
Consent Management in Data Workflows: A Graph Problem
Dorota Filipczuk

University of Southampton
United Kingdom

dorota@ecs.soton.ac.uk

Enrico H. Gerding
University of Southampton

United Kingdom
eg@ecs.soton.ac.uk

George Konstantinidis
University of Southampton

United Kingdom
G.Konstantinidis@soton.ac.uk

ABSTRACT

Inmodern data processing systems users expect a service provider
to automatically respect their consent in all data processing
within the service. However, data may be processed for many
different purposes by several layers of algorithms that create
complex workflows. To date, there is no existing approach to
automatically satisfy fine-grained privacy constraints of a user
in a way which optimises the service provider’s gains from pro-
cessing. In this paper, we model a data processing workflow as
a graph. User constraints and processing purposes are pairs of
vertices which need to be disconnected in this graph. We pro-
pose heuristics and algorithms while at the same time we show
that, in general, this problem is NP-hard. We discuss the opti-
mality versus efficiency of our algorithms and evaluate them
using synthetically generated data. On the practical side, our
algorithms can provide a nearly optimal solution in the face of
tens of constraints and graphs of thousands of nodes, in a few
seconds.

1 INTRODUCTION

Modern computing has created a proliferation of large volumes of
user data across data processing systems. When user data enters
such a workflow, it is automatically processed, at several process-
ing points for different purposes and by several service providers.
Consequently, this processing creates new information, often
conveying predictions and inferences that are used to fulfill a
certain purpose. By doing so, the service provider may gain util-
ity – e.g., monetary benefits in the case of a commercial website
selling the data or providing personalised features – or achieve a
research goal, e.g., in the case of a research organisation.

Such data workflows are used in many commercial, scientific
and research applications. Consider for example the data work-
flow in Fig. 1, which is a real bioinformatics workflow found in
[22], where an individual’s genetic sequence is subject to differ-
ent processing by different algorithms. While each algorithm
creates additional value at each stage, the end purpose of data
processing, in this example, is that of visualising the individ-
ual’s phylogenetic tree; that is, placing them in an evolutionary
diagram relative to their ancestors and other species.

Individuals, users and patients should have control over how
their data is used in a data processing system and across different
providers. and a user may refuse to consent to some of the data
processing. Particularly, in certain regulatory frameworks such
as the GDPR [13], unless there exists another legal basis, user’s
consent is necessary to legally allow the data to be processed.

Consider another example from a social media service provider
seen in Fig. 2. Social media platforms have aggregated a multitude
of in-website services that build on users’ data, from dedicated
e-shops and marketplaces all the way to disaster detection and

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: An example of a bioinformatics workflow, illus-

trating the flow of data through various services towards

the end goal of visualisation[22].

notification of individual users. In Fig. 2 we have depicted a part
of the data workflow for these two types of functions. User posts,
including photos, can be used - in combination with outside
sources such as sensors or video feeds - to detect a natural dis-
aster and alert users based on their location; at the same time
users’ information including location is used to serve orders,
advertisements or different kinds of recommendations. Again,
although there is a growing interest and incentive to offer users
fine-grained choices regarding their personal data usage in the
system, today’s options are limited.

In this example, the user may be happy for their purchase
information, e.g., their home address, to be used for suggesting
book clubs/communities to join, but may not wish to be subject
to personalised product recommendations based on it. There
are many alternatives to satisfy these user privacy constraints

imposed on the data processing: the purchase prediction service
could refuse to share its output with the product recommendation
service. Another way would be for the geolocation service to
not receive at all the user address, however this one seems more
conservative, since the systemwill lose the capability of using the
user’s address or location for disaster notification purposes, even
though the user might allow such a processing of their location.

Options such as these are expressed in Figure 2 as different
paths from the user’s nodes to the product recommendation node.
In particular, in order to have the user’s address not be used in

Series ISSN: 2367-2005 737 10.48786/edbt.2023.61

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.61

Figure 2: Part of social media data processing workflow, servicing a range of different purposes.

product recommendation we need to break paths between these
two nodes in the figure. Evidently, enforcing privacy constraints
may affect the utility of the service providers in different ways,
so the option chosen should minimise the utility loss of the sys-
tem overall. What complicates the task even more is its large
scale: there may be many further stages of data processing, in a
workflow that involves hundreds of nodes.

In this paper, we propose a novel approach to finding the
most optimal ways of satisfying the user’s privacy constraints.
Specifically, we model the data workflow as a graph and pri-
vacy constraints as pairs of vertices of the graph. We formulate
the problem as an optimisation problem, where pairs of graph
vertices must be disconnected such that utility is maximised
(Section 2).

We model the utility of a purpose node as a black-box function
of the subgraph connected to that node, and suggest a simple
breakdown of a prupose node’s utility as a sum of the “value” that
each edge has on this subgraph. We call this, still generic problem,
CDW and we prove that it is NP-hard through a polynomial-time
reduction from the minimum multicut problem (MinMC) (Sec-
tion 3). Additionally, we present 5 alternative generic heuristics
for implementing the privacy constraints into data workflows
(Section 5) with an optimal or approximately optimal global util-
ity, depending on the actual utility function used. In order to
implement and present experiments, we present a simple con-
crete instance of the general problem, called CDW-LA, where we
employ a utility that is linearly additive (Section 4), as a natural
first instance of this problem.

Then, we analyse the (non-)optimality of our heuristics for
CDW-LA with respect to their computational complexity (Sec-
tion 6). We evaluate and compare the algorithms in terms of
accuracy and performance (Section 7). Notably, we show that, al-
though computing the optimal solution can be very time-consuming,
the proposed heuristics can provide very accurate and efficient
alternatives. Finally, we juxtapose this approach with related
work (Section 9) and discuss the further lines of research that
this paper opens (Section 8).

2 THE CONSENTED DATAWORKFLOW

PROBLEM

We consider consent in data processing as a graph theory problem.
First, we propose a new data processing model, which describes
the workflow of personal information. Second, we present a
formal formulation of the problem of identifying the parts of data
processing workflows that align with the user’s constraints, and
bring the most benefits to the service provider.

2.1 Model

In order to describe the data workflow in the system, we formu-
late our data processing model as a directed graph 𝐺 = (𝑉 , 𝐸)
with a set of edges 𝐸 representing the data flow and a set of ver-
tices 𝑉 representing the stages of data processing. These stages
refer to three activities: data collection from the user (start),
algorithmic data processing (possibly at multiple stages) and
satisfying the purpose of processing (end). For this reason, we
distinguish three kinds of vertices, i.e.𝑉 = 𝑉𝑈 ∪𝑉𝐴 ∪𝑉 𝑃 , where:

• 𝑉𝑈 is a set of user data vertices, which represent the types
of data collected directly from the user, such as name, ship-
ping address, credit card number. These will be vertices
where the information originates from, and are seen as
the input data vertices in Fig. 2;
• 𝑉𝐴 is a set of algorithm vertices, which represent data
processing algorithms that take one or more data types
as input, e.g. purchase analytics and location, and out-
put a new data type, e.g. predicted purchases – these are
vertices in the intermediate layers of the graph, seen as
“Algorithms” in Fig. 2;
• 𝑉 𝑃 is a set of purpose vertices, which represent the end
goals of data processing, e.g. serving personalised advertis-
ing or suggesting communities to join – these are terminal
vertices, (seen in the Purposes box in Fig. 2).

Importantly, we view data processing algorithms as ‘black
boxes’. That is, our model does not make assumptions about
their internal workings – we only describe the input and output

738

Figure 3: Reachability subgraph for purpose Product Rec-

ommendations from Fig. 2. The utility of the purpose is

calculated in a linearly additive way: each node outputs

value which is the sum of its incoming edges.

dependencies by the incoming and outgoing edges. To summarize,
in our model, vertices in 𝑉𝐴 have at least one incoming and at
least one outgoing edge. Differently, vertices in 𝑉𝑈 have no
incoming edges and those in 𝑉 𝑃 no outgoing edges.

Furthermore, satisfying the given purposes is what brings
service providers utility. For any vertex in 𝑉 𝑃 , we will have an
associated utility that reflects the value processing that this pur-
pose brings to service providers. In practice, the service providers’
valuation depends on factors such as the accuracy of the datasets
used as the input to the processing algorithms [14, 20]. In partic-
ular, where data processing is a multi-stage process, the utility is
affected by all stages and all datasets processed for the purpose.

Therefore, in order to calculate the utility of data processing for
a given purpose, in our model we look for all vertices and edges
that carry the data workflow to the given purpose vertex. For-
mally, we say that a vertex 𝑣𝑖 ∈ 𝑉 is reachable from a vertex 𝑣 𝑗 ∈
𝑉 if there exists a path in 𝐺 defined as a graph ({𝑣1, 𝑣2, . . . , 𝑣𝑘 },
{(𝑣1, 𝑣2),(𝑣2, 𝑣3),. . . (𝑣𝑘−1, 𝑣𝑘)}) such that 𝑣1 = 𝑣 𝑗 and 𝑣𝑘 = 𝑣𝑖 .
We also consider the so-called reachability subgraph of a purpose
vertex. For each purpose vertex 𝑝 ∈ 𝑉 𝑃 our graph 𝐺 , the reach-
ability subgraph of 𝑝 is the graph 𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝) where 𝑉𝑝 ⊆ 𝑉

is the set of the vertices that 𝑝 is reachable from and 𝐸𝑝 ⊆ 𝐸

is the set of edges from 𝐺 that connect them. For example, the
reachability graph of purpose "Product Recommendations" from
Fig. 2 is shown in Fig. 3. If an edge is removed from𝐺 , the reach-
ability subgraph of one or more purpose vertices is affected. In
general, we write R(𝐺𝑝) to denote the set of all subgraphs of the
reachability subgraph of 𝑝 in𝐺 - that are still reachability graphs
when some edges are removed. Then, to calculate the utility of
fulfilling a purpose, for each purpose vertex 𝑝 ∈ 𝑉 𝑃 we define
a utility function 𝑢𝑝 : R(𝐺𝑝) → R+0 , which is a function of a
reachability subgraph of 𝑝 .

