
TransEdge: Supporting Efficient ReadQueries
Across Untrusted Edge Nodes

Abhishek Singh

UC Irvine

abhishas@uci.edu

Aasim Khan

UC Santa Cruz

aashkhan@ucsc.edu

Sharad Mehrotra

UC Irvine

sharad@ics.uci.edu

Faisal Nawab

UC Irvine

nawabf@uci.edu

ABSTRACT
We propose Transactional Edge (TransEdge), a distributed trans-

action processing system for untrusted environments such as

edge computing systems. What distinguishes TransEdge is its

focus on efficient support for read-only transactions. TransEdge

allows reading from different partitions consistently using one

round in most cases and no more than two rounds in the worst

case. TransEdge design is centered around this dependency track-

ing scheme including the consensus and transaction processing

protocols. Our performance evaluation shows that TransEdge’s

snapshot read-only transactions achieve an 9–24× speedup com-

pared to current byzantine systems.

1 INTRODUCTION
In Global-Edge Data Management (GEDM), edge nodes have

the ability to participate in the storage and computation of data.

The goal is to bring data closer to users for faster access. This,

however, creates a number of complexities that are not incurred

in current cloud-based databases. The main challenge in GEDM

is that edge nodes cannot be trusted since they are operated by

users or third-party providers, and may run on commodity edge

hardware that is vulnerable to breaches. This requires adopting

a stringent fault-tolerance guarantee of tolerating arbitrary and

malicious failures, i.e., byzantine failures [34, 46].

To address this challenge, recent protocols propose hierar-

chical byzantine fault-tolerant (BFT) systems, also referred to

as permissioned blockchain. For example, Blockplane [43], Re-

silientDB [26], ChainSpace [7], and others [8, 9], divide the data

into many partitions, where each partition is handled by a cluster

of nodes that are close to each other. Each one of these clusters

runs a BFT protocol, such as PBFT [16], to commit transactions

within the cluster and perform inter-cluster coordination via

benign protocols such as Two-Phase Commit [50].

Hierarchical BFT protocols perform well as they mask byzan-

tine behavior locally and use a benign protocol for wide-area

coordination. However, a limitation shared across all these ex-

isting works is that they present a solution for general (read-

write) database transactions and do not pay special attention to

read-only transactions. Read-only transactions make up most of

Internet traffic where it is reported that more than 99% of modern

applications’ workload consists of read-only queries [14]. Exploit-

ing the read-only property of transactions can bring significant

performance benefits.

We propose Transactional Edge (TransEdge), a hierarchical

BFT protocol that is designed to optimize the performance of read-

only transactions. Database designs that are centered around

optimizing read-only transactions are common [6, 18, 23, 47, 48].

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the

26th International Conference on Extending Database Technology (EDBT), 28th

March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Cr C1 C2 X Y

2PC

t1

2PC

t2

read(y)

read(x)

y=y1

x=x2

Batch b

includes

prepare(t1)

includes

prepare(t1)

includes

commit(t1)
includes

commit(t1)

includes

prepare(t2)

includes

prepare(t2)

includes

commit(t2)

includes

commit(t2)

1
x

Batch b
2
x

Batch b
3
x

Batch b
4
x

Batch b
1
y

Batch b
2
y

Batch b
3
y

Batch b
4
y

Figure 1: A motivating example showing that simply doing local
read-only transactions could lead to inconsistent distributed read-
only transactions

However, these methods cannot be used in hierarchical BFT

systems as they assume a benign fault-tolerance model.

TransEdge builds on the hierarchical BFT architecture similar

to many other systems [7–9, 26, 43]. This enables the adoption

of TransEdge’s read-only techniques and insights to other hierar-

chical BFT systems. Nodes are divided into clusters. Each cluster

consists of neighboring nodes that handle a mutually exclusive

partition of the data. Local transactions are committed within a

cluster using the BFT-SMaRt protocol [13]. A Two-Phase Com-

mit (2PC) protocol is built on top of BFT-SMaRt to implement

distributed transactions.

The novelty of TransEdge is the support of efficient snapshot

read-only transactions. We define an efficient snapshot read-only

transaction as one that satisfies two properties:

(1) Commit-free: a read-only transaction can be answered by a

single node from each accessed partition. It does not incur

the cost of the commit sequence of either the BFT protocol

within a cluster or the distributed transaction protocol across

clusters.

(2) Non-interference: a read-only transaction should not in-

terfere with read-write transactions. A read-only trans-

action should not lead to blocking or aborting read-write

transactions—even if temporarily—and vice versa.

To provide efficient snapshot read-only transactions in a byzan-

tine environment, TransEdge proposes a novel dependency track-

ing mechanism. This scheme augments traditional efficient read-

only transaction designs with Authenticated Data Structures

(ADS) [39] to allow a node to report dependencies in a trusted

way. Specifically, each node can provide a proof of the authentic-

ity of the dependencies when reporting them to a client.

TransEdge protocols require complex dependency tracking

mechanisms because using an ADS by itself is not sufficient

to ensure data consistency across partitions. The example in

Figure 1 demonstrates that using Merkle Trees without additions

might lead to inconsistencies when reads are distributed across

Series ISSN: 2367-2005 684 10.48786/edbt.2023.57

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.57

more than one partition. This demonstration motivates our cross-

partition dependency tracking mechanism that we develop in the

rest of this section. Consider a distributed read-only transaction,

𝑡𝑟 , that reads two data objects, 𝑥 and 𝑦, from two partitions, 𝑋

and 𝑌 , respectively. Assume that concurrent to 𝑡𝑟 , there were two

distributed read-write transactions, 𝑡1 and 𝑡2. Both read-write

transactions do the same thing—each writes a new value for

both 𝑥 and 𝑦. Transaction 𝑡1 writes values 𝑥1 and 𝑦1 first, then

transaction 𝑡2 writes values 𝑥2 and 𝑦2.

If transaction 𝑡𝑟 executes concurrent to 𝑡1 and 𝑡2, then it must

return one of three snapshots to satisfy serializability: (1) return

the initial snapshot where neither 𝑡1 nor 𝑡2 has committed, (2)

return 𝑥1 and 𝑦1, which correspond to the database state after

committing 𝑡1, or (3) return 𝑥2 and 𝑦2, which correspond to the

database state after committing 𝑡2. However, using Merkle Trees

without additions can lead to returning an inconsistent read, such

as returning the values 𝑥1 and𝑦2. For this to happen, assume that

𝑡1’s commit record was in batch 2 in 𝑋 and in batch 2 in 𝑌 . Also,

assume that 𝑡2’s commit record was in batch 4 in 𝑋 and in batch

4 in 𝑌 . If 𝑡𝑟 started while 𝑡2 is sending the commit messages to

participants, it is possible that 𝑡𝑟 reads the state of 𝑋 as of batch

4, while reading the state of 𝑌 as of batch 2. This leads to an

inconsistent read-only transaction.

We begin this paper with an overview and background of

TransEdge (Section 2). We propose TransEdge design and trans-

action processing protocols in Section 3, and propose TransEdge

optimized snapshot read-only transaction processing protocol in

Section 4. An experimental evaluation is presented in Section 5.

Related work is presented in Section 6 and Section 7 concludes

the paper.

2 TRANSEDGE SYSTEM MODEL
System Model. Global-Edge Data Management (GEDM) is a

data management model that aims to utilize both cloud and edge

resources. GEDM aims to overcome wide-area latency by leverag-

ing the resources at the edge of the network. These edge resources

can take the form of private, edge, and micro datacenters which

are clusters of machines. These infrastructures are typically main-

tained at the edge of the network by third-party organizations

like Internet service providers.

Security and trustmodel.Weadopt a byzantine fault-tolerance

(BFT) model where a node might act in arbitrary and malicious

ways. We assume that the number of such malicious nodes is

bounded by a number 𝑓 . We build upon prior work on BFT sys-

tems where clusters of machines are used to mask 𝑓 failures by

replicating and coordinating across 3𝑓 + 1 nodes [15].

Data model. Data is partitioned across edge nodes and each

partition is replicated across clusters of 3𝑓 + 1 nodes, where 𝑓

is the number of tolerated byzantine failures. We assume that a

clustering protocol is utilized to form the partitions with such

a guarantee, similar to prior work in hierarchical BFT proto-

cols [9, 26, 27, 43]. More details about node grouping is presented

in Section 6.1. Coordinating access and data operations is per-

formed via a hierarchical BFT architecture, where transactions

local to a partition are performed within the corresponding clus-

ter. These local transactions are committed via BFT protocols

such as BFT-SMaRt. Inter-cluster operations are performed via

benign protocols (e.g., Two-Phase Commit) that are layered over

the BFT replication layer [7–9, 26, 43]. Due to spatial (geographic)

locality, inter-cluster operations are typically across nearby clus-

ters (e.g., it is typical that a user interacts with users who are

geographically close to them which leads to data and operations

to have such geographic locality).

Interface. A client running a transaction first creates a Trans-

action object and sends read operations to access data from

TransEdge nodes. write operations are buffered at the client.

When the transaction is ready, a commit request groups read
and write operations and sends them to a TransEdge node to

be committed. TransEdge supports efficient snapshot read-only

transactions with the interface read and commit-rot which exe-

cutes a special read-only transaction algorithm. Each edge node

has a unique public/private key that it uses in all communications

with the other edge nodes.

3 READ-WRITE TRANSACTION
PROCESSING

TransEdge’s Read-write transaction processing protocol facili-

tates dependency tracking that we later use for efficient read-only

transaction processing. We only provide the design of read-write

transactions in this section and then present the snapshot read-

only transaction processing protocols in Section 4.

3.1 System Model and Overview
Data is partitioned into 𝑛 partitions. The state of each partition

is maintained via a BFT State-Machine Replication (SMR) log.

This replication log is managed by a cluster of edge machines.

Each cluster consists of 3𝑓 + 1 edge nodes where up to 𝑓 nodes

can be malicious (i.e., byzantine). In our case, the BFT SMR is

implemented by BFT-SMaRt [13].

