
Wrapper Methods for Multi-Objective Feature Selection
Uchechukwu F. Njoku

Universitat Politècnica de Catalunya
Barcelona, Spain

unjoku@essi.upc.edu

Alberto Abelló
Universitat Politècnica de Catalunya

Barcelona, Spain
aabello@essi.upc.edu

Besim Bilalli
Universitat Politècnica de Catalunya

Barcelona, Spain
bbilalli@essi.upc.edu

Gianluca Bontempi
Université Libre de Bruxelles

Brussels, Belgium
gianluca.bontempi@ulb.be

ABSTRACT
The ongoing data boom has democratized the use of data for
improved decision-making. Beyond gathering voluminous data,
preprocessing the data is crucial to ensure that their most rele-
vant aspects are considered during the analysis. Feature Selection
(FS) is one integral step in data preprocessing for reducing data
dimensionality and preserving the most relevant features of the
data. FS can be done by inspecting inherent associations among
the features in the data (filter methods) or using the model per-
formance of a concrete learning algorithm (wrapper methods).

In this work, we extensively evaluate a set of FS methods
on 32 datasets and measure their effect on model performance,
stability, scalability and memory usage. The results re-establish
the superiority of wrapper methods over filter methods in model
performance. We further investigate the unique role of wrapper
methods in multi-objective FS with a focus on two traditional
metrics - accuracy and Area Under the ROC Curve (AUC). On
model performance, our experiments showed that optimizing for
both metrics simultaneously, rather than using a single metric,
led to improvements in the accuracy and AUC trade-off1 up to
5% and 10%, respectively.

1 INTRODUCTION
The process of transforming raw data into meaningful insights
involves various stages, from data collection, preprocessing, and
storage, to analysis. One of the difficulties faced in the preprocess-
ing stage is the presence of irrelevant or redundant features in
the data, often paired with insufficient instances (e.g., in bioinfor-
matics [30]). Datasets of this type are challenging to analyze due
to poor data understanding and visualization, model overfitting,
and complex model explanation [23].

To solve the challenges mentioned above, the noise that comes
from irrelevant or redundant features is diminished through
dimensionality reduction. This involves combining features into
new fewer ones (Feature Extraction -FE) or identifying the most
relevant features (Feature Selection -FS). Both approaches reduce
the dimensions of the data to build simpler and more explainable
models.

In this work, we focus on wrapper methods which often use
the performance metric of a Machine Learning (ML) algorithm

1We define trade-off as the compromise in one objective as a consequence of
considering a second objective.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(e.g., accuracy) as the evaluation criterion to measure the rele-
vance of a set of features and obtain the set that maximizes the
evaluation criterion. Typically, wrapper methods are based on a
single (mono-objective) evaluation criterion, however, we argue
the need for multiple (multi-objective) criteria to be used as a
more realistic approach in determining the relevance of features
since models cannot be fully described by a single metric [16]. We
also empirically demonstrate the advantage of multi-objective
FS (which selects features with a better balance among multiple
metrics of interest) over mono-objective.

After selecting the subset of features, further evaluation is
necessary to understand the FS method’s selection process and
ascertain the reliability of the chosen features. We do this by
answering questions such asWhat is the method’s performance?
Is it memory efficient? and How robust are the selected features to
slight changes from sampling and shuffling the data?

In this work, we first survey existing tools and libraries for
wrapper FS, detailing their specificities and comparing them
based on various criteria. Next, we show that the evaluation
criterion (e.g., the accuracy of a classifier) is the chief determinant
in selecting features and how, even for the same classifier, a
change in the evaluation criteria leads to a different subset of
features. Lastly, we demonstrate the advantage of considering
multiple evaluation criteria in FS. Using 32 datasets and four
classification algorithms, we extensively study ten FS methods
by measuring:

(1) the effect they have on the accuracy and AUC of the mod-
els after training over the subset of selected features;

(2) the stability of each method;
(3) the average execution time and memory footprint.

On the view of these results, we emphasize the need for multi-
objective criteria in FS by considering accuracy and AUC metrics
simultaneously. We show that compared to a single measure, a
multi-objective wrapper method produces a feature subset with
a better balance between the accuracy and AUC of the classifiers.

In particular, the contributions of this work can be summarized
as follows:

(1) Extensive evaluation of the predictive performance and
stability of existing wrapper and filter methods in Python2
libraries. The results of our experiment show:
• that wrapper methods outperform filter methods in
terms of both accuracy and AUC;
• filter methods are more stable than wrapper methods
although the variance in accuracy and AUC caused by
the instability of the latter is negligible.

2Python continues to be the most preferred language for scientific computing, data
science, and machine learning [29].

Series ISSN: 2367-2005 697 10.48786/edbt.2023.58

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.58

(2) Empirical comparison ofmulti-objective andmono-objective
wrapper FS by considering two well-known metrics, ac-
curacy and AUC. Our results show that on average, the
multi-objective FS method produces feature subsets with
a better combined accuracy and AUC compared to using
just one of these metrics.

(3) Analysis of the scalability and memory footprint of wrap-
per methods. The results show that wrapper methods are
memory efficient but lack scalability.

2 PRELIMINARIES
There are broadly four steps in FS - (1) feature subset generation,
(2) subset evaluation, (3) stopping criteria, and (4) result evalua-
tion. In the first step, a search strategy is used to generate subsets
of features which are then evaluated during the second step using
an evaluation criterion. Also, FS methods are grouped into three
categories; filter, wrapper, and embedded methods [14], depend-
ing on the evaluation criteria they use in this step. This cycle of
generating and evaluating feature subsets is controlled by a stop-
ping criterion, e.g., by setting a maximum number of evaluations
or iterations. Lastly, the final selected subset is evaluated depend-
ing on the analysis task, for example, by using an ML algorithm.
This section discusses the three categories of FS methods, the
various search strategies, and the evaluation criteria.

2.1 Classes of FS
FS methods are classified into filter, wrapper, or embedded; based
on their reliance on ML algorithms for feature subset evaluation
- to select the relevant features.

Filter methods. Filter methods typically perform two out of
the four FS steps; the subset evaluation and the result evaluation
steps. These methods do not use ML algorithms in the subset
evaluation step but rather rely on the inherent characteristics,
and associations among the features to determine their relevance.
Some filter methods measure the association between each pre-
dictive feature and the target feature using information gain,
correlation, or distance measures [23]. While others, additionally
consider the relationship among predictive features to reduce
the likelihood of selecting redundant features. The advantages
of filter methods are the generalizability of their results to any
ML model, faster computation time over wrapper or embedded
methods, and robustness to overfitting. However, since the selec-
tion is model agnostic, selected features could be non ’optimal’
for the final ML algorithm. Also, they risk selecting redundant
features when the associations among predictive features are
not considered. This work evaluates six filter methods - CMIM,
Gini, JMI, MRMR, Relief, and SPEC. For a detailed discussion of
these methods and their performance, we refer the reader to our
previous work [23].

Wrapper methods. These methods consist of all four FS steps.
Particularly, the generation of subsets from the search space (i.e.,
all possible subsets of features) is guided by a search strategy,
which could be exhaustive, population-based, or sequential (see
section 2.2). Furthermore, wrapper methods typically depend on
the performance metrics (e.g., accuracy or AUC) of a chosen ML
algorithm to evaluate generated feature subsets. The iterative
nature of these methods make them computationally intensive
even with a moderate number of features. Nevertheless, their
dependence on the ML algorithm ensures that selected features
favor the algorithm of interest. Also, applying cross-validation

(i.e., resampling) during model building reduces the risk of over-
fitting the ML algorithm [3]. Using four classification algorithms,
and two performance metrics (accuracy and AUC), this work
highlights the strengths and weaknesses of wrapper methods
and their unique role in multi-objective FS.

Embedded methods. Embedded methods are ML algorithms
that intrinsically do feature selection while building the model.
An example is decision trees [14] which prune out less relevant
features by using criteria like gini or entropy. Embedded methods
also have the advantage of selecting features optimized for the
ML algorithm with a better computational performance than
wrapper methods. However, the results (i.e., the selected subset
of features) are not generalizable because they are tailored to the
ML algorithm. The outcome of embedded methods are typically
the trained models and not feature subsets, for this reason, we
do not include them in our analysis.

