COVIDKG.ORG - a Web-scale COVID-19 Interactive, Trustworthy Knowledge Graph, Constructed and Interrogated for Bias using Deep-Learning

Bhimesh Kandibedala
Florida State University

Nickolas Piraino
Hemolix

Anna Pyayt
University of South Florida

Christopher Caballero, Michael Gubanov
Florida State University

ABSTRACT
We describe a Web-scale interactive Knowledge Graph (KG), populated with trustworthy information from the latest published medical findings on COVID-19. Currently existing, socially maintained KGs, such as YAGO or DBpedia or more specialized medical ontologies, such as NCBI, Virus-, and COVID-19-related are getting stale very quickly, lack any latest COVID-19 medical findings - most importantly lack any scalable mechanism to keep them up to date.

Here we describe COVIDKG.ORG - an online, interactive, trustworthy COVID-19 Web-scale Knowledge Graph and several advanced search-engines. Its content is extracted and updated from the latest medical research. Because of that it does not suffer from any bias or misinformation, often dominating public information sources.

1 INTRODUCTION
Published medical knowledge doubles every 73 days, which makes prompt access to the latest, trustworthy, medical findings very challenging for both general public and medical professionals [36, 41–44]. This problem is especially noticeable during the pandemic, when all popular, previously trusted sources - the Web, Social Media, News Media suddenly become full of biased opinions and misinformation. Such remarkable information “decay” is fueled by both the severity of the problem and desperate need for trustworthy information in order to survive. At the same time, the current lack of a viable technology for collecting and conveniently accessing all up to date trusted medical knowledge, results in time-consuming Google/PubMed/QxMD/other search, aggravated by the need to read hundreds of returned Web-pages, publications, which is prohibitively slow and usually still does not have the up to date information indexed [16, 32, 34, 38, 39, 66, 75, 77]. The innovation is a technology that can be used to automatically construct and refresh a Scientific Knowledge Graph (KG) having all latest trustworthy, vetted medical knowledge. Having had it operational before and during the COVID-19 pandemic could have been game changing for our society. It can help survive during any future pandemics as well - be it Monkeypox, Polio, Zika, Ebola, or a new unknown virus.

Currently existing, socially maintained KGs such as YAGO [70], DBpedia [19] or medical ontologies, such as NCBI, Viral [8], COVID-19 [2] and other are static, hence all are quickly becoming stale and lose their value. Manually curated popular resources such as CDC.gov and WebMD.com are updated more frequently, but are very high-level and can afford to cover only the most dominating topics due to high update cost. Resources such as covidgraph.org [10] focus on a set of very narrow topics in COVID-19 genetics, merged with older SwissProt, Gene Ontology ontologies. They have slightly deeper knowledge, but limited to a very narrow subtopics. By contrast, we are proposing a new Deep-learning (DL) architecture, capable of constructing and refreshing our Web-scale KG on demand for a given domain that will exhibit both broad topical coverage within the domain, as well as depth within each topic. We take COVID-19 as a model, but without making our architecture depend on it, so the overall approach remains truly “on demand” – i.e. applicable to other scientific areas.

Our COVIDKG.ORG system bridges the gap between the current shortcoming solutions of trustworthiness and ease of comprehension [17, 54, 55, 57–59, 78]. It does so by coupling the user-friendly KG interface with the actively maintained and interrogated for bias training datasets, full of new vetted, medical research findings [79].

This paper describes the technology and our experience with COVIDKG.ORG Web-scale KG. It is on the World Wide Web with several advanced working Search Engines [13, 20, 35, 45–47, 51, 56, 69, 74]. One of the sources is CORD-19 data set [79] represents one of the most extensive machine-readable coronavirus research literature collection available.

We will begin by describing some of our background knowledge work and research that we have learned about the topic from our own experience and the endeavors of other public health informatics organizations. Then extensively detail the specifications of our back-end and front-end data systems and their communication. We will then describe some of our Machine- and Deep-Learning models and the process we designed to train them at scale. These models analyze and discover new findings from our datasets, extract new COVID-19 findings and enrich the graph. We finish by extensively reviewing some of the similar systems currently available in the world [5, 14, 15, 21, 22, 25–28, 31, 33, 36–38, 40, 41, 48, 49, 54, 60, 62, 67, 68, 71].