While 𝑢𝑝 can be an arbitrary function dependent on the val-
uation of datasets in the corresponding reachability subgraph,
the valuations of some datasets may influence the valuations
of others. For example, when users are clustered based on their
shipping address to be served personal advertising, the accuracy
and, thus, valuation of the address may impact the accuracy, i.e.
valuation of the clustering. To describe the relationships between
these valuations in our model, we define a valuation function
𝜋 : 𝐸 → R+0 , representing the valuation of the data propagating

through the edge in the data processing system. As we later de-
scribe in Section 4, given the reachability subgraph𝐺𝑝 = (𝑉𝑝 , 𝐸𝑝)
of a vertex 𝑝 ∈ 𝑉 𝑃 , the utility function𝑢𝑝 (𝐺𝑝) at 𝑝 can be defined
as a function of the valuations of edges in 𝐸𝑝 .

2.2 Problem Formulation

The presented data processing model describes the workflow of
data in the system. However, the user may refuse consent to some
of this processing. For example, one of the user’s constraints may
be: I’m happy for my shipping address to be used for recommending

more products, but I don’t want to be served more general advertis-

ing based on it. To formulate this specific constraint, the user does
not need to have an expert understanding of how their personal
data is processed. Whereas, in order to satisfy this constraint, the
system should be able to analyse the data workflow and make
sure that there is no connection between the vertex where the
shipping address enters the workflow and the vertex represent-
ing advertising. If there is no such connection, we call this data
workflow consented.

Thus, our goal is to find the consented data workflow under
certain constraints. We focus on what we call the Consented Data
Workflow problem (CDW): given user’s constraints expressed in
terms of the vertices that they do not wish to be connected, find
a subgraph of the original workflow where these constraints are
satisfied. However, if there is more than one way of disconnecting
the given vertices, the optimal solution should minimise the
utility loss for the service provider from applying the constraints.
In other words, we are looking for the utility-maximising solution
subject to the users’ privacy constraints.

Users’ constraints can be expressed as a set of pairs of vertices.
In this paper we focus on personal consent against a set of pur-
poses, thus we will want to disconnect particular user vertices in
𝑉𝑈 with purpose vertices in 𝑉 𝑃 . Formally, our set of constraints
is a set N = {(𝑣𝑠 , 𝑣𝑡) | 𝑣𝑠 ∈ 𝑉𝑈 , 𝑣𝑡 ∈ 𝑉 𝑃 }. In order to satisfy the
constraints, the initial graph𝐺 needs to be modified by remov-
ing one or more edges that belong to the paths between pairs
(𝑣𝑠 , 𝑣𝑡), such that the utilities 𝑢𝑝 are maximised. In essence, our
problem is a multi-objective optimisation problem, where the
objectives are to maximise 𝑢𝑝 for all 𝑝 ∈ 𝑉 𝑃 . The most common
approach to multi-objective optimization is to turn the problem
into a single-objective optimization using a weighted sum [21].
This allows us to define the utility of the system 𝐺 as:

𝑈 (𝐺) =
∑︁
𝑝∈𝑉 𝑃

𝑤𝑝𝑢𝑝 (𝐺𝑝), (1)

where𝑤𝑝 is the weight of the purpose corresponding to vertex
𝑝 and 𝐺𝑝 is the reachability subgraph of 𝑝 . Therefore, given N ,
the objective of CDW is to find the consented subgraph of 𝐺 :

𝐺∗ = 𝑎𝑟𝑔 max
𝐺′

𝑈 (𝐺 ′) (2)

such that𝐺 ′ = (𝑉 , 𝐸 ′) is a subgraph of𝐺 where 𝐸 ′ ⊆ 𝐸 and there
is no path from 𝑠 to 𝑡 for each (𝑠, 𝑡) ∈ N .

Note that, the way that the utility functions and their weights
(and the weighted sum) can be estimated would be similar to
the way that, for example, a business estimates its returns for
online advertising. This is typically done by estimating the click-
through-rate, the conversion rate, and the average value of each
conversion. Each of these components would be influenced by
the precision of the prediction, which in turn would depend on
the data used as input. Additionally, in a real setting the values
of the various data inputs could be established experimentally.

739

Note as well, that our framework can clearly support an algo-
rithm that is unable to produce outputs in the absence of certain
inputs. This would be implemented by having the utility function
removing the outgoing edges of the algorithm as well (that is,
certain edges have to be removed together with their successor
edge). Elimination of the output edges would result in a normal
subgraph and our algorithms can evaluate and treat this.

3 COMPLEXITY ANALYSIS

In this section we study the complexity of our problem. Specifi-
cally, we show that the CDW problem is NP-hard. In order to
do so, we reduce from the minimum multicut (MinMC) problem
which isNP-hard in directed acyclic graphs (DAGs) [7]. Given a
DAG,𝐺 = (𝑉 , 𝐸,𝑤), where𝑉 is a set of vertices, 𝐸 is a set of edges
and𝑤 : 𝐸 → N∗ an edge weight function, as well as a set N of
pairs (source 𝑠 , sink 𝑡) of terminal vertices of 𝐺 , the objective of
MinMC is to find a set of edges of 𝐺 , 𝐸𝑀𝑖𝑛𝑀𝐶 , whose removal
leaves no directed path from 𝑠 to 𝑡 for each (𝑠, 𝑡) ∈ N such that:

𝐸𝑀𝑖𝑛𝑀𝐶 = 𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒) . (3)

To prove the complexity of CDW, let us consider an instance
𝐼𝑀𝑖𝑛𝑀𝐶 = (𝐺,N) of MinMC in DAGs and translate it into an
instance of CDW. Let 𝐺 = (𝑉 , 𝐸). We are going to construct an
instance of CDW on the same DAG 𝐺 and the same constraints
N such that, for a set of edges 𝐸𝑀𝑖𝑛𝑀𝐶 , the subgraph of𝐺 , (𝑉 , 𝐸\
𝐸𝑀𝑖𝑛𝑀𝐶) is a solution to theCDW instance if and only if 𝐸𝑀𝑖𝑛𝑀𝐶

is a solution to 𝐼𝑀𝑖𝑛𝑀𝐶 .
For simplicity, for any vertex 𝑣 ∈ 𝑉 , we use 𝑖𝑛(𝑣) to denote a

set of incoming edges of 𝑣 and 𝑜𝑢𝑡 (𝑣) to denote outgoing edges
in 𝐺 . We first construct the set 𝑉𝑈 ⊆ 𝑉 such that for any vertex
𝑣 ∈ 𝑉 𝑖𝑛(𝑣) = ∅ if and only if 𝑣 ∈ 𝑉𝑈 . Similarly, we construct the
set 𝑉 𝑃 ⊆ 𝑉 such that, for any vertex 𝑣 , 𝑜𝑢𝑡 (𝑣) = ∅ if and only if
𝑣 ∈ 𝑉 𝑃 . Note that𝑉𝑈 and𝑉 𝑃 cannot be empty sets, because𝐺 is
acyclic. Then, we construct a set𝑉𝐴 = 𝑉 \ (𝑉𝑈 ∪𝑉 𝑃). Moreover,
we construct a purpose-reachability function 𝑟 : 𝑉𝑈 ∪ 𝑉𝐴 →
P(𝑉 𝑃), which for any vertex 𝑣 ∈ 𝑉𝑈 ∪𝑉𝐴 returns a set of vertices
in 𝑉 𝑃 such that 𝑝 ∈ 𝑟 (𝑣) iff 𝑝 is reachable from 𝑣 . Note that this
construction happens in polynomial time. Then, for each edge
𝑒 = (𝑣, 𝑣 ′) ∈ 𝐸, we construct a valuation function 𝜋 : 𝐸 → R
such that 𝜋 (𝑒) = 𝑤 (𝑒)

|𝑟 (𝑣) | . In addition, for each 𝑝 ∈ 𝑉 𝑃 , we have a
utility function 𝑢𝑝 (𝐺𝑝) =

∑
𝑒∈𝐸𝑝 𝜋 (𝑒), where 𝐺𝑝 = (𝑉 , 𝐸𝑝) is a

reachability subgraph of 𝑝 . Lastly, we construct a utility function
of 𝐺 as𝑈 (𝐺) = ∑

𝑝∈𝑉 𝑃 𝑢𝑝 (𝐺𝑝), which implies that:

𝑈 (𝐺) =
∑︁
𝑒∈𝐸

𝑤 (𝑒) (4)

Note that each edge contributes to𝑈 (𝐺) exactly its original
weight𝑤 (𝑒) because of the way 𝜋 (𝑒) is constructed.

This concludes the construction of instance 𝐼𝐶𝐷𝑊 , which is a
CDW instance with the objectives weighted equally, i.e. for all
𝑝 ∈ 𝑉 𝑃 , 𝑤𝑝 is equal. Note that since all pairs (𝑠, 𝑡) ∈ consist of
terminal vertices, N is the same set for 𝐼𝐶𝐷𝑊 . Now, let us prove
the following:

Lemma 3.1. Given an instance 𝐼𝑀𝑖𝑛𝑀𝐶 of MinMC, there is a

polynomial time reduction to an instance 𝐼𝐶𝐷𝑊 of CDW such that

a graph (𝑉 , 𝐸 \𝐸𝑀𝑖𝑛𝑀𝐶) is the solution to 𝐼𝐶𝐷𝑊 iff 𝐸𝑀𝑖𝑛𝑀𝐶 is the

solution to 𝐼𝑀𝑖𝑛𝑀𝐶 .

