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ABSTRACT
Food security, especially in a changing Earth environment, is one
of the most challenging issues of this century. Population growth,
increased food consumption and the challenges of climate change
will extend over the next decades. To deal with these, both re-
gional and global measures are necessary. Biomass production
and thus yield will need to be increased in a sustainable way.
It is important to minimize the risks of yield loss even under
more extreme environmental conditions, while making sure not
to deplete or damage the available resources. Two measures are
most important for this: irrigation and fertilization. While fer-
tilization relies mainly on industrial goods, irrigation requires
reliable water resources in the area that is being farmed, either
from groundwater or surface water.

Regarding surface water, a large portion of the world’s fresh-
water is linked to snowfall, snow storage and seasonal release of
the water. All these components are subject to increased variabil-
ity due to climate change and the resulting increase in extreme
events. In ExtremeEarth we designed and implemented a work-
�ow that combines Earth Observation data with Deep Learning
models to detect water demand and water availability to produce
irrigation recommendations for the Danube basin.

1 INTRODUCTION
Food security is the measure of the availability of food and indi-
viduals’ ability to access it, and is becoming a multi-dimensional
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problem given the changing Earth environment. Irrigation plays
an important role as it requires both ground and surface water.
Most of the fresh water comes from snowfall, it is stored in the
form of ice or snow and then released when it melts. This cycle
of fresh water can me monitored with EO-based products and
the production of water availability maps that allow for better
planning and support farmers with irrigation.

The goal of the Food Security Use Case in the ExtremeEarth
project [9], was to enable the use of Earth Observation (EO)
data to develop water availability maps for agricultural areas,
o�ering valuable information for irrigation management [14].
To demonstrate the results of the application, we selected the
Danube river basin for the following reasons: (i) variability in
water supply due to changing precipitation patterns leading to
extremes events (�oods and droughts), (ii) signi�cant portion of
irrigated agriculture, (iii) signi�cant water supply from water
storage by snow in the Alps, (iv) large interest of demo users,
and (v) strong economic, environmental and societal value.

To de�ne the requirements for the application, a series of
workshops was held in the context of ExtremeEarth. The �rst
workshop was held to drive the design and implementation com-
ponents, while two more were held towards the end of the project
for feedback evaluation from domain experts.

To implement the water availability maps, we need infor-
mation from: (i) crop type and leaf area index that come from
Sentinel-2 images, (ii) soil moisture, biomass, water demand,
snow storage, snow run o� and groundwater computed o�ered
by the proprietary land surface modelling software PROMET and
(iii) snow cover products from the Copernicus CryoLand service,
snowmelt data using Sentinel-1 images, snow water equivalent
from in-situ sensors.

A core component and one of the main contributions of this
work is the crop typemap generation from Sentinel-2 images. The
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Figure 1: Water Availability for Irrigation

accuracy of the high-resolution crop typemaps is fundamental for
the correct application of the physically based agro-hydrological
PROMET model [6], allowing the simulation of required crop
parameters. Thanks to the high spatial resolution of the Sentinel-
2, we generate the crop type maps at the required geometrical
details (i.e., 10m) for three consecutive years, namely 2018, 2019
and 2020. This temporal span allows for modelling the temporal
changes (due to the crop rotation practice several land cover
changes will be present on the ground) and studying the impact
of the climate on the crop properties.

For the handling of all information regarding water stored as
snow, water stored in the soil, the runo� on the one side and the
development of the biomass and thus the water demand on the
other side, a comprehensive knowledge of the processes and sta-
tus for the entire catchment area is needed. The PROMET model
can integrate EO-derived land information (in this approach: crop
types, biomass/leaf area, snow cover), to receive an up-to-date
conformability between simulated parameters and observed pa-
rameters. Once the crop type maps are available, we utilize the
PROMET model to determine water demand and combine this
information with water availability sources to produce irrigation
recommendations.

The application o�ers as output �eld speci�c irrigation rec-
ommendations for agricultural areas in Austria, Hungary and
Romania. These consist of recommendations on how much and
when to irrigate each crop, and yield forecasts that show crop
development with and without the optimized irrigation plans we
o�er.

