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ABSTRACT
Most of the world’s cloud data service workloads are currently

being backed by replicated state machines. Production-grade

log replication protocols used for the job impose heavy data

transfer duties on the primary server which need to disseminate

the log commands to all the replica servers. UniCache proposes

a principal solution to this problem using a learned replicated

cache which enables commands to be sent over the network as

compressed encodings. UniCache takes advantage of that each

replica has access to a consistent prefix of the replicated log

which allows them to build a uniform lookup cache used for

compressing and decompressing commands consistently. Uni-

Cache achieves effective speedups, lowering the primary load in

application workloads with a skewed data distribution. Our ex-

perimental studies showcase a low pre-processing overhead and

the highest performance gains in cross-data center deployments

over wide area networks.

1 INTRODUCTION
State machine replication (SMR) has become the de facto ap-

proach for building distributed databases that provide strong

consistency with fault tolerance. This form of replication is typi-

cally based on having a primary server that orders all changes to

the database into a log that is replicated on each replica server.

The log defines a single execution order for all replicas such that

the state remains consistent across them. Apart from featuring

in the replication layer of both relational [14, 19, 34] and non-

relational [8, 38] databases, state machine replication is also used

for coordination services [17, 24] and high-availability in data

management systems [1–3].

Using log replication with a designated primary is the most

adopted approach to implement SMR due to its simplicity, omit-

ting the need for conflict resolutionmechanisms. However, primary-

based protocols have the problem that the primary can become a

bottleneck.With the additional responsibility of ordering changes

in the log and disseminating them to all backups, the network

I/O at the primary is significantly higher than other replicas.

Recent work has attempted to reduce the primary’s network I/O

with erasure coding [36] and custom transmission schemes [38].

However, such approaches come with inherent trade-offs; era-

sure coding lowers the network and storage costs, but backup

replicas have incomplete state which affects practicality. Custom

transmission schemes use other servers to help the primary to

forward the data. This lowers the primary’s network I/O, but

reduces fault-tolerance as any failure in the transmission path

will cause down-time. Furthermore, the additional network hops

result in higher commit latency.
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We propose UniCache to address the primary bottleneck prob-

lem by minimizing the amount of transmitted data. UniCache

expands on primary-based protocols with the ability to optimize

network I/O performance by learning and adapting to the applica-

tion workload. It exploits workload skews such as hot spots and

time-varying skews to efficiently transmit data that is frequently

replicated. This approach enables UniCache to transparently op-

timize replication without the drawbacks of current approaches

that affect practicality and fault-tolerance.

The design of UniCache is based on two key observations that

are distinctive for log replication protocols. 1) Every replica has

local access to a committed prefix of the log that corresponds to a

consistent view of the application workload history. 2) The repli-

cated log entries represent commands for an application with

some recurring workload pattern. From these observations, we in-

troduce the following novelty with UniCache: Each replica main-

tains a local cache containing popular application commands

which is deterministically derived from the committed prefix of

the replicated log. It is used as a lookup table that maps com-

mands to smaller encoded formats. If a command to be replicated

exists in the cache, the primary sends the encoded version of it.

The backups will then decode it using their local cache to get the

command in its full form. The encoding and decoding are safe

as each replica builds its cache from the committed prefix of the

replicated log in a deterministic manner. Thus, each replica is

essentially using a cache that is consistently replicated but with-

out any explicit coordination. Furthermore, we use an ML-based

eviction policy to be able to adapt to changing workload patterns.

We claim the following contributions with UniCache:

• We describe the primary bottleneck problem in log repli-

cation protocols and provide an overview of the trade-offs

with existing approaches that target the problem.

• We present UniCache, an expansion to primary-based log

replication protocols that exploits the application data and

its workload to reduce network transmissions.

• We present an evaluation with synthetic benchmarks that

showcases when UniCache can provide the most perfor-

mance gains, and benchmarks with real-world data to

demonstrate the practicality of UniCache. Our results

show that UniCache can improve performance signifi-

cantly, achieving up to 4.5x better performance in high

latency settings where data transmission is a bottleneck.

