
A Formal Design Framework for Practical Property Graph
Schema Languages

Nimo Beeren
Eindhoven University of Technology

Eindhoven, The Netherlands
nimobeeren@gmail.com

George Fletcher
Eindhoven University of Technology

Eindhoven, The Netherlands
g.h.l.fletcher@tue.nl

ABSTRACT
Graph databases are increasingly receiving attention from indus-
try and academia, due in part to their flexibility; a schema is often
not required. However, schemas can significantly benefit query
optimization, data integrity, and documentation. There currently
does not exist a formal framework which captures the design
space of state-of-the-art schema solutions. We present a formal
design framework for property graph schema languages based
on first-order logic rules, which balances expressivity and practi-
cality. We show how this framework can be adapted to integrate
a core set of constraints common in conceptual data modeling
methods. To demonstrate practical feasibility, this model is imple-
mented using graph queries for modern graph database systems,
which we evaluate through a controlled experiment. We find that
validation time scales linearly with the size of the data, while
only using unoptimized straightforward implementations.

1 INTRODUCTION
Graph databases have been steadily growing in popularity in re-
cent years, receiving attention from both industry and academia.
Graphs offer a simple yet powerful model consisting of nodes
and edges which can be structured freely. The property graph
model, being a predominant data model among graph databases
today, associates nodes and edges with labels and key–value pairs
known as properties. This enables a natural expression of data
originating from a wide variety of domains.

However, the freedom that graphs permit comes at a cost.
Without a schema, we miss out on opportunities for query op-
timization, we risk degradation of data integrity, and we lack a
formally verifiable source of documentation. Current work on
property graph schema solutions aims to bring schemas back to
the world of graphs, blending the flexibility of the graph model
with the structure of relational databases. However, there cur-
rently is no systematic formal framework which captures the
state of the art. Such a framework is necessary to progress to-
wards standardization of property graph schema languages, to
formally understand the relative capabilities of current solutions,
and to identify missing capabilities needed for practical impact.

To remedy this lack of systematic understanding of property
graph schema design, in this paper we make the following con-
crete contributions. (1) We propose a formal framework for
property graph schema languages which is general enough to
study the state of the art. (2) Next, we provide an instantiation of
this framework in the form of a concrete schema language which
integrates constraints from common conceptual data modeling
methods. (3) Moreover, we provide a prototypical implementa-
tion of schema validation in the form of graph queries, and (4)

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

we investigate the practical feasibility of our approach using con-
temporary graph databases by means of a controlled experiment.

2 RELATEDWORK
Graph Schema Formalisms. Several proposals address schemas
for graph-based data models other than property graphs. Early
work enables the specification of allowed edges and paths for
edge-labeled graphs using simulation [1, 9]. Others have pro-
posed methods based on regular expressions, supporting con-
straints over graph patterns [12]. However, these approaches are
not directly applicable to property graphs.

A basic notion of property graph schema using first-order logic
rules was first defined in [2]. In this work, no distinction is made
between mandatory and optional properties. Another approach
uses restrictive homomorphism semantics for schema validation
[8]. This method does support mandatory properties, but neither
of these solutions support edge cardinality constraints.

Property Graph Schema Implementations. Current property
graph database systems vary in their support and philosophy
regarding schema. Some require the user to specify a schema,
while others infer a schema from data. In this section, we discuss
the differences in terms of data models and schema capabilities
of three of the most popular1 property graph databases: Neo4j,
JanusGraph, and TigerGraph.

Neo4j2 is the most popular graph database engine as of today.
Neo4j’s approach to schema is primarily implicit: after inserting
data, a schema that describes the data can be retrieved using
built-in functions. In addition, some constraints can be explicitly
specified, including mandatory properties.

JanusGraph3 has the most comprehensive set of schema fea-
tures among popular systems. In addition to automatically gener-
ating a schema, explicit schema definition is also supported. It can
be specified which properties may exist depending on the label of
a node or edge. Furthermore, property values are restricted to a
data type and may be single-valued or multi-valued. In addition,
the types of the source and target nodes that may be connected by
an edge with a particular label can be constrained. Edge cardinal-
ity can be constrained to one-to-one, one-to-many, many-to-one
or many-to-many. These features are centered around specifying
what is allowed in the graph, but mandatory properties and edges
are not supported. JanusGraph can impose constraints on the
maximum edge cardinality, but not the minimum.

TigerGraph [14] is schema-first; the entire schema must be
specified before a database is instantiated. This enables power-
ful optimizations, building on decades of research on relational
databases. TigerGraph’s schema is strict, in the sense that every
node label, edge label, and property must be explicitly defined.

1https://db-engines.com/en/ranking/graph+dbms (accessed September 2022)
2https://neo4j.com/
3https://janusgraph.org/

Short Paper

Series ISSN: 2367-2005 478 10.48786/edbt.2023.40

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.40

Table 1: Comparison of schema features supported by prop-
erty graph schema formalisms and implementations: An-
gles (AG) [2], Bonifati et al. (BN) [8], Neo4j (NJ)2, Janus-
Graph (JG)3, TigerGraph (TG) [14], and our solution.