The rest of this paper is structured as follows: In Section 2 we
present the ExtremeEarth platform that supports the use case.
Section 3 presents the di�erent technologies that were designed
and implemented for the production of water demand and water
availability maps. Finally, Section 4 presents the results of the
Food Security use case.

2 THE EXTREMEEARTH PLATFORM
The ExtremeEarth platform [5] brings together the deep learn-
ing architectures and the big data technologies required for the
development of our application. The ExtremeEarth platform soft-
ware architecture builds on the integration of ESA Thematic
Exploitation Platforms (TEPs), DIASes (Data and Information Ac-
cess Services), and Hopsworks. The ExtremeEarth infrastructure
enables high-performance scalable distributed data processing
and deep learning on Copernicus data.

Irrigation recommendation as a task, relies heavily on devel-
oping techniques and software that will enable the extraction of
information and knowledge from big Copernicus data using deep

learning techniques and extreme geospatial analytics. Rapidly in-
creasing volumes of diverse data from distributed sources create
challenges for extracting valuable knowledge and commercial
value from data. The extraction of useful knowledge is done
through deep learning techniques that work at the extreme scale
of data expected in Copernicus. As part of the ExtremeEarth plat-
form, Hopsworks is deployed on CREODIAS. The CREODIAS
infrastructure is one of �ve DIAS cloud-based infrastructure plat-
forms built and operated by CloudFerro on behalf of ESA under
the Copernicus Program. It provides easy access and processing
of petabytes of EO data in a scalable framework.

2.1 Hopsworks
The ExtremeEarth platform utilizes Hopsworks, a data intensive
AI platform from Logical Clocks. Hopsworks is an open-source
framework for the development and operation of machine learn-
ing models. Hopsworks provides unique features that enhance
the development of deep learning algorithms using EO data: it
provides tools to build end-to-end machine learning pipelines,
a feature store, management of machine learning artifacts and
assets such as experiments and models, �rst-class support for
popular open-source machine learning frameworks, integration
with data science tools, and infrastructure monitoring functionali-
ties. Hopsworks also provides a horizontally scalable platform for
deep learning with GPUs and SDKs for hyper-parameter tuning
and elastic model serving.

Hopsworks is a platform for both the design and operation
of data analytics and ML/DL applications, but also for data engi-
neering, with support for Spark, Flink, and Kafka. HopsFS is used
in the storage layer, while Apache Hadoop YARN and Kubernetes
are used for resource management. On top of HopsYARN and
HopsFS, it supports di�erent services like Spark, Flink, MapRe-
duce, Kafka. Hopsworks then provides an intuitive UI for the
services and integrates them into the Project-Dataset model [8].

2.2 Food Security TEP
The Food Security TEP [15] addresses the speci�c needs of a very
wide user community contributing to food security and aiming
at sustainable agriculture and aquaculture. The Food Security
TEP o�ers a platform to allow extraction of information from EO
data and design services for the food security sector in Europe,
Africa Europe and Africa. Thereby it targets to foster smart, data-
intensive aquacultural applications in the scienti�c, private and
public domains. The user community of the Food Security TEP
is looking for applications that can scale from small farms, to
regional and national level, and o�er crop development analytics.
This community comes from a wide range of �elds, including
public science, app developers, the �nance and insurance sectors,
local and national administration and international agencies.

The technical infrastructure is a web-based Platform-as-a-
Service, developed by CGI Italy, that leverages the most advanced
cloud computing technologies. Food Security TEP provides a sin-
gle point for access and analysis of data coming from all Coperni-
cus missions, along with additional sources useful to the speci�c
domain. It facilitates implementation of speci�c services, through
the creation of processing algorithms and allows their execution,
monitoring and maintenance. The platform is accessible through
the Open Expert Interface, that introduces the main functionali-
ties and provides easy access to a variety of tools and datasets.
The platform allows data visualization on mobile devices and
can o�er customized products and services to selected users.

750



The Food Security TEP is operational and constantly tries to
strengthen its federation with cloud platforms.