2 THE PRIMARY BOTTLENECK PROBLEM
Log replication protocols such as Raft [32] and Paxos-based [28]

derivatives guarantee safety such that the replicated log is con-

sistent at every server and the decision to commit a command

is durable. To provide liveness, a designated primary is elected

to lead the log replication. A prepare phase is first established

when the primary is elected in order to ensure that the server

is equipped with the most up-to-date log. From that point, the

protocol enters the accept phase which is repeatedly performed
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Figure 1: Approaches in I/O-reduced log replication

to populate the replicated log. During this phase, the primary

handles all client requests and orders them in the log. It then

replicates these commands in log order to the backups. When

a majority have replied to the primary that a command is repli-

cated, it is committed and the primary sends this decision to all

backups. The accept phase thus involves heavy data transfers

when the primary repeatedly transmits commands to the back-

ups. As seen in Figure 1a, the network I/O at the primary grows

linearly with the number of backups.

Early adopters of log replication protocols were mainly for

metadata services, such as Google’s Chubby[17] and ZooKeeper[24].

However, log replication is now used in the critical path of dis-

tributed databases such as TiDB [23], MongoDB [38], and Cock-

roachDB [34] that replicate data at the scale of terabytes with

hundreds of thousand requests per second [5, 12]. With these

increased data volumes, the primary bottleneck in terms of net-

work I/O becomes a serious challenge for achieving the latency

and throughput objectives for large-scale systems.

2.1 Trade-offs for Reducing Network Costs
Previous work has achieved network I/O reductions at the pri-

mary using different methods. By using custom transmission

schemes [38] or adding additional servers that disseminate the

data [37] similar to network overlays, the network I/O at the

primary is reduced but incurs higher commit latency due to more

network hops. Furthermore, the use of overlays reduces the fault

tolerance since any server along the dissemination path becomes

a single point of failure (see Figure 1b).

CRaft[36] introduced erasure coding that enabled the primary

to only replicate fragments of the data at the backups. However,

this implies that only the primary has a full copy of the data.

This is not practical in applications such as distributed databases

Table 1: Typical command sizes in systems based on log
replication protocols.

System Protocol Typical command
size (bytes) [13]

TiKV [11] Raft 8 - 4096

dragonboat [4] Raft 16 - 1024

TigerBeetle [10] VR 128

etcd [20] Raft 128 - 4096

MongoDB [38] Raft 1024

ZooKeeper [24] Zab 1024

where each replica needs the state to serve client requests. It is

worth noticing that in both described approaches, the IO opti-

mizations do not occur transparently. Instead, they substitute or

critically modify core components (e.g., the transmission path

and the replicated data) of the log replication middleware and

therefore alter its existing usage assumptions, properties and

guarantees.

2.2 Workload Skews and Data Sizes
Log replication protocols replicate application-provided data in a

mechanical fashion, being completely agnostic of data trends and

therefore unable to employ sophisticated optimizations. However,

if we look more carefully into the typical replicated data sizes

and trends, there is clearly untapped potential for optimization.

The data size has a several-fold effect on the network I/O at the

primary as the data is sent to all backups. Table 1 summarizes

the typical sizes of replicated system commands. These range

between 128 and 4096 bytes.

Real-world applications are also known for exhibiting skew in

their workloads. Distributed databases [23, 34, 38] typically have

OLTPworkloads where different skew types are common [30, 33].

Hot spots are a small number of objects that are accessed more

frequently than the others, for instance, celebrities in a social

network application. Temporal skew occurs when certain objects

become popular at specific time intervals, e.g., travel destinations

that are trending during certain seasons. Having such types of

data skew over log replicationmeans that the primary will blindly

re-transmit the same data to backups. Given the observed data

ranges of 128 − 4096 bytes, this implies a significant amount

of data re-transmissions that amplify the primary bottleneck

problem, which seeks a principled and generalized solution.

3 UNICACHE
UniCache is an expansion to log replication protocols that ex-

ploits recurring workload patterns to reduce the network I/O.

The core idea is to maintain a cache with data that is repeatedly

replicated so that it can be encoded and transmitted over the

network in a compressed form. As illustrated in Figure 2, the

cache resides locally on each server and is used for encoding and

decoding to achieve lossless compression of the transmitted data.

