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ABSTRACT

Offloading graph analytics to GPU yields significant performance
speedups. In heterogeneous hybrid transactional/analytical graph
processing (graph H2TAP), where each graph workload type is
executed on the most suitable processor, transactions are exe-
cuted on a CPU-based main graph and analytics are executed
on a GPU-optimized graph replica. The problem that arises, as a
result, is that updates by transactions on the main graph have to
be particularly handled with respect to the graph replica.

In this paper, we present a fast and efficient approach to this
update handling problem, based on a delta store optimized for
graphs. The delta store is a differential graph store that cap-
tures the transactional updates, which are later propagated to
the graph replica so that analytical queries are executed on the
most recently committed version of the graph in accordance with
freshness requirements. Our approach ensures consistency be-
tween the main graph and the replica. Our evaluation shows
the performance advantage of our approach over existing HTAP
approaches.

1 INTRODUCTION

Various real-world applications are rapidly generating data that
is more intuitive to model as a graph, where data entities are rep-
resented as nodes/vertices interconnected by relationships/edges
[35, 61, 62]. Storing, managing and analyzing graphs is a re-
cent and important data management problem, for which sev-
eral architectures implementing different data models are being
used [2, 36, 65, 83]. Numerous native graph databases have been
developed particularly targeting graphs that are not only dynamic
in that their structure changes over time with the insertion and
deletion of nodes and relationships, but also have labels and rich
properties associated with the nodes and relationships [3]. Several
graph data models are being adopted for such graphs, with the
most common among them being the Labeled Property Graph or
property graph [4].

There are typically two broad types of graph workloads: trans-
actional and analytical workloads. Transactional workloads han-
dled by graph databases include inserting and deleting nodes and
relationships, updating their properties, retrieving nodes with
specific labels and/or property values, traversing the neighbor-
hood of certain nodes, exploring a portion of the graph filtered by
specific relationship labels and/or property values etc. [23]. These
workloads are latency-critical and executed in such a way as to
maximize throughput. Analytical workloads, on the other hand,
include numerous graph algorithms such as Breadth First Search
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(BFS), Single Source Shortest Path (SSSP), PageRank (PR), Weakly
Connected Components (WCC) etc. [38]. It could also include
Business-Intelligence-like queries that heavily involve complex
grouping and aggregation operations [71]. Analytical workloads
are compute-intensive and long-running. The execution of an
analytical task is thus parallelized to minimize latency. Although
there exist several graph processing frameworks specialized only
for graph analytics [36], however, some graph databases such as
Neo4j [1] also support graph analytics in addition to transactional
workloads. Furthermore, accelerating graph analytics with GPU
delivers significant performance benefits for numerous graph
algorithms [9, 10, 12, 13, 21, 22, 33, 41, 53, 54, 58, 68, 72, 75, 81, 82].
As a result, several GPU-based graph analytics frameworks have
been developed, allowing to leverage GPUs for graph analyt-
ics [19, 20, 25, 27, 50, 59, 74, 77, 78].

There is a growing interest in graph systems that execute trans-
actions and analytics concurrently on the same graph – termed
hybrid transactional/analytical processing (HTAP) [28, 84]. These
are fuelled by the increasing real-time requirements of various
use cases [51, 66, 73, 82]. Systems for property graphs are al-
ready recently being developed for executing transactional and
analytical workloads concurrently [84]. To realize HTAP graph
databases, one option is to have storage structures optimized
for property graphs (e.g. Neo4j’s storage design of fixed-sized
records [1]) and support concurrent execution of both transac-
tional workloads and graph analytics on CPU. However, this
forgoes potential performance speedup as GPU is not used to
accelerate graph analytics in this case. Additionally, this option
suffers from the limitations of single-store HTAP systems such
as interference and lack of workload-specific optimizations (see
Section 2.2 and Section 6.7 for more detail). Another option is a
GPU-based HTAP graph database where both the analytics and
the transactional workloads are executed onGPU completely [34].
This poses optimization issues for property graphs and transac-
tional workloads because the data structure and algorithm op-
timizations for graph analytics on GPU target structural graphs
(nodes interconnected by relationships with optional values like
weights), as graph analytics target often only the graph topology
and not labels and rich properties. It has been shown that in
heterogeneous HTAP (H2TAP), which is a system architecture
aimed at emerging hardware where different processor types
are exploited to match different workload types with their ideal
processor types, transactional workloads are more suited to be-
ing executed on CPU while analytics are better executed on
GPU [5, 56, 57]. Therefore, in as much as the high bandwidth
and massive parallelization potential of GPU is to be leveraged
by HTAP graph databases for accelerated analytics, the graph
would inevitably be stored in two different representations. One
is the main graph on CPU with a storage layout optimized for
transactional updates on property graphs [39]. The other is the
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replica on GPU represented in a format optimized for graph ana-
lytics on structural graphs. Ultimately, this gives rise to update
propagation. The accompanying challenges are:

(1) Propagating the transactional updates from themain graph
to the replica with minimal overhead in order to preserve
the overall system performance.

(2) Complying with HTAP freshness requirements in that the
execution of analytics should be done on the most recently
committed version of the graph.

(3) Guaranteeing data consistency between the main graph
and the replica.

The graph replica on GPU would ideally be stored using a dy-
namic data structure for GPU-based graph analytics that are suit-
able for updates [7, 16, 31, 43, 64, 79, 80]. However, it could also
be that the graph replica is in a static data structure, especially
since the underlying data structures in the majority of GPU-based
graph analytics frameworks [19, 20, 25, 27, 50, 59, 74, 77, 78] are
static data structures such as the sparsematrix formats [10, 43, 64]
– with the Compressed Sparse Row (CSR) being the most widely
used among these static data structures [14, 30]. With regards to
the dynamic data structure, to the best of our knowledge, there is
no work on handling updates in a graph HTAP setting leveraging
GPU, by way of propagating the updates from the main graph to
the dynamic-data-structure-based graph replica on GPU. As for
static data structures, they are not easily – if at all – updateable
and, therefore, a complete rebuild of the data structures is resorted
to, whenever any part of the graph gets updated [16, 31, 43, 64].
For example, on our GPU server (ref. Section 6.1), it takes about
3 seconds to execute the SSSP algorithm using the Gunrock [78]
framework on a CSR generated from the Linked Data Benchmark
Council’s Social Network Benchmark (LDBC SNB) [3] graph data
at scale factor 10. Assuming that the graph is updated, however,
it takes 33 seconds to rebuild the CSR before executing the SSSP
again on the new version of the graph, i.e. 11× more than the
SSSP execution time. As the previously mentioned works have
tried to optimize the performance of graph algorithms on GPU,
the bottleneck now lies in propagating the updates, as this exper-
iment shows. Rebuilding the CSR drastically degrades the overall
system performance. And without this rebuild, data freshness is
lost on the analytics.

In this paper, we address the earlier-mentioned three chal-
lenges of update propagation in the context of graph H2TAP,
where analytics are executed on a GPU-optimized replica of a
transactionally updatedmain property graph.We propose a novel
graph-based delta approach built upon a differential store or delta
store. Our approach consists in capturing transactional updates
to the main graph on CPU as deltas, which are stored in the delta
store and propagated, later on, to update the graph replica on
GPU while ensuring graph consistency. This way, the analytics
are executed on the recently committed snapshot of the graph
as per freshness requirements. Our approach is optimized for
fast and efficient (in terms of delta store size) update storage
and update propagation in graph H2TAP for both the dynamic
and static GPU-based graph data structures. We refer to the stor-
age and propagation of updates combined as update handling. In
summary, we make the following contributions:
• We propose a delta approach for update handling in graph
H2TAP (ref. Section 4.2).
• We present an efficient implementation of an append-only
graph delta store for storing transactional graph updates1.