As with other TEPs implemented by ESA, the idea is to bring
the user to the data. The Food Security TEP joins access to EO
data, in-situ data, processing tools, computing resources, and
hosted processing on one platform. The Food Security TEP is
implemented on CREODIAS to make use of optimal EO data
access and scalable ICT resources.

2.3 Linked Data Tools
Linked data allows us to create semantic links between the ex-
tracted knowledge from Copernicus satellite images and other
external sources, such as land cover/use and water products. This
extended knowledge graph (KG) along with the semantic web
tools were used for validation of the Deep Learning results and
assist in the production of services for the Food Security TEP
users.

Within the application, a number of spatial information layers
are used, ranging from Copernicus satellite data, their direct
products, model results and local speci�c data for the demo and
the involved users. Themain information is based on satellite data
in combinationwithmodelled data to be used aswater availability
and irrigation information. In order to combine these di�erent
resources we used an ontology to model the data in RDF and
the linked data tools to answer complex semantic queries. The
Food Security ontology is used to translate the results of the ML
algorithms in the RDFmodel using the tool GeoTriples-Spark [12].
The tool JedAI-spatial [17] can then be utilized to discover spatial
relations between two di�erent input datasets of linked geospatial
data. The data is stored and queried with Strabo2 [1]. The Strabo2
SPARQL endpoint is deployed in Hopsworks and can be accessed
by the Food Security TEPs through an HTTP-based RESTful API
according to the W3C standard 1. Finally, the GeoSPARQL query
federation engine Semagrow [2] is used for integrating several
Strabo2 endpoints under a single GeoSPARQL endpoint.

3 THE EXTREMEEARTH FOOD SECURITY
USE CASE

The Food Security Use Case is addressing public institutions
(e.g., ministries, regional administrations) as well as private users
(farmers, agricultural industry). To make sure that the developed
application �ts with the requirements of the user community,
user requirements gathering was done within the design phase
and continued throughout the development phase.

The Food Security Use Case targets the assessment of water
demand and water availability for irrigation by combining big
data EO analysis with crop growth modelling to provide water
availability. It is based on existing technology components that
are integrated and adapted for a scalabe approach. Some existing
information and products were not planned to be produced fully
automatically, but big data and analytics of whole catchments
cannot be handled manually. Hence, all aspects of data access,
pre-processing and basic product generation have been realized
in executable service chains, and can now be used as an element
for future developments and enhanced service provisions.

For a successful demonstration of the capabilities of Coperni-
cus EO / big data / analytics solutions, pilot service areas were set
up. The functionality of the components and the bene�ts derived
from the tasks within ExtremeEarth have been demonstrated
within the Danube Catchment and the Duero Catchment. In both
1https://www.w3.org/TR/sparql11-http-rdf-update/

areas, user contacts have been established coming from both pub-
lic authorities and the agricultural industry. Public authorities
are more interested in national or basin-wide information, while
the industry users were mostly interested in direct irrigation
recommendations.

Figure 2: Application Layers

The Food Security Use Case utilizes and adapts components
from di�erent layers of the European EO environment. Rang-
ing from Copernicus data to the generation and interlinking of
information, including the applications in agricultural and hy-
drological domains, a very wide range of components has to be
taken into account. But in general, the story spans from satellites
to bene�ts for farming and food. By exploiting the existing com-
ponents and adapting them, impact in technological advances
and bene�ts for the society can be created.

Starting from the data layer, made available by ICT (CREO-
DIAS) and portals (Food Security TEP), the key elements of the
Food Security Use Case builds on them and are linked as service
chains, to provide water availability and irrigation information.
Crop information – giving the crop type for each �eld and each
season - is the central parameter connecting EO e�orts, model
approaches and information facts.

Re�ned from the user workshops, the summarized require-
ments were used to set up all components in an appropriate way.
From the functional analysis performed between user require-
ments de�nitions and system design, it was indicated to combine
and set up a number of technical components to structure the
development. Some of the components already existed within
the partners’ developments and services and had to be combined
to the new service chains.