A leader writes data to the SMR log in batches. Batches are

written one-by-one, i.e., a leader writes a batch only if the pre-

vious batch is already written. Each batch consists of multiple

segments (Figure 2):

(1) Local transactions segment, which includes local transactions.

Local transactions are defined as transactions with read and

write operations on keys that are all local to the cluster where

they are being sent.

(2) Prepared distributed transactions segment, which includes

distributed transactions that are Two-Phase Commit (2PC)

prepared but not committed yet. Distributed transactions are

defined as transactions whose read or write set contains keys

that are not local to one cluster.

(3) Committed distributed transactions segment, which includes

distributed transactions that are 2PC committed.

(4) Read-only segment, which includes (i) a conflict-dependency

(CD) vector that tracks dependencies on transactions at other

partitions, (ii) a Last Committed Epoch (LCE) number that

represents the largest batch number where prepared transac-

tions are committed (the LCE also serves as a version number

for the keys committed in the batch as we will discuss later)

and (iii) a Merkle Tree root which is used to certify the in-

tegrity of committed transactions. The read-only segment is

updated and written while processing local and distributed

transactions, but their utility is in enabling efficient snapshot

read-only transactions as we show later (Section 4).

A batch is represented with the notation 𝑏𝑋
𝑖
, which denotes the

𝑖𝑡ℎ batch in partition 𝑋 . The subscript 𝑖 serves as a timestamp for

each batch in the SMR log. Each segment is represented by ap-

pending the segment’s name to the batch—for example, 𝑏𝑋
𝑖
.local

represents local transactions in 𝑏𝑋
𝑖
.

An example of the state of a leader edge node is shown in

Figure 2. The SMR log contains two written batches (𝑏0 and

𝑏1) and also shows the in-progress batch (𝑏2) that is being con-

structed to be written to the SMR Log. Batch 𝑏0 contains three

local transactions—𝑡0, 𝑡1, and 𝑡2. Local transactions are considered

committed as soon as the batch is written to the SMR log. Batch

𝑏0 also contains three distributed transactions—𝑡3, 𝑡4, and 𝑡5—in

the prepared segment. Each transaction in the prepared segment

685

Batch b0

Local:

Prepared:

Committed:

t0, t1, t2

t3, t4, t5

Batch b1

t6, t7, t8

t9, t10

in-progress

Batch b2

t11,

t12,

b0 (t3, t4, t5)

Prepared batches:

t3: committed

t4: aborted

t5: committed

b0 prepared

t9: waiting

t10: committed

b1 prepared

SMR log:

Events:
(1) Local commit request

(2) Distributed commit req.

(3) Receive a 2PC prepare

(4) Receive a 2PC prepared

(5) Receive a 2PC commit

(6) Batch Processing (timer/size) triggered

Read-only:

X X
X

X

- CD Vector= [0,-1]

- Last Committed

 Epoch (LCE)= -1

- Merkle Root r0

- CD Vector= [1,-1]

- Last Committed

 Epoch (LCE)= -1

- Merkle Root r1

- CD Vector= [2,0]

- Last Committed

 Epoch (LCE)= 0

- Merkle Root r2

Figure 2: An example of the state of a leader node.
is prepared as of batch 𝑏0—the term prepared here corresponds to

the prepared state of 2PC which guarantees the property that no

two conflicting transactions can be prepared at the same time.)

These prepared transactions are waiting to hear from the other

partitions/leaders to know whether to commit or abort.

The leader tracks the state of prepared batches in a data struc-

ture called prepared batches shown in Figure 2. Once all the trans-

actions in the oldest prepared batch are ready (committed or

aborted), the leader adds these transactions to the committed

segment of the next batch (the in-progress batch). In the figure,

the prepared transactions of 𝑏0 are ready, and thus are added to

the committed segment of batch 𝑏2. Prepared transactions are

not considered committed until the batch with the corresponding

committed segment is written to the SMR log.

3.2 Intra-cluster Transaction processing
TransEdge processes transactions in an Optimistic Concurrency

Control approach [33, 48]. Clients’ read requests are served from

any node in the cluster. Responses to clients must include the

LCE of the batch which the key was read from. The client buffers

the writes in the transaction object. When it is time to commit

the transaction, the client sends the transaction object contain-

ing the read and write sets to the leader. The leader receives

commit requests from clients that include the read and write-

sets (event 1 in Figure 3). The read-set is the set of read data

objects along with the read values. The write-set is the set of

data objects to be written. When a transaction, 𝑡 , is received by

the leader, the leader verifies that it can commit and appends it

to the in-progress batch. This verification involves checking the

following conflict detection rules, which we will also use later

for distributed transactions:

Definition 3.1. (Conflict detection rules.) A transaction 𝑡 is

added to an in-progress batch only if it does not conflict with the

following:

(1) Previous batches: this is checked by verifying that all reads

in the read-set of 𝑡 are not overwritten by committed local or

distributed transactions in previous batches.

(2) In-progress batch: this is checked by verifying that every

transaction 𝑡 ′ in the local, prepared, or committed segments

do not conflict with 𝑡 .

(3) Prepared transactions: this is checked by verifying that every

transaction 𝑡 ′ in prepared batches (that are not committed)

does not conflict with 𝑡 .

Otherwise, 𝑡 is aborted or restarted.

Transactions that pass the conflict detection rules are added

to the in-progress batch of the log. The batch is replicated within

the cluster by the leader. Depending on whether the transactions

are local or distributed they are added to the specific segments

of the current batch of the SMR log. The cluster replicas per-

form the same conflict detection on the transaction batch and

then add the transactions to their SMR log. All cluster replicas

form a Merkle tree of the local and distributed transactions once

conflict detection is complete. A consensus process is performed

Batch b0

t0, t1, t2

t3, t4, t5

X

- CD Vector = [0,-1]

- Last Committed

 Epock (LCE) = -1

- Merkle Root r0

X

Batch b5

t3, t4, t5

Y

- CD Vector = [-1,5]

- Last Committed

 Epock (LCE) = -1

- Merkle Root r5

Y

Batch b2
X

- CD Vector = [2,5]

- Last Committed

 Epock (LCE) = 0

- Merkle Root r2

Batch b1

.......

X

.......

.......

.......

.......

Batch b8

t3, t4, t5

Y

- CD Vector = [0,5]

- Last Committed

 Epock (LCE) = 5

- Merkle Root r8

.......

..............

t3, t4, t5

1

2

3

4

5

6

7

8

Figure 3: An example of committing distributed transactions
across two partitions, X and Y.

on the merkle root of the transactions added to the batch using

the BFT-SMaRt protocol[13]. At the end of the consensus 𝑓 + 1

signatures are collected from the replicas and are added to the

batch. Once the consensus is complete the local transactions are

considered committed to the batch. If the consensus fails, the

transactions are aborted. Local (intra-cluster) transactions are

considered committed after their batch is written to the SMR log.

Writing to the SMR log entails coordinating with other replicas

using the PBFT protocol. Other replicas, when engaged in writing

the batch to the SMR log, ensure that the local transactions are

in fact allowed to commit using the rules above (Definition 3.1).

This guarantees that a malicious leader cannot commit trans-

actions that are inconsistent with the state of the SMR log of

other replicas in the cluster. Additionally, the batch generated by

following the conflict definition in definition 3.1 ensures that the

transactions are conflict serializable.

3.3 Distributed Transaction Processing
A distributed transaction accesses more than one partition. We

use a 2PC-based approach to commit distributed transactions

by having the 2PC protocol as a layer on top of the consensus

protocol. Specifically, each step of the 2PC protocol is verified

and persisted through the BFT protocol. Prepared and committed

transactions will be part of the prepared and committed seg-

ments, respectively (Figure 2.) In the following, we present the

distributed transaction processing protocol. We use the example

in Figure 3 to illustrate each step.

3.3.1 Client protocol. In TransEdge, a client creates a Trans-
action Object that reads data from a corresponding partition and

buffers writes. Read or write objects might belong to more than

one partition. When the client is ready to commit, it picks one

of the clusters of the accessed partitions to act as a whole as the

coordinator of the transaction. Then, it sends a commit request

to the coordinator containing the read and write set (step 1 in

Figure 3.) The coordinator then drives the commitment of the

transaction. Each step that is performed by the coordinator clus-

ter is verified using the underlying BFT protocol. This ensures

686

that a malicious leader or node in the coordinator cluster would

not be able to lie when communicating 2PC steps with other

accessed clusters. Likewise, the other clusters participating in

2PC also verify all 2PC steps with the underlying BFT protocol.

When the client communicates with the coordinator cluster, it

can send the request to 𝑓 + 1 nodes in the cluster to ensure that

malicious nodes would not drop the message. Once the request

is written in the BFT cluster, the next steps will be driven by the

cluster as a whole which will prevent a malicious leader or node

from hindering the progress of the 2PC protocol. Communication

between clusters for 2PC steps can also adopt a similar strategy

by making 𝑓 +1 nodes send relevant 2PC messages to 𝑓 +1 nodes

in other clusters for each step.

3.3.2 2PCprepare. When the coordinator receives a commit

request for a transaction 𝑡 , it verifies that 𝑡 can prepare. This

is the 2PC prepare phase and is described in section 3.2. It is

shown in step 2 in Figure 3. After the transaction is written to the

SMR log, the leader sends the coordinator-prepare with a proof

that it is part of the SMR log (𝑓 + 1 signatures collected during

coordinator-prepare) to the leaders of the accessed partitions

(step 3 in Figure 3.)

3.3.3 2PC prepared. When a leader receives a coordinator-
prepare for a distributed transaction, it executes the intra-cluster

transaction processing protocol described in section 3.2. It then

constructs a prepared record and adds it to the prepared seg-

ment of the next batch (step 4 in Figure 3.) Each replica, while

writing the batch, verifies the authenticity of the prepare record
and verifies that it can commit using Definition 3.1. Once the

batch with the prepared record is written, the leader sends it to

the coordinator (step 5 in Figure 3.) The message includes the

prepared record signed by 𝑓 + 1 nodes in the partition. The set of

prepared transactions is also added to the prepared batches data

structure.

3.3.4 2PC commit at the coordinator. When the coor-

dinator receives prepared messages from all the participating

partitions, it declares whether the transaction commits or aborts.