2 ARCHITECTURE
After researching the current COVID-19 projects and Knowledge Graphs [2, 19, 24, 29, 70, 76, 80] as well as investigating public needs through conducting hundreds of interviews and customer discovery process [11], we have designed, validated, and launched COVIDKG.ORG. The architecture is demonstrated in Figure 1. №1 in the Figure represents a Medical Engineering professional who creates an initial, small (10-20 nodes) structural layout that will initialize the base of our Knowledge Graph. №2 corresponds
to our current Knowledge Graph, stored in a scalable sharded
MongoDB storage [9]. №3 depicts the CORD-19 dataset [79],
parsed, processed by our trained Deep-learning models, and also
stored in a sharded MongoDB. №4 represents a high performance
NVidia GPU cluster, responsible for training and classification
workloads of our Deep-Learning models and custom tabular em-
beddings. It is configured with Apache Spark MLLib [18] and
TensorFlow [12]. №5 on the Figure shows the topical clusters that
are categorized from the dataset by relevant COVID-19 topics. №6
corresponds to newly discovered vaccines, strains, side-effects
extracted by our Deep-Learning models from the dataset later
fused with the main KG. №7 corresponds to our Deep learning
models, learning the multi-layered 3D Meta-profiles, summariz-
ing and visualizing knowledge from several sources. E.g. Figure
6 displays a multi-layered 3D profile for COVID-19 Vaccine Side-
effects composed from three different COVID-19 papers. This 3D
visualization summarizes information from 9 different sources
in one place and is much easier to comprehend than reading
these 3 papers and understanding all details about the vaccine
side-effects. №8 corresponds to the original tables. №9, 10 repre-
sent users who browse the Knowledge Graph by clicking nodes
and using the interactive features or query our custom search-
engines. №11, 13 are the COVIDKG API users that might want to
query the Knowledge Graph or fine-tune and reuse our released,
pre-trained Deep-learning models or Embeddings on their own
data set. №12 depicts the World Wide Web with new informa-
tion on COVID-19. №14 portrays the fusion of sub-trees having
several layers or addition of new nodes that may have to be evalu-
ated by a human expert before the fusion into the Knowledge
Graph.

COVIDKG.ORG back-end consists of a sharded MongoDB
JSON storage [9] that holds more than 450,000 publications on
COVID-19 from CORD-19 [79] as well as other sources, parsed
into JSON and enriched with different classified characteristics
by our Deep-Learning models, running non-stop, classifying new
incoming publications.

The user-facing component of the COVIDKG.ORG system is
the interactive Knowledge Graph front-end graphical Web in-
terface. It displays and allows convenient interaction with the
hierarchical structure of nodes and edges that display valuable
information learned from the CORD-19 dataset as well as vet-
ted information from other reputable COVID-19 API resources.
COVIDKG.ORG also hosts several custom search-engines to pro-
cess complex queries and retrieve more detailed information from
the original publications. COVIDKG.ORG also releases hundreds
of pre-trained models and embeddings as an API for reuse by
data scientists and developers.

Datasets: One of the datasets that our system utilizes is CORD-
19 - an open research dataset [79], which adheres to high acade-
ic peer-review trustworthiness and relevance standards that
public health informatics require. COVID-19 Research Dataset
(CORD-19), was put together by the Office of Science and Tech-
ology Policy in the White House, along with six other insti-
tutions. Their goal was to revolutionize modern medicine by
encouraging researchers with proper access to a vetted dataset.
to develop question-answering systems for progression in significant COVID-19 discoveries. Enabling the general public access to text and data mining on research articles without violating the rights of the authors. During its first few months more than 3,500 new publications were updated per week. This dataset has had continuous growth with new publications from the top major publishers in medicine and has grown to over 450,000 open-access publications [79].

Storage: Our MongoDB [9] sharded cluster storing data and all trained Deep-learning models and embeddings takes \(\approx 965\text{GB}\) for its distributed dataset storage, with raw space consumption of more than 5TB.