UniCache therefore only modifies the representation of the data

being sent over the network but not the communication path

or the data that is replicated. As a result, the network I/O can

be reduced while avoiding the trade-offs discussed in §2.1 such
as additional network hops and incomplete replicas. There are

several key questions that need to be addressed related to the

design of UniCache:

• How is UniCache integrated into a log replication proto-

col? (§3.3)
• How does UniCache guarantee correctness? (§3.4)
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Figure 2: Log Replication with UniCache

• How does UniCache dynamically adapt to changes in the

workload? (§3.4)

3.1 Log Replication Overview
UniCache is a technique that can be extended to any leader-based

log replication protocol such as Raft [32], VR [29], and Zab [25].

These protocols share a similar design where one of the servers

is elected as the primary which coordinates the replication of

a strictly growing log. The consistency of the replicated log is

defined by the following safety properties:

• Uniform Agreement: For any two servers that decided logs

𝐿 and 𝐿′ respectively then one is the prefix of the other.

• Integrity: If a server decides on a log 𝐿 and later decides

on 𝐿′ then 𝐿 is a strict prefix of 𝐿′.

These properties imply that the log at all servers are consistent

and a backup always has some prefix of the primary’s log.

Different protocols use different terminology for similar state

and messages. For simplicity, we will describe the general design

of log replication protocols based on the Paxos[28] terminology.

When a server is elected as the primary, it first performs a prepare

phase
1
. The prepare phase is for ensuring that the primary adopts

all possibly committed entries before extending the replicated log.

The primary initiates the prepare phase by sending a message to

all backups to announce itself as the new primary. This message

contains metadata that indicate how updated the primary’s log is.

Each backup replies with its corresponding metadata and any log

commands that the primary is missing. When the primary has

received a majority of replies, it adopts the commands provided

by the most updated backup by appending them to its log. This

ensures that any committed entry is not lost. The primary then

synchronizes the log with the backups by sending the commands

that they are missing. This concludes the prepare phase, which is

only performed when a new primary is elected. New commands

proposed by the client can now be appended to the log in the

accept phase. Each new command is handled by the primary

1
Raft does not have a prepare phase but instead continuously performs log syn-

chronization while replicating. The elected primary must therefore have the most

updated log among a majority to guarantee safety.

which appends it to its local log and sends it to the backups

via an ⟨Accept⟩ message. When a majority have acknowledged

that the command is appended to their local log, it is decided

(or committed). The primary announces the commit decision by

sending ⟨Decide⟩ to the backups.

The primary sends more messages which also contain more

data compared to the backups. In the accept phase, the primary

sends the command to every backup and handles all the acknowl-

edgements. This implies that the network I/O at the primary

grows linearly with the data size and the number of servers. In

the prepare phase, both the primary and backup need to send

data. Reducing the network I/O in the prepare phase is another

interesting topic, however we do not consider it in UniCache as

the prepare phase is only performed during primary fail-over

and not critical to steady state performance.

3.2 Data Pre-processing
UniCache introduces a local cache at each server. The cache is a

bidirectional map where each item is associated with an index

(integer). An item in the cache can be a log command or some par-

tial data of a log command. The associated index is the encoded

representation of it. Depending on the application, some data

in a command might not be possible to cache (e.g., unique ids).

Thus, we provide an interface for developers to specify which

data in the command should be used by UniCache. The interface

consists of the PreProcess and Recreate functions (see line

1-2 in Appendix A). PreProcess takes a command as an input

and produces two lists; one with data items that might get en-

coded by UniCache, and one with data that cannot be cached and

should therefore just be sent in its original form. The Recreate

is the inverse of PreProcess for recreating a command given

these two lists. As an example, consider the following SQL query

which creates a new member with some personal information,

the timestamp of becoming member and the membership level:

# original query
INSERT INTO members
VALUES ('John', 'Doe', 'Dentist', '2022-01-01 10:10:17', 1)
# after pre-processing
encodable = [INSERT INTO members VALUES (?, ?, ?, ?),