If all prepared messages are positive, then the transaction com-

mits. Otherwise, it aborts. The coordinator constructs a commit
record that includes the collected prepared messages. The coor-

dinator, then, writes the commit record in the prepared batches

structure for its corresponding batch 𝑏𝑝 (Figure 2.) Once all the

other transactions in 𝑏𝑝 are ready, they are added to the commit-

ted segment of the next in-progress batch 𝑏𝑖 (step 6 in Figure 3.)

When 𝑏𝑖 is written to the SMR log, the distributed transaction is

considered committed. The leader then updates the LCE segment

of the batch. Afterward, the leader sends the commit record—

along with 𝑓 + 1 signatures—to the other partitions’ leaders (that

were accessed by the transactions) and to the client (step 7 in

Figure 3.) When a leader receives a commit record, it updates
the corresponding batch in the prepared batches data structure.

Once the corresponding prepared batch is ready and is the next

one to be committed, it is added in the committed segment of the

next batch and committed to the SMR log (step 8 in Figure 3.) In

the next section, we provide the updates that need to be applied

to the Read-Only part of the batch as part of commitment.

3.3.5 2PC transactions across more than two clusters. The dis-
tributed transaction processing protocol above can be performed

with more than two clusters. To illustrate, consider extending

the scenario shown in Figure 3 with one more cluster/partition

called Z. If the distributed 2PC transactions in 𝐵𝑋
0
access records

in Z as well, then the changes to the scenario are as the following.

The coordinator-prepare message (step 3) and the commit record

(step 7) is sent to both 𝑌 and 𝑍 . Also, the transactions prepare

(steps 4 and 5) and commit (steps 7 and 8) are performed at both

𝑌 and 𝑍 .

Another aspect of having more than two clusters is that dis-

tributed 2PC transactions may start at different clusters. Consider

the previous setup in Figure 3 with an additional cluster 𝑍 . A

distributed 2PC transaction 𝑡6 that accessed both 𝑍 and 𝑌 may

start at 𝑍 as the coordinator concurrently with transactions 𝑡3,

𝑡4, and 𝑡5. In this case, 𝑡6 is first prepared in a batch at 𝑍 . Then, a

coordinator-prepare is sent to 𝑌 . When 𝑌 receives the message,

it decides whether it can be committed. For example, if the mes-

sage for 𝑡6 is received after receiving the message for 𝑡2, 𝑡3, and

𝑡4, cluster 𝑌 checks for conflicts including conflicts between 𝑡6
and the prepared transactions 𝑡2, 𝑡3, and 𝑡4. Then, processing 𝑡6
continues by sending back the prepared message, and then for 𝑍

to send back the commit message.

3.3.6 Transaction Aborts. In TransEdge, aborts may be caused

due to various factors. First, a transaction may be aborted due

to conflicts. During conflict checks, using the conflict detection

rules we outlined above, if a transaction 𝑡 has a conflict, then

it is marked as aborted. Transaction 𝑡 ’s write-set is not applied

to storage and it does not impact future transactions. The user

client may request to abort a transaction while it is processing.

However, once the commit request is sent to a cluster, a user

client cannot request for the transaction to be aborted. Also,

TransEdge does not abort transactions due to a timeout. Because

each 2PC participant is represented as a cluster of machines, we

assume that there is always a quorum of nodes in each cluster

that can make progress, and therefore, an abort due to timeout is

unnecessary.

3.4 Commit Updates in the Read-Only
Segment

At the time of committing a batch of transactions (step 8 in

Figure 3), the following updates need to be applied to the Read-

Only part of the batch (these updates—although not impacting

the processing of read-write transactions—affect the processing

of read-only transactions that we present in Section 4. We present

more details about computing these updates in Section 4):

(1) Committed segment and Last Committed Epoch (LCE): The

cluster replica observes the prepared-batches data structure
(Figure 2). Specifically, it checks whether the earliest batch,

𝑏𝑖 , is ready—it has no pending transactions. If 𝑏𝑖 is ready, the

transactions in it are added to the committed segment of the

in-progress batch, the Last Committed Epoch (LCE) number

is updated to 𝑖 and 𝑏𝑖 is removed from the prepared batches

data structure. The LCE represents the id of the most recent

batch that committed as of the current in-progress batch.

(2) Conflict Dependency (CD) Vector: The CD vector encodes in-

formation about the dependencies from the committed batch

to the batches of other partitions/clusters. The CD vector at

a cluster contains 𝑛 entries, where 𝑛 is the number of parti-

tions. Each partition is represented by a number in the CD

vector. For example, if the CD vector contains the number

𝑖 for partition 𝑋 , this means that there is a dependency on

transactions at 𝑋 up to batch 𝑏𝑋
𝑖
. An entry in the CD Vector

can track the dependencies of multiple 2PC transactions by

taking a coarse-granularity approach. 2PC transactions in a

batch are all reading from the same data state that represents

the committed transactions of the received batches up until

that point. This makes all the transactions in a batch have the

same set of potential dependencies to the state represented

by the received batches up until that point. More informa-

tion about dependency tracking and the representation of

dependencies is presented in Section 4.3.

687

(3) Merkle root: The Merkle Tree is updated with the write-sets

of the transactions in the local, prepared and committed seg-

ments. This Merkle Tree root represents the state of the

Merkle Tree that includes all local, prepared and commit-

ted transactions up to the current batch. The Merkle tree

is updated by all replicas within a cluster while processing

read-write transactions.

3.5 Comparison with Hierarchical 2PC/BFT
TransEdge extends the literature of hierarchical 2PC/BFT sys-

tems, which are systems that perform 2PC across clusters, where

each cluster maintains a shard of the data [7, 26] (similar to

these systems are 2PC/Paxos systems that utilize paxos as the

underlying consensus layer [18]). Specifically, we consider a base-

line inspired by these hierarchical 2PC/BFT systems that we call

2PC/BFT and use in our evaluation study. In 2PC/BFT, similar to

TransEdge, each cluster acts as a 2PC participant and each step

taken by the participant cluster is first validated by the underlying

BFT consensus/agreement protocol. The main differentiator of

TransEdge is the efficient support of read-only transactions. This

leads to the main design differences such as having to maintain

the Read-only segment of batches, maintaining a CD Vector, a

LCE number, and a merkle tree (Figure 2). In terms of algorithms,

what TransEdge has additional support to maintain these added

structures (such as CD Vectors), new algorithms for read-only

transactions that we discuss in Section 4, as well as constraints

on how distributed read-write transactions are performed to en-

able efficient read-write transactions (Section 4.3.3). 2PC/BFT

systems, on the other hand, do not maintain these additional

structures, do not have additional constraints on the original

2PC protocol, and do not have additional special algorithms for

read-only transactions. However, they do not have the efficient

support of read-only transactions that TransEdge provides. We

discuss further comparisons with related work in Section 6.

2PC/BFT systems are used as a solution to the problem of

performing geo-distributed coordination across byzantine nodes

that are distributed around large geographic regions. 2PC/BFT

groups nodes together into clusters, each maintaining a shard.

Then, a cluster can act independently on behalf of that shard of

data. This includes coordinating with other shards which can

be done via the 2PC protocol. Therefore, the 2PC/BFT protocol

enables clustering data into smaller groups of nodes that are

near each other, and then utilizes an intra-cluster BFT instance

to validate steps that can be taken by the cluster as a whole.

This enables using benign (non-byzantine) algorithms across

clusters since each step is validated internally. This led some

prior work to adopt this paradigm, such as ResilientDB [26] and

ChainSpace [7]. This concept of layering 2PC over consensus is

also used in systems such as Spanner [18] which utilize paxos as

the consensus layer since they do not consider byzantine failures.

3.6 Correctness
TransEdge guarantees serializability [12].We present now a proof

sketch of this guarantee.

We define transaction commit points (TCP). A transaction com-

mit point for a distributed transaction 𝑡 is the time it commits (i.e.,

the coordinator node has received all positive votes). For a local

transaction 𝑡 , the transaction commit time the batch containing 𝑡

has been written to the SMR log (i.e., the leader received enough

votes for its commitment.) We denote the transaction commit

time for a transaction 𝑡 as 𝑇𝐶𝑃 (𝑡).

Second, conflicts between transactions are defined as follows [12]:

(1) write-read (wr) conflicts: a wr conflict from transaction 𝑡1 to

𝑡2 exists if transaction 𝑡1 has a write operation on an object 𝑜

and 𝑡2 reads the object version written by 𝑡1. (2) read-write (rw)

conflicts: a rw conflict from transaction 𝑡1 to 𝑡2 exists if trans-

action 𝑡1 reads an object 𝑜 and 𝑡2 overwrites the object version

read by 𝑡1. (3) write-write (ww) conflicts: a ww conflict from

transaction 𝑡1 to 𝑡2 exists if transaction 𝑡1 writes to an object 𝑜

and 𝑡2 overwrites the object version written by 𝑡1.

Lemma 3.2. For any two transactions 𝑡1 and 𝑡2, where𝑇𝐶𝑃 (𝑡1) =
𝑇𝐶𝑃 (𝑡2), it is guaranteed that 𝑡1 and 𝑡2 do not conflict with each
other.

Proof. The proof is included in the extended archival report[49].

□

Lemma 3.3. For any two conflicting transactions 𝑡1 and 𝑡2, where
there is a data conflict (i.e., read-write, write-read, andwrite-write [12])
from 𝑡1 to 𝑡2, it is guaranteed that 𝑇𝐶𝑃 (𝑡1) < 𝑇𝐶𝑃 (𝑡2)

Proof. The proof is included in the extended archival report[49].

□

Theorem 3.4. TransEdge read-write transactions guarantee se-
rializability.

Proof. We utilize the serializability graph (SG) test. The SG

is defined as a graph where each transaction is represented as a

vertex and each conflict is represented as a directed edge between

two transaction vertices. The SG test is the following: if the SG

contains no cycles, then the transaction history is serializable [12].

We now demonstrate that TransEdge ensures that the SG does

not contain cycles for any transaction history.