2.2 Search strategies
The search space contains all the possible feature subsets that
FS methods can select, and search strategies determine how FS
methods traverse this search space.

Exhaustive search. This strategy traverses the entire search
space and evaluates every possible set of features. It is guaranteed
to find the optimal feature subset w.r.t the evaluation criterion.
However, it is computationally intensive and infeasible even for
a moderate number of features [10].

Population-based search. Since it is infeasible to traverse
the entire search space, this strategy applies heuristics that imi-
tate natural population evolution to obtain near-optimal results.
It starts with an initial set of feature subsets called population
and iteratively updates it based on the heuristics until a stopping
criterion is reached [10]. Genetic algorithms, particle swarm opti-
mization, and bee colony algorithms are examples of population-
based search strategies used in feature selection [10].

Sequential search. These simple greedy algorithms consec-
utively update the feature subset with features that improve
or maintain the evaluation criterion. The two variants of this
strategy are Sequential Forward Selection (SFS) and Sequential
Backward Selection (SBS). The former begins with an empty set
and at each iteration adds features that improve or preserve the
evaluation criterion until a stopping criterion is satisfied (e.g.,
the maximum number of iterations or feature subset size). The
latter conversely begins with the complete set of features and,
at each iteration, drops off features that decrease the evaluation
criterion [10]. In this work, we use the SFS search strategy in
wrapper methods, due to it’s simplicity and resilience against
overfitting [14].

2.3 Evaluation criteria
The second and fourth steps of the FS process focus on the evalu-
ation, during and after the selection respectively. We distinguish
between the criteria used to score the relevance of a feature
subset during the selection and those used after selection to
both evaluate the final subset and understand the FS method’s
efficiency.

Internal evaluation criteria. They refer to the metrics used
to score feature subsets during the FS process. For filter and
embedded methods, they include information theory measures
(such as gini or entropy), distance measures, and correlation

698

measures. For wrapper methods, they include model performance
metrics (such as accuracy, AUC, and Kappa index), the size of
the feature subset, and other user-defined metrics. These criteria
influence the traversal of wrapper methods through the search
space and thus determine the final feature subset. In wrapper
methods, more than one criterion can be combined into a new
utility criterion for multi-objective FS.

External evaluation criteria. These criteria focus on evalu-
ating the finally selected feature subset and the overall FS process
in ways that do not contribute to or affect the selection process
and outcome. As examples, we can mention the method’s stabil-
ity which measures resistance to slight changes in the data. We
can also mention execution time, resource usage such as memory
footprint, and other performance metrics except the ones used
during selection. These criteria give insights that facilitate the
explainability of the methods.

In evaluating subsets of features using internal evaluation cri-
teria, one criterion is usually used in a mono-objective fashion to
optimize the model’s predictive performance. However, it is es-
sential to consider multiple criteria while selecting features since
in ML, models cannot be fully described by a single metric[16];
this is called multi-objective feature selection .

3 MULTI-OBJECTIVE FEATURE SELECTION
(MOFS)

The feature selection problem is an optimization problem where
the chosen evaluation criterion is either maximized or minimized.
When we use multiple criteria for selection, it becomes a multi-
objective optimization problem. There are two approaches to
solve it, which we detail below.

Scalarization (preference-based) method. This approach
forms a composite objective function from the sumof theweighted
normalized objectives [7]; the weight assigned to an objective
reflects its relevance or importance. In the case of no preferences,
the objectives receive equal weights. This approach is simple and
suitable when a preference is known a priori.

Pareto method. This method produces a collection of solu-
tions that are trade-off optimal (Pareto-optimal) solutions, i.e.,
solutions for which we can find no other solution which im-
proves any of the considered objectives without deteriorating
the other(s) [7]. Algorithms that apply heuristics such as genetic
algorithms are used to find these Pareto-optimal solutions. At
the end, one out of the collection of solutions is chosen based on
other subjective knowledge.

In ML, a single metric alone is insufficient to describe models
completely [16]; this is why many evaluation metrics exist to
capture the various aspects of ML models. Given this, we do
not rely on mono-objective feature selection but rather consider
multiple metrics when measuring the features’ relevance, which
motivates MOFS. Out of the three classes of FS, only wrapper
methods give us the freedom to combine criteria for the subset
evaluation step. This makes wrapper methods play a unique role
in enabling MOFS. This work compares the mono-objective and
multi-objective wrapper methods that use the SFS search strat-
egy. Although the multi-objective and mono-objective wrapper
methods considered in this work use the same SFS search strategy,
the main difference lies in how the features’ relevance is mea-
sured, i.e., the evaluation criteria. We focus on a MOFS method
that follows the scalarization approach to combine two predictive

performance metrics - accuracy and AUC. In contrast, the mono-
objective wrapper method considers each metric separately. Our
experiments highlight the benefits of MOFS, in general.

3.1 SFS search strategy
For this work, we chose the SFSmethod as presented inAlgorithm 1,
due to its simplicity and resilience against overfitting.

Algorithm 1 Sequential Forward Selection (SFS) Algorithm

Input: 𝑐𝑙 𝑓 (), 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (), 𝑘, 𝑀 // classifier, evaluation crite-
ria, number of features to select, and complete set of features
Output: 𝑆 // set of selected features

1: 𝑆 ← {}
2: if (𝑘 < |𝑀 |) then
3: 𝑠𝑐𝑜𝑟𝑒 ← 0
4: do
5: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

6: for each 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 ∈ 𝑀 do
7: 𝑆𝑡𝑒𝑚𝑝 ← (𝑆 ∪ {𝑓 𝑒𝑎𝑡𝑢𝑟𝑒})
8: 𝑚𝑜𝑑𝑒𝑙 ← 𝑐𝑙 𝑓 (𝑆𝑡𝑒𝑚𝑝)
9: 𝑚𝑒𝑡𝑟𝑖𝑐 ←𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝑚𝑜𝑑𝑒𝑙)
10: if (metric >= score) then
11: 𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 ← 𝑡𝑟𝑢𝑒

12: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒

13: 𝑠𝑐𝑜𝑟𝑒 ←𝑚𝑒𝑡𝑟𝑖𝑐

14: end if
15: end for
16: if modified then
17: 𝑆 ← (𝑆 ∪ {𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑})
18: 𝑀 ← (𝑀 \ {𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑})
19: end if
20: while (modified and (|S| < 𝑘))
21: else
22: print: "k must be less than |M|"
23: end if
24: return 𝑆

The input parameters for the SFS algorithm for FS are 𝑐𝑙 𝑓 () -
any classifier,𝑚𝑒𝑎𝑠𝑢𝑟𝑒 () - an evaluation criterion, 𝑘 - the desired
number of features to select, and𝑀 - the complete set of features
in the dataset. Following the SFS approach, we initialize the set
of selected features to an empty set - 𝑆 (line 1). Next, we ensure
that the number of features to select is less than the total number
of features (line 2); otherwise, an error message is generated, the
algorithm ends, and an empty set is returned (lines 21-24). We use
the variable𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑑 as a flag to detect if a feature was selected
in an iteration. It is set to 𝑡𝑟𝑢𝑒 only when we find a feature that
increases or preserves the subset score (line 10). The score of 𝑆
is tracked by the variable 𝑠𝑐𝑜𝑟𝑒 initially set to 0 (line 3), which
stores the best metric value of 𝑆 after each iteration. The𝑚𝑒𝑡𝑟𝑖𝑐

variable holds the value of the evaluation criteria derived from
the𝑚𝑒𝑎𝑠𝑢𝑟𝑒 function (line 9) which, in our case, are accuracy and
AUC for mono-objective FS; and a linear combination of both for
multi-objective FS.

