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ABSTRACT
We describe a Web-scale interactive Knowledge Graph (KG), pop-
ulated with trustworthy information from the latest published
medical findings on COVID-19. Currently existing, socially main-
tained KGs, such as YAGO or DBPedia or more specialized medi-
cal ontologies, such as NCBI, Virus-, and COVID-19-related are
getting stale very quickly, lack any latest COVID-19 medical find-
ings - most importantly lack any scalable mechanism to keep
them up to date.

Here we describe COVIDKG.ORG - an online, interactive, trust-
worthy COVID-19 Web-scale Knowledge Graph and several ad-
vanced search-engines. Its content is extracted and updated from
the latest medical research. Because of that it does not suffer from
any bias or misinformation, often dominating public information
sources.

1 INTRODUCTION
Published medical knowledge doubles every 73 days, which
makes prompt access to the latest, trustworthy, medical findings
very challenging for both general public and medical profession-
als [36, 41–44]. This problem is especially noticeable during the
pandemic, when all popular, previously trusted sources - theWeb,
Social Media, News Media suddenly become full of biased opin-
ions and misinformation. Such remarkable information "decay"
is fueled by both the severity of the problem and desperate need
for trustworthy information in order to survive. At the same
time, the current lack of a viable technology for collecting and
conveniently accessing all up to date trusted medical knowledge,
results in time-consuming
Google/PubMed/QxMD/other search, aggravated by the need
to read hundreds of returned Web-pages, publications, which is
prohibitively slow and usually still does not have the up to date
information indexed [16, 32, 34, 38, 39, 66, 75, 77]. The innovation
is a technology that can be used to automatically construct and
refresh a Scientific Knowledge Graph (KG) having all latest trust-
worthy, vetted medical knowledge. Having had it operational
before and during the COVID-19 pandemic could have been game
changing for our society. It can help survive during any future
pandemics as well - be it Monkeypox, Polio, Zika, Ebola, or a new
unknown virus.

Currently existing, socially maintained KGs such as YAGO
[70], DBPedia [19] or medical ontologies, such as NCBI, Viral
[8], COVID-19 [2] and other are static, hence all are quickly
becoming stale and lose their value. Manually curated popular
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resources such as CDC.gov and WebMD.com are updated more
frequently, but are very high-level and can afford to cover only
the most dominating topics due to high update cost. Resources
such as covidgraph.org [10] focus on a set of very narrow topics in
COVID-19 genetics, merged with older SwissProt, Gene Ontology
ontologies. They have slightly deeper knowledge, but limited to
a very narrow subtopics. By contrast, we are proposing a new
Deep-learning (DL) architecture, capable of constructing and
refreshing our Web-scale KG on demand for a given domain that
will exhibit both broad topical coverage within the domain, as
well as depth within each topic. We take COVID-19 as a model,
but without making our architecture depend on it, so the overall
approach remains truly “on demand” – i.e. applicable to other
scientific areas.

Our COVIDKG.ORG system bridges the gap between the cur-
rent shortcoming solutions of trustworthiness and ease of com-
prehension [17, 54, 55, 57–59, 78]. It does so by coupling the
user-friendly KG interface with the actively maintained and in-
terrogated for bias training datasets, full of new vetted, medical
research findings [79].

This paper describes the technology and our experience with
COVIDKG.ORGWeb-scale KG. It is on the World Wide Web with
several advanced working Search Engines [13, 20, 35, 45–47, 51,
56, 69, 74]. One of the sources is CORD-19 data set [79] represents-
one of the most extensive machine-readable coronavirus research
literature collection available.

We will begin by describing some of our background knowl-
edge work and research that we have learned about the topic from
our own experience and the endeavors of other public health
informatics organizations. Then extensively detail the specifi-
cations of our back-end and front-end data systems and their
communication. We will then describe some of our Machine-
and Deep-Learning models and the process we designed to train
them at scale. These models analyze and discover new findings
from our datasets, extract new COVID-19 findings and enrich the
graph. We finish by extensively reviewing some of the similar
systems currently available in the world [5, 14, 15, 21, 22, 25–
28, 31, 33, 36–38, 40, 41, 48, 49, 54, 60, 62, 67, 68, 71].