1https://dbgit.prakinf.tu-ilmenau.de/code/poseidon_core

Our delta store has a compact CSR-like layout that reduces
memory overhead (ref. Section 5.1).
• We present a low-latency mechanism for propagating the
updates from the delta store to the GPU (ref. Section 5.2).
• As part of the update propagation, we introduce a mecha-
nism to enforce consistency between the main graph and
the GPU-based graph replica (ref. Section 5.3).
• For cases where the replica is stored in a static data struc-
ture, we demonstrate a way to merge the updates from
the delta store to the static data structure (ref. Section 5.4).

2 BACKGROUND

2.1 Data Structures for GPU Graph Analytics

Graphs are widely represented using sparse matrices [29]. CSR
is the most commonly used sparse-matrix format [30]. For an
adjacency matrix 𝑀 representing the topology of a graph, a CSR
representation of the graph essentially stores the non-zero en-
tries of 𝑀 and their column indices in three one-dimensional
arrays: the edge values array stores the actual non-zero entries,
the column indices array stores the indices of the columns of
those entries, and the row offsets stores the offsets of the values
(in the first two arrays) for each row in 𝑀 . These graph struc-
tures are static [14] and generally expensive to update - with the
highly compressed ones like CSR requiring a full rebuild when
updated [43]. Nevertheless, they - mainly CSR - underlie most
graph analytics frameworks [19, 20, 25, 27, 50, 59, 74, 77, 78].
Recently, however, ways are being devised to develop dynamic
data structures that are updateable. Most of these dynamic data
structures are array-based or list-based [16, 31, 43, 64, 79, 80].
Instead of storing adjacencies as lists or arrays, [7] uses a hash
table per node to store edges.

2.2 HTAP Systems

Traditionally, there used to be separate database systems dedi-
cated to transactional and analytical workloads. The transactional
(i.e. operational) data is periodically migrated, e.g. every night,
via an offline Extract-Transform-Load (ETL) process to the an-
alytical system for processing. This avoids resource contention
between the two workloads since they are executed on separate
systems. However, the periodic ETL process incurs data fresh-
ness problems as the analytics are run on an outdated version of
the data. Recently, however, many application domains require
analytical processing on the most recent version of the data in
real-time [8, 17, 18, 24, 37, 45, 46, 82], giving rise to hybrid trans-
actional/analytical processing (HTAP) whereby transactional
and analytical workloads are executed concurrently by the same
system [6, 42, 44, 46, 52, 60].

2.3 Concurrency Control

Concurrency control protocols are used to coordinate concurrent
accesses to database objects by transactions, commits and aborts.
We describe the relevant aspects of the Multi-Version Timestamp
Ordering (MVTO) concurrency control protocol implementation
in our system [39], which we extend to our delta store in order to
ensure consistency during update propagation (see Section 5.3).

When a transaction starts, it is assigned a timestamp that
uniquely identifies it. Each graph object o (i.e. a node or a rela-
tionship) in the main graph maintains metadata fields for con-
currency control: a transaction field txn-id for the timestamp
of the write transaction that currently locks it, a pair of begin
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timestamp bts and end timestamp ets that mark its access va-
lidity for read transactions, as well as a read timestamp rts for
the latest transaction that read it. Below are the conditions for
accessing objects by transactions.
Insert:When a transaction T with timestamp t adds a new graph
object o, the txn-id of o is set to t. o remains locked by T until
the end of T. The bts and ets of o are set to t and infinity (∞)
respectively, denoting that o is visible to any transaction with a
timestamp between t and∞ (i.e. T and later transactions).
Update: A transaction T with timestamp t only updates an exist-
ing object o if it locks o (i.e. no other transaction has a lock on it
already) and o has not been read by any transaction newer than
T. Upon update, the ets of o is set to t and a newer version of
o is created with bts and ets as t and ∞ respectively. The old
version of o is unlocked for read transactions with timestamps
between the old version’s bts and t. While the new version of o
remains locked until T finishes.
Read: A transaction T with timestamp t reads an existing object
o if (1) o is not locked by any transaction and t lies between the
bts and ets of o, or (2) o is locked by another transaction, but
there is an unlocked older version of o and t lies between the
bts and ets of the unlocked version. After reading o, the rts of
o is set to t so that no other transaction older than T is allowed
to update o.
Delete: The access condition for delete is the same as for update.
The ets of o is set to t and a newer version of o is created with
bts and ets both set to t. The old version of o is unlocked for
read transactions with timestamps between the old version’s bts
and t while the new version remains locked until T finishes.

3 RELATEDWORK

3.1 Column Stores

Column stores organize data column-wise by vertical partitioning
of tables to speed up analytical queries. This way, the columns
can additionally be compressed. As analytical queries scan a large
number of rows but for only a few columns, columnar storage
makes it possible to only fetch columns of interest. However,
column stores are expensive to update in comparison to row
stores. To mitigate this, column stores make use of various delta
structures that serve as temporary stores to buffer updates before
merging them into the main store. C-Store [70] maintains a read-
optimized read store and an update-oriented write store. Both
stores are column-oriented. MonetDB [15] is a column store that
maintains the main tables as immutable, compressed columns
and handles updates in delta columns. When the size of the delta
columns of a table exceeds a certain fraction of the table, the
deltas are merged to update the main table columns and the delta
columns are emptied.

3.2 Relational HTAP

Some HTAP systems maintain single data storage for OLTP and
OLAP to execute analytics on the same freshly ingested data
by transactions [6]. But, it is intrinsically difficult to optimize
the data organization in the storage for one without adversely
affecting the other because row stores are more suited for OLTP
while column stores work better for OLAP [6]. As a result, some
HTAP systems e.g. L-Store [60] that use the same data layout for
both OLTP and OLAP forego workload-specific optimizations
of one at the expense of the other. Some compromise on data
freshness and opt for hybrid layouts, e.g. [6], where hot tuples

that are more likely to be accessed are stored in a format op-
timized for OLTP operations while cold tuples are in a format
suited to OLAP requests. Moreover, the interference and resource
contention between OLTP and OLAP queries as they operate on
the same data degrades the overall performance [52]. As a result,
other HTAP systems resort to having different storage instances
- one with a row-wise layout while the other with a column-wise
layout - optimized for the respective workload type. However, to
maintain consistency between the data instances, updates from
the OLTP part have to be propagated to the OLAP replica, which
affects data freshness, unlike HTAP systems that have a single
storage instance.

HTAP systems that separate storage for OLTP and OLAP,
such as BatchDB [52], propagate OLTP updates to the OLAP
store. In SQL Server [46], new and updated rows in its column-
store indexes are first inserted into row-oriented delta stores. A
column-store index can have multiple delta stores, each having a
maximum of 1M rows. Delta stores that have reached the max-
imum capacity are merged into the column store. Some HTAP
systems like SAP HANA [69] use a single main store for both
OLTP and OLAP and employ a delta structure(s) for transac-
tions while OLAP queries read both the delta(s) and the main
store. RateupDB [47] has a read-only columnar AlphaStore and a
read-write columnar DeltaStore. It offloads analytics to GPU.

Although the concepts of delta store in these HTAP systems
(as well as the column stores discussed above) are similar to
our work, however, (1) they are all on relational databases while
our delta store implementation is tailored for graphs, (2) a di-
rect conversion of the approaches in these systems to graph
HTAP would result in suboptimal performance, as we show in
Section 6.8, (3) the delta stores in these systems have either row
or columnar layout while our delta store has a CSR-like layout
(ref. Section 5.1), which is not found in any of these systems, and
(4) we evaluate a persistent-memory-optimized (PMem) version
of our delta store as well (ref. Section 6.5), whereas none of these
systems considered persistence for their delta stores.