Proof. (⇐) Let𝐸𝑀𝑖𝑛𝑀𝐶 be a solution to 𝐼𝑀𝑖𝑛𝑀𝐶 . Since𝐸𝑀𝑖𝑛𝑀𝐶

is a multicut of 𝐺 given N , this guarantees that when the edges

in 𝐸𝑀𝑖𝑛𝑀𝐶 are removed from 𝐺 , there is no directed path from 𝑠

to 𝑡 for each (𝑠, 𝑡) ∈ N . We show that the removal of set 𝐸𝑀𝑖𝑛𝑀𝐶

maximises the utility𝑈 (𝐺∗). Firstly, the set of edges after removal
of 𝐸𝑀𝑖𝑛𝑀𝐶 from 𝐺 can be expressed as:

𝐸∗ = 𝐸 \ 𝐸𝑀𝑖𝑛𝑀𝐶 . (5)

Then, if we plug Equation 3 to Equation 5, we have:

𝐸∗ = 𝐸 \ {𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒)}. (6)

Since 𝐸∗ is a difference between 𝐸 and the subset of 𝐸 whose
sum of edge weights is minimal, the sum of edge weights of 𝐸∗
is maximal. Therefore, Equation 6 is equivalent to:

𝐸∗ = 𝑎𝑟𝑔 max
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒). (7)

Thus, if we plug Equation 4 into Equation 7, we have:

𝐺∗ = 𝑎𝑟𝑔 max
𝐺′

𝑈 (𝐺) . (8)

As this is exactly Equation 2, the graph𝐺∗ = (𝑉 , 𝐸 \ 𝐸𝑀𝑖𝑛𝑀𝐶)
is the solution to 𝐼𝐶𝐷𝑊 . Notably, this transition is performed in
polynomial time.

(⇒) Conversely, let 𝐺∗ = (𝑉 , 𝐸 \ 𝐸𝑀𝑖𝑛𝑀𝐶) be a solution to
𝐼𝐶𝐷𝑊 . By definition of the consented subgraph, in graph 𝐺∗

there is no directed path from 𝑠 to 𝑡 for each (𝑠, 𝑡) ∈ N and the
utility is maximised as per Equation 2. If we plug Equation 4 into
Equation 2, we have:

𝐸∗ = 𝑎𝑟𝑔 max
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒). (9)

Since 𝐸∗ ⊆ 𝐸, there exists a set of edges 𝐸 \ 𝐸∗ such that:

𝐸 \ 𝐸∗ = 𝐸 \ {𝑎𝑟𝑔 max
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒)}. (10)

This is equivalent to:

𝐸 \ 𝐸∗ = 𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒). (11)

If we call this set 𝐸𝑀𝑖𝑛𝑀𝐶 , i.e. 𝐸 \ 𝐸∗ = 𝐸𝑀𝑖𝑛𝑀𝐶 , then:

𝐸𝑀𝑖𝑛𝑀𝐶 = 𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒). (12)

As this is exactly Equation 3, 𝐸𝑀𝑖𝑛𝑀𝐶 is the minimummulticut
of 𝐺 given N . Therefore, 𝐸𝑀𝑖𝑛𝑀𝐶 is the solution to 𝐼𝑀𝑖𝑛𝑀𝐶 .
Notably, this is achieved in polynomial time. □

Given this, we can now show that even for a small number of
user’s constraints our problem is NP-hard, sinceMinMC is an
NP-hard problem in di-graphs:

Theorem 3.2. CDW is NP-hard, even if |N | = 2.

Proof. By Lemma 3.1, an instance of MinMC in DAGs can be
converted to CDW in polynomial time. Moreover, solving CDW
yields in polynomial time a solution toMinMC. SinceMinMC in
DAGs is known to be an NP-hard problem for any |N | > 1 [7],
there exists a polynomial-time reduction from a knownNP-hard
problem to CDW. Therefore, the CDW problem is NP-hard for
any |N | > 1, which concludes the proof. □

740

4 ADDITIVE MODEL

As shown in Section 3,CDW in general isNP-hard, whichmakes
it difficult to expect a relatively efficient algorithm. Even more
so because of the fact that

The valuations and utilities defined in Section 2.1, that we used
in order to show NP-hardness can be arbitrary complex functions.
In this section, we focus on a simple but practical instance of the
problem, where these functions are linearly additive. In practice,
data valuation is determined by a complex interaction of multiple
factors including its age, accuracy and reliability [15]. Here, we
choose a linear valuation function as a natural choice of a func-
tion. In particular, we assume that the valuation function of the
data type going out of a vertex is linearly additive with respect
to the importance of the data types on the incoming edges. That
is, the value of every node’s output is the sum of the values of
the data products that reach its input (see Fig. 3). If we initialise
each input edge to have an original value of 1, as in Fig. 3, then
the utility of a purpose node sums up how many times the inputs
“have been used” in algorithms before reaching the purpose node,
thus giving some hint about the overall importance of an input.
The linear additive model is the simplest model that captures the
intuition of each input having an “added value” on the subsequent
algorithm. This model may not apply to all settings and, e.g., a
sub-additive model might be more appropriate. In many cases
the linear additive model could be a reasonable approximation
of a model where the interdependencies are difficult to measure.

In more detail, consider an instance of CDW, where for each
edge 𝑒 = (𝑣, 𝑣 ′) ∈ 𝐸, the valuation is defined recursively as
follows:

𝜋 (𝑒) =
∑︁

𝑒′∈𝑖𝑛 (𝑣)
𝜋 (𝑒 ′) . (13)

Similarly, we model the utility gained from processing the
data for a purpose as a linearly additive function with respect to
the valuation of the data types on the incoming edges. That is,
for each purpose vertex 𝑝 ∈ 𝑉𝑃 and its reachability subgraph𝐺𝑝 ,
we define a utility function as follows:

𝑢𝑝 (𝐺𝑝) =
∑︁

𝑒∈𝑖𝑛 (𝑝)
𝜋 (𝑒) . (14)

Since the valuation is defined recursively, we also assume that
our model has no cycles. That is, the original graph𝐺 is a directed
acyclic graph (DAG).

Formally, the objective of our linearly additive instance of
the CDW problem, called CDW-LA, is to find a the consented
subgraph of𝐺 , given: a DAG𝐺 = (𝑉𝑈 ∪𝑉𝐴 ∪𝑉 𝑃 , 𝐸), a valuation
function 𝜋 (𝑒) = ∑

𝑒′∈𝑖𝑛 (𝑣) 𝜋 (𝑒 ′) for each 𝑒 = (𝑣, 𝑣 ′) ∈ 𝐸, a utility
function 𝑢𝑝 (𝐺𝑝) =

∑
𝑒∈𝑖𝑛 (𝑝) 𝜋 (𝑒) for each reachability subgraph

𝐺𝑝 of each 𝑝 ∈ 𝑉𝑃 , a weight𝑤𝑝 = 1 of the purpose represented
by vertex 𝑝 and a set N of pairs (𝑠, 𝑡) of terminal vertices of 𝐺
such that 𝑠 ∈ 𝑉𝑈 and 𝑡 ∈ 𝑉𝑃 .

5 ALGORITHMS

In this section, we devise a range of new algorithmic approaches
that can solve the CDW-LA problem. Although there might exist
multiple optimal solutions, we design our algorithms looking
for a single solution 𝐺∗ = (𝑉 ∗, 𝐸∗). While some of them offer
optimal solutions to CDW-LA, others serve as viable heuristics.
Note that, even though the algorithms may not be optimal (i.e.
utility maximising), all five algorithms always return a feasible

solution, which is any subgraph of𝐺 with no path between each
(𝑠𝑖 , 𝑡𝑖) ∈ N for 𝑖 ∈ {1, . . . , |N |}.

Firstly, a simple heuristic for finding a feasible solution is an
algorithm that removes a random edge from each of the paths
connecting (𝑠, 𝑡) ∈ N . In more detail, Algorithm 1 RemoveRan-
domEdge finds all paths from 𝑠 to 𝑡 (in lines 1 - 2) and from each
of the paths selects a random edge to remove (in lines 3 - 4). Then,
before the edge is removed (in line 7), the other edges whose
valuation depends on the presence of the given edge in the graph
must be updated. This is done by the updateDependencies func-
tion (in line 6). In particular, if the valuation of an edge after the
update is 0, such edge must also be removed, e.g. if edge (𝑠, 𝑣1)
in Figure ?? is removed, edges (𝑣1, 𝑡) and (𝑣1, 𝑡 ′) also require
removal. Although the solution has a high variance, the run time
of this algorithm is polynomial.

Algorithm 1 RemoveRandomEdge
Input: A graph 𝐺 and a set of constraints N .
Output: A graph 𝐺 .

1: for all (𝑠, 𝑡) ∈ N do

2: for all 𝑝 ∈ getAllEdgePaths(𝐺, 𝑠, 𝑡) do

3: edgeIndex← getRandomInteger(1, |𝑝 |)
4: 𝑒 ← 𝑝 [edgeIndex]
5: if hasEdge(𝐺, 𝑒) then
6: updateDependencies(𝐺, 𝑒)
7: removeEdge(𝐺, 𝑒)

Secondly, as the valuation function of the edges is additive, and
because the valuation of the incoming edge of an algorithm vertex
is always greater or equal than the outgoing one, the removal of
the first edge of each path from 𝑠 to 𝑡 can serve as another trivial
heuristic. Specifically, Algorithm 2 RemoveFirstEdge is very
similar to RemoveRandomEdge, except that, instead of selecting
a random edge, it removes the first edge from each path (in line
3). This algorithm reflects an approach whereby the user’s data
type is removed entirely and not even collected by the system.
Similarly to RemoveRandomEdge, the runtime of this algorithm
is polynomial.

Algorithm 2 RemoveFirstEdge
Input: A graph 𝐺 and a set of constraints N .
Output: A graph 𝐺 .