'John', 'Doe', 'Dentist']
not_encodable = ['2022-01-01 10:10:17', 1]
# after encoding
items = [encoded(1), encoded(4), decoded('Doe'), encoded(35)]
not_encodable = ['2022-01-01 10:10:17', 1]

As the timestamp will not be repeated and the membership level

cannot be further compressed (already an integer), these fields

will not be used in UniCache. However, the query might be repli-

cated with other arguments in the future, thus the template of

it will be considered by UniCache. The other fields could be re-

peated (in the same query or other queries) and therefore also

used by UniCache. In this example, the query, the first name, and

the occupation were found in the cache and encoded as integers

by UniCache. The surname “Doe” was a cache miss and will thus

be sent in its original form. We should note that the developer

only needs to specify which fields should be considered by the

pre-processor, but not what values of them might be popular.

3.3 Cache and Encode
When a new command is received by the primary, it first pre-

processes the command to extract the encodable items. If an

item exists in the cache, the associated index is used to rep-

resent the encoded version of it. Instead of sending the usual

⟨Accept⟩ with the command to the backups, the primary sends

an ⟨AcceptEncoded⟩ which contains the encoded items and the
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data that could not be encoded. A backup decodes the items in

the message by looking up the index in its local cache. As we de-

scribe in §3.4, the index of an encoded item is guaranteed to exist

in the cache of the backups. Once all the items are decoded, the

complete command in its original form can be generated using

the Recreate function. The backup then acts as it would with

a normal ⟨Accept⟩ message. The command is appended to the

local log before replying to the primary with an acknowledgment.

When the primary receives a majority of replies for a command, it

is decided and ⟨Decide⟩ is sent to the backups. In UniCache, the

primary and backups additionally update their cache when a new

command is decided. The decided command is fed into the cache

as input and depending on the eviction policy, might cause items

in the cache to be evicted. Updating the cache requires using the

item of the decided command for correctness. To avoid reading

and processing the decided command only to update the cache,

an item can be buffered until it is decided. Another approach is

to update the cache eagerly already during pre-processing. This

requires the cache to support rollback as it might be updated by

a command that was not yet committed and dropped later.

3.4 Eviction Policy and Correctness
For correctness, UniCache must guarantee that each item en-

coded by the primary gets decoded as the exact same item by the

backups. This requires that the cache is consistent on all servers.

UniCache uses the consistency properties already provided by

the replicated log to guarantee correctness. The general idea of

this informal proof is simple: If each server maintains a determin-

istic object which handles the same sequence of inputs, then the

object of each server will be consistent. This is the same idea as

state machine replication [26]. In this case, the deterministic ob-

ject is the cache while the same sequence of inputs is provided by

the properties of the replicated log (§3.1). As UniCache uses the
decided log to update the cache, it will be consistent as long as the

cache eviction policy is deterministic. Furthermore since the log

is guaranteed to be consistent across different views, the cache

will also remain consistent in the event of a primary fail-over.

UniCache can thus use any deterministic cache eviction policy

that fits the application workload. To be able to adapt to workload

changes, a dynamic policy might be needed rather than a static

policy such as least frequently used (LFU) or least recently used

(LRU). Thus, we propose to use an ML-based policy that can learn

from the history of the workload. In UniCache, we use LeCar [35],

an RL-driven cache eviction policy that optimizes between using

LFU and LRU. In short, LeCar maintains a probability distribution

between the policies. When a cache miss occurs, LeCar uses the

probability distribution to decide whether to evict based on LFU

or LRU. A history of evictions labeled with the policy taken

for it is kept. For every cache miss, it checks if the item was

in the eviction history. If it was, a regret value associated with

that policy is increased, and the weights are recalculated. This

policy treats eviction as an online learning problem that aims to

minimize the regret.

4 IMPLEMENTATION
To showcase UniCache in real applications, we implemented a

pre-processor for two common data formats:

Comma-separated values (CSV). The pre-processor takes a
set of string values from a CSV record as an input. This set is

defined by the user and corresponds to the fields that can have

repeated values. For each record, UniCache will check if the value

LAN

WAN

Figure 3: Synthetic benchmark in LAN and WAN.

of those fields exists in the cache and encode them if possible.