To the best of our knowledge, we are the first to tackle the
problem of update propagation in a graph HTAP setting. In our
previous work [40], we presented an initial solution for update
propagation in graph HTAP while in this work, our solution han-
dles updates faster and more efficiently and supports both static
and dynamic graph data structures Furthermore, in this work,
we demonstrate a strategy to enforce consistency between the
main graph and the GPU-based graph replica while propagating
updates, evaluate our delta store on modern hardware (PMem,
in addition to DRAM), and incorporate dynamic data structures
in update propagation (see Section 5 and Section 6).

3.3 Data Structures for CPU Graph Analytics

Teseo [48] and Sortledton [26] are examples of CPU-based data
structures for dynamic structural graphs. These data structures
are aimed at analytics on structural graphs with support for con-
current updates. Firstly, inherently, systems that employ these
data structures do not make use of any delta storage since they
have a single instance of the graph on CPU on which both ana-
lytics and updates are executed. Thus, they do not leverage GPU.
Secondly, they incur longer analytics execution time than would
otherwise be because they run analytics and updates concur-
rently on the same graph instance. Thirdly, these data structures
are for dynamic structural graphs and thus cannot be used as
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property-graph stores. In Section 6.7, we show that our approach
outperforms the approach of using these data structures.

4 GRAPH H
2
TAP

4.1 System Design Considerations

Transactional graph processing entails read and update queries
on nodes and relationships, as well as local neighborhood traver-
sals. For property graphs, the nodes and relationships addition-
ally have labels and properties, on which filter queries can be
executed. These are typical for graph database systems [11] that
provide support for low-latency and high-throughput ACID trans-
actions. Meanwhile, analytics are heavily based on adjacency list
scans and, as demonstrated in numerous systems dedicated to
graph analytics [36], typically run on a read-only graph snapshot.
However, similarly to relational databases, there is an increasing
demand to support hybrid transactional and analytical graph pro-
cessing [28, 84]. This has led to the emergence of graph databases
like Neo4j [1], based on the property graph model.

Another dimension to graph HTAP is exploiting modern hard-
ware, e.g. GPU, for accelerated graph analytics. The aforemen-
tioned graph HTAP maintains a single graph storage structure
on the CPU for both transactional and analytical workloads,
which leaves out the option of leveraging GPU for performance
speedup. It is also possible for the single store to be entirely on the
GPU, where not only the graph analytics but also the transaction
processing is performed on the GPU, similar to GPUTx [34], a
GPU-based relational OLTP engine. Aside from the performance
isolation issues and limitations to workload-specific optimiza-
tions, data structures optimized for analytics on GPU target struc-
tural graphs and do not support the rich properties obtained in
property graphs. This leaves us with having separate storage
for transactional workloads and analytics, each residing on the
computing hardware that best fits it. With heterogeneous HTAP
(H2TAP), CPU and GPU are essentially more suited to OLTP and
OLAP tasks respectively [5, 56, 57]. Ultimately, two instances
of the graph exist: the main property graph which transactions
update on the CPU and the structural graph replica on GPU for
analytics. Hence, updates from the main graph need to be propa-
gated to update the GPU graph replica – whether the underlying
GPU data structure is dynamic or static – so that analytics are
executed on the recent version of the graph as per freshness
requirements. This update propagation needs to have minimal
overhead so as not to degrade the overall system performance.

4.2 Update Handling

Fig. 1 gives an overview of our delta approach to graph update
handling. Our approach centers around a delta store and consists
of a continuous cycle of two phases, namely the update storage
phase and the update propagation phase.
Update Storage: As shown in the left part of Fig. 1, transactions
update the main graph and these updates are persisted (i.e. made
durable) to the graph at commit. The updates are also captured
in the delta store during commit at the same time as they are
persisted to the main graph. Each transaction captures its mod-
ifications to the graph as deltas and appends the deltas to the
delta store (ref. Section 5.1). In this phase, the goal of our work
is to efficiently append the deltas to the delta store with minimal
overhead on the latencies of transactions and minimal memory
footprint of deltas.
Update Propagation: Upon the arrival of analytics, the replica
on GPU is updated using the deltas in the delta store so that the

Figure 1: Update Handling.

analytical queries are executed on the most recently committed
graph version. For this, the delta store is first scanned (ref. Sec-
tion 5.2) to prepare the deltas for updating the graph replica. This
scan is independent of whether the replica is stored in a dynamic
or static GPU-based graph data structure. However, the remain-
der of the update propagation phase depends on the underlying
data structure: (1) Dynamic Data Structures: The deltas are coa-
lesced and sent to the GPU all at once to amortize the transfer
overhead. Once on the GPU, they are used as groups of insert and
delete operations on nodes and relationships to update the dy-
namic data structure (top right in Fig. 1). This batched ingestion
of updates is already handled by the dynamic data structure [7].
(2) Static Data Structures:We use CSR as a representative use case.
Instead of rebuilding the CSR, which is too costly as we have
shown already, we keep a copy of the CSR on the CPU and merge
the deltas into it (ref. Section 5.4), resulting in a new up-to-date
CSR. This new CSR is then transferred to the GPU to replace
the old CSR on the GPU (bottom right in Fig. 1). In summary,
when a transactional update is committed to the main graph, the
process of applying the update to the graph replica starts upon
the arrival of analytics. How long it will take to apply the update
to the graph replica is the update propagation time.

4.3 Analytics Execution

With regard to the analytics, we assume that the graph replica fits
in the GPU memory. Otherwise, techniques could be employed
such as graph partitioning, multi-GPU processing, unified virtual
memory, zero-copy memory access, etc. These solutions still
outperform CPU-based approaches and sometimes even compete
with ideal unlimited GPU memory baselines [32, 49, 55, 63].

Furthermore, at any point in time, there is only one graph
replica. In other words, the analytics are executed on a single
snapshot of the graph at a time, similar to relational systems like
[52] and [47]. The analytics could be dispatched from a queue.
Each time an analytics A arrives, it is added to the queue. When
A is at the head of the queue, there are two cases: (1) No other
analytics is being executed: In this case, A is executed if the graph
replica is the recent version of the main graph as at A’s arrival
time. Else, the update propagation is immediately triggered with
respect to the arrival time of A and A is executed after updating
the replica. (2) Another analytics B is being executed: In this case,
A is executed concurrently with B (i.e. on the same graph replica),
similar to [76], if the replica is the recent version of the main
graph as at the time A arrived. Otherwise, the update propagation
is immediately triggered as per the arrival time of A in a pipeline
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fashion (while B is running). The replica is updated when B
finishes and then A is executed.