2 ARCHITECTURE
After researching the current COVID-19 projects and Knowl-
edge Graphs [2, 19, 24, 29, 70, 76, 80] as well as investigating
public needs through conducting hundreds of interviews and
customer discovery process [11], we have designed, validated,
and launched
COVIDKG.ORG. The architecture is demonstrated in Figure 1.
№1 in the Figure represents a Medical Engineering professional
who creates an initial, small (10-20 nodes) structural layout that
will initialize the base of our Knowledge Graph. №2 corresponds
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Figure 1: COVIDKG.ORG Architecture.

to our current Knowledge Graph, stored in a scalable sharded
MongoDB storage [9]. №3 depicts the CORD-19 dataset [79],
parsed, processed by our trained Deep-learning models, and also
stored in a sharded MongoDB.№4 represents a high performance
NVidia GPU cluster, responsible for training and classification
workloads of our Deep-Learning models and custom tabular em-
beddings. It is configured with Apache Spark MLLib [18] and
TensorFlow [12].№5 on the Figure shows the topical clusters that
are categorized from the dataset by relevant COVID-19 topics.№6
corresponds to newly discovered vaccines, strains, side-effects
extracted by our Deep-Learning models from the dataset later
fused with the main KG.№7 corresponds to our Deep learning
models, learning the multi-layered 3D Meta-profiles, summariz-
ing and visualizing knowledge from several sources. E.g. Figure
6 displays a multi-layered 3D profile for COVID-19 Vaccine Side-
effects composed from three different COVID-19 papers. This 3D
visualization summarizes information from 9 different sources
in one place and is much easier to comprehend than reading
these 3 papers and understanding all details about the vaccine
side-effects. №8 corresponds to the original tables. №9, 10 repre-
sent users who browse the Knowledge Graph by clicking nodes
and using the interactive features or query our custom search-
engines.№11, 13 are the COVIDKG API users that might want to
query the Knowledge Graph or fine-tune and reuse our released,
pre-trained Deep-learning models or Embeddings on their own
dataset. №12 depicts the World Wide Web with new informa-
tion on COVID-19. №14 portrays the fusion of sub-trees having

several layers or addition of new nodes that may have to be eval-
uated by a human expert before the fusion into the Knowledge
Graph.

COVIDKG.ORG back-end consists of a sharded MongoDB
JSON storage [9] that holds more than 450,000 publications on
COVID-19 from CORD-19 [79] as well as other sources, parsed
into JSON and enriched with different classified characteristics
by our Deep-Learning models, running non-stop, classifying new
incoming publications.

The user-facing component of the COVIDKG.ORG system is
the interactive Knowledge Graph front-end graphical Web in-
terface. It displays and allows convenient interaction with the
hierarchical structure of nodes and edges that display valuable
information learned from the CORD-19 dataset as well as vet-
ted information from other reputable COVID-19 API resources.
COVIDKG.ORG also hosts several custom search-engines to pro-
cess complex queries and retrieve more detailed information from
the original publications. COVIDKG.ORG also releases hundreds
of pre-trained models and embeddings as an API for reuse by
data scientists and developers.

Datasets: One of the datasets that our system utilizes is CORD-
19 - an open research dataset [79], which adheres to high aca-
demic peer-review trustworthiness and relevance standards that
public health informatics require. COVID-19 Research Dataset
(CORD-19), was put together by the Office of Science and Tech-
nology Policy in the White House, along with six other insti-
tutions. Their goal was to revolutionize modern medicine by
encouraging researchers with proper access to a vetted dataset
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Figure 2: COVIDKG.ORG Advanced Publication Search-engine Interface.

to develop question-answering systems for progression in signif-
icant COVID-19 discoveries. Enabling the general public access
to text and data mining on research articles without violating the
rights of the authors. During its first few months more than 3,500
new publications were updated per week. This dataset has had
continuous growth with new publications from the top major
publishers inmedicine and has grown to over 450,000 open-access
publications [79].

Storage: Our MongoDB [9] sharded cluster storing data and
all trained Deep-learning models and embeddings takes ≈965GB
for its distributed dataset storage, with raw space consumption
of more than 5TB.