1: for all (𝑠, 𝑡) ∈ N do

2: for all path ∈ getAllEdgePaths(𝐺, 𝑠, 𝑡) do

3: 𝑒 ← getFirstEdge(path)
4: if hasEdge(𝐺, 𝑒) then
5: updateDependencies(𝐺, 𝑒)
6: removeEdge(𝐺, 𝑒)

Next, we look for algorithms that can provide more accurate
solutions. In particular, we propose a greedy algorithm that can
provide a feasible solution in polynomial time. This algorithm
follows the heuristic of making locally optimal choices for each
constraint. To do so, it uses a polynomial-time algorithm solving
the Minimum Cut problem (MinCut) [11, 12], defined as follows:
given a graph 𝐺 = (𝑉 , 𝐸), a weight function 𝑤 : 𝐸 → N∗ and a
single pair (source 𝑠 , sink 𝑡) of terminal vertices of 𝐺 , find a set
of edges of 𝐺 , 𝐸𝑀𝑖𝑛𝐶𝑢𝑡 whose removal leaves no directed path
from 𝑠 to 𝑡 for each (𝑠, 𝑡) ∈ N such that:

𝐸𝑀𝑖𝑛𝐶𝑢𝑡 = 𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝑤 (𝑒). (15)

741

To design a greedy algorithm, we can use algorithms solving
MinCut to find a minimum cut of 𝐺 for each (𝑠, 𝑡) ∈ N . Con-
sequently, we remove the minimum cut before moving on to
the next constraint, which results in a partial solution. In more
detail, Algorithm 3 RemoveMinCuts starts from initialising the
weights 𝑤 (𝑒) = 𝜋 (𝑒)∑𝑝∈𝑟 (𝑣) 𝑤𝑝 for all edges 𝑒 ∈ 𝐸 (in lines 1
- 4). Then, for each constraint (𝑠, 𝑡) ∈ N , it finds the minimum
cut that solves MinCut for vertices 𝑠 and 𝑡 in 𝐺 with weights
𝑤 (in line 6). For each edge in the minimum cut, it uses the
updateDependencies function to update the valuations of the
consecutive edges (in line 8) before removing the given edge (in
line 9). Given that MinCut is known to be solvable in polyno-
mial time [11], the outcome of this heuristic can also be found in
polynomial time.

Algorithm 3 RemoveMinCuts

Input: A graph 𝐺 = (𝑉 , 𝐸) and a set of constraints N .
Output: A graph 𝐺 .

1: 𝑤 ← ∅
2: for all 𝑒 ∈ 𝐸 do

3: 𝑤 (𝑒) ← 𝜋 (𝑒)∑𝑝∈𝑟 (𝑣) 𝑤𝑝

4: for all (𝑠, 𝑡) ∈ N do

5: for all 𝑒 ∈ MinCut(𝐺,𝑤, 𝑠, 𝑡) do
6: if hasEdge(𝐺, 𝑒) then
7: updateDependencies(𝐺, 𝑒)
8: removeEdge(𝐺, 𝑒)

Another way of approximating the solution is by converting
our problem toMinMC, defined in Section 3. That is, we can solve
MinMCwith weights𝑤 (𝑒) = 𝜋 (𝑒)∑𝑝∈𝑟 (𝑣) 𝑤𝑝 for all edges 𝑒 ∈ 𝐸
and then use the MinMC solution to find a solution to CDW-LA.
In the same way as RemoveMinCuts, Algorithm 4 RemoveM-
inMC starts from initialising the weights𝑤 (in lines 1 - 4). Then,
it finds the minimum multicut of graph 𝐺 for constraints N by
executing the algorithm solvingMinMC for input (𝐺,N ,𝑤) (in
line 5). Subsequently, for each edge in the minimum multicut, it
uses the updateDependencies function to update the valuations
of the consecutive edges (in line 8) before removing the given
edge (in line 9).

Algorithm 4 RemoveMinMC

Input: A graph 𝐺 = (𝑉 , 𝐸), a set of constraints N .
Output: A graph 𝐺 .

1: 𝑤 ← ∅
2: for all 𝑒 ∈ 𝐸 do

3: 𝑤 (𝑒) ← 𝜋 (𝑒)∑𝑝∈𝑟 (𝑣) 𝑤𝑝

4: multicut← MinMC(𝐺,N ,𝑤)
5: for all 𝑒 ∈ multicut do
6: if hasEdge(𝐺, 𝑒) then
7: updateDependencies(𝐺, 𝑒)
8: removeEdge(𝐺, 𝑒)

Finally, we propose an algorithm that can guarantee achieving
an optimal solution. That is, Algorithm 5 BruteForce is an ex-
haustive search algorithm that enumerates all feasible candidates
for the solution and compares them to eventually output the one
that maximises the utility. More specifically, BruteForce starts
from finding the set of all paths A from 𝑠 to 𝑡 for all (𝑠, 𝑡) ∈ N ,
which need to be broken (in lines 1 - 4). In order to list all feasible

Table 1: Algorithm Comparison.

Algorithm Runtime Exact Solution
RemoveRandomEdge Polynomial No
RemoveFirstEdge Polynomial No
RemoveMinCuts Polynomial No
RemoveMinMC Exponential No
BruteForce Exponential Yes

multicuts of 𝐺 for the given N , the Cartesian product of A is
computed (in line 5). Then, the algorithm systematically checks
the utility of𝐺 after the removal of each multicut (in lines 8 - 27).
Importantly, at the beginning of the multicut check, copies are
made of the valuation values 𝜋 ′ of each edge and the number of
paths 𝑝 ′ the edge belongs to in𝐺 , as well as of the graph𝐺 itself
(in lines 9 - 14). Before an edge of the feasible multicut is removed
from the copy of 𝐺 (in line 18), the valuation 𝜋 ′ and the number
of paths 𝑝 ′ in the copy of 𝐺 are updated for its dependencies
(in line 17). At the end of the multicut check, the utility of the
copy of𝐺 is compared to the utility of the most optimal solution
found so far (in lines 21 - 25). This way, given that all possible
solutions that satisfy the constraints are checked, the algorithm
can guarantee eventually finding the optimal solution. However,
the runtime of this algorithm is exponential even in the best case.

Algorithm 5 BruteForce

Input: A graph 𝐺 = (𝑉 , 𝐸) and a set of constraints N .
Output: A graph 𝐺∗.

1: A ← ∅
2: for all (𝑠, 𝑡) ∈ N do

3: A ← A ∪ getAllEdgePaths(𝐺, 𝑠, 𝑡)

4: multicuts← cartesianProduct(A)
5: maxUtility← 0
6: 𝐺∗ ← 𝐺

7: for all multicut ∈ multicuts do

8: 𝐺 ′ ← 𝐺

9: 𝜋 ′, 𝑝 ← ∅, ∅
10: for all 𝑒 ∈ 𝐸 do

11: 𝜋 ′(𝑒) ← 𝜋 (𝑒)
12: 𝑝 (𝑒) ← ∑

𝑝∈𝑟 (𝑣) 𝑤𝑝

13: for all 𝑒 ∈ multicut do
14: if hasEdge(𝐺 ′, 𝑒) then
15: updateDependencies(𝐺 ′, 𝑒, 𝜋 ′, 𝑝)
16: removeEdge(𝐺 ′, 𝑒)
17: utility← 𝑈 (𝐺 ′)
18: if utility > maxUtility then
19: maxUtility← utility
20: 𝐺∗ ← 𝐺 ′

21: return 𝐺∗

While Alg. 1, 2 and 5 are designed to work on models with
arbitrary valuation and purpose utility functions, specifying these
functions is needed to calculate the weights𝑤 (𝑒) in Alg. 3 and 4.
Table 1 presents a summary of the different algorithms.

6 OPTIMALITY OF SOLUTIONS

Out of five algorithms proposed in Section 5, only BruteForce
guarantees an optimal solution to CDW-LA. In contrast, it is
clear that RemoveRandomEdge does not guarantee an optimal

742

solution – we use it as a benchmark for our evaluation. In this
section, we analyse the properties of the solutions returned by
our three remaining heuristics and prove that none of them can
guarantee finding an optimal solution even for the linear setting.

Firstly, we show that a simple removal of the first edge of each
path proposed in Algorithm 2 RemoveFirstEdge does not guar-
antee an optimal solution. In more detail, for each (𝑠𝑖 , 𝑡𝑖) ∈ N ,
there is at least one path 𝑃 = (𝑉𝑃 , 𝐸𝑃) ∈ A of the form 𝑉𝑃 =

{𝑣1, 𝑣2, . . . , 𝑣𝑘 },𝐸𝑃 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑘−1, 𝑣𝑘)}where 𝑣1 =
𝑠𝑖 and 𝑣𝑘 = 𝑡𝑖 . From each such path 𝑃 ∈ A, we could remove
edge (𝑣1, 𝑣2). We refer to (𝑣1, 𝑣2) as the first edge. We show that
the removal of the first edge from each 𝑃 does not always result
in an optimal solution to CDW-LA by the following example.

Let 𝐺 be a data processing model where 𝑉𝑈 = {𝑣1}, 𝑉𝐴 =

{𝑣2}, 𝑉 𝑃 = {𝑣3, 𝑣4}, 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), (𝑣2, 𝑣4)} and for each
𝑝 ∈ 𝑉 𝑃 , 𝑤𝑝 = 1. In addition, assume that for edge 𝑒1 = (𝑣1, 𝑣2),
𝜋 (𝑒1) = 𝑎 where 𝑎 ∈ R+0 and that N = {(𝑣1, 𝑣3)}.