Furthermore, the user can also implement additional processing

such as split or regex to only attempt caching parts of a string.

SQL queries. The pre-processor reads a SQL query and extracts

the template and parameters of it (similar to the example in

§3.2). This could be applied to distributed databases that employ

statement-based replication, where the log commands are SQL

queries and all replicas execute them according to the log order

for consistency. This is used in MySQL NDB cluster where the de-

fault MIXED replication format is statement-based by default [6].

5 EVALUATION
Our evaluation uses a synthetic benchmark (§5.1) to generalize

the performance impact by UniCache, and a real-world bench-

mark using two CSV and one SQL dataset (§5.2).
Experimental setup.We performed the evaluation on Google

Cloud, using a cluster of three c2-standard-8 instances with 8

vCPUs, 32GB of memory, and 10 Gbps network bandwidth. An

additional client instance was used to propose commands and

measure the end-to-end performance. The client generates a

workload of 100k concurrent requests and the experiment is

completed when it has received the commit acknowledgment for

all records of the given dataset. Each experiment was repeated

10 times. Furthermore, we used two different network settings:

- LAN: all instances are in europe-west1. The RTT is 0.2ms.

-WAN: the client and the primary are in the same region europe-
west1. The two backups are located in us-central1 and asia-
northeast1 with RTT of 102ms and 224ms respectively. The

RTT between the backups is 144ms. UniCache was implemented

in OmniPaxos
2
where the log was stored in memory. The actor

framework Kompact was used for message-passing over TCP.

5.1 Synthetic Benchmark
To evaluate the general performance of UniCache, we imple-

mented a synthetic benchmark of 20 million requests that are

proposed under configurations with varying data size, compres-

sion rate, cache hit rate, and pre-processing time. The data are

byte vectors with the size 128-4096. The other parameters are

based on typical values we found while working with the real im-

plementations from §4. The pre-processing overhead is simulated

by inducing idle time.

2
https://github.com/haraldng/omnipaxos
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Figure 4: Data sizes before and after compression (excl. out-
liers). The boxes prefixed with “U-” are after compression.

What is the pre-processing overhead in UniCache? As seen
in Figure 3, UniCache did not show any performance improve-

ment with small data in the LAN setting. With low network

latency and data sizes of 128 and 256 bytes, the transmission does

not constitute a bottleneck. Instead, the pre-processing overhead

incurred by UniCache degrades performance. Depending on the

compression rate, a pre-processing time of 2𝜇s resulted in up

to 22% lower throughput. With 5𝜇s, the corresponding result is

52%. The performance degradation is due to the pre-processing

being in the critical path and executed for one command at a time

by the primary. This also affects the batching. In our prototype,

batching is based on time (1ms), and a longer pre-processing

delay results in smaller batches.

What improvements does Unicache offer in different net-
work environments? With data size of 512 bytes and a pre-

processing time of 2𝜇s, UniCache recorded 15% higher through-

put when the cache hit rate is 75%. In the ideal case of 100% hit

rate, the improvement is 42%. Thus, with data size of 512 bytes

and a cache hit rate in the range of 75% or higher, the throughput

can increase by 15-42%. The benefits of UniCache are more evi-

dent in larger data sizes. With 1024 bytes and 2𝜇s pre-processing

time, UniCache increases throughput by up to 96%. Furthermore,

with data sizes of 2048 and 4096 bytes, UniCache is on par or

outperforms baselines in all configurations, including when the

pre-processing time is 5𝜇s.

In the WAN setting (see Figure 3), UniCache outperforms the

baseline implementation in all scenarios except for when the data

size is 128 bytes and the pre-processing time is 5𝜇s. We already

observe an improvement by 6-25% with 128 bytes of data and pre-

processing time of 2𝜇s. Using data sizes of 256 and 512 bytes, the

throughput increase is between 8-117% and 31-264% respectively.

The benefits of sending compressed data overWAN become more

evident as the data size gets even larger. With 1024, 2048, and

4096 bytes, UniCache improves performance by 30-354%.

From the synthetic benchmark, we can conclude that the pre-

processing overhead incurred by UniCache causes performance

degradation in the LAN setting with data sizes 256 bytes or lower.