5 FAST AND EFFICIENT UPDATE HANDLING

5.1 Delta Store

Our delta store buffers transactional updates on the main prop-
erty graph in form of deltas in the delta store. The deltas are
used to update the structural graph replica on GPU as per fresh-
ness requirements. An update transaction appends deltas to the
delta store only at commit time, thereby avoiding the overhead
of deleting the deltas afterwards from the delta store (as part of
undo operations) if the transaction aborts. When a transaction
commits, it appends one or more deltas depending on the changes
it made to the main graph that alter the topology (i.e. the nodes
and how they are interconnected by relationships) of the graph.
Different transactional update types alter the graph topology
differently and, by extension, the graph replica. These update
types are node insertion, relationship insertion, node deletion
and relationship deletion.
Insert/Delete Relationship: When a transaction inserts (or
deletes) a relationship, (1) if the graph is a directed graph, the
transaction appends a single delta that is mapped to the ID of
the relationship’s source node. This delta stores the ID of the
destination node and the relationship weight (i.e. edge value),
(2) whereas for an undirected graph, the transaction appends two
deltas. One is mapped to the ID of the first node and stores the
second node’s ID and the relationship weight, while the other is
mapped to the ID of the second node and stores the first node’s
ID and the relationship weight. For the remainder of this paper,
we consider only directed graphs.
Insert/Delete Node: However, when a transaction inserts (or
deletes) a node, a single delta is appended and mapped to the ID
of the inserted (or deleted) node. For each relationship insertion
associated with an inserted node by the same transaction that
inserted it, the transaction appends deltas for the relationship
insertion as described above. If the inserted node is a source node,
the transaction stores the destination node ID and the relation-
ship weight in the delta for the node insertion. If the inserted node
is a destination node, the transaction stores the inserted node’s
ID (i.e. the destination node ID) and the relationship weight in a
delta (created if one does not exist) associated with the source
node. Similarly, if a node is deleted and is connected, as a des-
tination node, to other nodes, the transaction appends a delta
for each of those source nodes. The transaction maps each delta
to the corresponding source node ID and stores the ID of the
deleted node (i.e. the destination node ID) in the delta as well as
the corresponding relationship weight.

Thus, each update transaction appends a separate delta for
each node it updated, capturing all its modifications on that node.
There is a mapping between each delta appended by a transaction
and the ID of the node whose modifications the delta is capturing.
That is, a delta appended by a transaction T and mapped to the
ID of a node N captures all the updates made by T on N. We
highlight here that a transaction appends its deltas without up-
dating or even looking up any deltas already appended by other
transactions. Thus, our delta store is an append-only delta store.
This append-only mechanism brings the following three perfor-
mance benefits: (1) It minimizes the overhead of appending deltas
during the commit of each transaction because a transaction only
appends its deltas without lookups on existing deltas. (2) It elim-
inates contention between concurrent transactions appending

Figure 2: Delta Store Architecture.

to the delta store because no transaction updates existing deltas.
(3) It reduces the complexity of the MVTO extension to the delta
store (ref. Section 5.3) because no transaction updates existing
deltas during the delta store scan (ref. Section 5.2).
Delta Store Architecture: The delta store comprises a delta
table and a set of three arrays: inserts, weights and deletes ar-
rays. We implement the delta table as a linked list of fixed-sized
chunks, where each chunk is an array of equally-sized objects
we call delta records. Each delta is stored as a delta record. With
this hybrid linked-list–array structure, the delta table efficiently
grows to accommodate more delta records by allocating new
chunks. Each delta record stores the timestamp of the transaction
that appended it as well as the ID of the updated node. A delta
record is uniquely identified in the delta store by a composite of
its transaction timestamp and node ID. A delta record also stores
a validity flag to indicate whether or not the delta has been used
to update the graph replica (in a previous update propagation
cycle) since each delta is used only once in updating the replica.
This validity flag along with the transaction timestamp in delta
records are used for guaranteeing consistency (see Section 5.3).
Moreover, a delta record stores a deleted flag to indicate whether
the node associated with the delta was deleted or not. This avoids
storing the destination node IDs for all its outgoing relationships,
which saves space since all the relationships of a deleted node
are also deleted. The fields in a delta record for storing trans-
action timestamp, node ID, the validity and deleted flags are
uniform across all delta records. However, since all delta records
are equally sized but the number of captured updates varies from
one delta record to another, we do not store the updates (i.e. the
destination node IDs and corresponding relationship weights for
inserts and deletes) directly in the delta records. Rather, we out-
source them to the three arrays in the delta store: inserts, weights
and deletes. The inserts array contiguously stores the destination
node IDs of all inserted relationships across all delta records from
all transactions. Likewise, the weights array contains the corre-
sponding relationship weights (i.e. edge values) of all elements
of the inserts array. And the deletes array contiguously stores
the destination node IDs of all deleted relationships across all
delta records from all transactions. Note that there is no need to
store the corresponding relationship weights for elements in the
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deletes array because they exist already in the graph replica. This
way, a delta record simply stores an integer offset to the starting
positions of the destination node IDs of its inserted relationships
and their corresponding relationship weights in the inserts and
weights arrays respectively, as well as another integer offset to
the starting position of the destination node IDs of its deleted
relationships in the deletes array. In addition to the two integer
offsets, each delta record also stores two count values to denote
the number of elements that belong to it in the inserts, weights
and deletes arrays. Thus, retrieval of a delta record’s updates
takes only three array lookups – a constant time complexity.

Overall, our delta store has a CSR-like layout as illustrated
in Fig. 2, with all updates captured by all deltas linearized in the
three arrays (analogous to the column indices and edge values ar-
rays of a CSR) and their offsets stored in an array of delta records
(analogous to the row offsets array of a CSR). The lightweight
append-only design of the delta store minimizes overhead on
transactions (ref. Section 6.3), its compact layout minimizes the
memory footprint of the delta store itself (ref. Section 6.3) and the
contiguous storing of delta elements facilitate efficient scanning
of the delta store for the propagation of updates (ref. Section 6.6).
Illustrative Example: We use Fig. 2 to illustrate how transac-
tions append deltas to the delta store. Two transactions update the
sample graph. The first transaction x with timestamp tx inserts
a node with ID 5, inserts an outgoing relationship with weight
2.0 and an incoming relationship with weight 5.0 to connect the
newly inserted node to nodes with IDs 1 and 3 respectively. At
the same time it is committing its updates, x appends two delta
records to the delta table (depicted by the third and fourth rows
of the table in the figure). The first of the two delta records is
mapped to the newly inserted node with ID 5, storing the ID of
the destination node (i.e. 1) for its inserted outgoing relationship
with weight 2.0. The destination node ID of 1 and relationship
weight 2.0 are outsourced to the inserts and weights arrays respec-
tively at index 100. Thus, the delta record stores the inserts offset
100 and the inserts count 1 (i.e. the number of inserted outgoing
relationships). Similarly, the second delta record is mapped to
the node with ID 3. The validity flags of the two delta records
read true since they have not yet been used to update the graph
replica while the deleted flags of the two delta records are set
to false because the updated nodes with IDs 5 and 3 were not
deleted. The second transaction y with timestamp ty deletes the
relationship connecting nodes with IDs 1 and 2, and deletes the
node with ID 4. y appends a delta record for node 1 and marks a
deletes offset of 50, i.e. the index in the deletes array starting from
which the IDs of the destination nodes of its deleted outgoing
relationships are stored. It has a deletes count of 2, which means
two outgoing relationships of the node were deleted (i.e. the IDs
at index 30 and 51). y also appends a delta record for the deleted
node with ID 4. The deleted flag is set to true because the node
was deleted. And because the node with ID 3 has an outgoing
relationship connecting it to the deleted node, the relationship
is deleted as a result. y thus appends a delta record for the node
with ID 3. Note that the colours in the figure illustrate how each
transactional update is reflected in the delta store.

5.2 Delta Store Scan

The arrival of analytics triggers an update propagation transac-
tion (Tp) that begins with a delta store scan. During the scan, Tp
performs a consistency check to identify valid and visible deltas

with which to update the graph replica in the current update prop-
agation cycle. The visibility of deltas as part of the consistency
check is determined by our MVTO extension (see Section 5.3).

As discussed in Section 5.1, each updated node has an associ-
ated delta for each transaction that updated it. Multiple transac-
tions that updated the same node would append separate deltas
to capture their corresponding updates on the node. Thus, the
updates associated with the same node may be spread across mul-
tiple deltas by different transactions (e.g. the two deltas mapped
to the node with ID 3 in Fig. 2). Tp combines such deltas into a
single delta during the scan, obviating the need for a transaction
to make a check of the deltas appended by other transactions
since the delta store is an append-only store, where a transaction
is oblivious of the content of the deltas appended by other trans-
actions even if they updated the same nodes. All deltas used in
the current update propagation cycle are then marked as invalid
by the end of the delta store scan.