In such case, we use Equation 13 to calculate the valuation of
edges 𝑒2 = (𝑣2, 𝑣3) and 𝑒3 = (𝑣2, 𝑣4), which is 𝜋 (𝑒2) = 𝜋 (𝑒3) = 𝑎.
We also use Equation 1 to calculate the initial utility of𝐺 , which is
𝑈 (𝐺) = 2𝑎. Given that N = {(𝑣1, 𝑣3)}, we establish that there is
one path that needs to be disconnected in order to satisfy the con-
straints, i.e. A = {𝑃} where 𝑃 = ({𝑣1, 𝑣2, 𝑣3}, {(𝑣1, 𝑣2), (𝑣2, 𝑣3)}).

Then, we remove the first edge (𝑣1, 𝑣2) from 𝑃 . The utility of
the resulting graph 𝐺 ′1 is 𝑈 (𝐺

′
1) = 0, since purpose vertices 𝑣3

and 𝑣4 are now not linked to any user vertex. However, if instead
we removed the alternative edge (𝑣2, 𝑣3), vertex 𝑣4 would still be
linked to 𝑣1 and therefore the utility of the resulting graph 𝐺 ′2
would be 𝑈 (𝐺 ′2) = 𝑎. Thus, in this case the removal of the first
edge does not provide us with an optimal solution.

In a similar way, we can prove that removing the last edge
(𝑣𝑘−1, 𝑣𝑘) from each path in A also does not guarantee the opti-
mal solution. However, since for all (𝑠, 𝑡) ∈ N all paths from 𝑠 to
𝑡 are broken, it similarly provides a feasible solution.

Furthermore, we show that solving the problem in a greedy
way, i.e. where we apply the constraints one at a time as proposed
in Algorithm 3 RemoveMinCuts, also does not lead to an optimal
solution. Specifically, consider a series of graphs𝐺0,𝐺1, . . . ,𝐺 |N | .
These graphs are computed recursively such that 𝐺0 = 𝐺 =

(𝑉 , 𝐸) and for all 𝑖 ∈ {1, . . . , |N |}, 𝐺𝑖 = (𝑉 , 𝐸𝑖) where 𝐸𝑖 =

𝐸𝑖−1 \MinCut(𝐺𝑖−1, 𝑠𝑖 , 𝑡𝑖 ,𝑤) corresponds to 𝑖-th pair of vertices
inN . Given a solution toMinCut, one could transform CDW-LA
into a repeated MinCut problem looking for 𝐺 |N | . While this
approach leads to a feasible solution, 𝐺 |N | is not necessarily an
optimal solution.

We show this by the following example. Let 𝐺 be a data pro-
cessing model where 𝑉𝑈 = {𝑠1, 𝑠2}, 𝑉𝐴 = {𝑣1}, 𝑉 𝑃 = {𝑡1, 𝑡2},
𝐸 = {(𝑠1, 𝑣1), (𝑠2, 𝑣1), (𝑣1, 𝑡1), (𝑣1, 𝑡2)} and for each 𝑝 ∈ 𝑉 𝑃 ,𝑤𝑝 =

1. Assume that for 𝑒1 = (𝑠1, 𝑣1), 𝜋 (𝑒1) = 𝑎 and for 𝑒2 = (𝑠2, 𝑣1),
𝜋 (𝑒2) = 𝑏, where 𝑎, 𝑏 ∈ R+0 and 𝑎 > 𝑏. This model is illus-
trated in Figure 4. In addition, there are two constraints: N =

{(𝑠1, 𝑡1), (𝑠1, 𝑡2)}.
In such case, 𝑖 = 2.We look for𝐺2 = (𝑉 , 𝐸\MinCut(𝐺1, 𝑠1, 𝑡1,𝑤)).

Thus, we first calculate 𝐺1 = (𝑉 , 𝐸 \MinCut(𝐺, 𝑠1, 𝑡1,𝑤)). We
observe that there is one path 𝑃 = ({𝑠1, 𝑣1, 𝑡1}, {(𝑠1, 𝑣1), (𝑣1, 𝑡1)})
between vertices 𝑠1 and 𝑡1. Because 𝑎 > 𝑏,𝑤 ((𝑣1, 𝑡1)) = 𝑎 + 𝑏 <

𝑤 ((𝑠1, 𝑣1)) = 2𝑎. Thus, 𝐺1 = (𝑉 , 𝐸 \ {(𝑣1, 𝑡1)}). With this infor-
mation, we return to looking for 𝐺2. We observe that there is
one path 𝑃 = ({𝑠1, 𝑣1, 𝑡2}, {(𝑠1, 𝑣1), (𝑣1, 𝑡2)}) between vertices 𝑠1
and 𝑡2. However, now𝑤 ((𝑠1, 𝑣1)) = 𝑎 and𝑤 ((𝑣1, 𝑡2)) = 𝑎 + 𝑏. So,
𝑤 ((𝑠1, 𝑣1)) < 𝑤 ((𝑣1, 𝑡2)) and 𝐺2 = (𝑉 , 𝐸 \ {(𝑠1, 𝑣1), (𝑣1, 𝑡1)}).

𝑎

𝑏

𝑎
+ 𝑏

𝑎 +
𝑏

𝑠1

𝑠2

𝑣1

𝑡1

𝑡2

Figure 4: A data processingmodel where𝑉𝑈 = {𝑠1, 𝑠2},𝑉𝐴 =

{𝑣1}, 𝑉 𝑃 = {𝑡1, 𝑡2} and 𝐸 = {(𝑠1, 𝑣1), (𝑠2, 𝑣1), (𝑣1, 𝑡1), (𝑣1, 𝑡2)}.

After that, we calculate utility 𝑈 (𝐺2) = 𝑏. However, we can
see that in order to optimally solve CDW-LA, it is sufficient to
remove edge (𝑠1, 𝑣1) only. That is, the optimal solution to CDW-
LA in this case is 𝐺∗ = (𝑉 , 𝐸 \ {(𝑠1, 𝑣1)}), because its utility is
𝑈 (𝐺∗) = 2𝑏. Thus, 𝐺2 is not an optimal solution to CDW-LA.

Intuitively, it is reasonable to assume that the optimal solution
requires removing no more than one edge per path between 𝑠

and 𝑡 for each (𝑠, 𝑡) ∈ N . In what follows, we first prove that, for
settings where this is indeed the case, our Algorithm 4 RemoveM-
inMC finds the optimal set of edges to remove. However, we then
show that there are settings where this assumption does not hold,
and where the optimal solution requires removing more than
one edge from the same path. However, in Section 7 we show
that these cases are rare and, in most cases, the algorithm does
return the optimal solution. Hence showing that the algorithm
guarantees the optimal solution in restricted settings is useful.

Theorem 6.1. If for each path 𝑃 = (𝑉𝑃 , 𝐸𝑃) ∈ A there is exactly

one edge 𝑒 ∈ 𝐸𝑃 such that 𝑒 ∈ 𝐸𝑀𝑖𝑛𝑀𝐶 , then there exists a solution

𝐺∗ = (𝑉 , 𝐸 \ 𝐸𝑀𝑖𝑛𝑀𝐶).

Proof. Let 𝑇 ⊆ 𝑉 𝑃 be a set of purpose vertices such that for
all (𝑠, 𝑡) ∈ N , 𝑡 ∈ 𝑇 . If for each path 𝑃 = (𝑉𝑃 , 𝐸𝑃) ∈ A there is
exactly one edge 𝑒 ∈ 𝐸𝑃 such that 𝑒 ∈ 𝐸𝑀𝑖𝑛𝑀𝐶 , then the removal
of a set of edges 𝐸𝑀𝑖𝑛𝑀𝐶 reduces the utility of a purpose vertex
𝑡 ∈ 𝑇 by

∑
𝑒∈𝐸𝑡 𝜋 (𝑒) where 𝐸𝑡 ⊆ 𝐸𝑀𝑖𝑛𝑀𝐶 is a set of those edges

in 𝐸𝑀𝑖𝑛𝑀𝐶 that are within the reachability subgraph of 𝑡 , 𝐺𝑡 .
Thus, if the resulting graph after the removal of set 𝐸𝑀𝑖𝑛𝑀𝐶

from 𝐺 is 𝐺 ′ = (𝑉 , 𝐸 ′), then using Equation 1, the total loss of
the utility can be calculated as follows:

𝑈 (𝐺) −𝑈 (𝐺 ′) =
∑︁
𝑡 ∈𝑇

∑︁
𝑒∈𝐸𝑡

𝑤𝑡𝜋 (𝑒). (16)

This is equivalent to the following equation:

𝑈 (𝐺 ′) = 𝑈 (𝐺) −
∑︁

𝑒∈𝐸\𝐸′
𝜋 (𝑒)

∑︁
𝑡 ∈𝑇

𝑤𝑡 . (17)

We are looking for the consented subgraph 𝐺∗ = (𝑉 , 𝐸∗). In
fact, if we plug Equation 17 into Equation 2, we have:

𝐺∗ = 𝑎𝑟𝑔 max
𝐺′
{𝑈 (𝐺) −

∑︁
𝑒∈𝐸\𝐸′

𝜋 (𝑒)
∑︁
𝑡 ∈𝑇

𝑤𝑡 }. (18)

Equivalently, we are looking for a subgraph 𝐺∗ = (𝑉 , 𝐸∗)
where:

𝐸∗ = 𝐸 \ {𝑎𝑟𝑔 min
𝐸\𝐸′

∑︁
𝑒∈𝐸\𝐸′

𝜋 (𝑒)
∑︁
𝑡 ∈𝑇

𝑤𝑡 }. (19)

743

Thus, by Equation 3, 𝐸∗ is the set difference of 𝐸 and the
minimummulticut of𝐺 givenN , where the edgeweight is𝑤 (𝑒) =
𝜋 (𝑒)∑𝑡 ∈𝑇 𝑤𝑡 . In more detail, the minimum multicut with edge
weights𝑤 (𝑒) = 𝜋 (𝑒)∑𝑡 ∈𝑇 𝑤𝑡 can be expressed as:

𝐸𝑀𝑖𝑛𝑀𝐶 = 𝑎𝑟𝑔 min
𝐸′

∑︁
𝑒∈𝐸′

𝜋 (𝑒)
∑︁
𝑡 ∈𝑇

𝑤𝑡 . (20)

If we plug Equation 19 into Equation 20, then what we are
looking for is 𝐺∗ = (𝑉 , 𝐸∗) where:

𝐸∗ = 𝐸 \ 𝐸𝑀𝑖𝑛𝑀𝐶 . (21)
Since 𝐸𝑀𝑖𝑛𝑀𝐶 is a solution to MinMC, there is 𝐺∗ = (𝑉 , 𝐸 \

𝐸𝑀𝑖𝑛𝑀𝐶). □

However, removing a single edge from each path does not al-
ways result in an optimal solution. We prove this by the following
example. Consider a graph 𝐺 where 𝑉𝑈 = {𝑠1, 𝑠2}, 𝑉𝐴 = {𝑣1},
𝑉 𝑃 = {𝑡1, 𝑡2}, 𝐸 = {(𝑠1, 𝑣1), (𝑠2, 𝑣1), (𝑣1, 𝑡1), (𝑣1, 𝑡2)} and for each
𝑝 ∈ 𝑉 𝑃 ,𝑤𝑝 = 1. In addition, assume that for 𝑒1 = (𝑠1, 𝑣1), 𝜋 (𝑒1) =
𝑎 and for 𝑒2 = (𝑠2, 𝑣1), 𝜋 (𝑒2) = 𝑏, where 𝑎, 𝑏 ∈ R+0 and 𝑎 > 𝑏. This
graph is illustrated in Figure 4. Now, let the set of constraints be as
follows: N = {(𝑠1, 𝑡1), (𝑠1, 𝑡2), (𝑠2, 𝑡1)}. We can see that the opti-
mal solution in this case is𝐺∗ = (𝑉 , {(𝑠2, 𝑣1), (𝑣1, 𝑡2)}). However,
since (𝑠1, 𝑡1) ∈ N and there is a path from 𝑠1 to 𝑡1 in the original
graph 𝐺 , we can observe that the optimal solution 𝐺∗ does not
contain two edges (𝑠1, 𝑣1) and (𝑣1, 𝑡2) from that path.Therefore,
in general, it is not true that Algorithm 4 RemoveMinMC can
guarantee finding an optimal solution to CDW-LA by removing
only one edge from each path.

7 EVALUATION

In this section, we evaluate the performance of the proposed
algorithms empirically. First, we discuss the experimental setup,
including details on the algorithm implementation and graph
data generation. Then, we present results of the experiments
focusing on the runtime and accuracy of each algorithm.

For our experiments, we have used synthetic data, since the
very nature of privacy and consent makes obtaining real data
very difficult. Users would be hesitant to share the ground truth of
their data and their privacy preferences on top of that. Moreover,
commercial service providers are still hesitant to share their inter-
nal data workflow models. Most importantly, there has not been
a technology so far to support such fine-grained user privacy
constraints that disconnect arbitrary input data from an arbi-
trary workflow purposes; thus real data is rare on this problem.
We believe that this is changing; service providers tend to offer
more choices and research that offers automation of fine-grained
consent is starting to take off [18].

7.1 Experimental Setup

We implement the proposed algorithms using the NetworkX1

library. In particular, this library provides a method to solve the
MinCut problem in Algorithm 3. In addition, we implement Al-
gorithm 4 using the PICOS2 API for optimization solvers. Specifi-
cally, we use the GLPK (GNU Linear Programming Kit)3 package
for solving the MinMC problem.

We compare the different algorithms by measuring their per-
formance on synthetic data. This choice allows us to test the
algorithms when all the assumptions of the CDW-LA instance
1NetworkX, https://networkx.org/.
2PICOS, https://picos-api.gitlab.io/picos/.
3GLPK (GNU Linear Programming Kit), https://www.gnu.org/software/glpk/.

Table 2: Parameter configurations for datasets 1, 2 and 3.

Dataset 1

Dataset 2 Dataset 3

a b c

|N | 1 – 50 1 – 50 1 – 50 10 5
|𝑉 | 100 1000 100 150 – 5000 100 – 10000
𝑘 5 5 5 3 – 50 5
𝑋𝑘 NU NU U U NU
𝑑 0 0 20% 0 0

are met. To do so, our graph generation method includes the
following parameters:
• number of constraints |N |;
• number of vertices |𝑉 |;
• path length 𝑘 – for any (𝑠, 𝑡) ∈ N , if there is a path 𝑃 =

((𝑣1, 𝑣2, . . . , 𝑣𝑘), ((𝑣1, 𝑣2) . . . (𝑣𝑘−1, 𝑣𝑘))) such that 𝑣1 = 𝑠

and 𝑣𝑘 = 𝑡 , then 𝑘 defines the number of workflow stages,
i.e. data that ‘flows’ from 𝑠 to 𝑡 though 𝑘 − 2 algorithm
nodes;
• vertex distribution vector 𝑋𝑘 – proportions of vertices at
workflow stages, e.g. a setting𝑋𝑘 = (50%, 25%, 10%, 10%, 5%)
represents a scenario for 𝑘 = 5 where half of the vertices
are the user data vertices, 35% are the algorithm vertices
and 5% are the number of the purpose vertices;
• minimum density 𝑑 – the proportion of initially generated
edges between any two workflow stages.

To generate a graph, we distribute |𝑉 | vertices onto𝑘 workflow
stages as per vector 𝑋𝑘 . For any two workflow stages, the initial
𝑑 of all possible edges are generated though a pseudo-random4

selection of vertices. Then, to ensure that all vertices in 𝑉𝑈 and
𝑉𝐴 have at least one outgoing edge, and that all vertices in 𝑉𝐴

and𝑉 𝑃 have at least one incoming edge, we add additional edges
with one of the vertices selected randomly. All edges going out
of the user vertices are assigned integer valuations 𝜋 (𝑒) through
a uniform selection from a range of 1–100. Furthermore, for
each purpose vertex 𝑝 ∈ 𝑉𝑝 , the purpose weight introduced
in Equation 1 is set to 𝑤𝑝 = 1. Then, we generate the set of
constraints by selecting |N | distinct pairs of randomly selected
user data vertices and purpose vertices, ensuring that for any
(𝑠, 𝑡) ∈ N , there exists at least one path from 𝑠 to 𝑡 .

This way, we prepare three datasets with different configura-
tions of the above parameters. Firstly, to observe how the number
of constraints affects the runtime of algorithms and graph utility,
we generate dataset 1. We create this dataset in different variants:
a variant with 100 vertices (1a), a variant with 1000 vertices (1b)
and a variant with aminimum density of 20% (1c). To observe how
the shape of the graph affects the runtime and utility, we apply a
non-uniform vertex distribution (𝑋𝑘 = (50%, 25%, 10%, 10%, 5%)
abbreviated as ‘NU’) in variants 1a and 1b, and a uniform vertex
distribution (𝑋𝑘 = (20%, 20%, 20%, 20%, 20%) abbreviated as ‘U’)
in variant 1c. Secondly, to observe the impact of the path length
on the runtime and utility, we generate dataset 2 with graphs
that have a constant number of paths. To do so, we first generate
graphs with |𝑉 | = 150, 𝑘 = 3, and vertices distributed uniformly
such that |𝑉𝑈 | = 50, |𝑉𝐴 | = 50 and |𝑉 𝑃 | = 50. Then, we keep
generating new graphs by adding 50 additional vertices to the
previous graph and connecting each vertex to the graph with
a single edge. This way we extend the length of each path in

4For details, see the Python Standard Library documentation: https://docs.python.
org/3/library/random.html.

744

the previous graph while keeping the number of paths constant.
We also adjust the constraints such that they relate to the same
paths as for the previously generated graph. Finally, to observe
how the size of the graph affects the runtime and utility, we gen-
erate graphs of 100–10,000 vertices with a constant number of
constraints. The exact parameter configuations are specified in
Table 2.

We perform our experiments on the University of Southamp-
ton High Performance Computing service Iridis 45 which offers
750 compute nodes in total with dual 2.6 GHz Intel Sandybridge
processors. Each compute node has 16 CPUs per node with 64
GB of memory and the maximum runtime of a job is 60 hours.
In order to ensure that the average result has low variance, we
repeat the experiments until we have at least 30 runs with a
sufficiently low standard error (SE).

7.2 Results

We apply the algorithms from Section 5 to datasets 1, 2 and 3.
In this section, we report on the runtime of the algorithms and
changes in the graph’s utility with respect to the number of
privacy constraints, number of data processing stages and the
size of the workflow.

7.2.1 Number of constraints. Figure 5 shows the runtime of
the algorithms as the number of privacy constraints grows. We
measure their performance on 100-vertex graphs (dataset 1a) and
compare it to the performance on 10 times larger, 1000-vertex
graphs (dataset 1b). Since in datasets 1a and 1b the number of
paths between the constraints is equal or close to the number
of constraints given, we also consider slightly denser 100-vertex
graphs, where the number of edges between each level of data
processing is at least 20% of all possible edges (dataset 1c). In
general, when we compare the average runtime on datasets 1a
(Figure 5a), 1b (Figure 5b) and 1c (Figure 5c), we observe very
similar trends. As the graph size increases 10 times, the average
runtimes of BruteForce, RemoveMinMC and RemoveMinCuts
also increases approximately 10 times. This suggests that, as
expected, the execution time of these three algorithms depends
on graph size and the number of constraints given as input.