Assume to the contrary that there is a cycle in the SG, 𝑡1 →
. . . → 𝑡𝑛 → 𝑡1. Using Lemmas 3.2 and 3.3, we derive that

𝑇𝐶𝑃 (𝑡1) < 𝑇𝐶𝑃 (𝑡2). By transitivity, we arrive at𝑇𝐶𝑃 (𝑡1) < 𝑇𝐶𝑃 (𝑡1),

which is a contradiction. This proves the serializability of any

transaction history generated by TransEdge. □

4 READ-ONLY TRANSACTIONS
TransEdge supports efficient serializable read-only transactions
in a byzantine environment. The advantages of an efficient snap-

shot read-only transaction are: (1) commit-freedom: the transac-

tion needs to coordinate with only a single node from each ac-

cessed partition without involving the other replicas, and (2) non-

interference: the transaction does not interfere with on-going

read-write transactions. The first feature reduces the cost of read-

only transactions significantly since the alternative is to com-

mit read-only transactions as regular read-write transactions,

which incurs a coordination cost across at least 2𝑓 + 1 nodes

per accessed partition and running 2PC and BFT protocols that

incur significant overhead (Section 3.3.) The second feature (non-

interference) means that read-write transactions can proceed

even in the presence of conflicting read-only transactions.

4.1 Overview
In TransEdge, we extend the use of Merkle Trees [39] for database

applications [28] in two ways that are not supported in earlier

systems:

(1) Support distributed read-only transactions across multiple

untrusted nodes or clusters of nodes.

(2) Support updating the Merkle Tree without relying on the

involvement of a centralized trusted entity.

When a leader commits a new batch of transactions, it recom-

putes the Merkle Tree to reflect the new data. To ensure that the

new recomputedMerkle Tree is authentic, the leader commits the

root of the new Merkle Tree with the corresponding batch. Repli-

cas verify the authenticity of the new root and provide a signed

message of the new root. When a client sends a local read-only

688

transaction request, the leader responds with the corresponding

data blocks, the sibling nodes in the path to root for all blocks,

and the root of the tree with 𝑓 + 1 signatures.

Distributed read-only transactions are performed by querying

all accessed partitions. However, this is not sufficient because

the responses of the different leaders might be inconsistent—

unlike the local read-only transaction case, where we know the

state is consistent because they all belong to one Merkle Tree

which represents a consistent snapshot. We propose a multi-

round distributed read-only transaction protocol that ensures

reading from a consistent snapshot across partitions. The proto-

col relies on tracking dependencies across partitions, detecting

inconsistencies in the first round, and satisfying any missing

dependencies—if any—in the following round.

4.2 Local Read-Only Transactions
The client sends a read-only-txn request to the leader. The leader

responds with the requested data objects, sibling nodes in the

path to the root for all data objects, the Merkle Tree root, and

𝑓 + 1 signed messages proving the authenticity of the root. When

the client receives the response, it verifies the authenticity of the

response and Merkle Tree root. Then, it computes the Merkle

Tree root using the received data blocks and sibling nodes. If the

computed root matches the received one (which is signed by 𝑓 +1

nodes), then the client accepts the received data.

4.3 Distributed Read-Only Transactions
Distributed read-only transactions are ones that read from mul-

tiple partitions. TransEdge’s support for distributed read-only

transactions builds on the support for local read-only transac-

tions. The Merkle Trees are utilized to generate proofs to authen-

ticate data. However, we need to augment these Merkle Trees

with a dependency tracking mechanism to ensure that the results

are consistent across partitions (see the example in Figure 1).

4.3.1 Overview and Intuition. To overcome inconsisten-

cies between reads from different partitions, we augment TransEdge

with a dependency tracking mechanism. This dependency track-

ing mechanism enables detecting inconsistencies of reads across

partitions. Also, it enables identifying the needed dependencies

which allow TransEdge to ask partitions for missing dependen-

cies in following rounds. The read-only algorithms utilize the

information in the read-only segment of batches.

The dependency tracking mechanism relies on encoding the

dependency from one partition to all other partitions. Specifically,

when a new batch is committed, it includes all the dependencies

from that batch to other partitions. For example, in the previous

motivating scenario (Figure 1), batch 2 in 𝑋 , 𝑏𝑋
2
, would include

the dependency information that corresponds to 𝑡1. In this case,

𝑡1 is a distributed transaction that commits in both 𝑋 (𝑏𝑋
2
) and 𝑌

(𝑏𝑌
2
). Therefore, 𝑏𝑋

2
has a dependency relation to transactions in

𝑏𝑌
2
.

This dependency information allows detecting inconsistent

reads. For example, in the previous scenario the read-only trans-

action reads the state of batch 4 at 𝑋 , 𝑏𝑋
4
, and batch 2 at 𝑌 , 𝑏𝑌

2

(Figure 1). In this case, a transaction committed in 𝑏𝑋
4
has a de-

pendency to a transaction committed in 𝑏𝑌
4
. When a client sees

this dependency, it detect an inconsistency since it read the state

𝑏𝑌
2
, which is earlier than the required dependency, 𝑏𝑌

4
(the depen-

dency is satisfied if the read batch is equal to or higher than the

dependency.) In this case, the client sends a request to partition

𝑌 to get the state that it depends on, which is 𝑏𝑌
4
in this case.

4.3.2 Dependency tracking challenges .

(1) Dependency representation granularity: tracking dependen-

cies at the level of transactions for all partition incurs a high

overhead. Our protocol tracks and detects dependencies at

the granularity of partitions instead of transactions, reducing

the space of dependencies to be in the order of the number of

partitions rather than the number of transactions. Also, we

propose a method to represent dependencies in a coarse way

that allows representing the dependencies of a large number

of partitions with a single number.

(2) Allowing unconstrained local transaction commitment: A

feature that we want to maintain in TransEdge is the ability

to commit batches with local transactions without waiting

until the prepared transactions of the previous batch are

ready. Therefore, if transactions prepare in batch 𝑏𝑖 , we can-

not predict at which future batch they will commit. This

makes encoding dependencies difficult, since we do not know

which batch we are going to depend on before others com-

mit. To overcome this challenge, we encode dependencies

according to the batch where they were prepared, and utilize

the LCE number—which encodes the number of the batch

when the committed transactions were prepared—to check

dependencies.

4.3.3 RecordingDependency InformationDuring Read-
Write Transaction Processing. In this section, we present how

read-write transaction processing is augmented to record depen-

dencies that are used by read-only transactions. These changes

are essential to support the algorithms for read-only transactions

that we present in the following section.

(a) OrderingConstraint onDistributedRead-Write Trans-
actions. To enable efficient tracking of dependencies, we add

a constraint on the order of committing distributed read-write

transactions at each partition. Specifically, we group distributed

read-write transactions according to which batch contains their

prepare records and call them a prepare group. We force transac-

tions in a prepare group to commit together in a future batch (all

transactions in the prepare group commit together in one batch.)

The ordering constraint is the following:

Definition 4.1. The TransEdge ordering constraint forces
prepare groups to commit or abort in order; transactions in a

prepare group in batch 𝑖 commit before transactions in another

prepare group commit or abort in batch 𝑗 if and only if 𝑖 < 𝑗 .

For example, consider two prepare groups, one denoted 𝑃1

that is part of batch 𝑏𝑋
1
and another denoted 𝑃2 that is part of 𝑏

𝑋
2
.

Assume transactions in 𝑃1 commit in batch 𝑏𝑋
𝑖
and transactions

in 𝑃2 commit in batch 𝑏𝑋
𝑗
. The ordering constraint enforces that

𝑖 is less than 𝑗 .

This ordering constraint enforces an order of when transac-

tions can be committed. However, it still allows for concurrent

processing in various ways. First, local transactions that do not

conflict with in-progress batches can still be committed while

in-progress batches of 2PC transactions are being processed and

waiting to be committed. Second, distributed 2PC transactions

can always concurrently be processed as long as they do not con-

flict with in-progress batches (and previously committed trans-

actions). This is because the initial processing of transactions is

performed by the client before the commit request time. After

the transaction is ready, the commit request is sent, and the trans-

action enters the prepare phase. The processing of the prepare

phase is not constrained by other batches. Third, distributed 2PC

transactions in partitions that do not conflict with others can be

performed concurrently. This is because two partitions with no

689

conflicting transactions (direct or transitive) do not need to com-

municate with each other, and there is no ordering constraints

that are enforced for them.

Although the ordering constraint enforces an order of com-

mitment across batches, this is performed for transactions that

already finished processing and requested to commit. Therefore,

a long-running transaction is not going to increase the wait

time due to the ordering constraint because it is only exposed to

TransEdge after it is done processing and requested to commit.

However, long-running transactions are not ideal in Transedge,

since they may accumulate more conflicts before the request to

commit phase and thus leading to a high chance of aborting due

to conflicts (this is typical of occ-based solutions in general). As

for long-running read-only transactions (such as scans and large

analytics queries), these will not lead to performance degradation

due to the TransEdge read-only protocol that makes them not

conflict with ongoing read-write transactions.

(b) Dependency Tracking with CD Vectors. Given the

ordering constraint, we are now able to represent dependencies

across partitions efficiently—all dependencies from one batch to

another partition in TransEdge are represented by one number.

Specifically, each partition maintains a vector of dependencies

for every batch called the Conflict Dependency (CD) vector . We

use the notationV𝑋
𝑖

to denote the CD vector in batch 𝑏𝑋
𝑖
. The

entryV𝑋
𝑖
[𝑌] denotes the dependency from batch 𝑏𝑋

𝑖
to partition

𝑌 . Specifically, the entry is the batch number at𝑌 that𝑋𝑖 depends

on.

The numbers in the CD vector represent the dependency to

the batch that contains the prepare records rather than the com-

mit record. This is because we want to allow unconstrained local

transaction commitment (Challenge 2 in subsection 4.3.1.) To

allow unconstrained local transaction commitment, we cannot

predict (or enforce) at which batch a transaction would commit

at other partitions. However, we know at which batch the trans-

action prepared. In other words, tracking using the batch where

transactions prepared complicates the design, but it enables us to

make local transactions commit with arbitrary frequency without

delay.