AG BN NJ JG TG Ours

Mandatory properties × ✓ ✓ × ✓ ✓
Allowed properties × ✓ × ✓ ✓ ✓
Endpoint constraints ✓ ✓ × ✓ ✓ ✓
Data type constraints ✓ ✓ × ✓ ✓ ✓
Optional properties × ✓ × ✓ × ✓
Maximum cardinality × × × ✓ × ✓
Minimum cardinality × × × × × ✓

Moreover, all allowed properties are also mandatory. All proper-
ties have a fixed data type, which may be singular or multi-valued.
Schema edges must specify the source and target node type(s).
Summary. Table 1 compares the state-of-the-art with our solu-
tion. Features: Mandatory property constraints express that some
property must be defined on a node or edge. Allowed property
constraints express that no properties other than those specified
in the schema may be defined. Endpoint constraints express that
edges must not connect nodes which do not conform to some
particular types. Data type constraints express that the value of
a property must be of a particular data type. Optional property
constraints express that the value of a property must be either
undefined or of a particular type. Maximum and minimum car-
dinality constraints express that a node must have a particular
number of incoming or outgoing edges of a particular type.

3 PRELIMINARIES
We start by introducing our data model, which is based on the
definition of property graph established by the Working Group
for Database Languages (WG3) as part of ISO/IEC JTC1/SC32
[13]. Our notion of property graph represents data as a directed
attributed multigraph. Nodes and edges carry data in the form
of a set of labels and a set of key–value pairs, called properties.
We use the umbrella term objects to refer to nodes and edges.
For simplicity, we do not consider undirected edges, although
they could be easily simulated. We assume the existence of the
following countably infinite sets: the set of labels L, the set of
property names N and the set of property valuesV .

Definition 3.1 (Basic record). A record is a finite partial function
𝑟 : N ↦→ V that maps some property names to property values.
We denote such records as ⟨𝑛1 : 𝑣1, . . . , 𝑛𝑘 : 𝑣𝑘 ⟩. The set of all
records is denoted as R.

Definition 3.2 (Property graph). A property graph is a tuple
𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) where

• 𝑁 is a finite set of nodes;
• 𝐸 is a finite set of edges such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁) is a total function mapping edges to
ordered pairs of nodes;

• 𝜆 : (𝑁 ∪ 𝐸) → 2L is a total function mapping nodes and
edges to a (possibly empty) set of labels;

• 𝜋 : (𝑁 ∪ 𝐸) → R is a total function mapping nodes and
edges to a record.

Given a node 𝑢, the set of outgoing edges is {𝑒 ∈ 𝐸 | ∃𝑣 ∈
𝑁 : 𝜌 (𝑒) = (𝑢, 𝑣)}, and the set of incoming edges is {𝑒 ∈ 𝐸 |

Movie

rating: 8.9
title: The Good, the Bad
and the Ugly
url: movie/429
year: 1966

Person, Director

born: 1929-01-03
name: Sergio Leone
url: person/4385

User

name: Deborah

Genre

name: Western

DIRECTED

ACTED
{role: Blondie}

IN_GENRE, CLASSIC

RATED
{timestamp: 1979-07-31

rating: 5.0}

Person, Actor, Director

born: 1930-05-31
name: Clint Eastwood
url: person/190

n1

n2

n3

n4

n5

e1

e2

e4

e5

RATED
{timestamp: 1970-01-14

rating: 2.0}

e3

Figure 1: A property graph consisting of 5 nodes and 5
edges, representing a small movie database. Nodes and
edges are given identifiers (in blue and green circles) to
refer to them in text.

∃𝑣 ∈ 𝑁 : 𝜌 (𝑒) = (𝑣,𝑢)}. The functions src and trg map ordered
pairs to their first and second element, i.e. src((𝑢, 𝑣)) = 𝑢 and
trg((𝑢, 𝑣)) = 𝑣 . To refer to the source and target endpoints of an
edge 𝑒 , we may write src(𝜌 (𝑒)) and trg(𝜌 (𝑒)) respectively.

An example property graph is given in Figure 1. Nodes are
drawn as boxes, and edges are drawn as arrows. Node labels are
written in the top compartment, and node properties are written
in the bottom compartment. Edge labels are written inside a pill
and edge properties are surrounded by ‘{’ and ‘}’, which may be
omitted when an edge has no properties. This example can be
mapped to our formal property graph model as follows:

𝑁 = {𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5} 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}
𝜌 (𝑒1) = (𝑛1, 𝑛3) 𝜌 (𝑒2) = (𝑛2, 𝑛3) 𝜌 (𝑒3) = (𝑛4, 𝑛3)
𝜌 (𝑒4) = (𝑛4, 𝑛3) 𝜌 (𝑒5) = (𝑛3, 𝑛5)
𝜆 (𝑛1) = {Person, Actor, Director}
𝜆 (𝑛2) = {Person, Director} 𝜆 (𝑛3) = {Movie} 𝜆 (𝑛4) = {User}
𝜆 (𝑛5) = {Genre} 𝜆 (𝑒1) = {ACTED} 𝜆 (𝑒2) = {DIRECTED}
𝜆 (𝑒3) = {RATED} 𝜆 (𝑒4) = {RATED} 𝜆 (𝑒5) = {IN_GENRE, CLASSIC}
𝜋 (𝑛1) = ⟨born : 1930-05-31, name : Clint Eastwood,