In particular, we observe that the runtime of BruteForce in-
creases rapidly with the increasing number of constraints, reach-
ing an average time of 14838508.46 ms (i.e. over 4 h) for just
10 constraints on dataset 1a and 8563968 ms (i.e. over 2 h; SE:
1058979.73 ms) on dataset 1b. For dataset 1c, in most cases, Brute-
Force is unable to return a result in 60 hours even for just a single
pair of constraints. Thus, although BruteForce guarantees find-
ing an optimal solution, its average runtime on such a small and
sparse graphs makes this algorithm impractical. At the same
time, the solver-based RemoveMinMC can reach an approximate
solution for even 50 constraints on average in 6.51 seconds (SE:
405.02 ms) on dataset 1a, 74.1 seconds (SE: 439.96 ms) on dataset
1b and 11 seconds (SE: 290.47 ms) on dataset 1c. RemoveMinCuts
can on average find an approximate solution for 50 constraints
in 220.2 milliseconds (SE: 1.1 ms) on dataset 1a, 2.55 seconds (SE:
17.27 ms) on dataset 1b and 450.57 ms (SE: 3.17 ms) on dataset 1c.

Moreover, we observe the change in the graph’s utility as the
number of privacy constraints grows. Specifically, in Figure 6a,
we consider sparse graphs from dataset 1a. We can see that for
RemoveMinMC, RemoveMinCuts and RemoveFirstEdge the
utility of the graph after applying the algorithm decreases almost

5The Iridis Compute Cluster, https://cmg.soton.ac.uk/iridis.

Table 3: Comparison of the graph’s utility after applying

RemoveMinMC and BruteForce.

Number of RemoveMinMC BruteForce
constraints % of original SE % of original SE

1 97.79 0.32 97.79 0.32
2 95.08 0.35 95.08 0.35
3 92.71 0.58 92.71 0.58
4 90.62 0.57 90.63 0.57
5 88.59 0.75 88.65 0.75
6 86.59 0.72 86.66 0.72
7 84.71 0.72 84.77 0.71
8 83.22 0.70 83.28 0.70
9 81.24 0.69 81.33 0.69
10 79.30 0.69 79.39 0.68

linearly as the number of constraints grows. Out of these three,
RemoveMinMC tends to provide the most accurate solutions,
reducing the utility down to 17.63% on average (SE: 1.15%) for
50 constraints. Although the exponential runtime of the Brute-
Force algorithm means we cannot run the experiments for more
than 10 constraints, we still compare the results to RemoveM-
inMC for this limited setting. Results are presented in Table 3
and show that the utility using RemoveMinMC is nearly optimal
in this case. In Section 6, we have shown that the algorithm is
only guaranteed to be optimal for specific settings where the
optimal solutions consists of only a single edge being removed
from each path. Nevertheless, this empirical outcome suggests
that, for graphs with a relatively small number of constraints
RemoveMinMC is likely to provide very accurate solutions.

In Figure 6b, we consider the utility changes in sparse graphs
with 1000 vertices distributed non-uniformly (dataset 1b). As in
Figure 6a, RemoveMinMC provides solutions with the highest
utility, i.e. on average 89.24% (SE: 0.19%) given 50 constraints.
As expected, the utility here is higher than in Figure 5a. After
applying the algorithms with same number of constraints, pro-
portionally less paths are broken in the graphs with 1000 vertices
thanwith 100 vertices. At the same time, this results suggests that,
for very large graphs, faster algorithms such as RemoveMinCuts
or even RemoveFirstEdge may be able to provide sufficiently
accurate solutions.

In Figure 6c we consider denser graphs with 100 vertices. We
observe that the differences in utility between algorithms is more
evident when the graphs are denser, resulting in significantly
poorer performance especially for RemoveMinCuts, Remove-
FirstEdge and RemoveRandomEdge. This is because denser
graphs have more paths that need to be broken. Nonetheless
RemoveMinMC provides the best solution with average utility
being 33.29% (SE: 1.09%) of original utility of the graph.

7.2.2 Number of paths. Next, we observe how the execution
time depends on the number of paths between pairs of vertices
that connect the constraints. Figure 7 presents a scatter plot
of the runtime of the algorithms and distribution of utility in
dense graphs (dataset 1c). In particular, we can see that, in case
of RemoveMinCuts and RemoveMinMC, the runtimes increase
almost linearly with respect to the number of paths. However, the
execution times for these two algorithms differ significantly. For
example, for a graph where 822 paths are required to be broken,
RemoveMinMC takes 12116 ms to return a solution, whereas Re-
moveMinCuts can provide one in only 472 ms. Similarly, we can

745

20 40
10−1

103

107

Number of constraints

Ti
m
e
(m

s)

RemoveRandomEdge RemoveFirstEdge RemoveMinCuts RemoveMinMC BruteForce

(a) Graphs with 100 vertices (dataset 1a).

20 40
10−1

103

107

Number of constraints
Ti
m
e
(m

s)
(b) Graphs with 1000 vertices (dataset 1b).

20 40

103

107

Number of constraints

Ti
m
e
(m

s)

(c) Dense graphs (dataset 1c).

Figure 5: The number of constraints vs. the runtime of the algorithms in graphs from dataset 1.

20 40
0

50

100

Number of constraints

U
til
ity

(%
)

RemoveRandomEdge RemoveFirstEdge RemoveMinCuts RemoveMinMC

(a) Graphs with 100 vertices (dataset 1a).

20 40

70

80

90

100

Number of constraints

U
til
ity

(%
)

(b) Graphs with 1000 vertices (dataset 1b).

20 40
0

50

100

Number of constraints

U
til
ity

(%
)

(c) Dense graphs (dataset 1c).

Figure 6: The number of constraints vs. graph utility after applying the algorithms on graphs from dataset 1.

see that the utility decreases as the number of paths connecting
constraints increases. Yet again, the utility after executing Re-
moveMinMC tends to decrease the slowest, reaching on average
the utility of 32.27% of the original utility for the graph with 822
paths to be broken. For the same graph, the next best solution is
RemoveMinCuts with an accuracy of 24.58%. For comparison,
RemoveFirstEdge achieves on average a utility of 15.73% .

7.2.3 Number of data processing stages. Next, we apply the
algorithms to graphs with a constant number of paths. Since, in
the linear model, only edges connected to the purpose vertices
affect the utility of the graph, increasing the lengths of the paths
on its own does not affect the utility. Thus, in this experiment,
we focus on the execution time of the algorithms as the length
of the paths grows. In Figure 8, we consider sparse graphs with
vertices distributed uniformly with the same number of user data
vertices as purpose vertices (dataset 2). We can see that as the
path length grows, the runtime in case of BruteForce increases
faster than the others.

7.2.4 Workflow size. Lastly, we analyse how the number of
vertices in the graph impacts the runtime and the utility of the
graph after applying the algorithms. To do this, we run the algo-
rithms on sparse graphs of sizes between 100 and 10000 vertices
and corresponding sets of 10 constraints (dataset 3). As the num-
ber of paths between the constraints and their length are equal

for these graphs, in Figure 9 we can see that the size of the graph
has only a slight impact on the execution time for BruteForce.
In addition, RemoveMinCuts is faster on average compared to
BruteForce and RemoveMinMC. Considering the utility, Fig-
ure 9 shows that the graph size does not have a significant impact
on the utility when the number of paths between the constraints
and their length remain equal for the graphs.

8 OPEN PROBLEMS

We designed a theoretical mechanism where the data workflow
is structured as a graph and privacy constraints collected from
the user point to pairs of vertices in this workflow graph. When
all of these pairs are disconnected, we have a Consented Data
Workflow. We are currently in the process of integrating our
algorithms with the more fine-grained system developed in [18].
Interestingly, there is an extensive collection of open problems
and challenges around consented data workflows.

First, our theoretical results show that the problem in general
is NP-hard. This result is provides us with the lower bound on its
complexity. The upper bound, however, depends largely on the
complexity of the selected valuation and utility functions. Future
work should investigate the upper bound of the problem with
different functions that depend on the application.

746

200 400 600 800
0

0.5

1

1.5

·104

Number of paths

Ti
m
e
(m

s)
RemoveRandomEdge RemoveFirstEdge
RemoveMinCuts RemoveMinMCs

200 400 600 800

0

50

100

Number of paths

U
ti
li
ty

(%
)

Figure 7: No. of paths vs. runtime and utility (dataset 1c).

10 20 30 40 50
10−1

103

107

Path length

Ti
m
e
(m

s)

RemoveRandomEdge
RemoveFirstEdge
RemoveMinCuts
RemoveMinMC

Figure 8: Path length vs. time in sparse graphs (dataset 2).

Second, we focused on a specific instance of the problem,
where the importance of an outputted data type is linearly ad-
ditive with respect to the input. In addition, we assumed that
the utility functions of specific data processing purposes are also
linearly additive with respect to the importance of the data pro-
cessed for the purpose. For this instance of our problem, our
algorithm RemoveMinMC can find very accurate approximate
solutions in seconds even for large workflow graphs. Nonethe-
less, the complexity of the problem in this additive case remains
unknown. Further investigation is needed not just to study even
more efficient and optimal algorithms, but also to establish the
bounds on its complexity.

Third, some of our heuristic algorithms rely on the simplifying
assumption that the value of different information sources is
additive. While this can be a reasonable approximation in some
settings, in practice the value may be subadditive (e.g. in the case

0.2 0.4 0.6 0.8 1

·104

10−1

103

107

Graph size

Ti
m
e
(m

s)

0.2 0.4 0.6 0.8 1

·104

40

60

80

100

Graph size
U
til
ity

(%
)

RemoveRandomEdge
RemoveFirstEdge
RemoveMinCuts
RemoveMinMC
BruteForce

Figure 9: Graph size vs. runtime and utility (dataset 3).

of redundant data) or superadditive (when data complements
each other). At the moment, finding realistic data to create large
real-world models and design algorithms for them is challenging.
However, as data processing systems keep expanding, future
work should focus on more realistic workflow models.