For example, consider the scenario in Figure 3. The distributed

transactions (𝑡3, 𝑡4, and 𝑡5) are prepared in batches𝑏
𝑋
0
and𝑏𝑌

5
, and

committed in batches 𝑏𝑋
2
and 𝑏𝑌

8
. (assume for ease of exposition

that these are the only distributed transactions in the scenario.)

The CD vectors in the figure represent the dependency to 𝑋 fol-

lowed by the dependency to 𝑌 , i.e., [𝑖, 𝑗] represent a dependency
to 𝑏𝑋

𝑖
and 𝑏𝑌

𝑗
. The dependency from a batch to the node writ-

ing the batch is always the batch id, i.e., the CD vector 𝑉𝑋
𝑖

has

the value 𝑖 as the dependency to 𝑋 . Intuitively, this is because

the state of the batch depends on all the local and committed

distributed transactions up to that batch.

The dependency number to other partitions represents the

batch in which any common distributed transactions have pre-

pared. For example, observe the CD vector 𝑉𝑋
2

in batch 𝑏𝑋
2
of

Figure 3. In that batch, the distributed transactions 𝑡3, 𝑡4, and

𝑡5 committed. These transactions were prepared in 𝑌 at batch

𝑏𝑌
5
. This makes the dependency number from batch 𝑏𝑋

2
to 𝑌

be 5. Likewise, the dependency number from batch 𝑏𝑌
8
(where

the distributed transactions commit in 𝑌) to 𝑋 is 0 (where the

distributed transactions prepared in 𝑋 .)

Note in Figure 3 the dependency values are initially -1 to rep-

resent the absence of dependencies. The dependency relationship

to other partitions are only affected by the distributed transac-

tions that commit in the batch (not the ones that prepare.) It is

possible that the batch depends on multiple batches in another

Algorithm 1: Algorithm to derive dependencies to be

part of a new batch at partition 𝑋 .

1: 𝑉𝑋
:= set of all dependency vectors at 𝑋

2: on event DeriveDepVector (in: i) { // i is the batch number

3: 𝑉𝑋
𝑖
← 𝑉𝑋

𝑖−1
4: for commit record 𝑐𝑟 in 𝑏𝑋

𝑖
.committed do

5: for reported CD vector𝑉𝑌
𝑗

in 𝑐𝑟 do
6: 𝑉𝑋

𝑖
= pairwise_max(𝑉𝑋

𝑖
,𝑉𝑌

𝑗
)

7: }

partition. In this case, the dependency is to the latest batch of the

multiple dependencies.

(c) Reporting Dependencies in Prepared Messages. For
the batch processing thread to be able to derive dependencies

for the CD vector, it needs to have the dependency information

related to all transactions in the committed segment. Specifically,

what is needed are the batch numbers where the committed

transactions prepared on other clusters. For example, in Figure 3,

while constructing batch 𝑏𝑋
2
, the leader of 𝑋 needs to know that

the distributed transactions 𝑡3, 𝑡4, and 𝑡5 were prepared in 𝑌

at batch 𝑏𝑌
5
. The number of the batch will enable knowing the

dependency from𝑋 to𝑌 in relation to the committed transactions.

Additionally, we need to know any transitive dependencies from

the batch that we depend on. For example, in Figure 3, since the

distributed transactions lead to a dependency from 𝑏𝑋
2
to 𝑏𝑌

5
, the

consequence is that 𝑏𝑋
2
(transitively) depends on anything that

𝑏
𝑦

5
depends on.

To summarize, the batch processing thread needs the direct

and transitive dependencies of all transactions in the committed

segment. To collect this dependency information, each prepared
message of a distributed transaction 𝑡𝑖 is piggybacked with the

CD vector of the batch 𝑏𝑌
𝑗
where 𝑡𝑖 is prepared. This piggybacked

CD vector encodes both the direct and transitive dependencies.

(d) Deriving The CD Vector in Batches. Dependencies
need to be derived while wrapping up the construction of the

in-progress batch (Section 3.4). At a high-level, the batch pro-

cessing thread needs to go through all the transactions in the

committed segment in the batch and derive the dependencies to

other partitions according to the reported dependency vectors in

prepared messages.

The algorithm (Algorithm 1) to derive the CD vector𝑉𝑋
𝑖

starts

by loading the CD vector of the previous batch, 𝑉𝑋
𝑖−1. Then, for

each commit record of a transaction in the committed segment

(𝑐𝑟 in the algorithm), the leader processes all the corresponding

CD vectors. For example, consider a transaction 𝑡 that span three

partitions, 𝑋 , 𝑌 , and 𝑍 . When 𝑋 is deriving the CD vector of the

batch where 𝑡 commits, it uses the CD vectors received in the

prepared messages from 𝑌 and 𝑍 . For every reported CD vector

𝑉𝑌
𝑗
, the algorithm performs a pairwise maximum operation with

the current 𝑉𝑋
𝑖
. Eventually, the new CD vector 𝑉𝑋

𝑖
will be equal

to the pairwise maximum of the CD vector of the previous batch

and all the reported CD vectors of transactions in the committed

segment. This new value of the CD vector represents all the

direct and transitive dependencies resulting from committing the

transactions in the committed segment.

4.3.4 Read-Only Transaction Protocol. The read-only trans-
action protocol discussed in this section is designed to guarantee

serializability. The two rounds needed to perform a read-only

transaction (in the worst case) ensure that the objects retrieved

in the two rounds are always serializable. When a client issues a

distributed read-only transaction, it sends a request to the leader

690

Algorithm 2: Algorithm to verify dependencies in a

distributed read-only transaction

1: on event VerifyDependencies (in: V) {

2: // V is the set of received dependency vectors from accessed

partitions

3: for partition 𝑖 in accessed partitions do
4: for partition 𝑗 in accessed partitions do
5: if 𝑖 == 𝑗 then skip

6: if 𝑉𝑋𝑖

𝑏𝑖
[𝑋 𝑗] > 𝑉

𝑋 𝑗

𝑏 𝑗
.𝐿𝐶𝐸 then

7: Unsatisfied_dependencies← < 𝑋 𝑗 ,𝑉
𝑋𝑖

𝑏𝑖
[𝑋 𝑗] >

8: if Unsatisfied_dependencies is not empty then
9: rot_second_round(unsatisfied_dependencies)
10: }

of each accessed partition. The leader of each partition responds

with the current values, and the most recent Merkle Tree infor-

mation. The leader also sends the CD vector that corresponds

to the returned Merkle Tree root. The client uses the returned

CD vectors to decide whether the returned values are consistent

across partitions as we show next.

Verifying Dependencies. The algorithm to verify dependen-

cies (Algorithm 2) processes dependency vectors one by one. The

client receives 𝑛 dependency vectors (𝑉 in the algorithm) from 𝑛

partition leaders, where 𝑛 is the number of accessed partitions in

the read-only transaction. (We use the notationV𝑋𝑖

𝑏𝑖
to denote

the dependency vector of the 𝑖𝑡ℎ partition accessed by the read-

only transaction.) For each dependency vector, the algorithm

verifies dependencies to other accessed partitions. Specifically,

when processing V𝑋𝑖

𝑏𝑖
, the algorithm checks the dependencies

to all other 𝑛 − 1 partitions—hence, it checks V𝑋𝑖

𝑏𝑖
[𝑋 𝑗], for all

0 ≤ 𝑗 < 𝑛 and 𝑗 ̸= 𝑖 .

Each value V𝑋𝑖

𝑏𝑖
[𝑋 𝑗] is compared with the Last Committed

Epoch (LCE) received from 𝑋 𝑗 . The LCE is the batch number that

corresponds to the batch where the committed records in the

received batch have prepared. If the LCE value is greater than

or equal toV𝑋𝑖

𝑏𝑖
[𝑋 𝑗], then the dependency is satisfied, and the

algorithm proceeds to check the next dependency. If not, then

the dependency is flagged as unsatisfied and becomes part of the

second-round of the read-only transaction algorithm.

Termination and the Second Round. After all the depen-
dency vectors are checked, the algorithm terminates if all depen-

dencies are satisfied. Otherwise, it starts the second round of the

read-only transaction algorithm. In the second round, the algo-

rithm asks explicitly for the missing dependencies. For example,

if the dependencyV𝑋𝑖

𝑏𝑖
[𝑋 𝑗] was not satisfied in the first round,

the algorithm sends a request to the leader of partition 𝑋 𝑗 asking

for batch numberV𝑋𝑖

𝑏𝑖
[𝑋 𝑗]. After all such batches are served, the

algorithm terminates.

4.4 Properties of Read-Only Transactions
In this section, we discuss the correctness and data freshness

guarantees of TransEdge.

Read-only TransactionCorrectness. TransEdge guarantees
serializability [12]. We extend the proof presented in Section 3.6.

The intuition behind the proof is to show that read-only transac-

tions do not introduce cycles in the serializability graph (SG) of

any transaction execution history (history for short).

Lemma 4.2. For any two read-write transactions with a conflict
𝑡𝑖 → 𝑡 𝑗 , the CD vector of the batch that includes 𝑡 𝑗 , 𝑏𝑌𝑗 , includes

the dependency to the batch that includes 𝑡𝑖 , 𝑏𝑋𝑖 as well as the
dependencies of 𝑏𝑋

𝑖
.

Proof. This follows from the design where the CD vector is

updated after preparing with the dependencies of all the shards

that are involved in the transaction. □

Lemma 4.3. For a sequence of read-write transaction conflicts
𝑡𝑖 → . . . → 𝑡 𝑗 , the CD vector of the batch that includes 𝑡 𝑗 , 𝑏𝑌𝑗 ,

includes the dependency to the batch that includes 𝑡𝑖 , 𝑏𝑋𝑖 .

Proof. This is the case by applying Lemma 4.2 transitively.

□

Lemma 4.4. Given a serializability graph of a transaction history
of TransEdge read-write transactions, adding the node and edges
related to a read-only transaction 𝑡𝑟 would not introduce any cycles.

Proof. The proof is included in the extended archival report[49].

□

Theorem 4.5. TransEdge with both read-write and read-only
transactions guarantee serializability.

