
A Metaheuristic Algorithm for a Multi-period Orienteering
Problem Arising in a Car Patrolling Application

Full paper

Giorgio Zucchi

School of Doctorate E4E, University

of Modena and Reggio Emilia

R&D department, Coopservice s.c.p.a

Reggio Emilia, Italy

giorgio.zucchi@unimore.it

Victor Hugo Vidigal Corrêa

Department of Informatics,

Federal University of Viçosa

Viçosa, Brazil

victor.vidigal@ufv.br

Manuel Iori

Department of Sciences and Methods

for Engineering, University of

Modena and Reggio Emilia

Reggio Emilia, Italy

manuel.iori@unimore.it

André Gustavo dos Santos

Department of Informatics,

Federal University of Viçosa

Viçosa, Brazil

andre@dpi.ufv.br

Mutsunori Yagiura

Graduate School of Informatics,

Nagoya University

Nagoya, Japan

yagiura@nagoya-u.jp

ABSTRACT
This paper addresses a real-life multi-period orienteering problem

arising in a large Italian company that needs to patrol a vast area in

order to provide security services. The area is divided into clusters,

and each cluster is assigned to a patrol. A cluster comprises a

set of customers, each requiring different services on a weekly

basis. Some services are mandatory, while others are optional. It

might be impossible to perform all optional services, and each

of them is assigned a score when performed. The challenge is to

determine a set of routes, one for each patrol and each day, that

maximizes the total collected score, while meeting a number of

operational constraints, including minimum quality of service, hard

time windows, maximum riding time, and minimum time between

two consecutive visits for the same service at the same customer. To

solve the problem, we propose an iterated local search that invokes

at each iteration an inner variable neighborhood descent procedure.

Computational tests performed on a number of real-life instances

prove that the developed algorithm is very efficient and finds in a

short time solutions that are consistently better than those in use

at the company.

1 INTRODUCTION
Every day, private security guards need to inspect structures, parks,

buildings, and many other facilities to check for any anomalies, in

order to counter potential criminal actions or simply restore normal

safety conditions following forgetfulness or breakdowns. In this

paper, we study a real-life security problem in which patrols are

required to perform a set of services at customers located in a vast

area. Some services are mandatory, while others are optional. The

optional services, when performed, induce a score, and the aim is to
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maximize the collected score, while meeting different operational

constraints.

The problem originates from the everyday activity of Coopser-

vice, a large service provider company located in Italy (https://www.

coopservice.it/). Counting on more than 25 000 employees, Coopser-

vice operates a number of different services, including logistics,

transportation, cleaning, maintenance, and security. The company

also operates car patrolling services in a number of provinces all

around Italy. An example of the patrolling activity performed in

the province of Reggio Emilia is provided in Figure 1.

The customers are geographically dispersed in the area and are

consequently divided into clusters. Each cluster is assigned to a

patrol, who performs every day a route to visit customers and ex-

ecutes the required services. The cluster division does not vary

from a day to the other, but the routes performed inside the clus-

ters may change. Indeed, customers may require different services

according to the day of the week, following the contract stipulated

Figure 1: Customers and clusters for the patrolling of the
Reggio Emilia province
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with the company. More in detail, each customer may require mul-

tiple services, and, for each such service, multiple visits during the

same period. Some services, such as the closing or opening of a

commercial activity, are mandatory, whereas others, such as the

inspection of an area or a building, are optional. The optional ser-

vices create a score when performed, and the company is interested

in maximizing the collected score.

The resulting optimization problem is very difficult, as it involves

a number of operational constraints. First of all, the services should

be performed within hard time windows, and the routes should

not exceed a maximum riding time. In addition, a customer might

require multiple visits for the same service in the same period. In

such a case, two consecutive visits should be separated by at least

a threshold time (i.e., 90 minutes or so). This constraint is indeed

very challenging, as it requires us to schedule endogenous time

windows, induced by the consecutive visits, inside the exogenous

timewindow received in input. Moreover, the company is interested

in maintaining a minimum quality of service (QoS) level. The QoS

level is computed as the ratio between the number of optional

services that have been performed and the number of optional

services that have been required. Ideally, the QoS level should be

balanced among all customers at the end of the week.