The bene�t for the users and impact for food security does thus
not come from starting to develop water availability modelling
from scratch, but from using the existing experiences on crop
growth analyses and water balance modelling, together with
high quality crop type classi�cation and state-of-the art machine
learning technology. Those components are representing the
main building blocks to provide information about water demand,
water availability and irrigation recommendations.

Beyond the direct developments in the use case, serving user
needs, the exchange of data, integration and interoperability (e.g.,
linked data approaches, federation of IT resources, onboarding of
service elements) play an important role in the context of Food
Security. The next sections will give a more detailed overview
on the implementation of the technologies and building blocks
of the Food Security use case.

3.1 Deep Learning for Crop Type Mapping
The production of accurate crop type maps play an important role
in the generation of water availability and water demand maps.
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Several methodologies have been exploited to classify agricul-
tural areas from time series of high resolution optical multispec-
tral images. In general, deep learning models have shown better
performance when compared to shallow classi�ers [4, 20, 21].
Long Short-Term Neural Networks [4] in particular showed great
performance against the other techniques, allowing to map long
time series of information and long-time dependencies. Moreover,
recurrent neural networks are robust against missing values in
the classi�cation problem [3], allowing the analysis of time series
of S2 images with missing information due to the presence of
clouds. Convolutional Neural Networks have also been exploited
for mono-temporal classi�cation as in [7, 11]. However, for se-
quential tasks, recurrent networks are generally more suitable,
allowing a better characterization of the phenological trend of
the classes analyzed.

The main goal of the developed deep learning model was the
accurate classi�cation of crop types in our study area (i.e., Danube
catchment). In particular, the outputs of the system architecture
are the crop type map, and crop boundaries map. To this end, we
leverage on the long time series of Sentinel-2 images and publicly
available thematic products.

Figure 3: Work�ow of the system architecture to generate
annual crop type and crop boundaries maps at high spatial
resolution

Figure 3 shows the work�ow of the system architecture based
on a multitemporal deep learning model [18] to produce annual
crop type and crop boundaries maps at high spatial resolution.
The system has been de�ned to fully take advantage of the prop-
erties of the long and dense Time Series of Sentinel-2 images to
achieve accurate crop type mapping results. While a dedicated
optical pre-processing step has been de�ned to deal with the
temporal inconsistencies present in Time Series acquired over
di�erent tiles, a weighted multitemporal deep learning model is
implemented to mitigate the severely imbalanced classi�cation
problem. The system architecture consists of four main steps: (i)
the optical pre-processing step, (ii) the training of the multitem-
poral deep learning model, (iii) the crop type maps production,
and (iv) the crop type map update.

Although many deep learning algorithms have been proposed
for land cover classi�cation [22], most of them, such as the stan-
dard Convolution Neural Networks [16] (CNNs), rely on mono
temporal images. When using classical CNN for crop type map-
ping, the temporal information is totally neglected. However,
this information is fundamental for the characterization of the
phenological parameters of di�erent crop types and thus, for the

accurate crop type mapping. Recurrent Neural Network (RNNs)
are mainly designed for handling sequential data (i.e., temporal
sequences of observations) as the network exploits the previous
observation for the classi�cation of the current one. To capture
the di�erent phenological characteristics of the crop, we are con-
sidering a peculiar kind of RNN, namely the Long short term
memory (LSTM) deep network [19, 20]. LSTM neural networks
provide long term memory capabilities, as at each observation,
information can be stored or retrieved to varying extents. By ex-
ploiting the capability of the network of encoding the multitem-
poral information recorder by the long time series of Sentinel-2
we can accurately model the crop mapping classi�cation task.
The LSTM is trained using the training set TimeSen2Crop [24]
which has been extracted from publicly available crop type maps
and it is composed by more than one million samples. In addition
to the single year-mapping, multi-year mapping is considered in
order to provide the crop type maps for multiple years.

The trained deep learning model is then used to generate
the crop type maps. In 2018, the TimSen2Crop training dataset
is contemporary to the Time Series of Sentinel-2 images to be
classi�ed. Therefore, the deep learning model simply predicts
the crop type maps. To generate the crop type maps of 2019 and
2020, a �ne-tuning strategy is adopted to adjust the trained deep
learning model to the recent Time Series of images.