2.1 Advanced Search-engines
CovidKG.ORG hosts several advanced search engines. The pur-
pose of these search engines is to enable anyone from scientists
to researchers and even to general public users, to have access
to the latest cutting edge information on COVID-19 and related
scientific research. We currently provide three different search
engines for different types of structural queries. All three have a
similar evaluation process, but produce different sets of results.
Each one allows for exact match of the query if wrapped in quotes
or stemming match capability on a tokenized query. The Search
Engine receives results from the database by using an aggrega-
tion query that passes the data through a series of pipeline stages.
The first stage in the pipeline is a "$match" expression. It allows
the developer to specify a condition to filter the dataset to pass
on to the next stage in the pipeline. Our $match pipeline stage
utilizes text-based search through regular expressions that are
stemmed from the root users searched terms. It was mindful to
use the $match stage first to minimize the amount of data being
passed through all the latter stages, thus significantly increasing
performance and response time to the user. In the next stage,
the data is passed through a $project stage, which streams only
the specified fields to the next stage of the aggregation pipeline.

So we only specified fields that were necessary for carrying out
calculations and printing to the screen. By removing unnecessary
fields that take up space and time passing through each proceed-
ing stage we significantly improve our systems performance. The
pipeline also uses a few custom "$function" stages to derive cal-
culations based on the individual documents and the searched
query for ranking results. These custom functions are written in
JavaScript inside of MongoDB aggregation pipeline query. Once
the aggregation is finished the results are paginated as a list of
ten per page displaying brief snippets of the document and ac-
cess to the full text. The ranking is an accumulation of various
weighted features per document, such as the number of matches,
proximity between the matched terms and which field the term
was matched in. Each term in the corpus has an associated Term
Frequency-Inverse Document Frequency (TF-IDF) [53] weight in
order to reward more important terms. For each matched term
its TF-IDF is weighted in the ranking per document.

2.1.1 Search over Paper Title, Abstract, Caption. This search
engine has three search fields for title, abstract and table captions.
The search fields are inclusive in the search results, meaning, if a
user searches on a field there must be a document that matches
at least one term in that field or it does not get passed on to the
next stage regardless if there are matches over the other fields.
The results are formatted with table captions first, the title and
authors and the full abstract.

2.1.2 Search over all Publication Fields. If the user is unsure of
where exactly the term may be or where the term is referenced is
unimportant to the results then search over all fields is a good fit.
As shown in Figure 2, which depicts a screenshot of results where
a user queried for "masks". These results are formatted with a
brief excerpt of where it matches in abstract, body text, table
captions, tables and figure captions. The interface also allows the
user to expand and collapse appropriately.
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Figure 3: Deep-learning BiGRU Architecture with Paralell
Term- and Cell-level Embedding Layers.

2.1.3 Search over Paper Tables. Search capability over tables
is a large part of our intentions to enable advanced structural
information retrieval. These search results are a product of reg-
ular expression search over table captions and all of the table’s
data and displayed, as shown in Figure 4. The figure depicts a
screenshot of search results from a user query "ventilators" and
displays results where ventilators matched the tables. The display
highlights, in red, the matched term for every field. As shown,
there is a match at the first table and the abstract. The screenshot
is cut off at the bottom due to space constraints, but there are
more search results, which are ranked with an advanced ranking
function having both static and dynamic features. Each field dis-
plays a brief view of the matches and allows the user to expand
and collapse respectively.

3 METADATA CLASSIFICATION
Hardware: Training and validating of some of our models were
done on a cluster of 4 machines, each having 4 Intel Xeon 2.4Ghz
40-core CPUs, from 192GB to 1TB of RAM, with 10TB disk space
each, interconnected with a 1GB Ethernet. All software was writ-
ten in the Python programming language. For implementing

the RNN model, we have used Keras, with Tensorflow frame-
work as the backend. The SVM classifier was implemented using
Scikit-learn, a popular machine learning library for python.

3.1 CORD-19
The COVID-19 Open Research Dataset (CORD-19)[79] is an ex-
traction of scientific papers on COVID-19 [79]. In addition to the
paper’s fields (i.e. authors, title, abstract), it also contains raw
metadata. We developed an additional HTML table parser and
post-processor that takes raw HTML fragments from CORD-19
and converts them to semi-structured, clean JSON[66] format.

3.2 Feature space
We have used 100’000 dimensional feature space, i.e. 100K English
terms in our vocabulary that we have selected by taking all terms
from our datasets, sorting by frequency and cutting off the noise
words and spam [78]. Increasing the dimensionality further led
to significantly slower training time, which would prevent or
make the experiments much more difficult.