url : person/190⟩
𝜋 (𝑛2) = ⟨born : 1929-01-03, name : Sergio Leone,

url : person/4385⟩
𝜋 (𝑛3) = ⟨title : The Good, the Bad and the Ugly,

rating : 8.9, url : movie/429, year : 1966⟩
𝜋 (𝑛4) = ⟨name : Deborah⟩ 𝜋 (𝑛5) = ⟨name : Western⟩
𝜋 (𝑒1) = ⟨role : Blondie⟩ 𝜋 (𝑒2) = ⟨⟩
𝜋 (𝑒3) = ⟨timestamp : 1970-01-14, rating : 2.0⟩
𝜋 (𝑒4) = ⟨timestamp : 1979-07-31, rating : 5.0⟩ 𝜋 (𝑒5) = ⟨⟩

4 BASIC PROPERTY GRAPH SCHEMA
We assume the existence of a set of property types T . We next
introduce several supporting concepts.

Definition 4.1 (Basic property conformance). For each property
type 𝑡 ∈ T there is a set [[𝑡]] ⊆ V that consists of all property
values that conform to the type 𝑡 .

Definition 4.2 (Basic record type). A record type is a finite partial
function 𝑡 r : N ↦→ T that maps some property names to a

479

property type. We denote record types as ⟨𝑎1 : 𝑡1, . . . , 𝑎𝑛 : 𝑡𝑛⟩.
The set of all record types is denoted as T r.

Definition 4.3 (Basic record conformance). We say that a record
𝑟 conforms to a record type 𝑡 r, denoted 𝑟 ∈ [[𝑡 r]], if for each
property name 𝑘 ∈ N it holds that (1) 𝑟 (𝑘) is defined iff 𝑡 r (𝑘) is
defined and (2) 𝑟 (𝑘) ∈ [[𝑡 r (𝑘)]] if 𝑟 (𝑘) and 𝑡 r (𝑘) are defined.

Next, we define a basic notion of schema.

Definition 4.4 (Basic property graph schema). A property graph
schema is a tuple 𝑆 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜏) where

• 𝑁 is a finite set of schema nodes;
• 𝐸 is a finite set of schema edges such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁) is a total function mapping schema
edges to ordered pairs of schema nodes;

• 𝜆 : (𝑁 ∪ 𝐸) → 2L is a total function mapping nodes and
edges to a (possibly empty) set of labels;

• 𝜏 : (𝑁 ∪ 𝐸) → T r is a total function mapping nodes and
edges to record types.

The similarity between property graphs and schemas allows
us to think about them in similar ways. The key difference is that
schemas associate properties with types rather than concrete
values. Note that a property graph schema can be simulated by a
property graph if we allow properties to take property types as
values, i.e. T ⊆ V .

Finally, we define conformance of a property graph to a schema.

Definition 4.5 (Conformance relation). Given a property graph
𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) and a property graph schema 𝑆 = (𝑁 ′, 𝐸′, 𝜌′, 𝜆′, 𝜏)
we define the binary conformance relation ⊑ = {(𝑜, 𝑜′) ∈ (𝑁 ∪
𝐸) × (𝑁 ′ ∪ 𝐸′) | 𝜆(𝑜) = 𝜆′ (𝑜′) ∧ 𝜋 (𝑜) ∈ [[𝜏 (𝑜′)]]}. We say that
an object 𝑜 conforms to a schema object 𝑜′ if and only if 𝑜 ⊑ 𝑜′.

Definition 4.6 (Basic schema conformance). Given a property
graph 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) and a property graph schema 𝑆 =

(𝑁 ′, 𝐸′, 𝜌′, 𝜏), we say that𝐺 conforms to 𝑆 if and only if all of the
following rules hold.

(1) Every node 𝑛 conforms to some schema node 𝑛′:

∀𝑛 ∈ 𝑁 ∃𝑛′ ∈ 𝑁 ′ : 𝑛 ⊑ 𝑛′

(2) Every edge 𝑒 conforms to some schema edge 𝑒′, and the
source and target nodes of 𝑒 conform to the respective
endpoints of 𝑒′:

∀𝑒 ∈ 𝐸 ∃𝑒′ ∈ 𝐸′ : 𝑒 ⊑ 𝑒′ ∧ src(𝜌 (𝑒)) ⊑ src(𝜌′ (𝑒′))
∧ trg(𝜌 (𝑒)) ⊑ trg(𝜌′ (𝑒′))

Intuitively, rule 1 specifies the types of nodes that are allowed
to exist in the graph. If there exists a node in the graph that is
not specified in the schema, the graph does not conform. Rule
2 similarly specifies the types of edges that are allowed. Under
these definitions, every property is effectively mandatory, and
no properties may exist other than those specified in the schema.
Hence mandatory property constraints, allowed property con-
straints, and data type constraints are maintained. Note that rule
2 looks not only at the properties of the edge itself, but also at the
source and target nodes. This prevents a node from having an
incident edge that is not explicitly allowed, even if that edge itself
does conform to some schema edge. Hence, endpoint constraints
are also maintained. An example of a property graph schema
is given in Figure 2. The notation is similar to the one used for
property graphs, with some additions for cardinality constraints
and optional properties (explained in Section 5).