Our aim is to determine a set of routes, one for each period

and each cluster, by keeping unchanged the cluster configuration

received in input and maximizing the total collected score. The re-

sulting problem is thus a multi-period orienteering problem, which

is a generalization of the well-known orienteering problem (OP)

[4]. The OP is known to be strongly NP-hard and difficult to solve

in practice, and the problem we are facing is a challenging gener-

alization of the OP that includes different additional constraints.

For this reason, we decided to solve the problem by means of a

metaheuristic algorithm.

We developed an iterated local search (ILS), a metaheuristic

that obtained in recent years relevant results on a huge number

of optimization problems [7]. The ILS receives in input the set of

customers, the set of services to be performed, the cluster config-

uration, and all details of the instance. It builds an initial solution

by means of a constructive heuristic. Then, while the time limit

is not reached, it introduces perturbations on the current solution

and then improves it by means of a variable neighborhood descent

(VND) procedure [6] based on five neighborhood operations.

Computational tests on a set of real-life instances provided by the

company prove that the developed ILS works very well in practice.

The solutions obtained by the ILS consistently improve the ones

in use at the company in terms of the total score. In addition, the

average QoS level is also improved.

The remainder of the paper is organized as follows. Section 2

contains a brief literature review of orienteering problems and car

patrolling applications. Section 3 formally describes the problem we

solve. Section 4 presents the ILS algorithm proposed in this paper.

Section 5 shows the results obtained and, finally, Section 6 gives

some concluding remarks and hints for future research directions.

2 LITERATURE REVIEW
Car patrolling is a security measure widely used to protect large

areas from criminal activity. It consists of guards (patrols) using

vehicles to move between points of interest in a region and taking

actions that may prevent or respond to crimes. Samanta et al. [9]

surveys the police patrolling problem considering every compo-

nent involved in this complex operation and divides it into three

categories: (i) resource allocation, (ii) district design, and (iii) route

design. Among these categories, the route design is the one that

most resembles our problem, since it is concerned with how the

routes are selected and how they affect the patrols’ efficiency. Many

techniques are used to solve this type of problem and many study

cases arise in this context. Some examples are the maximization of

the vehicle patrolling coverage in Israel [1], and the minimization

of patrols’ idle time and unpredictability in London and Chicago

[2].

In general, the problems evaluated in [9] differ from ours, due to

how Coopservice needs to provide its patrolling service. In fact, in

our routing design, not necessarily all clients need to be visited, so

our problem is more similar to an orienteering problem (OP). The

literature on OPs is very rich and we found plenty of applications.

The first study on the OP dates back to 1984 [10], where the OP was

presented as a generalization of the traveling salesman problem.

Since it is an NP-hard problem, most studies use heuristic methods

to solve the OP and its variants. Gendreau et al. [3] discuss why

it is so difficult to design high-quality heuristics for this type of

problem. The score of a location and the distance to reach it are

independent and often in contrast to one another, so it is difficult to

select the locations that are part of an optimal solution. Therefore,

simple construction heuristics may direct the algorithm towards

undesirable directions and are not sufficient to explore large parts

of the solution space.

A hybrid heuristic composed of a greedy randomized adaptive

search procedure (GRASP) and a variable neighborhood search

(VNS) has been proposed by [8] to solve a generalization of the

OP. This variant has constraints related to mandatory visits and

incompatibilities among nodes. Those constraints mean that there

is a set of nodes that must be visited in order for the solution to

be considered feasible, while visiting some other nodes is optional.

In addition, incompatible nodes cannot share the same route. The

hybrid heuristic takes advantage of the multi-start feature of the

GRASP to generate initial solutions that are then optimized with

the VNS. The authors report that the heuristic was able to find 128

optimal solutions on a set of 131 instances and required, on average,

only 0.8% of the time required by an integer linear programming

model solved with commercial software.