2.1 Advanced Search-engines

CovidKG.ORG hosts several advanced search engines. The purpose of these search engines is to enable anyone from scientists to researchers and even to general public users, to have access to the latest cutting edge information on COVID-19 and related scientific research. We currently provide three different search engines for different types of structural queries. All three have a similar evaluation process, but produce different sets of results. Each one allows for exact match of the query if wrapped in quotes or stemming match capability on a tokenized query. The Search Engine receives results from the database by using an aggregation query that passes the data through a series of pipeline stages. The first stage in the pipeline is a "$match" expression. It allows the developer to specify a condition to filter the dataset to pass on to the next stage in the pipeline. Our $match stage first to minimize the amount of data being passed through all the latter stages, thus significantly increasing performance and response time to the user. In the next stage, the data is passed through a $project stage, which streams only the specified fields to the next stage of the aggregation pipeline.

2.1.1 Search over Paper Title, Abstract, Caption. This search engine has three search fields for title, abstract and table captions. The search fields are inclusive in the search results, meaning, if a user searches on a field there must be a document that matches at least one term in that field or it does not get passed on to the next stage regardless if there are matches over the other fields. The results are formatted with a brief excerpt of where it matches in abstract, body text, table captions, tables and figure captions. The interface also allows the user to expand and collapse appropriately.

2.1.2 Search over all Publication Fields. If the user is unsure of where exactly the term may be or where the term is referenced is unimportant to the results then search over all fields is a good fit. As shown in Figure 2, which depicts a screenshot of results where a user queried for “masks”. These results are formatted with a brief excerpt of where it matches in abstract, body text, table captions, tables and figure captions. The interface also allows the user to expand and collapse appropriately.
2.1.3 Search over Paper Tables. Search capability over tables is a large part of our intentions to enable advanced structural information retrieval. These search results are a product of regular expression search over table captions and all of the table’s data and displayed, as shown in Figure 4. The figure depicts a screenshot of search results from a user query “ventilators” and displays results where ventilators matched the tables. The display highlights, in red, the matched term for every field. As shown, there is a match at the first table and the abstract. The screenshot is cut off at the bottom due to space constraints, but there are more search results, which are ranked with an advanced ranking function having both static and dynamic features. Each field displays a brief view of the matches and allows the user to expand and collapse respectively.

3 METADATA CLASSIFICATION

Hardware: Training and validating of some of our models were done on a cluster of 4 machines, each having 4 Intel Xeon 2.4Ghz 40-core CPUs, from 192GB to 1TB of RAM, with 10TB disk space each, interconnected with a 1GB Ethernet. All software was written in the Python programming language. For implementing the RNN model, we have used Keras, with Tensorflow framework as the backend. The SVM classifier was implemented using Scikit-learn, a popular machine learning library for python.

3.1 CORD-19

The COVID-19 Open Research Dataset (CORD-19)[79] is an extraction of scientific papers on COVID-19 [79]. In addition to the paper’s fields (i.e. authors, title, abstract), it also contains raw metadata. We developed an additional HTML table parser and post-processor that takes raw HTML fragments from CORD-19 and converts them to semi-structured, clean JSON[66] format.

3.2 Feature space

We have used 100’000 dimensional feature space, i.e. 100K English terms in our vocabulary that we have selected by taking all terms from our datasets, sorting by frequency and cutting off the noise words and spam [78]. Increasing the dimensionality further led to significantly slower training time, which would prevent or make the experiments much more difficult.

3.3 Evaluation

We composed the training sets from Web-scale datasets such as WDC [61] and CORD-19 respectively [79]. We evaluated our models and observed 89% - 96% F-measure on average respectively, when validated with 10-fold cross-validation, for Machine-learning-based model (SVM [63]) and Deep-learning Bi-GRU-based models with slight differences depending on whether the classified metadata is horizontal or vertical, as well as its row/column number.

3.4 Pre-processing

To streamline the processing of numerical data handled by the model, we have created several regular expressions that encode all numerical data falling in similar forms under its relevant category. The substitution is done as follows.