The reason is that the pre-processing overhead is not amortized

by the transmission with small data and low network latency.

However, in the WAN setting, the data transmission is a bottle-

neck and the pre-processing overhead is adequately amortized.

As a result, UniCache recorded up to 4.5x higher throughput in

WAN. Another observation we make is that, contrary to the re-

sults in LAN, the performance of UniCache in WAN is dominated

by the compression rate rather than pre-processing time.

5.2 Real-world Benchmarks
We evaluated UniCache with three datasets from real applica-

tions:

LAN

WAN

Figure 5: Real-world benchmark with different eviction
policies. OFF: UniCache turned off, U-R, U-F, U-LC: Uni-
Cache with LRU, LFU, and LeCar respectively.

Enron emails [9]: CSV records of email headers and metadata.

UniCache reads and attempts to cache the fields such as folder

names, sender and receiver addresses, and words in the subject.

New York Times articles [7]: The metadata of all New York

Times articles between 2020 and 2022 in CSV format. The fields

that get pre-processed by UniCache are the web url, headlines,

authors, and article metadata (e.g., category, tags, keywords).

BusTracker [31]: SQL queries from a mobile application that

updates bus location information, finds users nearby bus stops,

and gets route information. UniCache extracts the query template

using regex operations and encodes any template that is cached.

The idea is similar to using prepared statements, but without

requiring the developer to know the queries a priori.

The average pre-processing time for the email records was

8𝜇s which resulted in an average compression of 66%. The same

compression rate was recorded for the bustracker queries, but

with a lower execution time of 4𝜇s. The pre-processing time is

higher for the email records as they require more processing such

as splitting by whitespace on the subject field to cache individual

words. The pre-processing time in the articles dataset was 4𝜇s

and the compression rate was 38%. The lower compression rate

is due to the wide range of words that can be used for titles and

tags in news articles. The distribution of data sizes before and

after compression can be seen in Figure 4. In all datasets, the

cache used less than 500kb memory.

As seen in Figure 5, UniCache recorded a performance de-

crease of more than 35% in the LAN for all datasets. This aligns

with the findings from the synthetic benchmark. The transmis-

sion of data smaller than 512 bytes is not a bottleneck in LAN

and the pre-processing overhead reduces performance instead.

In the WAN setting, the high compression rates in the email

and bustracker datasets yielded performance improvements by

UniCache. With the LRU eviction policy in the email dataset,

24% higher throughput was recorded. The most improvement

was found in the bustracker dataset where UniCache recorded

an improvement of 33%. This is because queries would consis-

tently be compressed to a high degree (see Figure 4). Lastly, the

lower compression rate in the articles dataset resulted in a similar

performance as the baseline.

475



In general, the results using real-world data reflect the findings

from the synthetic benchmark. A high compression rate can

significantly improve performance in WAN where the latency

is high. Whereas in the LAN, the network transmission is not a

bottleneck and leads to non-amortized compression overhead.

6 DISCUSSION AND PROSPECTS
When is UniCache beneficial? UniCache can evidently pro-

vide good I/O savings for application data of varying skew and

wide value range and granularity. We foresee its highest potential

within multi-datacenter replicated cloud services where cross-

region traffic dominates the performance and operational costs.

In such settings, UniCache can be beneficial even when the com-

pression rate is high, but not enough to boost performance (e.g.,

NYT articles dataset in §5.2).
Parallel Pre-processing. The current prototype of UniCache
employs a naive sequential pre-processing logic. However, com-

mon parallelization methods can be used to minimize its criti-

cal path footprint. Deployments with persistent storage enforce

flushing data before proceeding in the protocol for safety reasons.

UniCache could employ its pre-processing during this flushing

phase instead. Pipelining is also feasible by chaining the pre-

processing of consecutive commands without violating the de-

terminism of the cache.

Auto-tunable UniCache. As shown by the synthetic bench-

mark, the overhead of pre-processing can bring performance

penalties when there is a high rate of cache misses. To that end,

a possible improvement would be to dynamically enable and

disable UniCache according to a threshold of cache hit rate. In

this way, the replicated state machine middleware can tune itself

to optimize for better throughput based on its measured hit rate.

