle large ETL jobs.

Error Handling. As discussed in Section 7, error handling is
done by Hyper-Q through an adaptive mechanism. The follow-
ing experiment compares the performance of a baseline system
with Hyper-Q as the number of errors increases. The baseline
system loads data records using singleton inserts, and when an
erroneous tuple is encountered, it is inserted right away into the
error log. Alternatively, Hyper-Q does bulk loading and follows
the approach discussed in Section 7. In Figure 11, the y-axis shows
the elapsed time in seconds, while the x-axis is for the percentage
of erroneous records out of the total number of data records.
Hyper-Q significantly outperforms the baseline approach when
the percentage of errors is none or small. The performance of
hyperq is impacted as the number of errors increases, while the
baseline system shows consistent performance since it does not
need special error handling. There is a steep increase in time
comparing no errors to 1% errors since Hyper-Q needs to trigger
the error handling mechanism once an error is found, which adds
to the overall overhead. Furthermore, the elapsed time increases
as the number of errors increases in order for Hyper-Q to look
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for the additional errors. A smoother curve is found when find-
ing more errors requires going over most data tuples to identify
all erroneous records. Despite such performance degradation,
Hyper-Q outperforms the baseline system even with a relatively
high percentage of errors (i.e., 10%). Legacy systems have an
advantage as these systems perform error handling internally
without emulation. Hyper-Q overcomes such overhead by limit-
ing the maximum number of errors to detect.

10 RELATED WORK
Replatforming EDWs to the cloud has been on the agenda ofmany
enterprises in recent years. Cloud data warehouse providers, such
as Amazon Redshift [14], Azure Synapse Analytics [24], and
BigQuery [20] can free enterprises from having to procure and
manage their own infrastructure and data warehouse systems,
reducing upfront costs and staffing needs. Another key factor is
elasticity, which allows for scaling the system size up and down.

Migrating data across heterogeneous systems is the focus of
data migration solutions [8, 9, 16]. They can be used in the same
ecosystem asHyper-Q to help with the initial data migration, but
they fall short when it comes to migrating continuously-running
legacy ETL pipelines. The pipeline components are full of cus-
tomization needed for the legacy system. This often requires a
manual and expensive rewrite to make the pipelines functional
in the new system, which can be as high as 50% of the work-
load [18, 19]. Repointing ETL through Hyper-Q and leveraging
the emulation of missing features and legacy database semantics
allows customers to make ETL pipelines portable while avoiding
costly rewrites for more than 99% of the workload.

Query federation [12, 15, 17] and schema/data integration
solutions [13, 25] primarily focus on source selection problems.
The data source that can satisfy query requirements is picked, and
input queries are rewritten accordingly. This is often achieved
using source wrappers and rewriting rules for identifier and table
names under the general assumption that individual sources have
a high degree of query language compatibility. In ETL migration
projects, legacy system language and semantics could impact a
broad scope of interacting system components. The mismatches
with the new target systems are often proliferated when data is
handed off from one component to another, as in typical export-
import-report pipelines.

Data virtualization solutions [3, 10, 27] improve the availability
of data integrated from many data sources. However, solutions
that rely on offline static rewriting are complex to implement in
environments where queries are dynamically generated or are
data-driven. Hyper-Q’s approach of online dynamic rewriting
allows users to seamlessly migrate the ETL pipelines by simply
repointing legacy applications to the virtualization mid-tier.

11 CONCLUSION
We introduced a novel technique for transparent replatforming
of legacy ETL pipelines to modern cloud data warehousing envi-
ronments without requiring code changes in legacy applications.
The solution builds on the concepts of adaptive real-time virtu-
alization and allows for the immediate adoption of cloud-native
technologies without interrupting daily business operations. We
presented a real-world case study discussing the deployment of
our system in production settings and an experimental analysis
of the scalability and efficiency of our solution.
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