Movie

rating: Float
title: String
url: String
year: Integer

Person, Director

born: Date
name: String
url: String

User

name: String

Genre

name: String

DIRECTED

ACTED
{role: String?}

IN_GENRE, CLASSIC

RATED
{timestamp: Date

rating: Float}

Person, Actor

born: Date
name: String
url: String

n1

n2

n4

n5

n6

e1

e2

e6

Person, Actor, Director

born: Date
name: String
url: String

ACTED
{role: String?}

DIRECTED

n3

e4e3

e5

IN_GENRE
e7

0..*

1..*

1..*

1..* 1..*

0..* 0..*

0..*

0..*

0..*

0..*

0..*

0..*
0..*

Figure 2: A property graph schema representing for amovie
database. Nodes and edges are given identifiers (in blue and
green circles) to refer to them in text. The graph of Figure 1
conforms to this schema.

5 ADAPTING THE SCHEMA LANGUAGE
Schema languages must balance expressivity with practicality.
To determine which features to include, we follow common con-
ceptual modeling methods such as the Entity–Relationship (ER)
model [11]. This model bears resemblance to the property graph
model, as entities can be mapped to nodes, relationships to edges,
and attribute–value pairs to properties. The ER model can be
used to express constraints such as mandatory properties, end-
point constraints, and data type constraints. After the original
specification, the ER model has been extended in various ways.
For example, [6] proposed a notation which introduced cardi-
nality constraints and optional properties. To achieve feature
parity with this extended ER model, we adapt our basic schema
model to support two additional kinds of constraints: cardinality
constraints and optional properties.

5.1 Cardinality Constraints
To improve readability of our conformance rules, we first intro-
duce a generalization of the existential quantifier which enables
counting the number of distinct variables that satisfy a predicate.

Definition 5.1 (Counting quantifier). The counting quantifier
is defined as follows. Given two natural numbers 𝑛,𝑚 ∈ N, a
predicate 𝑃 , and a set 𝑋 , define

• ∃≥𝑛𝑥 ∈ 𝑋 : 𝑃 (𝑥) ≡ ∃𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 : 𝑃 (𝑥1)∧. . .∧𝑃 (𝑥𝑛)∧
∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 : 𝑥𝑖 ≠ 𝑥 𝑗 ;

• ∃≤𝑛𝑥 ∈ 𝑋 : 𝑃 (𝑥) ≡ ∃𝑥1, . . . , 𝑥𝑛, 𝑥𝑛+1, . . . , 𝑥𝑘 ∈ 𝑋 :
𝑃 (𝑥1) ∧ . . . ∧ 𝑃 (𝑥𝑘) =⇒ ∀𝑛 < 𝑖 < 𝑗 ≤ 𝑘 : 𝑥𝑖 = 𝑥 𝑗 ;

• ∃[𝑛,𝑚]𝑥 ∈ 𝑋 : 𝑃 (𝑥) ≡ ∃≥𝑛𝑥 ∈ 𝑋 : 𝑃 (𝑥) ∧ ∃≤𝑚𝑥 ′ ∈ 𝑋 :
𝑃 (𝑥 ′);

• ∃[𝑛,∗]𝑥 ∈ 𝑋 : 𝑃 (𝑥) ≡ ∃≥𝑛𝑥 ∈ 𝑋 : 𝑃 (𝑥).
Here, the ≡ operator denotes logical equivalence.

Next, we introduce the notion of a cardinality constraint.

Definition 5.2 (Cardinality constraint). A cardinality constraint
is an ordered pair of intervals ([𝑛1,𝑚1], [𝑛2,𝑚2]) where 𝑛1, 𝑛2 ∈
N and𝑚1,𝑚2 ∈ N∗ with N = {0, 1, 2, . . .} and N∗ = N ∪ {∗}. The
set of all cardinality constraints is denoted as C.

480

The two intervals of a cardinality constraint apply to the
source and target of an edge, respectively. We also use the func-
tions src and trg to refer to the first and second interval of a
cardinality constraint, i.e. src([𝑛1,𝑚1], [𝑛2,𝑚2]) = [𝑛1,𝑚1] and
trg([𝑛1,𝑚1], [𝑛2,𝑚2]) = [𝑛2,𝑚2].

Next, we revise the definitions of property graph schema and
schema conformance, making use of cardinality constraints. The
following definitions subsume Definition 4.4 and 4.6.

Definition 5.3 (Property graph schema). A property graph schema
is a tuple 𝑆 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜏, 𝜂) where

• 𝑁 is a finite set of schema nodes;
• 𝐸 is a finite set of schema edges such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁) is a total function mapping schema
edges to ordered pairs of schema nodes;

• 𝜆 : (𝑁 ∪ 𝐸) → 2L is a total function mapping nodes and
edges to a (possibly empty) set of labels;

• 𝜏 : (𝑁 ∪ 𝐸) → T r is a total function mapping nodes and
edges to record types;

• 𝜂 : 𝐸 → C is a total function mapping schema edges to
cardinality constraints.

Definition 5.4 (Schema conformance). Given a property graph
𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) and a property graph schema 𝑆 = (𝑁 ′, 𝐸′, 𝜌′, 𝜆′, 𝜏, 𝜂)
we say that 𝐺 conforms to 𝑆 if and only if all of the following
rules hold.