5.3 Graph Consistency

On the main graph, graph consistency is guaranteed by MVTO
using the metadata fields of the graph objects for concurrency
control (see Section 2.3). If a transaction aborts as per MVTO,
its updates will neither be persisted to the main graph nor will
the transaction append deltas to the delta store. Hence, the up-
date storage phase (i.e. appending deltas to the delta store, as
discussed in Section 4.2) conforms to the MVTO implementation
on the main graph, thereby guaranteeing consistency because
(1) all transactions during the update storage phase are already
committed transactions as per the MVTO on the main graph, and
(2) the delta store is append-only and no lookups (delta record
reads) are done during appending deltas. However, this is not the
case during the delta store scan because (1) transactions continue
appending deltas to the delta store uninterruptedly even while
Tp (ref. Section 5.2) is scanning the delta store, and (2) Tp reads
delta records which, unlike the main graph objects, do not have
metadata fields for concurrency control.

Therefore, we extend the MVTO implementation to the delta
store. This extension determines the visibility of deltas during
the consistency check. This is because since Tp runs concurrently
with update transactions appending deltas to the delta store, a
transaction T that is more recent than Tp may append a delta
to the delta store during the scan. Tp is not allowed to read
the newly appended delta (see Section 2.3). Tp is a read-only
transaction and, as a result, only the access control for read
operation applies (see Section 2.3). Moreover, each delta was
appended to the delta store by a transaction that has already
committed, further narrowing down the access condition: that is,
a delta is visible to Tp only if it was appended by a transaction
that is older than Tp. Consequently, by identifying deltas that
are both valid and visible to Tp, graph consistency between the
main graph and the graph replica is enforced. With this, our delta
store provides snapshot isolation. In summary, the consistency
check entails the following for each delta: (1) If the delta is not
visible to Tp, it is skipped for the current update propagation
cycle. However, it will be visible for the instance of Tp in the
next update propagation cycle. (2) If the delta is visible to Tp but
invalid, it is skipped for the current and any subsequent update
propagation cycle. (3) If the delta is both visible to Tp and valid,
it is included in the current update propagation cycle.
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Algorithm 1: Dynamic Graph Data Structure Update
1 xid ←− max. node ID before updates

2 foreach delta do

3 if delta.deleted then
4 deletions.add(delta.nid)

5 else if delta.nid <= xid then

6 insert_edges(delta.inserts)

7 delete_edges(delta.deletes)

8 else

9 insertions.add(delta)

10 insert_nodes(insertions)

11 delete_nodes(deletions)

5.4 Delta Merge

The data structure (whether static or dynamic) that stores the
graph replica is transparent to our delta store. All necessary
information about the updates to the main graph is captured by
the deltas, which are used to update the graph replica.
Dynamic Data Structures: With a dynamic data structure, we
transfer the valid and visible deltas obtained from the delta store
scan to the GPU. To speed up the delta transfer, we coalesce the
modifications of these deltas in the inserts, weights and deletes
arrays of the delta store and copy them to the GPU memory
all at once. We take the hash-tables-based data structure of [7]
as a representative dynamic data structure (ref. Section 2.1). It
supports four update operations: edge and node insertion and
deletion. It implements ingesting these updates in batches. As
such, once the coalesced updates captured by these deltas are
transferred to the GPU, they are ingested to update the data
structure. Algorithm 1 depicts a high-level illustration. For each
delta, it first checks the delete flag: if the node associated with the
delta is deleted, it is appended to a deletion queue (Line 4). If the
node is newly inserted, it is appended to an insertion queue along
with its inserted edges (Line 9). For updated nodes, the inserted
edges are ingested in batches and the deleted edges likewise
(Lines 6 - 7). Finally, the insertion and deletion queues are used to
ingest the newly inserted nodes and remove the deleted nodes in
batches respectively (Lines 10 - 11).
Static Data Structures:We use CSR as a representative of the
static data structures (ref. Section 2.1). The updates captured in
the deltas are in such a way that sorted column indices in the CSR
are maintained. Algorithm 2 describes our proposed delta merge
operation for CSR update. It divides all updated nodes into two
disjoint sets based on the maximum node ID in the CSR before the
update (i.e. the old CSR). The first set contains all updated nodes
that existed previously in the old CSR (Line 4) while the second
set contains all newly inserted nodes (Line 5). The delta merge
begins with each node that existed already in the old CSR (Lines
7 - 15). If a node was not updated since the last CSR update (or for
the first CSR update since the initial CSR build), the entries for
the node in the new CSR is the same as in the old CSR. Note that
the equality between the entries for the node in the old and new
CSR here applies only to the entries in the column indices and
edge values arrays. The entry for the node in the row offsets array
is entirely dependent on the number of updates in the preceding
nodes. Thus, the expressions new_csr[i] and old_csr[i] used
in Algorithm 2 are oversimplifications of the constituent parts of
a CSR. If a node was updated, however, its delta is merged with
its entries in the old CSR to obtain its entries in the new CSR

Algorithm 2: Static Graph Data Structure Update
1 A ←− node IDs in all deltas

2 xid ←− max. node ID in old_csr

3 uid = A.upper_bound(xid)

4 L = {id | id ∈ A and id < uid}

5 U = {id | id ∈ A and id >= uid}

6 i = 0

7 foreach id ∈ L do

8 while i < id do

9 new_csr[i] = old_csr[i]

10 i++

11 new_csr[i] = merge(old_csr[i], deltai)

12 i++

13 while i <= xid do
14 new_csr[i] = old_csr[i]

15 i++

16 foreach id ∈ U do

17 new_csr[i] = deltai

(Line 11). The merge() function first checks the delta if the node
was deleted. If that is the case, there would be an empty entry for
the node in the new CSR. Else, the merge() function combines
the inserts entries in the delta with the entries for the node in the
old CSR and removes the deletes entries. The result is assigned as
the entries for the node in the new CSR. Finally, the delta merge
incorporates newly inserted nodes (Lines 16 - 17). Since no prior
entries existed for these nodes in the old CSR, only the deltas
constitute the entries for the nodes in the new CSR. Finally, the
new CSR is sent to the GPU to replace the old one. Note that the
new CSR also replaces the CSR copy on the CPU and serves as
the old CSR in the next CSR update.

6 EVALUATION

6.1 Setup

We use two servers for our experimental evaluations:
GPU Server: Our GPU server is a dual-socket AMD EPYC 7F52
with 16 cores per socket clocked at a maximum of 3.50GHz. It
is equipped with 528GB of DRAM and runs on CentOS 7.9. The
machine contains a NVIDIA A100 Tensor Core GPU with 40GB
of memory with a PCIe 4.0 interconnect. We use NVCC version
11.2.
PMem Server: Our PMem server is a dual-socket Intel Xeon
Gold 5215 with 10 cores per socket running at 3.40 GHz max.
The machine has 396GB of DRAM, 1.5TB of Intel Optane DC
Persistent Memory Module (DCPMM) operating in AppDirect
mode and runs on CentOS 7.9. We create an ext4 filesystem on the
PMem DIMMs, mounted with the DAX option to enable direct
loads and stores, thereby bypassing the OS cache. We use the
Intel Persistent Memory Development Kit (PMDK) version 1.11.