To extract the crop type boundaries and reduce the noise at
pixel level, the obtained classi�cation maps are post-processed.
Indeed, since the LSTM adopted performs a pixel-wise classi�-
cation, noisy pixels may be present in the maps. Moreover, the
crops boundaries may contain mixed spectral signatures belong-
ing to di�erent neighboring crops. However, the PROMET model
requires only the pixels belonging to the crop having a pure spec-
tral signature associated to the crop type. For these reasons, a
series of morphological operators is applied.

(a) (b)

Figure 4: Qualitative examples of crop type map before (a)
and after (b) the morphology �ltering post processing

Because of the crop rotation practice and changes in both the
image acquisition conditions and the crop phenology, the class
statistical distributions of image Time Series acquired over di�er-
ent years have signi�cant di�erences. For this reason, the perfor-
mance of a deep learning model successfully trained for a speci�c
year can drastically drop if another year is considered [23]. To
solve this problem, we took advantage of a well-explored solution
typically employed to adapt a pre-trained network to a target
dataset, i.e., the �ne-tuning approach [10]. Typically, the weights
of all the layers in the pre-trained network are frozen except for
the latest. Then, the obtained network is re-trained using the
training data of the target dataset and after a few epochs the
entire network is unfrozen, for the remaining layers to �ne-tune.
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Although �ne-tuning is e�ective, its accuracy depends on the
amount of available recent training data, which is di�cult to
collect and time consuming. Indeed, from the operational view-
point, scarce multitemporal training data are typically available.
This step aims to update the corresponding crop type map for
a di�erent year for which a small amount of reference data is
available. To this end, we combine Self-Paced Learning (SPL) and
Fine-Tuning (FT) techniques.

In the considered SPL strategy, if at a given iteration a class has
enough training samples extracted, the technique focuses on the
remaining classes at the next iterations. At the convergence of
the iteration in the SPL step, a �ne-tuning step is performed. Due
to the SPL strategy, the number of samples required by the �ne-
tuning approach to achieve accurate classi�cation results is much
lower than the one needed by the standard approach. Similar to
the production of the 2018 crop type maps, the obtained products
are post-processed applying the morphological operators. Then,
the overlapping areas of the Sentinel-2 tiles are harmonized at
crop level according to the posterior values.

3.2 Water Demand Modelling with PROMET
For the handling of all information regarding water stored as
snow, water stored in the soil (soil moisture), the runo� on the
one side and the development of the biomass and thus the water
demand on the other side, a comprehensive knowledge of the
processes and status for the entire catchment area is needed. Ap-
plying a model, preferably on a physical basis to obtain transfer-
ability, is the basis of the provision of the requested information.

The crop growth model PROMET [13] has more than 25 years
of development history, and is currently being applied in scien-
ti�c and service operations of partner VISTA. Modelling with
PROMET can integrate EO-derived land information (e.g., crop
types, biomass/leaf area, snow cover), to receive an up-to-date
conformability between simulated parameters and observed pa-
rameters. This assimilation of observed / measured information
to physical simulations provides large bene�t in information gain.
Model internal processes (e.g., phenology, biomass and water up-
take from soil), not seen by any satellite, can be used to monitor
the land surface dynamics. That information is provided and used
for recommendations.

Meteorological data is driving the model and thus the plant
development in the simulations. PROMET allows the use of both
measured meteorological inputs (station data) and forecast data.
For the presented application, several enrichments were per-
formed leading to a multi-stage model approach, combining ded-
icated model runs for the assessment of the targeted parameters
and information. This approach, shown in Figure 5, was chosen
based on data availability and handling, and performance issues.

We performed medium resolution model runs (1km spatial
resolution) mainly for water availability simulations, including
snow, soil, groundwater and rivers and reservoirs. For this level,
also the seasonal forecasts have been used to provide a catchment
wide information on precipitation, runo� (river and reservoirs)
and soil moisture and the derived expected growth of the crops.