Proof. Starting from a serializability graph (SG) of read-write

transactions only, we know that 𝑆𝐺 is serializable from Sec-

tion 3.6. Then, by Lemma 4.3 we know that adding a read-only

transaction to 𝑆𝐺 would not lead to a conflict. Repeating this for

every read-only transaction gets us to the serializability graph

with all read-write and read-only transactions that includes no

cycles. □

4.4.1 Guarantee of two-round reads. TransEdge needs at
most two rounds to produce a consistent read-only transaction

response.We now prove that the responses received in the second

round would not lead to further unsatisfied dependencies and

therefore, there is never a need for a third round.

Theorem 4.6. In TransEdge, if there is a second round in the
read-only transaction, then there will be no further dependencies
and a third round is never needed.

Proof. The proof is included in the extended archival report[49].

□

4.4.2 Freshness in TransEdge. The read-only transaction

algorithm in TransEdge can guarantee consistency across a data-

base snapshot. However, it cannot guarantee that the response

from participating replicas always includes the latest updates.

Malicious participating replicas might return an old—albeit

consistent—snapshot. A way to enforce a freshness guarantee is

to add a timestamp to each batch that represents the time this

snapshot committed. Although, there are many other ways to

solve this problem we consider this orthogonal to the scope of

this project. The leader includes a timestamp of the current time

in the batch when it is sent to the other BFT replicas. The BFT

replicas verify that the timestamp in the batch is within a window

of time compared to their clock. (For example, a BFT replica 𝑟

accepts a batch only if the timestamp of the batch is within 30

seconds of 𝑟 ’s clock.). This ensures that a malicious leader is

restricted to a specific window when choosing the timestamp.

Using these timestamps and the configured time window, the

read-only clients can establish a guarantee on the freshness of

the data. Note that such a guarantee would not ensure that the

returned batch is the most recent one, but it ensures that the

batch was committed within a recent time window.

691

5 EXPERIMENTAL EVALUATION
TransEdge uses BFT-SMaRt [13] as the BFT system to commit

batches to the state-machine replication logwithin clusters. There-

fore, we inherit the fault-tolerance and state-machine replication

processes of BFT-SMaRt. We also compare the performance of

TransEdge’s read-only transactions with a coordination-based

read-only transaction protocol. We term this system 2PC/BFT,

and it aims to mimic how existing hierarchical BFT systems per-

form read-only operations [7–9, 26, 43] (see Section 3.5.) The

2PC/BFT system has the same structure as TransEdge, however,

the system performs read-only transactions by coordinating with

other leaders in other partitions via two-phase commit. This al-

lows us to contrast the performance of read-only transactions

in TransEdge with those executed in a coordination based sys-

tem. We also compare Read-only transactions in TransEdge with

Augustus[44], a BFT system that supports fast read-only transac-

tions and has similar data partitioning system as TransEdge.

5.1 Experimental setup
Setup. To evaluate transactions in TransEdge we use 5 clusters

with 7 replicas in each cluster. The 7 replicas in a cluster allows

the cluster to support Byzantine faults of up to 2. Experiments are

performed on ChameleonCloud[29] using Cascade Lake R ma-

chines with Xeon Gold 6240R processor, 192GB RAM, 96 Threads.

Transactionworkload is generated by 2 clients running 10 threads

for read-only transactions and read-write transactions.

Data and Transaction Model. There are two main types of

transactions that are evaluated in TransEdge: Read-write trans-

actions and read-only transactions. Read-write transactions are

of the following types: local write-only transactions, local read-

write transactions, and distributed read-write transactions. Write-

only and local read-write transactions are transactions that oper-

ate on keys local to a cluster. Distributed read-write transactions

need to be executed in coordination with other clusters as they

contain operations performed on keys from other clusters. Read-

only transactions read n unique keys from m clusters.

Each read-write transaction contains 5 read and 3 write oper-

ations distributed across 5 clusters. Each read-only transaction

contains 5 read operations reading 1 key from each cluster.

Workload.
The workload to test the system contains 500𝑘 transactions.

Total number of keys in the clusters is 1𝑀 . Keys are uniformly

distributed across the clusters using hashing. Key and values

used in the transactions have a size of 4 bytes and 256 bytes

respectively. The workload generator is inspired by YCSB [17]

and its transactional extensions [20]. The workload generator

generates operations based on the provided ratios. A key for each

operation is also picked randomly. Then, a group of operations

are bundled into a transaction [20].

5.2 Experimental Results
Read-only transactions. We first present the results of experi-

ments for read-only transactions—the main focus of this paper.

The results measure the end-to-end latency of read-only transac-

tions from the client’s side.

The results of the first set of experiments is shown in Figure 4.

In it, we measure the read-only transaction latency of TransEdge

and demonstrate how it outperforms read-only transactions that

are performed as 2PC/BFT transactions. TransEdge outperforms

2PC/BFT by up to 24x when accessing two clusters and outper-

forms 2PC/BFT by 9x when accessing five clusters.

The reason for this performance difference is that running

read-only transactions as regular transactions incurs overheads

due to BFT agreement and 2PC coordination that are similar

1 2 3 4 5
Number of clusters

0

10

20

30

40

50

60

70

80

La
te

nc
y

(m
s)

2PC/BFT
TransEdge

Figure 4: Comparison of average latency of read-only transactions
executed over a 2PC/BFT system and TransEdge.
to read-write transactions. Read-only transactions executed as

regular transactions require coordination among the nodes in-

volved in the transaction. The cost of this coordination leads to a

significant increase in latency of read-only transactions.

Figure 4 also shows that the latency increases as the number

of clusters accessed by the read-only transactions increases. This

is expected as the number of replicas that need to be involved

in the 2PC process would involve more messages exchanged by

the replicas. This is reflected in the graphs for latency of both

TransEdge and 2PC/BFT read-only transactions. The average

latency of the snapshot read-only transactions over 2PC/BFT is

between 69-82ms when accessing more than one cluster. The

latency is quite large when compared to the snapshot read-only

transactions executed by TransEdge. The main reason for the

large overhead in latency is due to the amount of coordination

time that is needed to coordinate regular transactions as opposed

to efficient snapshot read-only transactions in TransEdge.

Latency of read-only transaction rounds. Since read-only
transactions have a maximum of two rounds, we perform ex-

periments to measure how much each round contributes to the

average latency of read-only transactions. In Figure 5, we show

the latency of the first round of the read-only transactions as the

light blue bar and show the additional latency of verifying and

correcting the inconsistencies in the second round of execution

as the orange bar. Not all read-only transactions in TransEdge

require round 2 and the orange bar in the figure computes the

effective latency of round-2 communication in TransEdge. This

is computed by multiplying the percentage of read-only transac-

tions that require round-2 with the additional latency of round-2

execution.

We also compare the latency of read-only transactions in

TransEdge with Augustus[44]. The latency of read-only trans-

actions in Augustus are shown in the dark blue bar in figure 5.

Figure 6 shows the corresponding comparison of throughput in

TransEdge and Augustus. The improvement of read-only transac-

tions in TransEdge over Augustus can be attributed to a lock-free

and coordination-free execution of read-only transactions. This

is seen in the higher throughput and lower latency in TransEdge

when compared to Augustus when accessing a single cluster. A

single cluster Read-only transaction refers to single partition

data access. We see in both figures 5 and 6 that Augustus per-

forms poorly even on single partition reads and the performance

degrades with multipartition reads. Read-only transactions in

TransEdge also do not interfere with read-write transaction exe-

cution and thus are not affected (or affect) read-write transaction

execution. In order to test this hypothesis, we executed a series

of long-running read-only transactions with a large set of keys

in conjunction with read-write transactions. The results of this

experiment are shown in figure 7. Figure 7 shows the effective

latency of TransEdge read-only transactions which includes both

round 1 and round 2 of the read-only transactions. TransEdge’s

692

1 2 3 4 5
Number of clusters

0

2

4

6

8

La
te
nc
y
(m

s)

TransEdge Round 1
TransEdge Round 2
Augustus

Figure 5: Comparison of average latency (in milliseconds) of read-
only transactions in TransEdge and Augustus[44] when varying
the number of clusters accessed.

1 2 3 4 5
Number of Clusters

37000

38000

39000

40000

41000

42000

43000

44000

Th
ro
ug

hp
ut
 (T

PS
)

TransEdge
Augustus

Figure 6: Comparison of average throughput (in transactions per
second) of read-only transactions in TransEdge and Augustus[44].
The horizontal axis describes the number of clusters accessed by
the read-only transactions.
latency is a function of dependency computation as opposed to

Augustus which uses shared locks as a mechanism to coordinate

between different clusters. The advantage of TransEdge over Au-

gustus is that TransEdge does not use locking thus ensuring that

read-only transactions do not conflict with read-write transac-

tions. This is shown in the percentage of Aborted transactions

during the execution of long-running read-only transactions. The

percentage of aborts caused due to conflicting read-only transac-

tions in TransEdge is 0 and a comparison with Augustus is shown

in Table 1. This does not mean that TransEdge read-write trans-

actions do not abort as is shown in figure 13. These experiments

show that main benefit of TransEdge comes from coordination-

free execution of read-only transactions and this is visible in the

increased throughput, lower latency and lower percentage of

aborts. Figure 8 shows the impact of network latency on through-

put of read-only transactions in TransEdge. The main overhead

of read-only transactions in TransEdge is the computation of

consistency in read-only transaction keys using the dependency

vector thus the drop in throughput is not as high as that of the

read-write transactions seen in Figure 12.

Number of clusters 1 2 3 4 5

Augustus 0.8 1.3 2.15 3.4 4.27

TransEdge 0 0 0 0 0

Table 1: Comparison of aborts in read-write transactions in
TransEdge and Augustus caused due to conflicting read-only trans-
actions.

Write-only and local read-write transactions. Figure 9

show the results of write-only and local read-write transaction

workloads. TransEdge processes data in batches and the hori-

zontal axis lists the batch size of transactions executed by the

250 500 750 1000 1250 1500 1750 2000
Number of read operations in read-only transactions

0

100

200

300

400

500

600

La
te

nc
y

(m
s)

TransEdge
Augustus

Figure 7: Comparison of average latency (in milliseconds) of long-
running read-only transactions in TransEdge and Augustus[44].