3.3 Evaluation
We composed the training sets from Web-scale datasets such
as WDC [61] and CORD-19 respectively [79]. We evaluated our
models and observed 89% - 96% F-measure on average respec-
tively, when validated with 10-fold cross-validation, for Machine-
learning-based model (SVM [63]) and Deep-learning Bi-GRU-
based models with slight differences depending on whether the
classified metadata is horizontal or vertical, as well as its row/-
column number.

3.4 Pre-processing
To streamline the processing of numerical data handled by the
model, we have created several regular expressions that encode
all numerical data falling in similar forms under its relevant
category. The substitution is done as follows.

All the Zeros in both decimal and integer forms in the data
are substituted with ZERO. The order of these expressions is im-
portant as 0 in 50 is not the same as 0.0. The data in the form
of arithmetic ranges like 5-10 mg, is replaced with the keyword
RANGE, However, we have not replaced the units following the
range as they are tackled in the later part of the script. The mag-
nitude of data in the dataset is not uniformly spread. A large part
of data is the numbers valued less than 0, so we have divided
these numbers of different magnitudes into three parts. The neg-
ative integers are replaced with NEG, this expression only takes
negative numbers and not the words/ranges with - in them. The
numbers less than 0 are replaced with SMALLPOS. The numbers
greater than 0 are further divided into two parts, FLOAT and INT,
these numbers have no limit and are not further binned as we
didn’t observe any pattern with upper limits. Now, after having
substituted all numbers, we are left with symbols, units, and op-
erators. We have replaced % with PERCENT. Note that 5% and 0.5%
will not be replaced the same way, Their respective substitutions
will be SMALLINT PERCENT and INT PERCENT. The dates of the
form where month is represented in words are substituted with
DATE, However, we are not handling the dates of the form mm/d-
d/yy. Symbols < and > are substituted with LESS and GREATER
keywords respectively. The most frequently occurring units were
Time, ml, mg, and kg so we have substituted the integers followed
by these units in their in their respective descriptive keywords.
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Figure 4: COVIDKG.ORG Advanced Table Search-engine Interface.

Figure 5: Back-end Architecture.

3.5 New Positional Features
We construct the feature vector by calculating new positional
features from each row of the table. We use these feature vec-
tors for the SVM model [63]. The feature vector consists of 7
features {𝑓1, 𝑓2, ..., 𝑓7} where 𝑓1 is a data or metadata row with
valid numerical substitutions as described in the pre-processing
step, 𝑓2 is the number of cells in the table row, 𝑓3 is a binary
value conforming if the above row exists for the current row,
𝑓4 is a binary value conforming the above row below exists for
the current row, 𝑓5 equals to the total number of cells in the row
above, 𝑓6 equals to the total number of cells in the below row
, 𝑓7 is a boolean label indicating if it is a metadata row (NULL
for the training instances). {𝑓3, .., 𝑓7} all the features collectively
are called positional features. Each feature affect the metadata
classification outcome.

3.6 BiGRU Ensemble with parallel Embedding
Layers

Figure 3 depicts the architecture of a BiGRU ensemble consisting
of three main stages. In the first stage, a data or metadata tuple,
{𝑥1, 𝑥2, ..., 𝑥𝑛}, where 𝑥𝑖 is the 𝑖𝑡ℎ term from the tuple, is pre-
processed to create both cell-wise and term-wise representations.
It includes data cleaning along with the replacement of numbers
and ranges in data with placeholders such as NUM, RANGE, etc
as is described above for our Machine-learning model. The pre-
processed feature vectors are then used to to train Word2Vec
embeddings [65] on the whole corpus (we pre-trained on WDC
and CORD-19 and then fine-tuned with end-to-end training on
the target corpus). The model runs along both inputs in parallel,

converting them into their respective pre-trained embedding
vectors, {𝑣1, 𝑣2, ..., 𝑣𝑛}. This sequence is passed through a BiGRU
layer with 100 BiGRU units and the result is concatenated with
the original embeddings to create our enriched contextualized
vectors, {𝑐1, 𝑐2, ..., 𝑐𝑛}. We flatten the output of each path to create
both cell- and term-wise tuple representations. The final stage of
the model concatenates the two representations and passes them
through a dense layer of 16 units, a batch normalization layer, a
dropout layer and a dense binary classifier.