(1) Same as rule 1 of Definition 4.6.
(2) Same as rule 2 of Definition 4.6.
(3) If a node 𝑛 conforms to the source of a schema edge 𝑒′, it

must have the right number of outgoing edges of the right
type:

∀𝑛 ∈ 𝑁 ∀𝑒′ ∈ 𝐸′ :[
𝑛 ⊑ src(𝜌 (𝑒′)) =⇒ ∃trg(𝜂 (𝑒

′))𝑒 ∈ 𝐸 :

𝑒 ⊑ 𝑒′ ∧ src(𝜌 (𝑒)) = 𝑛 ∧ trg(𝜌 (𝑒)) ⊑ trg(𝜌 (𝑒′))
]

(4) If a node 𝑛 conforms to the target of a schema edge 𝑒′,
it must have the right number of incoming edges of the
right type:

∀𝑛 ∈ 𝑁 ∀𝑒′ ∈ 𝐸′ :
[
𝑛 ⊑ trg(𝜌 (𝑒′)) =⇒ ∃src(𝜂 (𝑒

′))𝑒 ∈ 𝐸 :

𝑒 ⊑ 𝑒′ ∧ src(𝜌 (𝑒)) ⊑ src(𝜌 (𝑒′)) ∧ trg(𝜌 (𝑒)) = 𝑛
]

Compared to Definition 4.6, rule 1 and 2 are unchanged, while
rule 3 and 4 maintain minimum and maximum cardinality con-
straints on edges. With these new rules, we can also enforce
mandatory edges, i.e. a cardinality constraint of “at least one”.

Cardinality constraints are denoted in Figure 2 by annotating
each edge with two intervals (one at the source and one at the
target). Intervals such as [𝑛,𝑚] are written as 𝑛..𝑚, following
UML notation [15]. Moreover, we use the “look-across” notation,
meaning that the interval indicates the minimum and maximum
number of edges that the node on the other side of the edge must
participate in. In this example, 𝜂 (𝑒1) = ([0, ∗], [1, ∗]).

5.2 Optional Properties
We revise the definition of record by adding a special property
value undef , which indicates that the value of a property is not
defined. The following definition subsumes Definition 3.1.

Definition 5.5 (Record). A record is a total function 𝑟 : N →
V∪{undef} that maps property names to property values or the
special value undef . We denote such records as ⟨𝑛1 : 𝑣1, . . . , 𝑛𝑘 :
𝑣𝑘 ⟩. The set of all records is denoted as R.

For a record 𝑟 and a property name 𝑘 ∈ N such that 𝑟 (𝑘) was
previously undefined, we now say 𝑟 (𝑘) = undef . This can be
seen as the “default” value of a property.

We adjust the definitions of property conformance, record
type, and record conformance accordingly. These subsume Defi-
nition 4.1, 4.2, and 4.3.

Definition 5.6 (Property conformance). For each property type
𝑡 ∈ T there is a set [[𝑡]] ⊆ V∪{undef} that contains all property
values that conform to the type 𝑡 . We say 𝑡 is optional iff undef ∈
[[𝑡]]. We use the notation 𝑡? to mark a property as optional, i.e.
[[𝑡?]] = [[𝑡]] ∪ {undef}.

Definition 5.7 (Record type). A record type is a total function
𝑡 r : N → T that maps property names to property types. We
denote such record types as ⟨𝑛1 : 𝑡1, . . . , 𝑛𝑘 : 𝑡𝑘 ⟩.

Definition 5.8 (Record conformance). We say that a record 𝑟

conforms to a record type 𝑡 r, denoted 𝑟 ∈ [[𝑡 r]], if and only if for
each property name 𝑘 ∈ N it holds that 𝑟 (𝑘) ∈ [[𝑡 r (𝑘)]].

With these final definitions we can maintain optional property
constraints. An example is given in Figure 2, where the role
properties on 𝑒1 and 𝑒4 are optional.

6 PRACTICAL VALIDATION
Assumptions. To reduce the complexity of implementation, we
assume that the set of labels of a schema object functionally
determines the record type of that schema object. Recall from
Section 4 that every object must conform to a schema object
(rule 1 and 2). This implies that if an object has the same set of
labels as a schema object, it must conform to that schema object
(since there exists no schema object with the same label set and
a different record type). We find that this assumption holds in
many domains, including the datasets we study in Section 7.
Validation Variants.We consider two variants of the schema
validation problem. Binary validation: given a graph and a schema,
determine whether the graph conforms to the schema or not. Full
validation: given a graph and a schema, find all graph objects
which cause a violation of at least one of the rules of schema
conformance. While a binary validation method may be sufficient
for some use cases, full validation is required when we want to
explain why a graph does not conform.With binary validation we
can stop as soon as we find a single violation, while full validation
always requires finding all violations.
Implementation. We implement our method using three mod-
ern graph database systems which each take a unique schema
approach. Where possible, we make use of the schema function-
ality exposed by the database engine. For constraints that cannot
be validated in this way, we use graph queries. In all cases, we
leave the database system internals unchanged. Further details
and example queries are provided in [7], and the complete source
code is available on GitHub4.