6.2 Data and Workload

We use the Linked Data Benchmark Council’s Social Network
Benchmark (LDBC SNB) [3] datasets at scale factors (SF) 1, 3,
10, and 30. The LDBC-SNB [3] is based on a social network of
different entity types interconnected by relationships, modelled
as per the labelled property graph model. We load the data into
our Poseidon [39] system as the main graph in PMem. We make
use of a set of four basic update operations, each of which is
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centered around one of the update types that require updating the
graph replica on GPU, i.e. node insertion, relationship insertion,
relationship deletion and node deletion, as already discussed in
Section 5.1. We describe the four operations below:
Insert Relationship:Retrieves a Person nodewith a given source
node ID and a Post node with a given destination node ID, and
creates a relationship with label likes to connect the two nodes.
Insert Node: Creates a new Person node and a new incoming
relationship with label knows connecting the newly inserted node
to an existing Person node in the graph.
Delete Relationship: Gets a Person node with a given source
node ID and deletes one of its outgoing relationships.
Delete Node: Removes all the outgoing and incoming relation-
ships that connect a Person node with a given ID to its neighbours
and as well removes the node from the graph.

We implement and run these operations as transactional queries.
The node and relationship insert operations are similar to the
SNB Interactive Insert queries while the node and relationship
delete operations are like the LDBC SNB Business Intelligence
(BI) Delete queries [3]. Note that our focus in this evaluation
is not the performance of the transactional queries themselves
as they update the main graph. Rather, our focus is on evalu-
ating the overhead of our delta approach to update handling –
i.e. the update storage phase and the update propagation phase
(ref. Section 4.2). For graph analytics, we use Breadth-First Search
(BFS), PageRank (PR) and Single-Source Shortest Path (SSSP) al-
gorithms from the LDBC Graphalytics benchmark on the Graph
500 dataset at scale 24 [38].

6.3 DELTA
FE

and DELTA
I

We compare our fast and efficient delta approach in this paper
with our previous work [40]. We denote them as DELTAFE and
DELTAI respectively. DELTAFE deltas are more fine-grained than
DELTAI deltas in that DELTAI stores the adjacency lists of all
updated nodes. Hence, DELTAI stores more data in the update
storage phase and, consequently, accesses more data in the up-
date propagation phase compared to DELTAFE. This adversely
affects the performance of DELTAI as we show below. Also, un-
like DELTAFE, DELTAI is not suitable for dynamic data structures.
And since DELTAI only addressed static data structures (CSR), we
compare the two in terms of (1) the time for executing the trans-
actional queries, which also includes appending deltas by each
transaction into the delta store during commit, (2) the memory
consumption for storing the deltas in the delta store, and (3) the
update propagation time, which comprises the time to scan the
delta store for deltas as well as the time to merge the deltas in
order to update the CSR before executing analytics.

The nodes in a graph are of varying degrees2, depending on
the degree distribution of the graph. To investigate the influence
that the degrees of the updated nodes have on the performance
of both DELTAI and DELTAFE, we sort the node IDs based on the
degrees of the nodes (i.e. the sizes of their adjacency lists) and
define a window of IDs for updates. We slide the window to select
nodes with low degrees (denoted as LoDeg in the plots) or nodes
with high degrees (denoted as HiDeg in the plots) to be updated
by the queries.
Transactional Update Time: Fig. 3 shows the transactional
update time comparison between DELTAI and DELTAFE for both
high and low node degrees using the SF 1 data. The execution
of the insert relationship, insert node, delete relationship and

2the degree of a node is the number of relationships connected to that node

delete node queries are distributed as 66%, 22%, 11% and 1% of the
total number of queries respectively. We conduct an evaluation of
the four update types separately, followed by a mixed workload
containing all the update types. Based on Fig. 3, we come to the
following conclusions.

Firstly, DELTAFE has a higher performance than DELTAI in
all cases, especially with a larger number of queries. Secondly,
unlike DELTAI, DELTAFE exhibits the same performance for both
low- and high-degree nodes. In other words, the DELTAI is not
scalable with increasing node degrees while DELTAFE is not even
influenced by the degrees of the particular nodes being updated.
Thus, we see the performance difference between DELTAFE and
DELTAI being even higher when the updated nodes are high-
degree nodes than when they are low-degree nodes.

It is worth explaining Fig. 3 further. (1) The performance dif-
ference between DELTAFE and DELTAI is much more for insert
relationship than other updates because repeatedly inserting re-
lationships increases the degree of the updated nodes. And the
higher the degree of the nodes, the bigger the performance dif-
ference between DELTAFE and DELTAI. (2) The performance of
DELTAI for delete node with low node degrees is the same as
with high node degrees. The reason is that the appended deltas
for the deleted nodes are all empty since there are no more con-
nected relationships remaining for any node after it is deleted
(see Section 6.2), irrespective of the degree of the node before
it was deleted. (3) We only evaluate delete relationship for high
node degrees because deleting relationships is limited to the total
number of outgoing relationships attached to the Person nodes
selected by the window for updating (see Section 6.2), even if the
nodes may still have incoming relationships. Similarly, we only
evaluate the mixed workload for high-degree nodes because of
the delete relationship operations contained therein.

We compare the transactional update times of both DELTAI

and DELTAFE (i.e. plus the overhead of appending deltas) with the
baseline transactional update time. By baseline here, we mean
the default execution of transactional updates without any delta
mechanism (i.e. without the overhead of appending deltas). The
update times for the baseline and DELTAFE are close to each other
in all cases, as shown in Fig. 6. To further validate this on a
larger-sized graph, we execute the mixed workload on the SF
10 data and plot the transactional update times of the baseline
and DELTAFE in Fig. 8. Similarly to Fig. 6, we see from Fig. 8 that
the update times are similar. As such, there is no correlation
between the appended deltas and the transactional update time
of DELTAFE. On the other hand, there is a difference between the
update time of the baseline and that of DELTAI, essentially the
same as the difference between DELTAI and DELTAFE in Fig. 3.
This delta append overhead of DELTAI compared to the baseline
is directly correlated to the total size of deltas as depicted in
Fig. 7. The overhead exists only for DELTAI but not for DELTAFE
because, as Fig. 4 shows, DELTAFE has orders of magnitude less
storage overhead than DELTAI to such an extent that DELTAFE
delta append overhead is negligible and does not influence the
overall transactional update time.
DeltaMemory Footprint:Next, we evaluate DELTAI and DELTAFE
in terms of their memory footprint i.e. the total size of deltas in
the delta store. The size of each delta depends on the number of
modifications it captures, which are stored in the inserts, weights
and deletes arrays in the delta store, as explained in Section 5.1.
And these modifications vary from one delta to another. The delta
sizes are therefore the total size of the stored array elements in
the inserts, weights and deletes arrays. Each array element in the
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Figure 3: Transactional Update Time.
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Figure 4: Delta Memory Footprint.

50k 125k 200k
100
200
300
400

# Queries

Ti
m
e
(m

s)

(a) Insert Node

50k 125k 200k
100
200
300
400

# Queries

Ti
m
e
(m

s)

(b) Delete Node

50k 125k 200k

1000
2000
3000
4000

# Queries

Ti
m
e
(m

s)

(c) Insert Relationship

20k 70k 120k

120
140
160
180

# Queries

Ti
m
e
(m

s)

(d) Delete Relationship

20k 70k 120k

1000
2000
3000

# Queries

Ti
m
e
(m

s)

(e)Mixed

Figure 5: Update Propagation Time.
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Figure 6: Transactional Update Time (Baseline vs DELTAFEHiDeg on SF 1).
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Figure 7: Delta Append Overhead.

inserts and deletes arrays is an 8-byte node ID while in theweights
array, each element is an 8-byte relationship weight.