BFT UniCache. UniCache could potentially be applied to Byzan-
tine fault-tolerant protocols such as PBFT [18] that also guaran-

tees safety via a consistent log. BFT protocols typically require

not just the primary, but all replicas to transmit application data,

and UniCache could thus reduce the network I/O for more servers.

However, we see two practical challenges: 1) The application do-

main of BFT protocols often focuses on unique data (nonces,

hashes, etc.) that cannot be cached, and 2) BFT protocols have a

longer commit path with more message round-trips that might

neglect the effects of UniCache. Nonetheless, BFT UniCache re-

mains an interesting prospect for future work.

7 RELATEDWORK
Log replication protocols such as Raft [32], VR [29], Zab [25], and

Paxos [28] derivatives are prevalent in both academia and indus-

try. The primary bottleneck in these protocols is a well-studied

problem: Fast Paxos [27] relies on the client to disseminate the

data which pushes the network I/O to the client instead of the

primary. Fault-tolerance is also reduced as larger quorums are

required for safety. Custom transmission schemes [38] and net-

work overlays incur higher commit latency and decrease fault-

tolerance as any failures along the dissemination path will affect

progress. Erasure coding [36] avoids the increased latency but

leads to backups having incomplete state which affects practi-

cality for applications. Contrary to UniCache, these approaches

cannot be generalized as the underlying system execution and

normal behavior are altered.

UniCache aligns with the recent trend of using data- and ap-

plication workload-driven optimized replication. Skyros [21] ex-

ploits the application API to reduce commit latency by deferring

the replication of operations that do not need to be materialized

instantly. ResilientDB [22] considers the given network setting to

reduce cross-region traffic by using topology-aware replication

with PBFT [18]. Another technique employed by CAPER [15]

and SharPer [16] is sharded replication for different applications

and objects which enables more parallelism, and could also be

used in conjunction with UniCache to boost performance further.

8 CONCLUSION
UniCache is a transparent approach to tackle the primary bottle-

neck problem in log replication protocols. It uses a universally

consistent cache at each server that is used for lossless compres-

sion of frequently replicated data. This reduces the data transmis-

sion in the protocol without making trade-offs in fault-tolerance

or practicality as in other approaches. As shown in the evaluation,

UniCache can achieve significant performance improvements,

especially in high latency environments such as WAN.
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A PSEUDO CODE
Interface and pseudo code for UniCache. Modifications to the log

replication protocol are marked in blue.

Algorithm 1: UniCache
/* Interface */

1: Fun PreProcess(C) −→ (List⟨data⟩,List⟨data⟩)
2: Fun Recreate(List⟨data⟩,List⟨data⟩) −→ C

/* Primary Code */

3: Upon ⟨Propose | C⟩
s.t. state = (primary,accept) from client

4: log ← log ⊕ C;
5: accepted[self ]← |log|;
6: items← [ ];
7: (encodable, not encodable)← PreProcess(C);

foreach e ∈ encodable do
8: if some⟨index⟩ = TryEncode(e) then
9: items← items⊕ encoded⟨index⟩;

else
10: items← items⊕ decoded⟨e⟩;

foreach b ∈ promised backups do
11: send ⟨AcceptEncoded | n, items, not encodable⟩ to b;

/* Backup Code */

12: Upon ⟨AcceptEncoded | n, items, not encoded⟩ from p
s.t. state = (Backup,accept)

13: if npromised = n then
14: decoded← [ ];

foreach i ∈ items do
15: if encoded⟨index⟩ = i then
16: data← Decode(index);
17: decoded← decoded⊕ data;

18: if decoded⟨data⟩ = i then
19: decoded← decoded⊕ data;

20: C ← Recreate(decoded, not encoded);
21: log ← log ⊕ C;
22: idx← |log|;
23: send ⟨Accepted | n, idx⟩ to p;

/* Both Primary and Backup Code */

24: Upon ⟨Decide | n, idx⟩ s.t. npromised = n
25: idxdecided ← idx;
26: UpdateCache(idx)
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