1 2 3 4 5
Number of Clusters Accessed

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Th
ro

ug
hp

ut
 (T

PS
)

0ms additional latency between clusters
20ms additional latency between clusters
70ms additional latency between clusters
150ms additional latency between clusters

Figure 8: Variation in throughput of read-only transactions as the
latency between clusters is increased.

1000 1500 2000 2500 3000 3500
Transaction Batch size

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Th
ro

ug
hp

ut
 (T

PS
)

Write-only-RW Txns on TransEdge
Local-RW Txns on TransEdge
Local-RW Txns on 2PC/BFT

Figure 9: Average throughput of write-only, local read-write trans-
actions on TransEdge and 2PC/BFT system.

transaction processor. In figure 9, we observe that both types of

transactions perform similarly. This is because both transaction

types are local and undergo the same commitment pattern via

the BFT process. Specifically, write-only and local read-write

transactions reach their peak throughput of around 2000–2500

transactions per batch. However, write-only transactions perform

slightly better than local read-write transactions as the number

of batches grow. This is because read-write transactions require

more coordination to guarantee serializability in the presence of

read operations. Figure 9 also shows the average throughput of lo-

cal read-write transactions in the 2PC/BFT system. The 2PC/BFT

system performs similarly to TransEdge as they follow similar

steps for commitment.

Distributed read-write transactions.We performed mul-

tiple experiments with distributed read-write transactions. Fig-

ures 10 and 11 are from experiments where we vary the number

of read and write operations within the read-write transactions.

Figure 13 and 12 are from an experiment where we add latency

between clusters to simulate network latency between clusters.

Figure 11 shows the average throughput of distributed read-write

transactions. We notice that the throughput decreases as the data

skew moves from read to write-intensive transactions. This is

693

R=5 W=1 R=4 W=2 R=3 W=3 R=2 W=4 R=1 W=5
n read operations, m write operations per transactions

100

200

300

400

500

La
te
nc
y
(m

s)

Batch size = 900
Batch size = 2000
Batch size = 2500
Batch size = 3500

Figure 10: Average latency of distributed read-write transactions.
The horizontal axis shows the variation of data skew within the
transactions.

R=5 W=1 R=4 W=2 R=3 W=3 R=2 W=4 R=1 W=5
n read operations, m write operations per transactions

0

2000

4000

6000

8000

10000

12000

Th
ro
ug

hp
ut
 (T

PS
)

Batch size = 900
Batch size = 2000
Batch size = 2500
Batch size = 3500

Figure 11: Average Throughput of distributed read-write transac-
tions. The horizontal axis shows the variation of data skew within
the transactions.

expected as the write-intensive transactions require more co-

ordination between clusters. The range of the read and write

operations in these experiments is selected to ensure that each

transaction reads or writes some data on each participating clus-

ter. In these figures, we notice that "R=5,W=1", essentially means

local-read-write transactions. Thus, this experiment also provides

insight into the cost of coordination in read-write transactions.

The coordination cost is seen in figure 10. We notice the increase

in latency as the operation skews towards write operations: mean-

ing transactions access more clusters.

Figure 12 shows the variation in throughput as network la-

tency between clusters increases. We change latency between

clusters by 0, 20, 70, 150, 300, 500 milliseconds. This allows us to

simulate geo-distributed participating nodes. We see that the

throughput drops considerably as the network latency increases.

This is due to the coordination-intensive 2PC used by TransEdge

in executing distributed read-write transactions. Figure 13 shows

the aborts that result as a consequence of the increase in network

latency between clusters. Figure 14, shows the performance of

mixed workload in where the read-write transactions are varied

from a those affecting only a single cluster to a coordination-

intensive workload. The graphs in figure14 show a much higher

throughput for a workload affecting a single cluster (LRWT=100%,

DRWT=0%). This is because this workload requires no coordi-

nation with any other cluster. The lowest throughput is seen

in workload comprising 100% distributed read-write transac-

tions(DRWT) as they pay a much higher cost of 2PC coordination.

Figure 15, shows the impact of changing the replica size to

support multiple levels of Byzantine faults varying from 𝑓 = 1

to 𝑓 = 3, thus the number of replicas per cluster changes from

4 to 10 respectively. We notice that the smaller the number of

replicas in a cluster the higher is the throughput. This is due to the

reduced cost of intra-cluster coordination to execute read-write

transactions.

0 100 200 300 400 500
Additional latency between clusters (ms)

0

1000

2000

3000

4000

5000

6000

7000

Th
ro
ug

hp
ut
 (T

PS
)

Batch size = 900
Batch size = 2000
Batch size = 2500
Batch size = 3500

Figure 12: Average Throughput of distributed read-write transac-
tions when additional network latency is added between clusters
varying between 0ms to 500ms

1000 1500 2000 2500 3000 3500
Transaction Batch size

0.5

1.0

1.5

2.0

2.5

%
 o
f a

bo
rts

0ms additional latency between clusters
20ms additional latency between clusters
70ms additional latency between clusters

Figure 13: Percentage of aborts in read-write transactions in
TransEdge.

1000 1500 2000 2500 3000 3500
Batch size

0

10000

20000

30000

40000

Th
ro

ug
hp

ut
 (T

PS
)

LRWT=0%, DRWT=100%
LRWT=20%, DRWT=80%
LRWT=40%, DRWT=60%
LRWT=60%, DRWT=40%
LRWT=80%, DRWT=20%
LRWT=100%, DRWT=0%

Figure 14: Variation in throughput when the ratio of Local read-
write and Distributed read-write transactions is changed in the
workload.

900 1500 3000
Batch sizes

0

2000

4000

6000

8000

10000

La
te
nc

y
(m

s)

F=1
F=2
F=3

Figure 15: Variation in throughput when the replicas per cluster
are increased.

6 RELATEDWORK
6.1 Byzantine Agreement
The byzantine agreement problem was proposed in the early

1980s [34, 46]. A notable milestone since then has been the pro-

posal of the PBFT protocol [16] that we build upon in this paper.

In the decade following the publication of PBFT, there has been

694

a resurgence of byzantine fault-tolerance protocols [5, 19, 25,

31, 32]. Byzantine agreement is getting renewed interest due

to its applications in blockchain technology [22, 24, 30, 38, 41,

42, 45]. Byzantine agreement is especially relevant for permis-
sioned blockchain where the set of writers to the blockchain are

known but potentially malicious. The interest in permissioned

blockchain technologies is due to various data management appli-

cations, such as supply-chain management. This led to a number

of permissioned blockchain systems [1–4, 10]. Because these

are permissioned blockchain systems, they can use traditional

byzantine agreement protocols as their agreement/consensus

component.

In global-scale environments, where nodes are separated by

wide-area latency, BFT systems incur significant overhead due

to the many rounds of communication needed to commit a re-

quest. To overcome this, hierarchical BFT systems were pro-

posed [8, 9, 26, 43]. TransEdge is closest to this body of work. Its

contribution to hierarchical BFT systems is a design that is cen-

tered around providing efficient read-only transaction processing

that is commit-free and non-interfering.

One of the design issues faced by hierarchical BFT systems is

the grouping of nodes to form partitions. Mechanisms for nodes

grouping depend on the use case and the considered system

environment. These mechanisms are typically through manual

administrator intervention, a placement/configuration protocol,

or a distributed/decentralized membership mechanism. The goal

of these grouping mechanisms is to ensure that no more than 𝑓

malicious nodes can exist in each group. For system environments

that are permissioned [9, 26, 27, 43], this is ensured by making

each cluster have no more than 𝑓 nodes that are independent.

Independence here refers to the property that a failure (byzantine

or otherwise) of one of the 𝑓 nodes is not going to lead to the

failure of another node in the cluster. Ensuring this is application

specific and can be performed during setup by authenticating

each permissioned participant. In open membership system en-

vironments, various methods can be used to select a group of

nodes that probabilistically guarantees that no more than 𝑓 mali-

cious nodes are selected. This includes using reputation-based

byzantine mechanisms [35, 51, 52] that can be utilized to select

a grouping of nodes based on their past behavior (reputation).

Another method utilizes randomized methods such as Verified

Random Functions (VRF) [24, 40] where𝑚 nodes are randomly se-

lected in a decentralized way from a larger pool of 𝑛 nodes. These

methods, however, need to be adapted to hierarchical latency-

sensitive systems to balance the randomness of the grouping of

nodes and the proximity of nodes in a cluster. Additionally, they

need to be extended to enable selecting multiple clusters, one for

each shard of the data.

6.2 Read-only Transactions
Read-only transactions have been a topic of interest for a long

time [11, 23, 36, 37, 47]. TransEdge builds on these works to con-

struct a consistent read-only transaction algorithm suited for

byzantine fault-tolerant systems. Recently, there have been some

advances to try to formalize the properties of read-only trans-

actions [36, 37]. Most notable is the SNOW theorem [36] that

allows us to reason about the properties of read-only transactions

in a distributed system. The SNOW impossibility result does not

allow a system to simultaneously support all the SNOW prop-

erties. TransEdge supports non-blocking read-only transactions,

read-write transactions are conflict-serializable and TransEdge

allows read-write transactions to coexist with read-only transac-

tions. However, TransEdge does not support one-round read-only

transactions as TransEdge requires two rounds in the worst case

to execute consistent read-only transactions. What distinguishes

TransEdge is its focus on a byzantine environment, where nodes

can act maliciously. TransEdge provides mechanisms to ensure

the authenticity of responses that involve the use of authenticated

data structures that verifies the integrity of responses. Doing this

by itself is insufficient as the performance overhead can be high.

TransEdge extends these trusted mechanisms with dependency

tracking to enable fast and efficient processing while maintaining

the integrity of responses.

Augustus [44] is a system that deals with similar challenges

to TransEdge: serializable transactions in a BFT environment

and support of read-only transactions. However, Augustus uses

shared locks for read-only transactions, causing read-only trans-

actions to interfere with read-write transactions. TransEdge, on

the other hand, does not use locks during read-only transactions

and therefore ensures non-interference (in terms of conflicts)

with read-write transactions. Augustus requires voting from par-

ticipating replicas which adds to the overhead of read-only trans-

actions. TransEdge requires the response from a single node per

partition and does not need to involve other participants in the

read-only transaction.