Note that in certain machine learning as well as statistical algo-
rithms there is already work that addresses masking or distorting
the input with noise. This gives rise to an exciting generalisation
of our framework, where utility is affected not by removing the
input edge but by distorting the input, and in the future we plan
to explore this.

In addition, there are several open problems regarding scalabil-
ity of our solution. Currently, the solution needs to be recomputed
every time a new user enters the system or when an existing user
updates their constraints. What is more, every time a change is
made, some of algorithms that process the data would need to
be re-run as well, which could be costly. At the same time, there
could be many users of the same type, i.e. with similar privacy
constraints, and a limited number of different user types which
can be known in advance. To take advantage of this, users of
the same type could e.g. be treated as a single user to enable the
system to cope with thousands and even millions of users. This
way, if new users enter the system, a new solution can be found
quickly. Generally, as there are more and more users with pri-
vacy constraints, new methods are needed that take into account
scalability by re-using some of the computation performed for
the previous solution, as well as the costs of making changes.

Finally, there are plenty of opportunities to consider richer
types of privacy constraints and user preferences. For example,
users may have constraints on combinations of different data
types for a specific purpose (e.g. a user may say ‘I’m okay with

you using my data for advertising, but don’t combine my location

with my purchase history’), processing the data types by specific
service providers (e.g. ‘I’m okay with you sharing my purchase

747

history with anyone but Nile’) or time restrictions on data pro-
cessing (‘I’m ok with you sharing my purchase history with Nile,

but I don’t want them to keep it for more than 30 days’). For such
constraints, future work should formulate new problems around
consented data workflows.

9 RELATEDWORK

With the scale of data collection and processing growing vastly in
the recent years, there has been an emergence of initiatives and
tools that aim to aid users in controlling the flow of their personal
data. Early efforts include the Platform for Privacy Preferences
(P3P) which aimed to enable machine-readable privacy policies
[8]. Such privacy policies could be automatically retrieved byWeb
browsers and other tools that can display symbols, prompt users,
or take other appropriate actions. Users were able to communi-
cate their privacy constraints to these so-called user agents as a
list of rules expressed in a P3P Preference Exchange Language
(APPEL) [8]. The agents were then able to compare each policy
against the user’s constraints and assist the user in deciding when
to exchange data with websites [8].

However, the P3P lacked a mechanism that would allow for
enforcement of the privacy policy within the enterprise and for
management of users’ individual privacy preferences [3, 6, 17].
Thus, a new approach was proposed [6] where service providers
would publish privacy policies, collect and manage user pref-
erences and consent, and enforce the policies throughout their
systems. Based on this framework, the Platform for Enterprise
Privacy Practices (E-P3P) was developed [5, 16]. Our work builds
on this idea and proposes how to satisfy the users’ individual
preferences optimally.

Nonetheless, more general approaches that go beyond the P3P
were required to address the need for policy enforcement. To
that end, Hippocratic databases were proposed [1–4, 19] as ‘data-
base systems that take responsibility for the privacy of data they
manage’. In Hippocratic databases, personal data was required
to be associated with the purposes it was collected for, as well as
other metadata such as its retention period and information about
who it can be given out to. Given the user’s privacy constraints,
the so-called Privacy Constraint Validator would check whether
the service provider’s privacy policy is acceptable to the user.
Recently an approach to enable even more fine-grained control
of such policies within relational databases was presented [18].
Here, we extend this approach by specifying we can optimise
constraint satisfaction across entire data workflows.

Complementing our work, related work has proposed methods
for privacy policy-compliant data processing. For example, once
it is known how the user’s privacy constraints can be optimally
satisfied (e.g., using our proposed approach), it is possible to can
ensure that the datasets used by the data-processing algorithms
align with these constraints [9, 10]. Moreover, data processing
techniques can be selected based on the consented types of the
input data [24]. Furthermore, to make sure that the policies are
enforced, a system for checking data usage policies automatically
at query runtime has been proposed [23].

10 ACKNOWLEDGEMENTS

E. Gerding was partially funded by the EPSRC-funded platform
grant “AutoTrust: Designing a Human-Centred Trusted, Secure,
Intelligent and Usable Internet of Vehicles” (EP/R029563/1). G.
Konstantinidis was partially funded by the UKRI Horizon Europe

guarantee funding scheme for the Horizon Europe projects RAISE
(101058479) and UPCAST (101093216).

REFERENCES

[1] Rakesh Agrawal, Roberto Bayardo, Christos Faloutsos, Jerry Kiernan, Ralf
Rantzau, and Ramakrishnan Srikant. 2004. Auditing compliance with a hippo-
cratic database. In Proceedings of the Thirtieth international conference on Very

large data bases-Volume 30. 516–527.
[2] Rakesh Agrawal, Paul Bird, Tyrone Grandison, Jerry Kiernan, Scott Logan,

andWalid Rjaibi. 2005. Extending relational database systems to automatically
enforce privacy policies. In 21st International Conference on Data Engineering

(ICDE’05). IEEE, 1013–1022.
[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2002.

Hippocratic databases. In Proceedings of the 28th VLDB Conference. VLDB
Endownment, United States, 143–154.

[4] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2003.
Implementing P3P using database technology. In Proceedings 19th International
Conference on Data Engineering (Cat. No. 03CH37405). IEEE, 595–606.

[5] Paul Ashley, Satoshi Hada, Günter Karjoth, and Matthias Schunter. 2002. E-
P3P privacy policies and privacy authorization. In Proceedings of the 2002 ACM

Workshop on Privacy in the Electronic Society. ACM, 103–109.
[6] Paul Ashley, Calvin Powers, and Matthias Schunter. 2002. From privacy

promises to privacy management: a new approach for enforcing privacy
throughout an enterprise. In Proceedings of the 2002 Workshop on New Security

Paradigms. ACM, 43–50.
[7] Cédric Bentz. 2011. On the hardness of finding near-optimal multicuts in

directed acyclic graphs. Theoretical computer science 412, 39 (2011), 5325–5332.
[8] Lorrie Faith Cranor. 2002. Web privacy with P3P. O’Reilly Media, Inc.
[9] Christophe Debruyne, Harshvardhan J Pandit, Dave Lewis, and Declan

O’Sullivan. 2019. Towards generating policy-compliant datasets. In 2019 IEEE

13th International Conference on Semantic Computing (ICSC). IEEE, 199–203.
[10] Christophe Debruyne, Harshvardhan J. Pandit, Dave Lewis, and Declan

O’Sullivan. 2020. “Just-in-time” generation of datasets by considering struc-
tured representations of given consent for GDPR compliance. Knowledge and
Information Systems 62, 9 (2020), 3615–3640.

[11] Yefim Dinitz. 2006. Dinitz’algorithm: The original version and Even’s version.
In Theoretical Computer Science: Essays in Memory of Shimon Even, Oded
Goldreich, Arnold L. Rosenberg, and Alan L. Selman (Eds.). Springer, 218–240.

[12] Jack Edmonds and Richard M. Karp. 1972. Theoretical improvements in
algorithmic efficiency for network flow problems. J. ACM 19, 2 (1972), 248–
264.

[13] European Parliament and the Council. 2016. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the
free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). Official Journal of the European Union (4 May 2016),
1–88.

[14] Amirata Ghorbani and James Zou. 2019. Data Shapley: Equitable valuation of
data for machine learning. In International Conference on Machine Learning.
PMLR, Long Beach, California, USA, 2242–2251.

[15] Judd Randolph Heckman, Erin Laurel Boehmer, Elizabeth Hope Peters, Milad
Davaloo, and Nikhil Gopinath Kurup. 2015. A pricing model for data markets.
iConference 2015 Proceedings (2015).

[16] Günter Karjoth, Matthias Schunter, and Michael Waidner. 2002. Platform for
enterprise privacy practices: Privacy-enabled management of customer data.
In 2nd Workshop on Privacy-Enhancing Technologies. Lecture Notes in Computer

Science. Springer, 69–84.
[17] James H Kaufman, Stefan Edlund, Daniel A Ford, and Calvin Powers. 2002.

The social contract core. In Proceedings of the 11th International World Wide

Web Conference (WWW). ACM, Honolulu, Hawaii, 210–220.
[18] George Konstantinidis, Jet Holt, and Adriane Chapman. 2021. Enabling Per-

sonal Consent in Databases. Proc. VLDB Endow. 15, 2 (oct 2021), 375–387.
https://doi.org/10.14778/3489496.3489516

[19] Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan,
Yirong Xu, and David DeWitt. 2004. Limiting disclosure in Hippocratic
databases. In Proceedings of the 30th International Conference on Very Large

Databases. VLDB Endowment, 108–119.
[20] Chao Li, Daniel Yang Li, Gerome Miklau, and Dan Suciu. 2014. A theory of

pricing private data. ACM Transactions on Database Systems 39, 4 (2014), 1–28.
[21] R. Timothy Marler and Jasbir S. Arora. 2004. Survey of multi-objective opti-

mization methods for engineering. Structural and Multidisciplinary Optimiza-

tion 26, 6 (2004), 369–395.
[22] Steve Pettifer, Jon Ison, Matï¿ 1/2š Kalaš, Dave Thorne, Philip McDermott,

Inge Jonassen, Ali Liaquat, Josï¿ 1/2 M Fernï¿ 1/2ndez, Jose M Rodriguez,
INB Partners, et al. 2010. The EMBRACE web service collection. Nucleic acids
research 38, suppl_2 (2010), W683–W688.

[23] Prasang Upadhyaya, Magdalena Balazinska, and Dan Suciu. 2015. Automatic
enforcement of data use policies with DataLawyer. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data. ACM, 213–
225.

[24] Yang Wang and Alfred Kobsa. 2007. Respecting users’ individual privacy con-
straints in web personalization. In International Conference on User Modeling.
Springer, 157–166.

748