Recent applications of the OP were studied also for tourism trip

planning. For example, Vansteenwegen et al. [11] developed an

iterated local search (ILS) metaheuristic to a problem that requires

determining a set of touristic locations to visit, while satisfying time

limits and budget criteria. The local search step is done through an

insertion procedure in which feasible points are added into routes

until a locally optimal solution is reached. In the shake step, some

visited points are removed from routes according to some prede-

fined parameters. The authors report that, in their experiments, the

average gap between the optimal solution value and the ILS one

is 2.1%. In [5], the goal is to optimize touristic routes considering

constraints such as visit redundancy avoidance and time windows,

where some attractions might have a shorter visiting time than oth-

ers. An integer linear programming model and an ILS metaheuristic
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are proposed. The authors report that the ILS could almost match

the results from the solver Gurobi, used to execute the model, for

the smaller instances, while for the larger instances it could provide

better solutions in most cases.

Outside the scope of metaheuristic algorithms, in [12] an approx-

imation algorithm for a variant of the team orienteering problem

(TOP) was proposed. In addition to the basic TOP constraints and

the basic objective of maximizing the collected score, their problem

includes a set of new features to better model Internet of things

applications. The new features of the problem are the following:

a limited budget is imposed on the vehicles to perform the routes,

the node costs are included in the path cost function in addition to

the edge costs, and the nodes can be served by multiple vehicles.

Computational experiments proved that the developed algorithm

provided up to a 17.5% increase in the collected score than the

state-of-the-art algorithms for this same TOP variant.

3 PROBLEM DESCRIPTION
The area to be patrolled is divided into clusters, but the cluster

configuration is not part of the optimization process. For this reason,

we formally describe our problem for a unique cluster served by a

unique car.

The problem we face can be viewed as a multi-period orienteer-

ing problem with time windows (MPOPTW). In the MPOPTW, we

are given a graph 𝐺 = (𝑉0, 𝐴). The set of vertices is defined as

𝑉0 = {0, 1, . . . ,𝑛}, where 0 is the depot at which the single vehicle

starts and ends each route, and𝑉 = {1, . . . ,𝑛} is the set of customer

locations. The graph is complete, and with each arc (𝑖, 𝑗) ∈ 𝐴, we
associate a traveling time 𝑡𝑖 𝑗 . The time matrix is asymmetric.

Let𝑇 be the set of services provided by the company. A standard

service time is given for each service 𝑡 ∈ 𝑇 . This is denoted by𝑞𝑡 and
gives the time duration necessary for a patrol to stay at a customer

location to execute the service. The set of services is partitioned

as 𝑇 = 𝑀 ∪ 𝑈 , where 𝑀 is the set of mandatory services and 𝑈

is the set of optional services. A score 𝑤𝑡 is associated with each

optional service 𝑡 ∈ 𝑈 , which represents the level of importance of

the service.

The activities should be executed on a given set𝐷 ⊆ {1, . . . , 7} of
periods. Each period corresponds to the working hours from 22:00

of a day to 06:00 of the next day in our instances, as all activities

are performed at night time. Each customer 𝑣 ∈ 𝑉 requires services

on a subset 𝐷𝑣 ⊆ 𝐷 of periods. Formally, we denote by 𝑇𝑣𝑑 ⊆ 𝑇

the set of services to be performed at customer 𝑣 on period 𝑑 . This

set is partitioned as 𝑇𝑣𝑑 = 𝑀𝑣𝑑 ∪𝑈𝑣𝑑 , where 𝑀𝑣𝑑 ⊆ 𝑀 comprises

mandatory services and 𝑈𝑣𝑑 ⊆ 𝑈 optional ones.

Let 𝑛𝑣𝑑𝑡 be the number of times service 𝑡 is required by cus-

tomer 𝑣 in period 𝑑 , and let 𝑛𝑣𝑑𝑡 be the number of services that

have been actually performed. We define the QoS level as 𝑄𝑜𝑆 =∑
𝑣∈𝑉 ,𝑑∈𝐷𝑣 , 𝑡 ∈𝑇𝑣𝑑 𝑛𝑣𝑑𝑡/𝑛𝑣𝑑𝑡 . This index represents the ratio of ser-

vices that have been performed in the entire set of periods, and it

should be at least a required value 𝑄𝑜𝑆min (which is set to 75% in

our instances).