In each iteration, we add each unselected feature to 𝑆 to train
𝑐𝑙 𝑓 () and get the 𝑚𝑒𝑡𝑟𝑖𝑐 through the 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 function (lines
6-9). Afterwards, the feature which most increases the 𝑠𝑐𝑜𝑟𝑒 or
preserves it is added to 𝑆 (lines 16-19). The number of iterations is
limited to the number of features to be selected and 𝑠𝑐𝑜𝑟𝑒 change
(line 20), i.e., if 𝑘 features have been selected or if at the end of
an iteration no feature improves or preserves the subset score,

699

then the selection process ends and the subset of features, 𝑆 is
returned (line 24).

As part of our experiments, we consider two performance
metrics - accuracy and AUC. We pass them separately as the
𝑚𝑒𝑎𝑠𝑢𝑟𝑒 () function for mono-objective FS. For MOFS (multi-
objective), we linearly combine them with equal preference by
using the scalarization approach that forms a new evaluation
criterion used in𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ().

4 EXPERIMENTAL EVALUATION
As part of our study of existing feature selection methods, we
conducted a set of robust experiments according to the systematic
approach described in [17]. In what follows, we describe the ten
steps of our experiments.

(1) Define goals and system
The purpose of these experiments is, first, to re-establish
the superior performance of wrapper methods over filter
methods for feature selection, and secondly, to highlight
the unique role of wrapper methods in MOFS. The system
we consider is comprised of 32 datasets (16 with binary
target feature and 16 with multi-class target feature), six
filter methods, and four wrapper methods (ten FS methods
overall), using four classification algorithms - Naive Bayes
(NB), K-Nearest Neighbors (KNN), Decision Trees (DT),
and Support Vector Machines (SVM).

(2) Define services and outcomes
The FS methods and the classification algorithms are the
parts of the system that take inputs and produce outputs.
The first outcome of the system is the generation of four
base classifiers from the four classification algorithms for
each dataset. The subsequent outcome is ten feature sub-
sets found for each dataset. Using these feature subsets,
new classifiers are built, which are compared with the
baseline classifiers in order to evaluate the influence of
each FS method on the performance of the model.

(3) Choose metrics
The fivemetrics used to evaluate the system include the im-
pact on the model performance in the form of percentage
change in accuracy and AUC, runtime and peak memory
usage of the FS methods, and the stability of the selected
feature subsets.

Internal evaluation metrics.
• Relative change in accuracy quantifies the accuracy
lost or gained as a result of reducing the number of fea-
tures where accuracy measures the amount of correctly
classified unseen samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒3 (%) =
(
𝑁𝑒𝑤 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝐵𝑎𝑠𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐵𝑎𝑠𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

)
×100.

(1)
• Relative change in AUC similarly measures the AUC
gain or loss after feature selection. The AUC considers
not only the ‘positively’ classified unseen samples which
are right, but also the ‘positively’ classified samples
which are wrong.

𝐴𝑈𝐶 𝑐ℎ𝑎𝑛𝑔𝑒4 (%) =
(
𝑁𝑒𝑤 𝐴𝑈𝐶 − 𝐵𝑎𝑠𝑒 𝐴𝑈𝐶

𝐵𝑎𝑠𝑒 𝐴𝑈𝐶

)
× 100. (2)

3There is an expected increase in accuracy i.e., New Accuracy > Base Accuracy.
4There is an expected increase in AUC i.e., New AUC > Base AUC.

External evaluation metrics.
• Runtime of the FS methods primarily allows to com-
pare the various implementations available in the Python
libraries but also to restate the need for wrapper meth-
ods to be made scalable considering their superior im-
pact on predictive performance.
• Peak memory usage shows the peak size of memory
block used by the FS method during execution. This is
particularly relevant when resources are paid for and
could be a guide to both provisioning resources and
choosing FS methods.
• Finally, stability quantifies the robustness of FS meth-
ods to changes in the dataset. The most stable methods
return the same feature subsets with slight changes
in the dataset, while unstable methods yield different
results from small changes in the dataset. The small
change can come from data sampling and shuffling usu-
ally used in cross validation. To measure the stability of
the FS methods, we use the metric in [24] defined as:

Φ̂(Z) = 1 −
1
𝑑

∑𝑑
𝑓 =1 𝑠

2
𝑓

𝑘
𝑑

(
1 − 𝑘

𝑑

) , (3)

where Z is the set of feature subsets selected from the
dataset by making little permutations in the dataset’s
rows and columns, 𝑑 is the total number of features in
the dataset, 𝑘 is the average number of features selected
over all feature subsets in Z, and 𝑠2

𝑓
is the unbiased

sample variance of selecting the 𝑓 𝑡ℎ feature. Φ̂ has a
range of [0, 1], where 0 implies total instability and 1
means that the same feature subset is selected each time
irrespective of the data changes.

(4) Parameters
The properties of the datasets that can influence the met-
rics measured in the system are referred to as dataset
parameters and include:
• Number of features.
• Number of instances.
• Number of classes.
• Dimensionality.
• Class Balance.
• Class Entropy.
• Average feature correlation.
For a detailed discussion of these dataset parameters, we
refer the reader to our previous work [23]. On the other
hand, variable specifications of algorithms that have an
impact on the output of the system are referred to as
algorithm parameters. They include:
• Feature subset size, which is the maximum number of
features to be selected; affects the results derived from
the system.
• Hyper-parameters, which refer to the several parame-
ters in FS and classification algorithms that can be set
to different values to control the FS and model-building
processes. These parameters affect the output of the
algorithms and thus the system.

Lastly, there are characteristics of the hardware used to
execute the experiments for the system performance evalu-
ation that can also impact the outcomes, these are referred
to as system parameters and include among others:
• Processor speed.

700

• RAM/Disk size.
• Operating system context switching overhead.

(5) Choose factors to study
We chose a few of the parameters discussed to be con-
trolled in our experiments. Particularly, the number of
features, number of instances, and class balance are con-
sidered in the selection of the datasets as described in
[23]. Some other parameters are dependent on the factors
chosen to study. For example, dimensionality depends on
two of the considered factors, number of features and in-
stances. For the system parameters, these are constant
as one machine was used for all the experiments with
non-essential applications closed to ensure the validity of
results. Finally, the default algorithm parameters are used
and the subset size is fixed at

√︁
#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 since the focus

of our analysis is on algorithm comparison and not on
hyper-parameter tuning to find the best setting.

(6) Define evaluation technique
The experiments were implemented using Python 3.10
with three prominent packages that implement wrapper
feature selection:Mlxtend5, Scikit-Feature6, and Scikit-Learn7

detailed in Table 2. The latter also implements the classifi-
cation algorithms. The Tracemalloc8 library was used for
measuring the execution and peak memory usage.

(7) Define workload
Following the systematic process for dataset selection de-
scribed in [23], we used 32 datasets from OpenML9, de-
tailed in Table 1, for the experiments. These datasets are
clean and numerical due to the input constraint of some al-
gorithms used. In addition, we created a synthetic dataset
of 1,600 predictive features, one binary target feature and
16,000 instances to evaluate the scalability and resource
usage of wrapper methods.

(8) Design experiment
A total of 32 datasets and ten FS algorithms were consid-
ered - six filter methods (CMIM, Gini, JMI, MRMR, ReliefF,
and SPEC) and four wrapper methods (𝑆𝐹𝑆𝑁𝐵 , 𝑆𝐹𝑆𝐾𝑁𝑁 ,
𝑆𝐹𝑆𝐷𝑇 , and 𝑆𝐹𝑆𝑆𝑉𝑀). For the filter methods, a single im-
plementation in the Scikit-Feature library was used to
evaluate and measure the metrics. However, for the wrap-
per methods, multiple libraries were used. For 𝑆𝐹𝑆𝐷𝑇 and
𝑆𝐹𝑆𝑆𝑉𝑀 all three libraries were used while for 𝑆𝐹𝑆𝑁𝐵
and 𝑆𝐹𝑆𝐾𝑁𝑁 , only Mlxtend and Scikit-Learn were used
because Scikit-Feature does not implement them.