7 EMPIRICAL EVALUATION
We next evaluate the performance of our prototypical imple-
mentation through a controlled experiment using three graph
database systems which we will call GDB1, GDB2, and GDB3.
The presented results may help the reader to determine whether
our approach is feasible for their use case. To explore the cost
of validating property graph schema conformance, we aim to
answer the following research questions:
4https://github.com/nimobeeren/thesis

481

Table 2: Size statistics of datasets. |𝑁 | and |𝐸 | represent
the number of nodes and edges. |𝑁 ′ | and |𝐸′ | represent the
number of schema nodes and schema edges.

Dataset |N| |E| |N′ | |E′ |
Recommendations 28,863 166,261 6 6
SNB (SF0.1) 327,588 1,477,965 14 20
SNB (SF0.3) 908,224 4,583,118 14 20
SNB (SF1) 3,181,724 17,256,038 14 20

RQ1 How does validation time differ between the binary and
full validation variants?

RQ2 How is validation time related to the scale of the data?
RQ3 How is validation time related to the amount of schema

violations?
RQ4 How does validation time differ between database sys-

tems?

7.1 Methodology
We perform a set of performance experiments in various realistic
scenarios. For each workload, we perform three subsequent runs,
from which we report the average.
Validation time.We are interested in the time it takes to validate
conformance of a graph to a schema. For GDB1 and GDB3, we
measure this using the execution time as listed in the internal
query logs. Even though we depend on the logs to provide a
fair and accurate measurement, we believe this method is best
because it ignores irrelevant things, such as the time taken to
print the results. GDB2 does not provide such logs, so we use
the wall-clock time. If multiple queries are needed to produce an
answer, we take the sum of their execution times.
Dataset. To determine the impact of different schemas and scales
on the performance of our implementation, we apply our meth-
ods to two datasets. The Recommendations Graph5 is a rel-
atively small dataset with a simple schema, provided by Neo4j.
It consists of real data sourced from Open Movie Database6 and
MovieLens7. It contains movies, actors, directors, and users who
rate movies. The LDBC Social Network Benchmark (SNB) [3]
is a synthetic dataset designed to evaluate graph-like data man-
agement technologies in a realistic setting. The dataset consists
of users, messages, likes, and other social network concepts. We
run multiple workloads with different scale factors (SF), which
lets us analyze how our solution scales with the size of the data.
These datasets are diverse in scale, but they are all small enough
to fit entirely in memory. This choice is motivated primarily by
convenience, keeping validation times relatively short and al-
lowing us to perform tests in many different scenarios. Some
statistics regarding the size of the datasets are given in Table 2.
Their schemas are provided in [7].
Validation variant. We consider two variants of the validation
problem: binary and full validation. For binary validation, we
measure the time until the first schema violation is found (or
until the last query has finished, if there are no violations). For
the full variant, we measure until the last query has finished,
because all violations must be found.
Violation rate. We expect the validation time of the binary
variant to be affected by the number of schema violations in the
5https://github.com/neo4j-graph-examples/recommendations
6https://www.omdbapi.com/
7https://grouplens.org/datasets/movielens/

Re
com

men
da

tio
ns

SN
B (S

F0
.1)

SN
B (S

F0
.3)

SN
B (S

F1
)

0

25

50

75

100

125

150

175

200

Va
lid

at
io

n
tim

e
(s

)

GDB1
full
binary

Re
com

men
da

tio
ns

SN
B (S

F0
.1)

0

10

20

30

40

50

60

70

Va
lid

at
io

n
tim

e
(s

)

GDB2
full
binary

Re
com

men
da

tio
ns

SN
B (S

F0
.1)

SN
B (S

F0
.3)

SN
B (S

F1
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lid

at
io

n
tim

e
(s

)

GDB3
full
binary

Figure 3: Mean validation time for binary and full variants
on all datasets with no schema violations.

data. If the data graph conforms to the schema, the entire graph
is scanned. However, as soon as a single violation is found, the
validation process can terminate. The higher the violation rate,
the sooner we expect to terminate. We consider three levels of
violation rate: none (the graph conforms to the schema), single (a
single node violates a constraint), and many (roughly 50% of all
nodes violate a constraint).

The way violations are introduced depends on the database
system under test. For GDB2, we remove a mandatory property
from nodes. Because GDB3 requires every property to have a
value, we set it to a default value instead. Because GDB1 sup-
ports constraints that prevent missing mandatory properties, we
remove a mandatory edge instead.

The choice to only introduce violations on nodes is convenient,
but we expect it to be sufficient to have a measurable effect. If
we assume the validation process to be a random search through
all objects, we can model it as a sequence of random trials with
probability 1−𝑝 , where 𝑝 is the proportion of objects that violate
a constraint. Thus, the time until the first violation is detected
shrinks exponentially when the number of violations in the data
grows. Even though all of our datasets have more edges than
nodes, introducing a violation in 50% of nodes will significantly
increase 𝑝 , as compared to a single violation or none at all.
Indexing and caching. To enable a fair comparison between
databases, we attempt to put an equal amount of effort into opti-
mization for each of them. We only use indexes that the database
system creates by default. Most of these are not useful to us,
because their purpose is to find sets of objects with specific labels
or properties. The exception is GDB3’s outdegree index, which
returns the number of outgoing edges with a particular label for
a given node. To facilitate independence between subsequent
runs, caching is disabled.
Hardware. All workloads are run on a single machine with 4
CPU cores and 6 gigabytes of dedicated memory.