As Fig. 4 shows, DELTAFE consumes less memory compared to
DELTAI by orders of magnitude (hence the reason we use differ-
ent scales in the plots). This is expected since DELTAI not only

stores the entire state of the adjacency list of each updated node
but also for each transaction that updated the node. This results
in the transactional update time difference between DELTAI and
DELTAFE, especially for a large number of updates and/or high-
degree nodes (see Fig. 3). Fig. 4 also shows that the memory
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Figure 9: CSR Rebuild and CSR Copy.

footprint of DELTAFE is the same regardless of the degrees of
the updated nodes, thus validating that DELTAFE is much more
scalable than DELTAI with higher degrees of nodes. And this
is particularly crucial in settings where the memory budget is
limited. For delete node, however, the memory footprint of the
DELTAI is the same for low- and high-degree nodes since the
deltas for deleted nodes are empty, as explained earlier. Nonethe-
less, even for the delete node, the memory footprint of DELTAI is
much higher than that of DELTAFE.
Update Propagation Time: Furthermore, we analyze the time
for propagating updates to the CSR so as to execute analytics on
an updated version of the graph. Precisely, we compare between
DELTAI and DELTAFE based on the combined time to scan the delta
store for consistency check (ref. Section 5.2 and Section 5.3) and
time of themerge operation for updating the CSR (ref. Section 5.4).
From Fig. 5, we draw similar conclusions to those from Fig. 3.
The DELTAFE is faster than the DELTAI in propagating updates
in all cases. This is more so with a larger number of queries,
i.e. larger number of deltas. Also, the DELTAI performs worse
with high-degree nodes than with low-degree nodes while the
DELTAFE is not affected by the degrees of the updated nodes,
making it not only faster with increasing node degrees, but also
more scalable. We discuss the update propagation times in more
detail in Section 6.4.

6.4 CSR Rebuild and CSR Update

We further evaluate DELTAFE with regards to update propagation.
A straightforward way of handling updates and updating a CSR is
to simply rebuild the CSR each time the main graph gets updated.
However, the overhead of constantly rebuilding the CSR is quite
expensive especially for large graphs where the rebuild time is
even much higher than the actual execution time of the analytics,
as we showed previously. We plot the CSR rebuild times for
graphs of different SNB scale factors in Fig. 9 to illustrate how
the rebuild time grows for larger graph sizes. In Section 6.3, we
have shown that unlike DELTAI, the transactional update time of
DELTAFE is not correlated with the appended deltas. This leaves
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Figure 10: Update Propagation Time (Detailed).

us with the update propagation time as the overhead of our delta
approach using DELTAFE. Fig. 10a shows the correlation between
the number of appended deltas and the update propagation time
for the SF 10 data. Comparing with the CSR rebuild time of SF 10
graph, i.e. 56921.64ms, we see that our delta approach is faster
than constantly rebuilding the CSR. However, we can see from
the figure that the overhead of the delta approach increases with
an increasing number of deltas and, thus, could be higher than
the CSR rebuild time depending on the number of appended
deltas. Therefore, we propose a cost model to decide when to use
which of the two approaches.

We further break down the update propagation time into its
constituent time components, i.e. the delta store scan time and
the merge operation time. Fig. 10b shows the correlation between
each of the two and the number of appended deltas. The delta
store scan is more strongly correlated with the number of deltas
than the merge operation time and eventually becomes the dom-
inant part of the update propagation time. The merge operation
times lie within a limited time range. Since the merge operation
comprises copying parts of the CSR for the unchanged nodes
(Lines 9 and 14 of Algorithm 2) and modifying parts of the CSR
for the updated and the newly inserted nodes (Lines 11 and 17 of
Algorithm 2), comparing the merge times with the time to simply
copy the entire CSR (1075.94ms for SF 10 as depicted in Fig. 9b)
reveals that the merge operation is dominated by the copying
(which depends on the size of the graph) rather than the modify-
ing (which depends on the number of the deltas). This is because
the deltas are only a fraction in comparison to the entire graph.
We plot the CSR copy times for different scale factors in Fig. 9b
to show how the copy time grows with larger graph sizes.

Thus, our cost model constitutes (1) a model for the correlation
between the number of appended deltas and the time for scanning
the delta store, (ref. Fig. 10b), (2) a model for the correlation
between the CSR copying part of the merge operation time and
the graph size (ref. Fig. 9b), (3) amodel for the correlation between
the CSR modifying part of the merge operation time and the
number of deltas (ref. Fig. 10c), and (4) a model for the correlation
between the CSR rebuild time and the graph size (ref. Fig. 9a).
The time of delta store scan, the merge operation and the CSR
rebuild are obtainable from the mathematical model extractions
of the model descriptions above. The cost model compares the
rebuild time overhead and the delta time overhead (i.e. delta store
scan and merge operation) to decide between the two approaches.
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Figure 11: Volatile vs Persistent Delta Store.

From the cost model, we get a delta size threshold, which is the
minimum number of deltas for which the rebuild overhead is less
than the delta overhead. We incorporate this threshold into our
delta store such that before any transaction appends its deltas
into the delta store at commit, it checks to ensure that the number
of deltas presently in the delta store plus the number of its deltas
does not exceed the threshold. If that is the case, it appends its
deltas to the delta store. Otherwise, it does not append its deltas
but sets OFF a delta mode flag in the delta store (which is ON by
default). Any subsequent update transaction that finds the delta
mode flag switched OFF also does not append any deltas. At this
point, the delta store is cleared at once to remove all deltas but
the delta mode flag stays OFF. Hence, the CSR is rebuilt upon the
next execution of analytics. As soon as the CSR is rebuilt, the
delta mode flag is switched back ON and all subsequent update
transactions append their deltas into the delta store onwards. We
leave a detailed evaluation of our cost model for future work.

6.5 Volatile and Persistent Delta Store

The delta store is lost in case of a system crash or restart because
it is volatile. The CSR is also lost and would have to be rebuilt
from the main graph However, similar to the main graph on
PMem, the delta store can be instantly recovered if it is also
stored on PMem. Such a persistent delta store instantly continues
to serve its purpose upon recovery due to failure or restart. This
is an advantage, particularly in cases where there are frequent
system failures or restarts.

We implement a PMem-based DELTAFE while employing some
of the PMem optimizations used in Poseidon’s main storage [39]
in order that the persistent delta store achieves a near-DRAM
performance. We use the SF 10 data. Fig. 11a shows that the
transactional update times with the volatile and persistent delta
stores are close to each other. This is as expected for two main
reasons. Firstly, the overhead of appending deltas with DELTAFE

does not influence the update time as discussed in Section 6.3 (see
Fig. 6). Secondly, the PMem optimizations have been proven to
achieve close-to-DRAM performance for transactional graph pro-
cessing [39]. From Fig. 11b, we also see that the time of scanning
the persistent delta store is close to that of scanning the volatile
delta store. Note that with a persistent delta store, only append-
ing deltas to the delta store and scanning the delta store involve
PMem. Thus, we do not compare the volatile and persistent delta
stores for the merge operation.

To recover an up-to-date CSR from the persistent delta store,
since the delta store builds upon the current CSR, there is also a
need for a persistent copy of the CSR in addition to the default
volatile CSR. This persistent CSR copy is only used for recovery
purposes (not for analytics) and is overwritten by the contents
of the default volatile CSR each time the latter is updated with
deltas. There is a memory and performance overhead to this, both

of which depend on the size of the graph. The memory overhead
is the extra copy of the CSR on PMem, which is negligible since
PMem has a much higher capacity than DRAM. The performance
overhead is in keeping the persistent CSR copy up-to-date, each
time the default volatile CSR is updated. We measure this perfor-
mance overhead for the SF 10 graph as 2805.06ms (see Fig. 9c).
Thus, the persistent delta store carries this extra 2805.06ms over-
head in each update propagation cycle. However, this overhead
is easily avoidable because the execution of analytics does not
have to wait for it since as mentioned previously, the persistent
CSR is only for recovery purposes and not for analytics.