Since tuples in tables are order independent and context spe-
cific, both global average pooling and traditional RNNs are ill-
suited for creating good tuple representations. Because of this we
tried bidirectional RNNs (biLSTM and biGRU), since they have
been shown to capture contextual dependencies by taking into
account both forward and backward context [50] [72]. This not
only reduces the effect of order dependence inherent to tradi-
tional RNNs but also captures the context specific information
that is lost in averaging over the static word embeddings, [52].
We opted for the biGRU layers over biLSTM because while perfor-
mance was slightly worse, with -0.02 ΔF1-Score, -0.07 ΔPrecision,
+0.06 ΔRecall, the training time was faster. Concatenating the
original embeddings with their context specific representations
allows the model to additionally account for global correlation
when making predictions.

4 KNOWLEDGE GRAPH
4.1 Initialization
The structural hierarchy (i.e. nodes and edges) for the Knowledge
Graph will be initialized with the help of a Medical expert (№1
in Figure 1). On the highest level, the general characteristics of
COVID-19 as a virus can be extracted from older, vetted ontolo-
gies about viral infections, e.g. symptoms, ways of transmission,
etc. Once initialized, the KG will get automatically updated from
the vetted medical sources. This ensures reliability, freshness,
and quality of our KG (i.e.№2 in Figure 1).

4.2 Enrichment and Fusion
Once the KG initialization is complete we fuse the extracted
information into our Knowledge Graph during the enrichment
process. We classify and extract the clusters prominent COVID-
19 topics (e.g.№5 in Figure 1). This process is challenging since
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Figure 6: Meta-Profiles for COVID-19 vaccination side-effects, extracted from tables in three papers, grouped by vaccine,
dosage, and paper [23, 64, 73].

all topical clusters have different structure and significant con-
cepts and terms can be referred to differently (e.g. COVID-19 and
coronavirus disease 2019). Consequently, we trained a variety of
advanced AI models with our new tabular embeddings to help
perform accurate clustering [30, 57].

The graph is populated with nodes and edges and is stored
in JSON format. The structure of the graph is hierarchical, so
all child nodes have parent nodes. The user can search over the
KG via the front-end interface that except matching nodes also
highlights the path to the matching nodes. The user can then
either browse the graph to explore the structure starting from
the matching nodes or click the papers linked off these nodes to
read about the topic of preference in more detail.

Fusion of the extracted hierarchical knowledge into a segment
or several segments of our KG requires taking into consideration
multiple levels of abstraction. For example, “Symptoms” can be a
node in a subtree “Clinical presentation” that could be, in turn,
linked to the “COVID-19” KG root node. Because of the different
ways to categorize, the actual symptoms may overlap in different
KG subtrees. After consulting with several medical experts it was
decided to store all different ways to categorize the data without
merging them, since each of the categorization methods can be
useful for different kinds of users and medical specialists. While
general public might be interested in common and rare symptoms,
medical specialists might analyze specific organ systems. For ex-
ample, sorting by “rare symptoms” and “common symptoms” can
overlap with the sets of symptoms sorted by “organ systems”.
In addition to that, even though “Neurological symptoms” are

related to the nervous system in general, while “Cerebrovascular”
is related to the brain and its blood vessels, they have significant
overlap in symptoms. The first step of fusing the extracted hier-
archical knowledge into the KG is matching the root node of the
extracted subtree to the corresponding node(s) in the KG. This
matching process is based on normalized NLP term matching,
amended by the embedding-driven matching. The latter is espe-
cially important in context of new terms, unseen before, which
is often the case with new vaccines, viral strands, etc. For ex-
ample, assume we have extracted a subtree Vaccine → NovoVac
from the table’s metadata. The root node Vaccine may match to
the KG node Vaccine(s) by normalized NLP term matching and
then the leaves (NovoVac) can be merged with the leaves of the
matched node in the KG. However, if there is no corresponding
KG node Vaccine(s) and there is no match to the KG leaves with
existing vaccines, the embedding vector corresponding to the
new vaccine (NovoVac) extracted from metadata can be used to
match it to the embeddings vectors of the existing vaccines in the
KG due to them being close to each other by distance. The node
Vaccine then can be added to the KG on the top of the NovoVac
node. If the extracted subtree has several layers of hierarchy, e.g.
Side-effects → Children side-effects → Rash, Rash has to be left
separate from the existing side-effects in the KG, even if matched
to them by having close embedding vectors. This is because, it is
categorized as Children’s side-effects, which is a separate cate-
gory from regular side-effects, so both the new node Children’s
side-effects and its leaves have to be added to the KG, even if
some of the side-effects overlap with the general side-effects,
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already present in the KG. Fusion of sub-trees, having several
layers or insertion of new nodes will have to be evaluated by
a human expert (№14 in Figure 1); fusion of leaves with nodes
matched with high confidence score may be left unsupervised.
Over time, all categories of initial fusion mistakes identified by
the expert will be learned by the fusion module to be automati-
cally corrected, hence most of the fusion is expected to become
minimally supervised.