The implementation of seasonal forecasts opens a new di-
mension of information in the context of water availability and
irrigation recommendation. Data is released by the various data
centers and federated by the European Centre for Medium-Range
Weather Forecasts (ECMWF), providing all variables according to
PROMET’s input needs. New forecasts are released monthly up to
200 days in advance and contain daily and 6h temporal resolution

Figure 5: Multi-Stage Model Approach

datasets. For the integration in the model, ensemble selection and
spatial and temporal scaling needed to be applied. Data access,
data download and data conversion have been successfully tested.
Early analyses gave indications of unrestricted applicability, with
expected uncertainties due to spatial and temporal resolution.

3.3 Snow Monitoring and Water Availability
Water availability, as in the amount of usable water during the
vegetation period for food production, was the focus topic of
this use case in ExtremeEarth. Other aspects of water availability,
e.g., for domestic and industrial water supply, shipping (touristic
and logistic) and energy production (hydropower and cooling of
power plants) are also covered by the developments but are not
directly addressed in ExtremeEarth.

Within the selected catchments of the Danube and the Douro,
a signi�cant portion of the seasonal runo� has its origin in wa-
ter release from seasonal snow. This melted water, resulting in
runo� in the rivers or storage in lakes and reservoirs sums up
the uncertainties/dynamics of precipitation and the uncertain-
ties/dynamics of melting conditions (e.g., air temperature, radi-
ation and rain on snow e�ects). EO-based snow monitoring is
an established method to get information over larger areas and
in Near-Real-Time / in short order. Nevertheless, the requested
information on the water stored in the snow cover (Snow Water
Equivalent) is not possible to be retrieved with operational EO
methods. The assimilation of observations and use of a model
are the appropriate ways of providing all information requested
for water resources management.

Within ExtremeEarth, there are three monitoring mechanisms
for this application: (i) monitoring of the Snow Covered Area
using optical data, (ii) monitoring of the Snow Melt / internal
dynamic of the snow cover using SAR data and (iii) measuring the
Snow Water Equivalent (SWE) at critical locations using Global
Navigation Satellite System (GNSS) based stations.
Monitoring the Snow Covered Area. Using optical satellites
is a well-established method to derive the area covered by snow
on a daily basis, using medium resolution satellites (e.g., MetOp,
Terra/Aqua). Under cloud free conditions, such products can be
reliably generated from various satellite data sources with a spec-
tral band in the Short Wave InfraRed (SWIR). Within this task,
we enhanced the mechanisms of making use of the existing EU
Cryoland services established by an international team within

753



an EU FP7 project 2. Those data products (500m resolution) have
been loaded from the dedicated portal and fed into the snowmon-
itoring service chain. Daily snow cover maps are now available
for the last 5 winters.

As a second option, access to the new HR Snow Monitoring
Service by Copernicus / EEA became available within the project
period. Snow covered area maps (including fractional snow in-
formation FSC) with 20m resolution has been made available as
part of the Copernicus Land Service 3.
Monitoring of the Snow Melt. To obtain information on the
snow melt dynamics, Sentinel-1 observations are the appropriate
way to monitor on a regular basis. Independent from cloud and
daylight, several observations per day can be analysed. Several
snow cover periods have been processed, and mechanisms of
data search and batch processing have been tested. Any process-
ing converts Sentinel-1 GRD products ( 1.6 GB per scene) into
terrain corrected backscatter, using SRTM elevation model and
radiometric corrections.

Transferring technologies and using the upgrades of the Food
Security TEP, e.g. by integration of processing algorithms and pro-
cessors applied and provided by Sen4CAP 4, e�cient Sentinel-1
pre-processing has been made available on the Food Security TEP
as well. Continuous and automatic pre-processing of Sentinel-1
data, wet snow mapping and product provision are enabled to be
linked with all the other EO products of the Food Security Use
Case on platform.