All the Zeros in both decimal and integer forms in the data are substituted with ZERO. The order of these expressions is important as 0 in 50 is not the same as 0.0. The data in the form of arithmetic ranges like 5-10 mg, is replaced with the keyword RANGE. However, we have not replaced the units following the range as they are tackled in the later part of the script. The magnitude of data in the dataset is not uniformly spread. A large part of data is the numbers valued less than 0, so we have divided these numbers of different magnitudes into three parts. The negative integers are replaced with NEG, this expression only takes negative numbers and not the words/ranges with - in them. The numbers less than 0 are replaced with SMALLPOS. The numbers greater than 0 are further divided into two parts, FLOAT and INT, these numbers have no limit and are not further binned as we didn’t observe any pattern with upper limits. Now, after having substituted all numbers, we are left with symbols, units, and operators. We have replaced % with PERCENT. Note that 5% and 0.5% will not be replaced the same way, Their respective substitutions will be SMALLPOS PERCENT and INT PERCENT. The dates of the form where month is represented in words are substituted with DATE, However, we are not handling the dates of the form mm/dd/yy. Symbols < and > are substituted with LESS and GREATER keywords respectively. The most frequently occurring units were Time, ml, mg, and kg so we have substituted the integers followed by these units in their in their respective descriptive keywords.

Figure 3: Deep-learning BiGRU Architecture with Paralell Term- and Cell-level Embedding Layers.
3.5 New Positional Features

We construct the feature vector by calculating new positional features from each row of the table. We use these feature vectors for the SVM model. The feature vector consists of 7 features \(\{ f_1, f_2, ..., f_7 \} \) where:

- \(f_1 \) is a data or metadata row with valid numerical substitutions as described in the pre-processing step,
- \(f_2 \) is the number of cells in the table row,
- \(f_3 \) is a binary value conforming if the above row exists for the current row,
- \(f_4 \) is a binary value conforming if the row below exists for the current row,
- \(f_5 \) equals to the total number of cells in the row above,
- \(f_6 \) equals to the total number of cells in the below row,
- \(f_7 \) is a boolean label indicating if it is a metadata row (NULL for the training instances).

\(\{ f_3, ..., f_7 \} \) all the features collectively are called positional features. Each feature affects the metadata classification outcome.

3.6 BiGRU Ensemble with parallel Embedding Layers

Figure 3 depicts the architecture of a BiGRU ensemble consisting of three main stages. In the first stage, a data or metadata tuple, \(\{ x_1, x_2, ..., x_n \} \), where \(x_i \) is the \(i^{th} \) term from the tuple, is pre-processed to create both cell-wise and term-wise representations. It includes data cleaning along with the replacement of numbers and ranges in data with placeholders such as NUM, RANGE, etc as is described above for our Machine-learning model. The pre-processed feature vectors are then used to train Word2Vec embeddings. The model runs along both inputs in parallel, converting them into their respective pre-trained embedding vectors, \(\{ v_1, v_2, ..., v_k \} \). This sequence is passed through a BiGRU layer with 100 BiGRU units and the result is concatenated with the original embeddings to create our enriched contextualized vectors, \(\{ e_1, e_2, ..., e_k \} \). We flatten the output of each path to create both cell- and term-wise tuple representations. The final stage of the model concatenates the two representations and passes them through a dense layer of 16 units, a batch normalization layer, a dropout layer and a dense binary classifier.

Since tuples in tables are order independent and context specific, both global average pooling and traditional RNNs are ill-suited for creating good tuple representations. Because of this we tried bidirectional RNNs (biLSTM and biGRU), since they have been shown to capture contextual dependencies by taking into account both forward and backward context. This not only reduces the effect of order dependence inherent to traditional RNNs but also captures the context specific information that is lost in averaging over the static word embeddings.

We opted for the biGRU layers over biLSTM because while performance was slightly worse, with -0.02 ΔF1-Score, -0.07 ΔPrecision, +0.06 ΔRecall, the training time was faster. Concatenating the original embeddings with their context specific representations allows the model to additionally account for global correlation when making predictions.

4 KNOWLEDGE GRAPH

4.1 Initialization

The structural hierarchy (i.e. nodes and edges) for the Knowledge Graph will be initialized with the help of a Medical expert (№1 in Figure 1). On the highest level, the general characteristics of COVID-19 as a virus can be extracted from older, vetted ontologies about viral infections, e.g. symptoms, ways of transmission, etc. Once initialized, the KG will get automatically updated from the vetted medical sources. This ensures reliability, freshness, and quality of our KG (i.e. №2 in Figure 1).