Nonetheless, as Fig. 11 and Fig. 10 show, the delta approach
using a persistent delta store in PMem is also faster than the CSR
rebuild, similarly to the volatile delta store, when the number of
deltas does not exceed a certain size threshold. The corresponding
size threshold for the persistent delta store could also be obtained
from our cost model by incorporating the factors peculiar to
PMem as discussed above. We also leave this for future work.

6.6 Update Handling

We evaluate DELTAFE with respect to update handling, i.e. the
update storage phase and the update propagation phase com-
bined, using the SF 10 data on our GPU server for both static and
dynamic data structures. The storage medium for the main graph
here is disk not PMem, unlike on our PMem server as used in the
previous evaluations. One of the advantages of having the main
graph on PMem is that no loading of the graph is required from
storage to memory since PMem is also byte-addressable. Also,
with PMem, recovery is instant. Nevertheless, on the GPU server,
we ignore the disk access latency in fetching the graph data from
disk and the additional overhead of serialization. For simplicity,
we assume that the main graph is already in DRAM.

We refer to Fig. 1. The update storage phase (shown on the left
of the figure) consists of appending deltas to the delta store. We
execute update transactions as to append 2014347 (approx. 2M)
deltas using DELTAFE. We further run the same update transac-
tions but without appending any deltas (i.e. the baseline updates).
The difference is only 1068.13ms. This corroborates our previous
evaluation which shows that there is no correlation between the
appended deltas and the transactional update time with DELTAFE,
unlike DELTAI (ref. Section 6.3). Next is the update propagation
phase (on the right of the figure). We have shown in Section 6.4
that how long it takes in the update propagation phase to apply
the main graph updates to the graph replica (ref. Section 4.2) is
correlated to the number of appended deltas. The update prop-
agation phase begins with scanning the delta store. The time
to scan the delta store for the 2M deltas is 2595.95ms. As our
evaluations in Section 6.4 show, there is a correlation between
this delta store scan time and the number of appended deltas.
The remainder of the update propagation phase has two cases:
Dynamic Data Structures: For dynamic data structures, we
coalesce the modifications of the valid and visible deltas in the
inserts, weights and deletes arrays and copy them to GPU in a
single transfer (shown on the top right in Fig. 1). The transfer
overhead is a mere 4.75ms. This totals the update propagation
time for the modifications on the main graph captured by the 2M
deltas to update the graph replica on GPU at 2600.7ms.
Static Data Structures: As for CSR, the default solution would
be to rebuild the CSR and transfer it to the GPU (bottom right of
Fig. 1). Rebuilding the CSR from the SF 10 graph takes 33133.51ms
while copying the CSR to GPU takes 720.64ms. We reduce this
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BFS PR SSSP
Sortledton Analytics on CPU 1.48 21.34 57.30

DELTAFE
Update Propagation 5.38 5.38 5.38
Analytics on GPU 0.07 0.30 0.13
Sum 5.45 5.68 5.51

Table 1: HTAP and H
2
TAP Analytics Latency (in seconds).

huge CSR rebuild bottleneck by devising a way to update the
CSR via merging of the deltas with the CSR and sending the
updated CSR to GPU. The merge operation for the 2M deltas
takes 2064.44ms. Similarly, our evaluations in the previous section
show that the merge time is correlated to the number of deltas.
The update propagation time is 4660.39ms. Thus, for 2M deltas,
our delta reduces the overhead of CSR rebuild by 85%.

6.7 HTAP and H
2
TAP

We compare DELTAFE with the approach that utilizes the CPU-
based data structures for dynamic structural graph analytics
discussed in Section 3.3. As mentioned already, by design, the lat-
ter approach foregoes leveraging GPU for accelerated analytics.
We select Sortledton [26] for the comparison because, so far, it is
the best-performing in this category of CPU data structures. We
compare between (a) analytics execution time of Sortledton on
CPU and (b) the sum of the update propagation time in DELTAFE

and the analytics execution time on GPU. Since the update propa-
gation time correlates with the number of deltas (see Section 6.5),
we evaluate 2M deltas in order to stress DELTAFE. Note that with
Sortledton, the analytics are executed on CPU concurrently with
updates, and as a result, this approach incurs extra performance
penalties due to a lack of performance isolation.

Table 1 shows the execution times for BFS, PR and SSSP on the
Graph 500 data at scale 24. We see that DELTAFE (Line 4) signifi-
cantly outperforms Sortledton (Line 1) in PR and SSSP, as a result
of the fast analytics execution on GPU. Note that results from
prior works have also shown that GPU achieves up to orders
of magnitude faster analytics execution than CPU [25, 78]. The
update propagation is the dominant latency factor in DELTAFE

because of the huge number of deltas. If the analytics is compute-
heavy, the performance gains from GPU will be higher than the
update propagation time, as can be seen with PR and SSSP. Oth-
erwise, the GPU acceleration does not pay off the update propa-
gation time as is the case for BFS, which is not as compute-heavy
[67]. Furthermore, we compare between DELTAFE and Sortledton
as to the total latency for BFS, PR and SSSP, assuming all three
algorithms are dispatched for execution. We take two scenarios:
(1) all three analytics arrive at the same time, and (2) an analytics
arrives after other finishes. With regards to the first scenario,
the total latency is the latency of the longest-running analytics,
which is 57.30s in Sortledton and 5.68s in DELTAFE. As for the
second scenario, the total latency is the sum of the latencies of
all analytics, i.e. 80.12s in Sortledton and 16.64s in DELTAFE.

In summary, the efficiency of DELTAFE over Sortledton in-
creases (1) when analytics are compute-heavy (i.e. relatively
long-running), which is the typical case for graph analytics [64]
like PR and SSSP, (2) when several analytics are executed on
the same graph replica version e.g. as a batch. Since the graph
replica needs to be updated only once, this amortizes the update
propagation time across the analytics even if they are not com-
pute-heavy. And (3) when the updates between successive arrival
of analytics are not huge.
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Figure 12: DELTAFE vs Relational Approaches.

6.8 Delta Store Optimizations

Lastly, we evaluate the optimizations in DELTAFE compared to a
direct conversion of delta store approaches in relational systems
like [47] to graphs. These systems store all the columns in their
delta stores. Thus, a direct conversion would result in a delta
store that stores full graph objects with complete MVCC infor-
mation, thereby increasing the delta store size and the update
propagation overhead. Furthermore, their delta store entries are
updateable. As a result, a direct conversionwould incur additional
overhead in lookups during transaction commits. Altogether, a
direct conversion of these approaches leads to suboptimal perfor-
mance as we stated in Section 3.2. Fig. 12 depicts the performance
difference between DELTAFE and our implementation of a direct
conversion of the aforementioned relational approaches (denoted
as R), thereby showing the performance gains resulting from the
graph-aware optimizations in DELTAFE, as presented in Section 5.

7 CONCLUSION

In this paper, we presented an approach to handling updates in
graph H2TAP, based on a delta store implementation tailored for
graphs. Transactional updates on a main graph are captured by
way of deltas in the delta store and subsequently propagated to
update the replica of the graph on GPU. Our delta approach is
fast and efficient in terms of update storage and update propa-
gation. Furthermore, we introduce a mechanism for enforcing
consistency between the main graph and the graph replica over
the course of the update propagation. We conduct extensive ex-
perimental evaluations of our delta approach and show that it is
significantly better than the existing work with respect to per-
formance and memory footprint. Our evaluations also show that
our approach outperforms both CPU-only graph solutions and
solutions based on a direct conversion of existing approaches in
relational systems to graphs. Moreover, in addition to DRAM, we
show the viability of our delta store in persistent memory.
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