Produced spatial snow melt maps can be used to compare and
control the model runs for the Danube, and the Duero catchment.
This method was successfully applied in the ESA business appli-
cation SnowSense 5, then performing a demonstration for the
island of Newfoundland / Canada. Within 2021, additional snow
monitoring products from the Copernicus Land Services have
been made available. In addition to the mentioned Fractional
Snow Cover (FSC), also snow state conditions products are pro-
vided to Copernicus users 6. Products are using Sentinel-1 and
Sentinel-2 in combination but are partly limited to high mountain
areas. Access to the dataset is limited to users of the WEkEO
portal and requires a registration for the services.
Measurements of the SWE at critical locations. As men-
tioned, EO monitoring is not able to derive accurate information
on the amount of water stored as snow. To control and update the
modelled information, local in-situ measurements are helpful. Be-
yond the technical aspect of control and updating of the model, lo-
cal measurements are an important vehicle to convince users and
potential customers. Hydrologists and especially agri-economists
need technological solutions that �t into their experience of data
and information retrieval. The team of VISTA installed a �rst
SnowSense 7 station, using patent pending GNSS technology, in
the Tatra Mountains. This location, at the northern border of the
Danube catchment, is sparsely equipped with meteorological and
hydrological stations. Local SWE information can improve the
assessment of water availability information for larger areas.

In collaboration with some local partners and customers, more
SnowSense stations have been set up in the Alps (including parts
of the Danube catchment). SnowSense will be marketed more

2http://www.cryoland.eu/
3https://land.copernicus.eu/pan-european/biophysical-parameters/high-
resolution-snow-and-ice-monitoring
4http://esa-sen4cap.org/
5https://business.esa.int/projects/snowsense-dp
6https://land.copernicus.eu/pan-european/biophysical-parameters/high-
resolution-snow-and-ice- monitoring/snow-products/snow-state-conditions
7www.snowsense.de

intensely in the future. Local Snow Water Equivalent retrieval is
available as auxiliary information source and can improve water
availability information in future services.

4 RESULTS
Crop Water Demand Mapping in the Danube Basin. Based
on the crop type classi�cation, we selected a representative sam-
ple of pixels distributed evenly over the Danube basin. To guar-
antee pure crop speci�c remote sensing information, we selected
our samples to be over a certain distance from �eld boundaries
and roads. In order to derive information for crop water demand
in national scale for di�erent crop types, we validated the results
with crop type maps and weather data from 2018 for NUTS 2
regions in Austria. This approach revealed regional di�erences
in spring and summer precipitation as shown in Figure 6. These
anomalies a�ected soil moisture development and crop water
stress in eastern Austria. Severe crop stress was reported in May
and June, that resulted in increased water demand in our sim-
ulation. Such di�erences in the growing periods can result in
di�ering irrigation requirements for each crop type, and show-
case the need for accurate and high-resolution crop type maps.

Figure 6: Regional results of water stress, irrigation water
demand and the e�ect on yield of corn, focus on Styria /
Austria 2018

In this manner, EO derived crop information can assist in
the production of water demand and assist with food security
management. Combiningwater availability from the hydrological
cycle of the catchments, predictions for the summer period and
our water demand analysis, we can o�er irrigation policy advice
on local and regional level.
Water Availability Simulations in the Douro Basin. All irri-
gation measures should happen only when there is su�cient and
sustainable water availability in the area or catchment. Consider-
ing river runo� and storage in reservoirs, including the storage of
water between the seasons in natural reservoirs as snow, soil lay-
ers or groundwater, there is need for an universal and extended
assessment of the water cycle. Based on the catchment wide
simulations with the PROMET model, we selected an evaluation
of the basic, local water availability from precipitation and soil
storage for the years 2019 and 2020. To present the potential of
seasonal forecasts (from Copernicus), we selected the year 2021.
To make sure there was comparability and clear evaluation of the
di�erent forecast scenarios, the model was set up with a static,
homogenised land use and crop map and soil information.

Using the simpli�ed model set up for the area (1 km spatial,
1 hour temporal resolution, reduced crop information) led to
new insights for the years 2019 and 2020. We performed our
simulations with example crop types (summerwheat and summer
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barley), to make use of the capabilities of the PROMET model to
give insights into water stress and water demand. Already from
this analysis and model performances, the high local variance
and the high di�erence between the years could be seen.