(9) Data analysis and interpretation
We use descriptive analytics, in particular scatter plots to
compare the various evaluation criteria used in wrapper
methods, bar charts to show the variations in predictive
performance as a result of data shuffling and sampling,
and average rankings to compare FS methods based on
the predictive performance of classifiers. With these, we
analyze the results from the experiments and gain insights
into the overall performance of the various FS algorithms
in the system.

(10) Report results
The conclusions we reach from our analysis of the results
are presented and discussed in Section 5.

5http://rasbt.github.io/mlxtend
6https://github.com/jundongl/scikit-feature
7https://scikit-learn.org/stable
8https://docs.python.org/3/library/tracemalloc
9https://www.openml.org

Table 1: Datasets and their characteristics.

OpenML ID Features Instances Classes

1464 5 748 2
931 4 662 2
40983 6 4839 2
841 10 950 2
1061 30 107 2
834 101 250 2
40666 169 6598 2
41145 309 5832 2
1015 4 72 2
793 11 250 2
1021 11 5473 2
819 7 9517 2
1004 61 600 2
41966 618 600 2
995 48 2000 2
41158 971 3153 2
4340 6 383 3
1565 14 294 5
40496 8 500 10
1512 14 200 5
40498 12 4898 7
1540 4 9285 5
375 15 9961 9
1526 5 5456 4
275 63 71 6
277 63 74 4
377 61 600 6
1518 91 47 4
41972 221 9144 8
1560 36 2126 3
1468 857 1080 9
40499 41 5500 11

4.1 Tools and libraries
The need for FS during data preprocessing demands tools and li-
braries that implement different FS techniques. In Table 2, we pro-
vide a list of the available tools that implement wrapper methods.
We list their characteristics with respect to the search strategies
they use and the level of support in terms of scalability.

Table 2: Feature selection tools and libraries.

Tool Lang. Exhaustive Population-based Sequential Parallelism

Weka Java 𝑋 𝑋 ✓ Partial
Scikit-Learn(SKL) Python 𝑋 𝑋 ✓ Partial

Rapidminer Java ✓ ✓ ✓ Partial
Mlxtend(MLX) Python ✓ 𝑋 ✓ Yes

Scikit-Feature(SKF) Python 𝑋 𝑋 ✓ No
FeatureSelect Matlab 𝑋 ✓ 𝑋 No

As shown in Table 2, the most commonly supported search
strategy is the Sequential one. Its ample presence can be attrib-
uted to its simplicity. On the other hand, due to their complexity,
the Exhaustive and Population-based strategies have very low
support; only two out of six tools support these strategies. In
terms of scalability, tools like SKF and FeatureSelect outrightly do
not provide any form of parallelism. Weka, SKL and Rapidminer
do support parallelism differently, each one of them in its own
way. For Weka, the ability to use multiple processes is available
only for the WrapperSubsetEval-GreedyStepwise method. For

701

SKL, it is available only for the SequentialFeatureSelector method,
while for Rapidminer, a license is required because the studio
free edition is limited to 10,000 rows and one Processor. However,
MLX supports parallelism for all the available methods by simply
using multiprocessing to evaluate different feature subsets in par-
allel. Finally, these tools implement mono-objective wrapper FS
and do not support multiple evaluation criteria simultaneously.

4.2 Execution
The experiments were executed on a PC with eight 11th Gen
Intel® Core™ i7-1185G7 @ 3.00GHz processors and 16 GB of
memory, during which usage of non-essential applications was
minimized to avoid interference.

For the accuracy predictive performance, we used all 32 datasets
while we used the 16 binary datasets for the AUC, MOFS, and
stability experiments.10 For each of these datasets, we randomly
shuffle the features and instances to introduce slight changes in
the order of the data and produce ten variants for each dataset.
For each of these dataset variants, the filter methods select fea-
tures once while the wrapper methods select by the classification
algorithm and evaluation metric pair (e.g., KNN & accuracy, KNN
& AUC, NB & accuracy, e.t.c.). In all cases, we select

√︁
#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

features from each dataset and report the predictive performance
of the ten variants from each of the datasets. The selected fea-
tures are used to build four classification models - NB, KNN,
DT, and SVM - from which we measure the change in accuracy
and AUC against the models built with the complete set of fea-
tures. In building the classification models, we apply ten-fold
cross-validation to mitigate overfitting [3].

For the scalability and memory experiments, we focused on
the wrapper methods using DT classification and the synthetic
datasets while also selecting

√︁
#𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 features. We repeated

the wrapper experiments with the different libraries. Source code
used for our experiments is available on Github.11

5 RESULTS AND DISCUSSION
One of the key reasons for performing FS is to improve data and
model understanding by providing fewer relevant features to an-
alyze. However, we also need to ensure the effectiveness of these
FS methods through various measures like model performance,
stability, scalability, and memory efficiency. In the following, we
present the results of our experiments using all of these metrics
to assess the effectiveness of ten FS methods over 32 datasets and
four classification algorithms.

5.1 Model performance
Focusing on predictive performance, we compare the effect of
filter and wrapper methods on four classifiers. This is the most
common way to evaluate FS methods.

5.1.1 Relative change in accuracy. As defined in Equation 1,
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 measures the impact of FS on the performance
of a model, relative to the model’s performance over all the fea-
tures. By selecting relevant features, we expect this performance
to increase or in the worst case, to remain the same. In Figure 1,
we present the percentage of relative change in accuracy for the
KNN classifier after each FS method (table columns) is applied to

10AUC is strictly a binary classification metric.
11https://github.com/F-U-Njoku/Wrapper-Methods-in-Multi-Objective-Feature-
Selection

the 16 datasets (table rows). A positive percentage means an in-
crease in accuracy, while a negative percentage means a decrease.
Likewise, the color gradient represents the magnitude of change
in accuracy, where dark blue means a high increase and dark red
means a high decrease in accuracy. For each dataset (row), the
FS method that results in the highest increase or least decrease
in accuracy has the highest blue or least red shade, respectively.
Also, we represent the wrapper result from all the libraries with
one column, the last one, because all the libraries select the same
features for all the classifiers except DT which is sensitive to the
order of features in the input data.

We observe from Figure 1, that wrapper methods (SFS), have
the highest number of blue colored cells. This shows that wrapper
methods improve the accuracy of the classifiers with a higher
percentage than filter methods. In Table 3, we summarize by
average ranks the performances of the FS methods on all four
classification algorithms.12 In order to obtain the average rank,
we begin by ranking all FS methods for each classifier. The FS
method with the highest number (out of 16) of accuracy improve-
ments is ranked first, and so on. Following that, the average of
four ranks from the four classifiers is then calculated for each FS
method. These averages are then ranked so that the FS method
with the highest average rank comes first and the method with
the least average rank comes last. We observe that the wrapper
methods (SFS) rank first and outperform filter methods, with the
JMI filter coming second and the SPEC method ranking last.

Table 3: Average rank of FS methods by accuracy change
for four classifiers in binary problems.

Method NB KNN DT SVM Average Rank

SFS 10 9 4 9 1
JMI 4 4 8 6 2
Gini 5 2 6 5 3
CMIM 3 2 4 5 4
MRMR 3 3 4 3 5
Relief 2 1 4 3 6
SPEC 0 2 1 2 7

To also gain perspective into multi-class problems, we experi-
mented with the 16 multi-class datasets listed in Table 1. Table 4
shows a summary by average ranks of the FS methods accuracy
change for the four classification algorithms on the 16 multi-class
datasets. From Table 4, we see wrapper methods outperforming
filter methods with an even greater margin in multi-class prob-
lems. We did not consider SPEC for the multi-class experiments
due to it’s poor performance in the binary experiments coupled
with it’s computational complexity.