5 RELATEDWORK
[6] is an Information Retrieval (IR) system over publications at re-
searchrabbit.ai. They are introducing a retrieval mechanism over
papers that does not require the use of keyword-search. They
display a force directed graph of related, cited and referenced
papers that a user can construct and use. They provide many
features, such as being able to create your own custom graph of
papers, curated collections to improve recommendations, person-
alized alerts, sharing and collaborating of papers and graphs, and
among others the ability to discover author networks. Finally,
ResearchRabbit is a free service.

Another system authored by the Center for Artificial Intelli-
gent Research, HKUST ([1]), available at demo.caire.ust.hk/covid/.
CAiRE-COVID is also a free service and aims to provide a re-
source for solutions to the coronavirus disease by using aMachine-
learning based system that utilizes NLP question answering tech-
niques along with the summarization to help discover available
scientific literature. Their system is comprised of 3 modules. The
pipeline begins with a user query sent through the first module -
document retrieval, which does paraphrasing and search. Query
paraphrasing converts the user query to several shorter and sim-
pler analogous questions. The search engine takes advantage
of Anserini and Lucene to retrieve related publications. Then
the snippet selector module finds the related evidence among
the whole text by using answer re-ranking, and term matching
score. Finally a "Multi-document abstractive summarizer" that
synthesizes the answer from multiple retrieved snippets steps in
and generates the final answer.

Another relevant system - [7] is available at
http://covidsearch.sinequa.com. Sinequa has access to a COVID-
19 Intelligent Insight portal of over 100,000 curated scientific
publications. Sinequa’s search engine supports full-text search
using NLP. The Search engine supports ranking by relevance
and recognizes synonymy in their ranking function. It has 3 sec-
tions. One for the matched scientific results, one for showing
more details on a selected result and the last one for filtering
and sorting the result set. The system highlights important in-
formation throughout each result and tags them all by different
classification labels. Sinequa’s system is also provided for free.

[3] at http://covidscholar.org is an information retrieval re-
source for Covid-19 and related scientific research, established
by Matscholar’s research effort. COVIDScholar also uses NLP to
empower search over a COVID-19 related dataset. The search re-
sults are matched by title, abstract and keywords. COVIDScholar
displays title authors and abstract, while providing a link to the
full-text at its original publisher and a list of related works. They
neither have a KG, nor an advanced search unlike us.

[4] at [10] provide a free and public GraphQL API. Their KG
is populated from certain classic, well-known ontologies such as
NCBI, UniProt and other sources. Their graph has information on
genes of interest, transcripts, protein identifiers function names
and gene names from many different resources.

CovidKG.ORG provides several advanced search-engines over
COVID-19 scientific resources. The user can either search the
KG, or over all sections of the original publication, just the title,
abstract or table captions or just the table data. The search-results
page provides a list of ranked scientific resources with access to
each full-text of each section of the paper, full-text of the whole
document, and ranked tables with the most relevant results. The
ranking function incorporates matching terms and synonyms,
proximity, document, terms, and publication weights, as well as
many others. CovidKG.ORG classifies the documents by related
topics enabling the data to be further categorized. The advanced
search-engine over tables displays a brief section with the most
relevant tables first that can be expanded to see more results.
The CovidKG.ORG Knowledge Graph is a complex interactive
hierarchical data structure fused from all relevant research results
found in the rich corpus of scientific resources that we curate. The
KG is trustworthy as it is built only from the vetted knowledge.
It supports interactive search through paths of nodes that allows
getting complex insights into the provenance of the search result.
The nodes along the path provide access to the publications,
where the result is coming from.
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7 CONCLUSION
Here we described COVIDKG.ORG - the first, interactive, trust-
worthy, Web-scale Knowledge Graph on COVID-19 Medical
Knowledge. We highlighted here its front- and back-end archi-
tectures, the Artificial Intelligence models behind it that are con-
structing and keeping it up to date non-stop. It is extracted from
vetted, latest medical research sources, hence does not suffer
from any bias or misinformation unlike many public information
sources.
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