Figure 7: Water Availability in Douro catchment 2021, se-
lected months

Within more detailed simulations the daily/weekly/monthly
situation of the water availability has been analysed. As shown
in Figure 7, a dry summer, with almost no precipitation in July
and August, led to decreasing water availability for farming from
the soil. With a vegetation period partly ranging to these months,
a high risk of yield loss is given. Based on the simulations of the
selected crops, the day-by-day irrigation demand could be eval-
uated. Together with the already mentioned water availability
information/maps, the information could be provided for future
use inside or outside of the project team.

As additional analysis, the application of seasonal forecasts –
provided by Copernicus – has been evaluated. From the entire
bunch of models and ensembles available, we selected the UK
model and set-up a preliminary data import and data handling
schema. Based on the setting of the water availability and water
demand from the observed meteorological inputs, the perfor-
mance of the seasonal forecasts (with monthly release steps) has
been investigated. A forecast of the farming and water demand
conditions showed promising result and will be further investi-
gated. A medium-term estimate of the next few months appears
to be a bene�cial impact for water and farm management.
Irrigation Recommendation. Irrigation Recommendations and
forecasts are a promising �eld of business for EO and model
based services. In order to generate this information, in addition
to currently available methods and technologies, large amounts
of data are required. These are particularly up-to-date and very
precisely prepared data, which also have to take into account the
technology on the �eld that is available for irrigation. Using the
crop type as well as the leaf area derived from EO data as input
to the crop modelling, crop water demand is calculated. Based
on this crop water demand, the irrigation advice can then be
given in a form that �ts the farmer’s equipment, e.g. �eld-wise,
sector-wise (e.g. pivot-irrigation) or in a 10x10m raster.

It is important to know exactly the crop type that is being
cultivated, as only then can the precise water demand be deter-
mined. In existing services of our partner VISTA, this information
is given by the farmer itself, but for a wider spread of this ap-
plication – especially for larger scale assessment, where direct
information from farmers are not available, an independent EO
based information would be helpful. Here, the dense time series
of observations are used to retrieve current crop status. Based on
the day-by-day, or week-by-week model simulations, the devel-
opment of the plant – according to the observed and calculated

Figure 8: Crop water demand of di�erent soy bean and
corn �elds in Bavaria (Danube Catchment) in 2018 vs. 2019
(10x10 meter). Due to drought conditions in 2018, the high
water demand by the soy beans could not be satis�ed by
precipitation alone.

phenology – including the speci�c mechanisms of water use and
water loss, can be derived.

In the example in Figure 8, the farm is in an area where tradi-
tionally water availability via precipitation was enough to satisfy
crop growth. In the past decade, hot dry summers, but also dry
spring seasons have changed that and crop stress and resulting
yield reductions are becoming more common. The ExtremeEarth
system can support farmers by modelling the impact of these
conditions on the crops and the resulting yield loss, giving deci-
sion support when investing in irrigation systems is meaningful,
and giving support when and how much water should be applied
to the �elds.

On the regional scale, if irrigation water is taken mainly from
above-ground water sources like rivers, the ExtremeEarth system
can calculate for whole watersheds how much water is available
as runo� due to snow melt and precipitation, and how irrigation
in�uences the river runo�. This supports a fair water distribution
and helps to make sure that irrigation is ecologically sustainable.

5 CONCLUSION
Continuous monitoring of the water availability as well as the
crop development and water demand is needed to react quickly
and �nd the most sustainable solutions for the future. Earth
Observation with the Copernicus Program and the recent capa-
bilities of Cloud Computing, enabled ExtremeEarth to develop,
enhance and demonstrate the bene�cial use and interactions
between the data, technical prerequisites and new technical solu-
tions for water management.

We presented our proposed solutions to produce irrigation
recommendations with the use of water demand and water avail-
ability maps, utilizing EO data and the ExtremeEarth platform,
and demonstrated our work�ow in the Danube and Douro basins.
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