5.1.2 Relative change inAUC. Similarly to𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 ,
𝐴𝑈𝐶 𝑐ℎ𝑎𝑛𝑔𝑒 as defined in Equation 2 also measures the impact of
FS on the model’s predictive performance. The goal here is to see
how the AUC of a model changes after applying FS. In Figure 2,
we present the change in the AUC of the KNN model for each
dataset after applying the FS methods. Also, the best performing
FS method for each dataset is shaded with the darkest blue or
lightest red. Again, this shows that wrapper methods outperform
filter methods with the SFS column having the highest number
and magnitude of blue cells. In Table 5, we also list the results
12The supplementary results for other classifiers are available on the complementary
Github page: https://github.com/F-U-Njoku/Wrapper-Methods-in-Multi-Objective-
Feature-Selection

702

CMIM Gini JMI MRMR Relief SPEC SFS

FS Method

793

819

834

841

931

995

1004

1015

1021

1061

1464

40666

40983

41145

41158

41966

D
at

as
et

 I
D

3.17 % 2.88 % 2.88 % 3.17 % 2.88 % -17.78 % 31.71 %

-0.23 % -0.23 % -0.23 % -0.23 % -0.23 % -30.77 % 0.63 %

12.25 % 17.72 % 10.35 % 14.86 % 10.73 % -15.20 % 43.76 %

-6.08 % -3.61 % -3.38 % -0.67 % -6.08 % 1.50 % 1.52 %

0.25 % 0.25 % 0.25 % -2.26 % -3.71 % 0.25 % 7.27 %

1.27 % 1.23 % 1.31 % 1.34 % 1.12 % -9.54 % -0.21 %

0.00 % 0.00 % 0.00 % 0.00 % -27.86 % 0.00 % -0.03 %

-1.56 % -0.86 % -1.56 % -0.86 % -0.86 % -0.86 % 1.35 %

0.01 % 1.70 % 0.01 % 1.70 % -26.39 % 3.06 % 0.61 %

1.00 % 3.44 % 4.21 % -4.54 % -10.19 % -4.94 % 2.70 %

0.85 % 0.85 % 0.85 % 0.85 % -11.60 % -2.15 % -0.67 %

7.93 % 6.35 % 7.67 % 4.10 % 8.61 % -8.30 % 1.77 %

-12.14 % -12.14 % -12.14 % -14.00 % -6.84 % -14.66 % -3.69 %

2.62 % -0.60 % 2.11 % 1.46 % -5.84 % -2.12 % 36.23 %

2.19 % 0.68 % 1.65 % 3.57 % 1.28 % -15.81 % 9.96 %

-1.69 % 0.37 % 0.83 % 0.60 % 0.71 % -6.71 % 0.17 %
30

20

10

0

10

20

30

40

Figure 1: Change in accuracy of K-Nearest Neighbour classifier after feature selection.

Table 4: Average rank of FS methods by accuracy change
for four classifiers in multi-class problems.

Method NB KNN DT SVM Average Rank

SFS 15 11 12 12 1
JMI 2 3 4 4 2

CMIM 0 6 4 4 3
MRMR 1 4 4 4 3
Relief 2 0 0 2 5
Gini 0 0 0 2 6

obtained for the other learning algorithms where a similar pat-
tern is observed, except for NB. This again shows that not one
method of FS is suitable for every case. Finally, we sort them by
their average rank for all the classification algorithms and see
that the wrapper method ranks first, followed by the Gini filter
and, lastly, SPEC.

Table 5: Average rank of feature selection methods by AUC
change performance.

Method NB KNN DT SVM Average Rank

SFS 5 13 7 8 1
Gini 7 4 3 1 2

MRMR 5 4 2 1 3
Relief 2 5 2 3 2
JMI 3 3 2 4 5

CMIM 3 2 2 2 6
SPEC 2 2 0 1 7

5.2 Stability
From the results discussed above, we can conclude that wrapper
methods are more effective than filter methods in improving
or maintaining predictive performance. Following that, we now
delve into analyzing the stability of the FS methods, i.e., how
slight changes in the data (e.g., shuffling and sampling) affect
the final set of selected features. There are numerous metrics
for quantifying the stability of FS methods [18]. However, most
of them lack some of the critical properties of a stability metric
proposed in [24], which are: fully defined, strict monotonicity,
bounds, maximum stability and correction for chance. As a stability
measure, we use the formula defined in Section 4 by Equation 3
which satisfies these properties.

Table 6: Legend for classifying scalability value.

Φ̂ Stability

<0.40 Poor
0.40 - 0.75 Intermediate to good
>0.75 Excellent

To measure the stability, we first shuffle in a random manner
the instances and features of each dataset to obtain ten variants.
We perform FS on each one of them and compute the stability
metric over the selected features. The stability is interpreted as
poor for values less than 0.40, intermediate to good for values in
the range [0.40, 0.75] and excellent for values above 0.75 [24] as
shown in Table 6.

In Figure 3, we present the stability of the feature subsets from
the ten variants of each dataset after applying the FS methods for

703

CMIM Gini JMI MRMR Relief SPEC SFS

FS Method

793

819

834

841

931

995

1004

1015

1021

1061

1464

40666

40983

41145

41158

41966

D
at

as
et

 I
D

14.45 % 27.61 % 27.61 % 14.45 % 27.61 % -43.59 % 27.61 %

0.07 % 0.07 % 0.07 % 0.07 % 0.07 % -33.69 % 0.07 %

13.59 % 40.63 % 30.76 % 36.09 % 23.77 % -5.51 % 49.30 %

-0.28 % -0.65 % 0.22 % -0.71 % -0.28 % -3.84 % 0.45 %

5.47 % 5.47 % 5.47 % 5.76 % 0.88 % 5.47 % 5.76 %

-1.08 % -1.02 % -0.60 % -0.34 % -0.51 % -20.55 % -0.20 %

0.00 % 0.00 % 0.00 % 0.00 % -0.63 % 0.00 % 0.00 %

-8.54 % -2.58 % -8.54 % -2.58 % -2.58 % -2.58 % -2.58 %

-4.41 % -0.88 % -4.41 % -0.88 % -5.65 % -0.98 % 0.98 %

3.00 % 0.71 % 4.53 % 0.19 % 0.16 % 10.17 % 18.14 %

-6.11 % -6.11 % -6.11 % -6.11 % -3.39 % -2.55 % -2.31 %

0.17 % 0.19 % 0.28 % -0.75 % -0.01 % -5.84 % 0.46 %

-37.58 % -37.58 % -37.58 % -37.08 % 1.98 % -37.59 % 1.98 %

5.93 % 21.85 % 5.74 % 1.47 % -0.02 % -1.66 % 40.39 %

2.04 % 0.06 % 0.36 % 2.52 % 1.48 % -21.41 % 6.57 %

-0.83 % 0.01 % 0.04 % -0.02 % -0.04 % -9.63 % 0.04 % 40

20

0

20

40

Figure 2: Change in AUC of K-Nearest Neighbour classifier after feature selection.

CMIM Gini JMI MRMR Relief SPEC SFS SFS SFS

FS Method

793

819

834

841

931

995

1004

1015

1021

1061

1464

40666

40983

41145

41158

41966

D
at

as
et

 I
D

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6614 0.5873 0.5979

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2963 0.2667 0.3580

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 0.7222 1.0000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.4667 0.2000 0.4667

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.1980 0.2241 0.2204

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.2660 0.2500 0.2340

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7000 1.0000 0.7000

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8201 0.6085 0.8201

1.0000 1.0000 1.0000 0.8711 1.0000 1.0000 0.1730 0.3502 0.1139

0.4667 0.4667 0.4667 0.4667 1.0000 1.0000 0.2889 0.3556 0.2889

0.7888 1.0000 0.9018 1.0000 1.0000 1.0000 0.0588 0.0588 0.0588

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.0114 0.9410 0.8282 0.8767 1.0000 0.0114 0.5896 0.6145 0.5778

1.0000 1.0000 1.0000 1.0000 1.0000 0.0040 0.1351 0.1188 0.1721

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0504 0.1153 0.0495

0.2

0.4

0.6

0.8

1.0

Figure 3: Stability of feature selection methods, using decision tree classifier.