7.2 Results
RQ1: Validation Variant. We run both the binary and full vali-

dation queries on all datasets. For these workloads, no violations
are introduced. A two-sided T-test is performed to test for a dif-
ference between the mean validation time for the full and binary
variant. The results for each database are shown in Figure 3. The
queries for GDB2 on the SNB dataset with scale factor 0.3 and
larger did not complete within an hour, and are excluded.

For GDB1, we find a statistically significant difference (p <

0.05) between the full and binary variants, for all datasets except
the Recommendations Graph. This difference could be explained
by GDB1’s schema statistics, which are retrieved in constant
time and eliminate the need for some of the queries in the full

482

none single many
Violation rate

0

1

2

3

4

5

6

7

8

Va
lid

at
io

n
tim

e
(s

)

7.38 7.1
6.37

GDB1

none single many
Violation rate

0

10

20

30

40

50

60

Va
lid

at
io

n
tim

e
(s

)

56.7

6.87

0.212

GDB2

none single many
Violation rate

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Va
lid

at
io

n
tim

e
(s

)

0.136

0.112

0.146
GDB3

Figure 4: Mean validation time at different violation rates
for binary validation of the SNB (SF0.1) dataset.

variant. However, on the smaller Recommendations dataset this
advantage is no longer apparent, possibly because the constant
lookup time outweighs the time saved by skipping some queries.
We do not find evidence of a difference between the two variants
for GDB2 and GDB3. This is expected, since the queries for both
variants are very similar, and the binary variant cannot terminate
early because the data conforms to the schema.

RQ2: Scale. Our results suggest a linear relationship between
the number of objects and validation time. This is expected, since
our queries perform a linear scan of the nodes and edges in the
data graph. Further details can be found in [7].

RQ3: Violation Rate. To evaluate how schema violations affect
validation time, we choose a fixed dataset and introduce some
errors to the data. We choose the SNB dataset at SF0.1, because
all databases could successfully complete the validation process.
We only test the binary validation variant, because we do not
expect the amount of violations to have a significant impact on
the full variant.

The results in Figure 4 show different patterns for each data-
base. A one-way ANOVA is performed to test for a difference
between the mean validation time among all violation rates. For
GDB1, increasing the violation rate decreases validation time
(p = 0.005), but only by a small amount. For GDB2, violations
cut validation time by two orders of magnitude (p < 0.0001). For
GDB3, we found no evidence (p = 0.601) that increasing violation
rate affects validation time. For further details see [7].

RQ4: Database. From the previous results, we can see there is
a clear difference in performance between database systems. In
nearly all scenarios, GDB3 beats GDB1 by an order of magnitude,
and GDB2 is another order of magnitude slower. The only ex-
ception occurs when we introduce violations to the data. When
there is a single violation, GDB2’s performance is roughly equal
to GDB1’s, and when there are many violations, GDB2 is on par
with GDB3.

Summary. (1) Schema validation can feasibly be performed
with GDB1 and GDB3 for datasets of 20M objects. GDB2 did not
complete on a dataset of 5M objects. (2) In nearly all scenarios,
GDB3 is much faster than GDB1, and GDB1 is much faster than
GDB2. However, when schema violations are introduced to the
data, GDB2’s performance drastically improves. (3) GDB1 and
GDB3 scale approximately linearly with the size of the data. (4)
Schema violations have a moderate impact on validation time
for GDB1, a very significant impact for GDB2, and no discernible
impact for GDB3. This suggests GDB1 and GDB2 terminate the
query as soon as a violation is detected. (5) Only GDB1 shows
a significant difference in validation time between the full and

binary variants when the data conforms to the schema, but this
effect is no longer apparent when the data is small (∼200K ob-
jects).

8 LIMITATIONS, FUTUREWORK, AND
CONCLUSIONS

Limitations. More features could be added as needed to our
language, e.g., key constraints [4, 11], subtyping [6, 16], mutual
exclusivity [6], and larger graph patterns [12].

Some threats to the validity of our experimental results arise.
Considering internal validity, the way we measured time could
explain a small part of the variance between databases. More-
over, some variance can be explained by background processes
and low-level CPU optimizations. This could have a noticeable
effect when measuring on a sub-second timescale, though this
is unlikely to change our conclusions. Considering construct
validity, we operationalized schema violations by removing a
mandatory property or edge, but other kinds of violations were
not analyzed. Considering external validity, we used datasets up
to 20M objects, but the observed relationships may not general-
ize to larger datasets, especially when they are too large to fit
in memory. Furthermore, the two schemas consisted of similar
constraints, and did not include all the kinds of constraints that
can be expressed in our schema language. Finally, we are hesi-
tant to draw conclusions about the optimal level of performance
that could be achieved with better optimizations specific to each
database. However, our results give an indication of the level of
performance that can be expected from an initial implementa-
tion. Further opportunities for performance improvement are
identified in [7].