6.3 Trusted Transaction Processing
TransEdge’s trusted transaction processing gets inspiration from

prior work in using Authenticated Data Structures (ADSs) [39]

in transaction processing. ADSs are data structures that are ca-

pable of providing a proof of the authenticity of the stored data.

ADSs have been used for databases as a solution to the prob-

lem of outsourcing databases to public cloud providers. Some

of these solutions focus on query processing [53]. More related

to TransEdge is usage of ADSs for trusted transaction process-

ing [28]. Unlike prior work in ADSs for transaction processing,

TransEdge tackles a different system model where the untrusted

nodes are many edge nodes around the world instead of a node in

the cloud. In terms of functionality, TransEdge supports updating

the ADS through a set of untrusted nodes using BFT replication,

whereas prior solutions rely on a trusted node that recomputes

theMerkle tree (an infeasible design for TransEdge since a trusted

node is not available.)

BlockchainDB[21] is another work that deals with building

a scalable database on top of a blockchain layer. BlockchainDB

supports eventual and sequential consistency as the system ar-

chitecture does not support serializable transactional workloads.

BlockchainDB allows clients to verify if the operation is executed

on the blockchain. This verification process requires querying

the majority of the peers on the network. In TransEdge, the ex-

ecution of read-write transactions ensures that signatures are

shared across participating nodes and are part of the log. Thus,

we enable single-round read verification however at the cost of

storage resulting in a much faster verification process.

7 CONCLUSION
In this paper, we introduce TransEdge, a trusted distributed trans-

action processing protocols for Global-Edge Data Management

(GEDM). TransEdge’s main goal is to provide efficient support for

snapshot read-only transactions. To this end, TransEdge builds

on hierarchical BFT systems and extends them with dependency

tracking mechanisms that are trusted. This involves redesigning

hierarchical commit protocols and augmenting and managing

meta-information such as dependency vectors and the use of

Authenticated Data Structures (ADSs). Our evaluation shows

that TransEdge can perform distributed read-only transactions

efficiently and 9𝑥 − 24𝑥 faster than running them as regular

transactions.

695

8 ACKNOWLEDGMENTS
This research is supported in part by the NSF under grant CNS-

1815212 and a gift from Facebook.

REFERENCES
[1] Chain. http://chain.com/.

[2] Ethcore. Parity: next generation ethereum browser. https://ethcore.io/parity.

html.

[3] Quorum. http://www.jpmorgan.com/global/Quorum.

[4] Ripple. https://ripple.com.

[5] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie.

Fault-scalable byzantine fault-tolerant services. ACM SIGOPS Operating Sys-
tems Review, 39(5):59–74, 2005.

[6] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed optimistic

concurrency control with reduced rollback. Distributed Computing, 2(1):45–59,
1987.

[7] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. Chainspace:

A sharded smart contracts platform. arXiv preprint arXiv:1708.03778, 2017.
[8] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and

D. Zage. Steward: Scaling byzantine fault-tolerant replication to wide area

networks. IEEE Transactions on Dependable and Secure Computing, 7(1):80–93,
2010.

[9] M. J. Amiri, D. Agrawal, and A. El Abbadi. Parblockchain: Leveraging trans-

action parallelism in permissioned blockchain systems. In 2019 IEEE 39th
International Conference on Distributed Computing Systems (ICDCS), pages
1337–1347. IEEE, 2019.

[10] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger fabric:

a distributed operating system for permissioned blockchains. arXiv preprint
arXiv:1801.10228, 2018.

[11] C. Berger, H. P. Reiser, and A. Bessani. Making reads in BFT state machine

replication fast, linearizable, and live. CoRR, abs/2107.11144, 2021.
[12] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and

recovery in database systems, volume 370. Addison-wesley Reading, 1987.

[13] A. Bessani, J. Sousa, and E. E. P. Alchieri. State machine replication for the

masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362, 2014.

[14] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris,

A. Giardullo, S. Kulkarni, H. Li, et al. {TAO}: Facebook’s distributed data

store for the social graph. In 2013 {USENIX} Annual Technical Conference
({USENIX}{ATC} 13), pages 49–60, 2013.

[15] M. Castro, B. Liskov, et al. A correctness proof for a practical byzantine-

fault-tolerant replication algorithm. Technical report, Technical Memo

MIT/LCS/TM-590, MIT Laboratory for Computer Science, 1999.

[16] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[17] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA,

2010. Association for Computing Machinery.

[18] J. Corbett et al. Spanner: Google’s globally-distributed database. OSDI, 2012.
[19] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq replication: A

hybrid quorum protocol for byzantine fault tolerance. In Proceedings of the 7th
symposium on Operating systems design and implementation, pages 177–190.
USENIX Association, 2006.

[20] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi. Albatross: Lightweight

elasticity in shared storage databases for the cloud using live data migration.

Proceedings of the VLDB Endowment, 4(8):494–505, 2011.
[21] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy.

Blockchaindb: A shared database on blockchains. Proc. VLDB Endow.,
12(11):1597–1609, jul 2019.

[22] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-ng: A scalable

blockchain protocol. In NSDI, pages 45–59, 2016.
[23] H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed

database. ACM Trans. Database Syst., 7(2):209–234, June 1982.
[24] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scal-

ing byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles, pages 51–68. ACM, 2017.

[25] S. Gupta, J. Hellings, and M. Sadoghi. Fault-Tolerant Distributed Transactions
on Blockchain. Synthesis Lectures on Data Management. Morgan & Claypool

Publishers, 2021.

[26] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. Resilientdb: Global scale

resilient blockchain fabric. Proceedings of the VLDB Endowment, 13(6), 2020.
[27] J. Hellings and M. Sadoghi. Byshard: Sharding in a byzantine environment.

Proceedings of the VLDB Endowment, 14(11):2230–2243, 2021.

[28] R. Jain and S. Prabhakar. Trustworthy data from untrusted databases. In 2013
IEEE 29th International Conference on Data Engineering (ICDE), pages 529–540.
IEEE, 2013.

[29] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M. Cevik,

J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti, A. Barnes, F. Halbach,

A. Rocha, and J. Stubbs. Lessons learned from the chameleon testbed. In

Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC ’20).
USENIX Association, July 2020.

[30] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhanc-

ing bitcoin security and performance with strong consistency via collective

signing. In 25th USENIX Security Symposium (USENIX Security 16), pages
279–296, 2016.

[31] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: specula-

tive byzantine fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

[32] R. Kotla and M. Dahlin. High throughput byzantine fault tolerance. In

Dependable Systems and Networks, 2004 International Conference on, pages
575–584. IEEE, 2004.

[33] H.-T. Kung and J. T. Robinson. On optimistic methods for concurrency control.

ACM Transactions on Database Systems (TODS), 6(2):213–226, 1981.
[34] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM

Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

[35] K. Lei, Q. Zhang, L. Xu, and Z. Qi. Reputation-based byzantine fault-tolerance

for consortium blockchain. In 2018 IEEE 24th international conference on
parallel and distributed systems (ICPADS), pages 604–611. IEEE, 2018.

[36] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The SNOW theorem and

latency-optimal read-only transactions. In 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16), pages 135–150, Savannah,
GA, Nov. 2016. USENIX Association.

[37] H. Lu, S. Sen, and W. Lloyd. Performance-optimal read-only transactions. In

14th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 20), pages 333–349, 2020.

[38] D. Mazieres. The stellar consensus protocol: A federated model for internet-

level consensus. Stellar Development Foundation, 2015.
[39] R. C. Merkle. Protocols for public key cryptosystems. In 1980 IEEE Symposium

on Security and Privacy, pages 122–122. IEEE, 1980.
[40] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Foundations

of Computer Science, 1999. 40th Annual Symposium on, pages 120–130. IEEE,
1999.

[41] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of bft

protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 31–42. ACM, 2016.

[42] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[43] F. Nawab and M. Sadoghi. Blockplane: A global-scale byzantizing middleware.

In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages
124–135. IEEE, 2019.

[44] R. Padilha and F. Pedone. Augustus: Scalable and robust storage for cloud

applications. In Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, page 99–112, New York, NY, USA, 2013. Association for

Computing Machinery.

[45] R. Pass and E. Shi. Hybrid consensus: Efficient consensus in the permissionless

model. In LIPIcs-Leibniz International Proceedings in Informatics, volume 91.

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[46] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. Journal of the ACM (JACM), 27(2):228–234, 1980.
[47] O. Satyanarayanan and D. Agrawal. Efficient execution of read-only transac-

tions in replicated multiversion databases. Knowledge and Data Engineering,
IEEE Transactions on, 5(5):859–871, 1993.

[48] G. Schlageter. Optimistic methods for concurrency control in distributed

database systems. In Proceedings of the seventh international conference on
Very Large Data Bases-Volume 7, pages 125–130. VLDB Endowment, 1981.

[49] A. A. Singh, A. Khan, S. Mehrotra, and F. Nawab. Transedge:

Supporting efficient read queries across untrusted edge nodes.

https://arxiv.org/abs/2302.08019, 2023.

[50] G. Weikum and G. Vossen. Transactional information systems: theory, algo-
rithms, and the practice of concurrency control and recovery. Elsevier, 2001.

[51] X. Yuan, F. Luo, M. Z. Haider, Z. Chen, and Y. Li. Efficient byzantine consensus

mechanism based on reputation in iot blockchain. Wireless Communications
and Mobile Computing, 2021, 2021.

[52] F. M. Zegers, M. T. Hale, J. M. Shea, and W. E. Dixon. Reputation-based event-

triggered formation control and leader tracking with resilience to byzantine

adversaries. In 2020 American Control Conference (ACC), pages 761–766. IEEE,
2020.

[53] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vsql:

Verifying arbitrary sql queries over dynamic outsourced databases. In 2017
IEEE Symposium on Security and Privacy (SP), pages 863–880. IEEE, 2017.

696