704

0 2 4 6 8 10

0

0.5

1

Dataset version

Pr
ed
ic
tiv

e
Pe
rf
or
m
an
ce

Accuracy AUC

Figure 4: Accuracy and AUC after FS with SFSMLX
DT on the

ten versions of dataset 793 after shuffling and sampling.

the DT classifier.13 From this figure, we observe a clear pattern
of filter methods being more stable than wrapper methods. The
lower stability of wrapper methods is attributed to the cross-
validation used in the classifiers to combat model over-fitting.
Cross-validation samples the data by splitting it into several folds;
this introduces a variance captured in the stability measure.

Considering the dataset with the ID 793 (chosen randomly),
using the MRMR filter method, we obtain a stability of 1 which
means the same features were selected for all ten variants, thus
no change in terms of the final result over the model learned
(e.g., accuracy and AUC). On the other hand, the wrapper method
𝑆𝐹𝑆𝑀𝐿𝑋

𝐷𝑇
has a stability of 0.6614, because different subsets are

produced from the variants. In Figure 4 we present the accuracy
and AUC (which range from 0.83 to 0.89) of the DT classifiers
built with the corresponding features from the wrapper method
on the ten variants. We see the effect of the changes after the
shuffling in Figure 4. Yet, the variance in the accuracy and AUC
are quite low (0.03%), and thus negligible. The superior results
from wrapper methods (Section 5.1) despite the lower stability
further shows that the variance from instability does not directly
affect the quality of the selected features.

Therefore, in general, data shuffling does not impact the sta-
bility of filter methods; however, it destabilizes wrapper methods
because of the use of cross-validation in model building. This
destabilization, however, does not imply poor predictive perfor-
mance.

5.3 Scalability and Peak memory
The scalability of FS methods has remained a hot topic especially
due to the prevalence of big data [10]. Given that filter methods
are indeed more computationally efficient than wrapper methods
[32], we focus on analyzing the scalability within wrapper meth-
ods implemented in various tools. In particular, we use the DT
classifier and a synthetic dataset with 1,600 predictive features,
one target feature and 16,000 instances.

In Figures 5 and 6, we show the scalability results obtained
after applying wrapper FS methods over the synthetic dataset
at various fixed numbers of features and instances. We focus
on the execution time and peak memory usage. Particularly, we
consider two cases; first where we fixed 10,000 instances and
vary the number of features from 200 to 1,600 (blue line) and
13For DT, the order of features in the dataset matters. So, shuffling the data causes
the wrapper libraries to select different subset of features.

200 400 600 800 1000 1200 1400 1600
Number of features

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ex
ec

ut
io

n
ti

m
e

(m
in

ut
es

)

2000 4000 6000 8000 10000 12000 14000 16000
Number of instances

Constant features
Constant instances

(a) Average execution time of mono-objective methods.

200 400 600 800 1000 1200 1400 1600
Number of features

0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
ti

m
e

(m
in

ut
es

)

2000 4000 6000 8000 10000 12000 14000 16000
Number of instances

Constant features
Constant instances

(b) Average execution time of multi-objective method.

Figure 5: Time scalability of wrappers with DT classifier.

200 400 600 800 1000 1200 1400 1600
Number of features

20

40

60

80

100

120

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

2000 4000 6000 8000 10000 12000 14000 16000
Number of instances

Constant features
Constant instances

(a) Average peak memory of MLX library with DT.

200 400 600 800 1000 1200 1400 1600
Number of features

2

4

6

8

10

Pe
ak

 m
em

or
y

us
ag

e
(M

B)

2000 4000 6000 8000 10000 12000 14000 16000
Number of instances

Constant features
Constant instances

(b) Average peak memory of SKL, SKF, and MOFS.

Figure 6: Memory usage scalability of wrappers with DT.

705

Table 7: Accuracy and AUC change of MO and single crite-
ria.

Data Accuracy AUC
MO AUC MO ACC

1015 -3.82% -2.02% 1.82% 0%
793 0% -7.87% -9.85% -9.85%
1021 0.25% 0% 0.51% 0%
819 0.61% 0% 0.6% 0%
1004 0% 0% 0% 0%
41966 0.33% -0.5% 0% -0.04%
995 -0.76% -2.67% -0.69% -1.08%
41158 1.64% -7.03% -2.57% -5.35%
1464 -0.17% -1.05% 3.74% -6.18%
931 -7.19% 0% -1.56% 0%
40983 -0.92% 0% 0.34% -11.42%
841 -10.37% -10.51% 0.92% -11.08%
1061 -1.02% -3.17% -2.57% -8.24%
834 -0.53% -5.32% -2.98% -19.47%
40666 -0.92% -15.13% 0% -0.86%
41145 -2.38% -3.72% -1.18% -4.56%

the second is vice versa with 1,000 fixed features and instances
varied from 2,000 to 16,000 (green line).

Figures 5a and 5b show the average execution time for mono-
objective (MLX, SKL, SFL) and multi-objective wrapper methods
respectively. We show the results distinctly because the MOFS
takes longer execution time since it simultaneously computes
two metrics. Both figures show that a fixed number of features
and increasing instances (green line) scale linearly while a fixed
number of instances and growing features (blue line) cause a
faster increasing computational complexity.

For the peak memory usage, we show the results of the MLX
separately in Figure 6a because the library implementation uses
significantly more memory than the others shown in Figure 6b.
For both cases of fixed features and fixed instances, the figures
show that the memory usage scales linearly for wrapper methods;
using Decision Trees across all libraries.

From these results, we can conclude that in terms of memory
usage these methods are rather efficient. For execution time, they
are not scalable in scenarios where we have a large number of
instances with the number of features growing rapidly (which is
the case in big data). Thus, we contend that the focus should be
on developing more scalable wrapper methods in order to benefit
more from the positive impact these methods have in general on
model performance (Section 5.1).

5.4 MOFS Trade-Off
In this section, we compare predictive performance in mono-
objective and multi-objective FS. In particular, we consider two
mono-objective evaluation criteria (accuracy and AUC) and one
multi-objective (MO) criterion formulated by combining accuracy
and AUC. In all cases, the search strategy is SFS presented in
Algorithm 1. For this comparison, we fix two baselines for each
dataset. The first is the accuracy obtained by using accuracy as
the evaluation criterion, while the second is the AUC obtained
when AUC is used as the evaluation criterion.We argue that these
are the baselines for the individual metrics and now measure the
deviation as a result of using the other criteria (e.g., how AUC
changes when we optimize for accuracy and vice versa).

Beginning with the model accuracy, we use the other criteria
(i.e, MO and AUC) to select features from each dataset and mea-
sure their accuracy. We then compare this derived accuracy to
the accuracy baseline by measuring the percentage of change. A
positive number indicates an increase in the accuracy while a
negative number indicates a reduction. We present this accuracy
change for each dataset in the second and third columns of Table
7. We see that when using an alternative single criterion -AUC, at
best the accuracy is maintained (i.e., does not change); otherwise,
in most of the cases accuracy is reduced by up to 15%. However,
using a multi-objective criteria -MO, we observe a reduction of
accuracy to at most 10% and even an increase in accuracy in four
datasets. To visualize this, we show the results of using MO and
AUC as evaluation criteria in Figure 7a with the accuracy pre-
sented in the vertical axis. The position of the red points above
the green points represents a higher model accuracy from using
MO over AUC as the evaluation metric.

0.6 0.7 0.8 0.9 1.0
AUC

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

MO
AUC

(a) Comparison of accuracy change from MO and AUC criteria.

0.6 0.7 0.8 0.9 1.0
Accuracy

0.6

0.7

0.8

0.9

1.0

A
U

C

MO
Accuracy

(b) Comparison of AUC change from MO and Accuracy criteria.

Figure 7: Accuracy and AUC changes per metric.

Next, we examine the AUC when we use the other criteria (i.e,
MO and accuracy) to select features for each dataset. Also, we
compare the derived AUC to the AUC baseline by measuring the
percentage of change. The AUC change for each dataset is also
presented, in the fourth and fifth columns of Table 7. We observe
that the single accuracy criterion yields no improvement in the
AUC, preserves the AUC in only five datasets, and leads to a
loss in AUC of up to 19.47%. However, in using a multi-objective
criteria -MO, we observe an improvement of the AUC in six
datasets while keeping the AUC loss to just 9%. In Figure 7b, we
show the results of using MO and accuracy as evaluation criteria.
The lines connect the same datasets and the color determines

706

the optimized metric (accuracy or MO). The position of the red
points which represents MO show a higher model AUC than
when accuracy is used which are represented by the blue points.