Future Work. First, a formal analysis of our framework could
improve understanding of its relation to other methods based
on simulation [9] and homomorphism semantics [8] as well as
the recently appearing work on PG-Schema [5]. Furthermore,
the study of specialized validation algorithms and indexes could
improve performance. For example, an incremental algorithm
could provide significant benefit when a database is frequently
updated. Moreover, schema information may be used to optimize
query planning, as is often done in relational databases [9, 10, 17].
In addition, query type inference and type checking [12] could
benefit usability of graph databases by detecting incompatible
parameter types and inferring a query result type prior to ex-
ecution. Additional important broader areas for investigation
of our framework include: schema extraction and inference so-
lutions for our model; the empirical impact of more complex
schemas and different application domains; the interaction of
schema enforcement and transaction management; and, a finer
study of the search strategies employed by industrial systems for
query-driven schema validation.

Concluding remarks. We have demonstrated practical feasi-
bility of our approach for datasets up to 20M objects, even with
straightforward non-optimized implementations. We observed
that our implementation scales linearly with the size of the data.
In general, we observed a large difference in performance be-
tween popular property graph databases. Our framework enables
further theoretical and practical study of property graph schema
languages, as highlighted in Section 8.

Acknowledgements. We thank Jan Hidders, Alex Poulovassilis,
and Peter Wood for earlier discussions on property graph schema
design.

483

REFERENCES
[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. 1999. Data on the web: from

relations to semistructured data and XML. Morgan Kaufmann.
[2] Renzo Angles. 2018. The Property Graph Database Model. In AMW.
[3] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz,

Márton Búr, Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann,
Josep Lluís Larriba Pey, Norbert Martínez, József Marton, Marcus Paradies,
Minh-Duc Pham, Arnau Prat-Pérez, Mirko Spasić, Benjamin A. Steer, Dávid
Szakállas, Gábor Szárnyas, Jack Waudby, Mingxi Wu, and Yuchen Zhang. 2020.
The LDBC Social Network Benchmark. https://doi.org/10.48550/ARXIV.2001.
02299

[4] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savković, Michael Schmidt, Juan Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD ’21). Association for Computing Machinery, New York, NY,
USA, 2423–2436. 9781450383431 https://doi.org/10.1145/3448016.3457561

[5] Renzo Angles et al. 2023. PG-Schema: Schemas for Property Graphs. In
SIGMOD 2023.

[6] Richard Barker. 1990. CASE Method: Entity Relationship Modelling. Addison-
Wesley.

[7] Nimo Beeren. 2022. Formal Specification and Practical Validation of Property
Graph Schemas. Master’s thesis. Eindhoven University of Technology.

[8] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,
andHannes Voigt. 2019. Schema Validation and Evolution for GraphDatabases.
In Conceptual Modeling, Alberto H. F. Laender, Barbara Pernici, Ee-Peng Lim,
and José Palazzo M. de Oliveira (Eds.). Springer, Cham, 448–456. 978-3-030-
33223-5

[9] Peter Buneman, Susan Davidson, Mary Fernandez, and Dan Suciu. 1997.
Adding structure to unstructured data. In Database Theory — ICDT ’97, Foto
Afrati and Phokion Kolaitis (Eds.). Springer, Berlin, Heidelberg, 336–350. 978-
3-540-49682-3

[10] Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-Based Ap-
proach to Semantic Query Optimization. ACM Trans. Database Syst. 15, 2 (jun
1990), 162–207. 0362-5915 https://doi.org/10.1145/78922.78924

[11] Peter Pin-Shan Chen. 1976. The entity-relationship model—toward a unified
view of data. ACM transactions on database systems (TODS) 1, 1 (1976), 9–36.

[12] Dario Colazzo and Carlo Sartiani. 2015. Typing Regular Path Query Languages
for Data Graphs. In Proceedings of the 15th Symposium on Database Program-
ming Languages (DBPL 2015). Association for Computing Machinery, New
York, NY, USA, 69–78. 9781450339025 https://doi.org/10.1145/2815072.2815082

[13] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid
Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip
Murlak, Stefan Plantikow, Petra Selmer, Hannes Voigt, Oskar van Rest, Do-
magoj Vrgoč, Mingxi Wu, and Fred Zemke. 2021. Graph Pattern Matching in
GQL and SQL/PGQ. https://doi.org/10.48550/ARXIV.2112.06217

[14] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor Lee. 2019. TigerGraph: A Native
MPP Graph Database. https://doi.org/10.48550/ARXIV.1901.08248

[15] ISO/IEC 19501:2005. 2005. Information technology – Open Distributed Processing
– Unified Modeling Language (UML) Version 1.4.2. Standard. International
Organization for Standardization, Geneva, CH. https://www.iso.org/standard/
32620.html

[16] Hanâ Lbath, Angela Bonifati, and Russ Harmer. 2021. Schema Inference for
Property Graphs. In EDBT 2021 - 24th International Conference on Extending
Database Technology (EDBT). Nicosia, Cyprus, 499–504. https://doi.org/10.
5441/002/edbt.2021.58 Short Paper.

[17] Michael Meier, Michael Schmidt, Fang Wei, and Georg Lausen. 2013. Semantic
query optimization in the presence of types. J. Comput. System Sci. 79, 6
(2013), 937–957. 0022-0000 https://doi.org/10.1016/j.jcss.2013.01.010 JCSS
Foundations of Data Management.

484