4.2 Enrichment and Fusion

Once the KG initialization is complete we fuse the extracted information into our Knowledge Graph during the enrichment process. We classify and extract the clusters prominent COVID-19 topics (e.g. №5 in Figure 1). This process is challenging since...
all topical clusters have different structure and significant concepts and terms can be referred to differently (e.g. COVID-19 and coronavirus disease 2019). Consequently, we trained a variety of advanced AI models with our new tabular embeddings to help perform accurate clustering [30, 57].

The graph is populated with nodes and edges and is stored in JSON format. The structure of the graph is hierarchical, so all child nodes have parent nodes. The user can search over the KG via the front-end interface that except matching nodes also highlights the path to the matching nodes. The user can then either browse the graph to explore the structure starting from the matching nodes or click the papers linked off these nodes to read about the topic of preference in more detail.

Fusion of the extracted hierarchical knowledge into a segment or several segments of our KG requires taking into consideration multiple levels of abstraction. For example, "Symptoms" can be a node in a subtree "Clinical presentation" that could be, in turn, linked to the "COVID-19" KG root node. Because of the different ways to categorize, the actual symptoms may overlap in different KG subtrees. After consulting with several medical experts it was decided to store all different ways to categorize the data without merging them, since each of the categorization methods can be useful for different kinds of users and medical specialists. While general public might be interested in common and rare symptoms, medical specialists might analyze specific organ systems. For example, sorting by "rare symptoms" and "common symptoms" can overlap with the sets of symptoms sorted by "organ systems". In addition to that, even though "Neurological symptoms" are related to the nervous system in general, while "Cerebrovascular" is related to the brain and its blood vessels, they have significant overlap in symptoms. The first step of fusing the extracted hierarchical knowledge into the KG is matching the root node of the extracted subtree to the corresponding node(s) in the KG. This matching process is based on normalized NLP term matching, amended by the embedding-driven matching. The latter is especially important in context of new terms, unseen before, which is often the case with new vaccines, viral strands, etc. For example, assume we have extracted a subtree Vaccine → NovoVac from the table’s metadata. The root node Vaccine may match to the KG node Vaccine by normalized NLP term matching and then the leaves (NovoVac) can be merged with the leaves of the matched node in the KG. However, if there is no corresponding KG node Vaccine and there is no match to the KG leaves with existing vaccines, the embedding vector corresponding to the new vaccine (NovoVac) extracted from metadata can be used to match it to the embeddings vectors of the existing vaccines in the KG due to them being close to each other by distance. The node Vaccine then can be added to the KG on the top of the NovoVac node. If the extracted subtree has several layers of hierarchy, e.g. Side-effects → Children side-effects → Rash, Rash has to be left separate from the existing side-effects in the KG, even if matched to them by having close embedding vectors. This is because, it is categorized as Children’s side-effects, which is a separate category from regular side-effects, so both the new node Children’s side-effects and its leaves have to be added to the KG, even if some of the side-effects overlap with the general side-effects,
already present in the KG. Fusion of sub-trees, having several layers or insertion of new nodes will have to be evaluated by a human expert (N=14 in Figure 1); fusion of leaves with nodes matched with high confidence score may be left unsupervised. Over time, all categories of initial fusion mistakes identified by the expert will be learned by the fusion module to be automatically corrected, hence most of the fusion is expected to become minimally supervised.

5 RELATED WORK

[6] is an Information Retrieval (IR) system over publications at researchrabbit.ai. They are introducing a retrieval mechanism over papers that does not require the use of keyword-search. They display a force directed graph of related, cited and referenced papers that a user can construct and use. They provide many features, such as being able to create your own custom graph of papers, curated collections to improve recommendations, personalized alerts, sharing and collaborating of papers and graphs, and among others the ability to discover author networks. Finally, ResearchRabbit is a free service.

Another system authored by the Center for Artificial Intelligence Research, HKUST ([1]), available at demo.caire.ust.hk/covid/ CAIRE-COVID is also a free service and aims to provide a resource for solutions to the coronavirus disease by using a Machine-learning based system that utilizes NLP question answering techniques along with the summarization to help discover available scientific literature. Their system is comprised of 3 modules. The pipeline begins with a user query sent through the first module - document retrieval, which does paraphrasing and search. Query paraphrasing converts the user query to several shorter and simpler analogous questions. The search engine takes advantage of Anserini and Lucene to retrieve related publications. Then the snippet selector module finds the related evidence among the whole text by using answer re-ranking, and term matching score. Finally a ’Multi-document abstractive summarizer” that synthesizes the answer from multiple retrieved snippets steps in and generates the final answer.