6 RELATEDWORK
The ongoing data boom creates an unprecedented need for effi-
cient data processing techniques. In FS, big data threatens the
efficacy of existing methods suitable for small and medium-sized
datasets. For this reason, extensive research is ongoing around
optimizing existing FS techniques and proposing new methods
targeted at big data. We discuss the current works according to
evaluation criteria, stability, and scalability.

Evaluation criteria. The evaluation of selected features on
the target learning algorithm happens after selection for filter
methods and during selection for wrapper methods. For filter
methods, the evaluation criterion is fixed by definition. However,
for wrapper methods, the evaluation criterion is set depending on
the goal of the analysis and the ML algorithm used. This choice
drives the eventual feature subset. Several criteria, such as accu-
racy [6], kappa index [35], mean misclassification error (MMCE)
[32], AUC [1], and recently, fairness [31] have been used as eval-
uation criteria for wrapper methods. In some cases, it becomes
essential to consider more than one criterion; consequently, cus-
tom multi-objective functions are formulated. In [11] and [27],
the defined criterion maximizes the classification performance
and feature reduction. In [12], the proposed multi-objective func-
tion optimizes for the training and validation kappa index to
minimize classification error and overfitting respectively. By us-
ing NSGA-II [8], a multi-objective evolutionary algorithm, the
authors in [15] and [20] proposed multi-objective FS methods. In
the former, the goal was minimizing the number of used features
and the classification error, while in the latter, the focus was on
maximizing the Expected Maximum Profit (EMP) and minimizing
the number of features used in a credit scoring model. However,
these works either focus on one criterion or add the criterion of
minimizing the number of features to a traditional criteria, such
as accuracy, AUC, or kappa index.

Recently, the spotlight has been on creating fair ML models
with reduced bias towards individuals and groups; FS has been
instrumental in achieving this. Using the filter approach, the
authors in [19] used information theoretic measures such as
mutual, unique, shared, and synergistic information to quantify
the accuracy and discriminatory effects of feature sets. They
also used Shapley value functions to quantify both objectives for
individual features. More commonly, wrapper methods have been
used to find this accuracy - fairness trade-off. The authors in [31]
used NSGA-II to select features that maximized the predictive
performance (F1-score) and fairness (Statistical Parity Difference)
of the ML models. The average of three metrics (Demographic
Parity, Equality of Odds, Equal Opportunities) is combined to
measure fairness in [9]. A new utility function is formed from the
scalarization of the average fairness metric and F1-score to select
features that have good enough predictive performance and are
unbiased. Still focusing on fairness and predictive performance,
the authors in [33] optimize for these two objectives in a two-
phase approach. Firstly using SFS to select a feature set that
maximizes predictive performance (F1-score) and next using SBS
to eliminate features that reduce fairness (Ratio of Observational
Discrimination).

Combining multiple predictive evaluation criteria could also
be beneficial for selecting relevant features from a dataset as

analysts often explore not just one but several predictive perfor-
mance metrics to assess model quality. Our experiments com-
bined two predictive evaluation criteria (accuracy and AUC) and
demonstrate this advantage.

Stability. Beyond the internal evaluation of FSmodels through
evaluation criteria, the selected features must be reliable and
robust, i.e., little changes in the data should not lead to high vari-
ability in the selected features. Stability measures the robustness
of FS methods to slight changes in the data. The instability of
feature subsets from FS remains an issue, especially in domains
where the datasets are high dimensional with low sample sizes,
such as bioinformatics.

[21] studies the stability of feature rankers (a subset of filter
methods) on four microarray data by running 100 Monte Carlo
simulations and bootstrapping the original dataset each time
to create a new, slightly altered dataset. They demonstrate the
sensitivity of FS methods to changes in data perturbation, par-
ticularly in microarray data. In [36], the stability of filter and
wrapper feature subset selectors were evaluated by randomly
sampling a dataset without replacement 30 times for four overlap
percentages. The study shows filter methods to be more stable
than wrapper methods.

Although, stability is typically measured by data perturbation,
cross-validation, or partitioning. The impact of data shuffling
(i.e., a re-ordering of features and instances) on the stability of
FS methods has yet to be studied. Practically, current tools and
libraries for FS need to readily provide this supplementary infor-
mation on the stability of FS methods necessary to strengthen
confidence in the results of the methods.

Scalability. Similar to most ML tasks, big data impacts the
time taken to train models and perform FS. Generally, filter meth-
ods are more scalable than wrapper and embedded methods.
However, the focus has been on making filter methods more scal-
able using distribution/partitioning [5, 25, 34], parallel processing
[18, 25, 26], GPUs [28], MPI[2, 13], and early dropping heuristics
[22, 34]. On the other hand, even though the computational cost
of wrapper methods worsens with the growing size of data, they
have not received much attention when it comes to scalability.
Distribution, partitioning [4, 27] and parallel processing [11, 27]
have been used to improve some wrapper FS methods. However,
as demonstrated in [1] and our experiments (see Section 4), the
good performance of wrapper methods motivates the need to
propose more scalable versions.

In summary, to the best of our knowledge, there are no works
that perform a comparison of the existing tools and libraries for
wrapper methods, with respect to their evaluation criteria, sta-
bility and scalability. Furthermore, there is no work that assesses
the impact of multiple evaluation criteria on the selection of the
final set of features and their impact over the performance of the
learning algorithm. Hence, in this work, we give a detailed report
of the specificities of tools and libraries for wrapper methods
as well as demonstrate empirically that multi-objective feature
selection of two performance metrics finds a subset of features
that offers a better trade-off compared to using only one criterion.

7 CONCLUSIONS AND FUTUREWORK
With FS, the primary aim is to reduce the dimensionality of
the data. However, preserving the performance of the model
is equally important. We see from using two common model
performance metrics –accuracy and AUC, that wrapper FS selects

707

a subset of features that not only reduces the dimensions but
also preserves the model performance better than filter methods.
The results of our experiments also demonstrated that multi-
objective FS preserves, balances, and in some cases improves
model performance when more than one model performance
measure is considered.

Additionally, we saw that even though low stability has been
identified as one of the challenges of wrapper FS, the variation
in model performance was negligible. Consequently, the quality
of the features selected is not adversely affected by wrapper
methods being less stable than filter methods. Furthermore, the
execution time and memory footprint results of the wrapper
methods demonstrate that they are memory efficient but not
scalable especially with growing number of features.

Our assessments of wrapper FS tools highlight two gaps. First,
a lack of tools with population-based search wrapper methods
and secondly, the scalability bottleneck with the available tools.
With the superior results of wrapper methods, we argue that
they deserve more attention to be made more scalable.

As next steps, we plan to extend our study into using population-
based search to find Pareto optimal feature subsets selected by
combining multiple criteria. We aim to provide a scalable FS tool
with a suite of criteria to facilitate holistic feature selection and
explainability of ML models.

8 ACKNOWLEDGMENTS
The project leading to this publication has received funding
from the European Commission under the European Union’s
Horizon 2020 research and innovation programme (grant agree-
ment No 955895). Besim Bilalli is partly supported by the Span-
ish Ministerio de Ciencia e Innovación, as well as the Euro-
pean Union - NextGenerationEU, under the project FJC2021-
046606-I/AEI/10.13039/501100011033. Gianluca Bontempi was
supported by Service Public de Wallonie Recherche under grant
n° 2010235–ARIAC by DIGITALWALLONIA4.AI.

REFERENCES
[1] Farideh Bagherzadeh-Khiabani, Azra Ramezankhani, Fereidoun Azizi, Farzad

Hadaegh, Ewout W Steyerberg, and Davood Khalili. 2016. A tutorial on
variable selection for clinical prediction models: feature selection methods
in data mining could improve the results. Journal of clinical epidemiology 71
(2016), 76–85.

[2] Bieito Beceiro, Jorge González-Domínguez, and Juan Touriño. 2022. Parallel-
FST: a Feature Selection Library for Multicore Clusters. J. Parallel and Distrib.
Comput. (2022).

[3] Daniel Berrar. 2019. Cross-Validation. In Encyclopedia of Bioinformatics and
Computational Biology. Academic Press, 542–545.

[4] Verónica Bolón-Canedo, Noelia Sanchez-Marono, and Amparo Alonso-
Betanzos. 2013. A distributed wrapper approach for feature selection. In 21st
European Symposium on Artificial Neural Networks, Computational Intelligence
And Machine Learning. Citeseer.

[5] Veronica Bolon-Canedo, Konstantinos Sechidis, Noelia Sanchez-Marono, Am-
paro Alonso-Betanzos, and Gavin Brown. 2019. Insights into distributed
feature ranking. Information Sciences 496 (2019), 378–398.

[6] Joana Chong, Petra Tjurin, Maisa Niemelä, Timo Jämsä, and Vahid Farrahi.
2021. Machine-learning models for activity class prediction: A comparative
study of feature selection and classification algorithms. Gait & Posture 89
(2021), 45–53.

[7] Kalyanmoy Deb. 2014. Multi-objective optimization. In Search methodologies.
Springer, 403–449.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions
on evolutionary computation 6, 2 (2002), 182–197.

[9] Ginel Dorleon, Imen Megdiche, Nathalie Bricon-Souf, and Olivier Teste.
2022. Feature selection under fairness constraints. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. 1125–1127.

[10] Naoual El Aboudi and Laila Benhlima. 2016. Review on wrapper feature
selection approaches. In 2016 International Conference on Engineering & MIS.
IEEE, 1–5.

[11] Mikel Galar, Isaac Triguero, Humberto Bustince, and Francisco Herrera. 2018.
A preliminary study of the feasibility of global evolutionary feature selection
for big datasets under Apache Spark. In 2018 IEEE Congress on Evolutionary
Computation. IEEE, 1–8.

[12] Jesús González, Julio Ortega, Miguel Damas, Pedro Martín-Smith, and John Q
Gan. 2019. A new multi-objective wrapper method for feature selection–
Accuracy and stability analysis for BCI. Neurocomputing 333 (2019), 407–418.

[13] Jorge González-Domínguez, Verónica Bolón-Canedo, Borja Freire, and Juan
Touriño. 2019. Parallel feature selection for distributed-memory clusters.
Information Sciences 496 (2019), 399–409.

[14] Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and
feature selection. Journal of machine learning research 3, Mar (2003), 1157–
1182.

[15] Tarek M Hamdani, Jin-Myung Won, Adel M Alimi, and Fakhri Karray. 2007.
Multi-objective feature selection with NSGA II. In International conference on
adaptive and natural computing algorithms. Springer, 240–247.

[16] Steven A Hicks, Inga Strümke, Vajira Thambawita, Malek Hammou, Michael A
Riegler, Pål Halvorsen, and Sravanthi Parasa. 2022. On evaluation metrics for
medical applications of artificial intelligence. Scientific Reports 12, 1 (2022),
1–9.

[17] Raj Jain. 1990. The art of computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. John Wiley
& Sons.

[18] Utkarsh Mahadeo Khaire and R Dhanalakshmi. 2019. Stability of feature
selection algorithm: A review. Journal of King Saud University-Computer and
Information Sciences (2019).

[19] Sajad Khodadadian, Mohamed Nafea, AmirEmad Ghassami, and Negar
Kiyavash. 2021. Information theoretic measures for fairness-aware feature
selection. arXiv preprint arXiv:2106.00772 (2021).

[20] Nikita Kozodoi, Stefan Lessmann, Konstantinos Papakonstantinou, Yiannis
Gatsoulis, and Bart Baesens. 2019. A multi-objective approach for profit-
driven feature selection in credit scoring. Decision support systems 120 (2019),
106–117.

[21] Panagiotis Moulos, Ioannis Kanaris, and Gianluca Bontempi. 2013. Stability
of feature selection algorithms for classification in high-throughput genomics
datasets. In 13th IEEE International Conference on BioInformatics and BioEngi-
neering. IEEE, 1–4.

[22] Thu Nguyen, Nhan Phan, Nhuong Nguyen, Binh T Nguyen, Pål Halvorsen,
and Michael A Riegler. 2022. Parallel feature selection based on the trace ratio
criterion. In 2022 International Joint Conference on Neural Networks. IEEE, 1–8.

[23] Uchechukwu Njoku, Alberto Abelló, Besim Bilalli, and Gianluca Bontempi.
2022. Impact of Filter Feature Selection on Classification: An Empirical Study..
In 24th International Workshop on Design, Optimization, Languages and Ana-
lytical Processing of Big Data. 71–80.

[24] Sarah Nogueira, Konstantinos Sechidis, and Gavin Brown. 2017. On the
stability of feature selection algorithms. J. Mach. Learn. Res. 18, 1 (2017),
6345–6398.

[25] Raul-Jose Palma-Mendoza, Luis de Marcos, Daniel Rodriguez, and Amparo
Alonso-Betanzos. 2019. Distributed correlation-based feature selection in
spark. Information Sciences 496 (2019), 287–299.

[26] Raul-Jose Palma-Mendoza, Daniel Rodriguez, and Luis De-Marcos. 2018. Dis-
tributed ReliefF-based feature selection in Spark. Knowledge and Information
Systems 57, 1 (2018), 1–20.

[27] Daniel Peralta, Sara del Río, Sergio Ramírez-Gallego, Isaac Triguero, Jose M
Benitez, and Francisco Herrera. 2015. Evolutionary feature selection for
big data classification: A mapreduce approach. Mathematical Problems in
Engineering 2015 (2015).

[28] Sergio Ramírez-Gallego, Iago Lastra, David Martínez-Rego, Verónica Bolón-
Canedo, José Manuel Benítez, Francisco Herrera, and Amparo Alonso-
Betanzos. 2017. Fast-mRMR: Fast minimum redundancy maximum relevance
algorithm for high-dimensional big data. International Journal of Intelligent
Systems 32, 2 (2017), 134–152.

[29] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine learning
in python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. Information 11, 4 (2020), 193.

[30] Claudio Reggiani, Yann-Aël Le Borgne, and Gianluca Bontempi. 2017. Feature
selection in high-dimensional dataset using MapReduce. In Benelux Conference
on Artificial Intelligence. Springer, 101–115.

[31] Ayaz Ur Rehman, Anas Nadeem, and Muhammad Zubair Malik. 2022. Fair Fea-
ture Subset Selection using Multiobjective Genetic Algorithm. arXiv preprint
arXiv:2205.01512 (2022).

[32] Victor F Rodriguez-Galiano, Juan Antonio Luque-Espinar, M Chica-Olmo,
and María Paula Mendes. 2018. Feature selection approaches for predictive
modelling of groundwater nitrate pollution: An evaluation of filters, embedded
and wrapper methods. Science of the total environment 624 (2018), 661–672.

[33] Ricardo Salazar, Felix Neutatz, and ZiawaschAbedjan. 2021. Automated feature
engineering for algorithmic fairness. Proceedings of the VLDB Endowment 14,
9 (2021), 1694–1702.

[34] Ioannis Tsamardinos, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios
Pratikakis, and Vassilis Christophides. 2019. A greedy feature selection al-
gorithm for Big Data of high dimensionality. Machine learning 108, 2 (2019),
149–202.

[35] Susana M Vieira, Uzay Kaymak, and João MC Sousa. 2010. Cohen’s kappa
coefficient as a performance measure for feature selection. In International

708

conference on fuzzy systems. IEEE, 1–8.
[36] Randall Wald, Taghi M Khoshgoftaar, and Amri Napolitano. 2013. Stabil-

ity of filter-and wrapper-based feature subset selection. In 2013 IEEE 25th
International Conference on Tools with Artificial Intelligence. IEEE, 374–380.

709