Another relevant system - [7] is available at http://covidscholar.sinequa.com. Sineaqua has access to a COVID-19 Intelligent Insight portal of over 100,000 curated scientific publications. Sineaqua’s search engine supports full-text search using NLP. The Search engine supports ranking by relevance and recognizes synonymy in their ranking function. It has 3 sections. One for the matched scientific results, one for showing more details on a selected result and the last one for filtering and sorting the result set. The system highlights important information throughout each result and tags them all by different classification labels. Sineaqua’s system is also provided for free.

[3] at http://covidscholar.org is an information retrieval resource for Covid-19 and related scientific research, established by Matscholar’s research effort. COVIDScholar also uses NLP to empower search over a COVID-19 related dataset. The search results are matched by title, abstract and keywords. COVIDScholar displays title authors and abstract, while providing a link to the full-text at its original publisher and a list of related works. They neither have a KG, nor an advanced search unlike us.

[4] at [10] provide a free and public GraphQL API. Their KG is populated from certain classic, well-known ontologies such as NCBI, UniProt and other sources. Their graph has information on genes of interest, transcripts, protein identifiers function names and gene names from many different resources. CovidKG.ORG provides several advanced search-engines over COVID-19 relevant scientific sources. The user can either search the KG, or over all sections of the original publication, just the title, abstract or table captions or just the table data. The search-results page provides a list of ranked scientific resources with access to each full-text of each section of the paper, full-text of the whole document, and ranked tables with the most relevant results. The ranking function incorporates matching terms and synonyms, proximity, document, terms, and publication weights, as well as many others. CovidKG.ORG classifies the documents by related topics enabling the data to be further categorized. The advanced search-engine over tables displays a brief section with the most relevant tables first that can be expanded to see more results. The CovidKG.ORG Knowledge Graph is a complex interactive hierarchical data structure fused from all relevant research results found in the rich corpus of scientific resources that we curate. The KG is trustworthy as it is built only from the vetted knowledge. It supports interactive search through paths of nodes that allows getting complex insights into the provenance of the search result. The nodes along the path provide access to the publications, where the result is coming from.

6 ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for their valuable feedback, FSU, NSF (Award N2229256), and Amazon for their support of this research project.

7 CONCLUSION

Here we described COVIDKG.ORG - the first, interactive, trustworthy, Web-scale Knowledge Graph on COVID-19 Medical Knowledge. We highlighted here its front- and back-end architectures, the Artificial Intelligence models behind it that are constructing and keeping it up to date non-stop. It is extracted from vetted, latest medical research sources, hence does not suffer from any bias or misinformation unlike many public information sources.

REFERENCES

[1] [N.d.] CAIRE-COVID.
[7] [N.d.] COVID19 Research, HKUST ([1]).
[8] [N.d.] CAIRE-COVID. https://covid19-ontology.org/stats
[10] [N.d.] HealthECCO. https://healtheccco.org/covidgraph/
[12] [N.d.] The Virus Infectious Disease Ontology. https://www.ebi.ac.uk/ols/ontologies/ovid.
[16] [N.d.] COVIDScholar. https://covid19-ontology.org/stats
[17] [N.d.] COVIDScholar. https://covid19-ontology.org/stats

763

Kazi Islam and Michael Gubanov. 2021. Scalable Tabular Metadata Location and Classification in Large-Scale Structured Datasets. In IEEE.

Rituparna Khan and Michael Gubanov. 2020. Towards Interactive Large-Scale Structured Data Profiling. In CIKM.

A Large Public Corpus of Web Tables containing Time and Context Metadata. In IEEE Big Data.

Sophie Pavia, Nasser Zalmout, Chenwei Zhang, Xian Li, Yan Liang, and Xin Luna Dong. 2021. XSAN: Towards the Automated Extraction of Large-Scale Structured Data. In IEEE Big Data.

Nasser Zalmout, Chrenwi Zhang, Xiao Lian, Yan Luang, and Xin Lona Dong. 2021. All You Need to Know to Build a Product Knowledge Graph. In SIGKDD, Feda Zhu, Beng Chin Ooi, and Chunyan Xiao (Eds.). ACM.