Every service 𝑡 required by a customer 𝑣 in a day 𝑑 has a time

window [𝑒𝑣𝑑𝑡 , 𝑙𝑣𝑑𝑡 ]. This defines the earliest and latest possible

times to start the execution of each of the 𝑛𝑣𝑑𝑡 visits for that cus-

tomer in that period. The time window defines a hard constraint,

so late arrivals are forbidden and waiting on site is imposed in case

of early arrivals. A time window is also imposed on the depot and

corresponds to the total working time (from 22:00 of a day to 06:00

of the next day in our instances).

For some services, such as closing or opening a commercial

activity, the time window is strict (e.g., 10 minutes) and just one

visit per night is required. This typically happens for mandatory

services. For other services, such as checking a private house, the

time window is usually loose (e.g., several hours during the night)

but multiple visits are required in a period. This typically happens

for optional services. In the latter case, if two or more visits are

performed for the same service at the same customer in the same

period, the start times of any two of such visits should be separated

by at least a given threshold 𝛿 (which is equal to 90 minutes in

our instances). This is imposed to enforce a balanced patrol of the

customer during the execution of a route.

For each period, a patrol starts its route at the depot, performs

visits to customers to execute the services, and then returns to the

depot. The total riding time, which comprises traveling, service,

and waiting times, is the difference between the start and end times

of the route, and it should not exceed a given upper bound 𝑄max.

To summarize, the aim of the MPOPTW is to define a set of

routes, one per period, in such a way that (i) constraints on hard

time windows, the QoS level, the time distance between consecutive

visits, and the total riding time are satisfied; (ii) all mandatory

services are performed; and (iii) the score of the optional services

that have been actually performed is maximized.

The problem is of interest not only because of its real-life ap-

plication, but also because it is very general and models a large

number of other possible applications arising in the context of

car patrolling and attended home services. In the next section, its

solution is pursued by means of a metaheuristic algorithm.

4 PROPOSED METHODOLOGY
To solve the problem, we developed an ILS metaheuristic [7]. The

ILS receives as input the set of customers, the set of services to

be performed, the cluster configuration, and other details of the

real-life application. It builds an initial solution using a constructive

heuristic and then applies perturbations and local search iteratively

in the current solution until a time limit is reached. An acceptance

function decides at each iteration whether to keep the current

solution or to move to a newly-generated one. In our algorithm,

it always chooses the best solution among the two, and if their

fitness values are the same, our algorithm keeps the current one.

The overall ILS procedure is presented in Algorithm 1. Each step

is described in detail in the remaining part of this section. The

local search is performed by means of a VND, an algorithm that

sequentially invokes a set of neighborhoods [6].

4.1 Solution evaluation
The objective of the problem is to maximize the total score achieved

with the optional services performed by the patrol. However, in

order to guide our algorithm, we use a fitness function that, together

with the score, takes into account also the riding time of the routes.

Let S(𝜎) be the total score of a given route 𝜎 and T (𝜎) be its riding
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Algorithm 1 ILS algorithm

1: procedure ILS(𝑇max)

2: 𝑠∗ ← ConstructiveHeuristic

3: 𝑠∗ ← VND(𝑠∗)
4: while elapsedTime ≤ 𝑇max do
5: 𝑠′ ← Perturbation(𝑠∗)
6: 𝑠′′ ← VND(𝑠′)
7: 𝑠∗ ← Accept(𝑠∗, 𝑠′′) ⊲ the best of 𝑠∗ and 𝑠′′ with respect to F
8: end while
9: return the best feasible solution found during the search

10: end procedure

time. The fitness function used by the proposed ILS algorithm to

evaluate a solution 𝑠 is a weighted average of these values, namely

F (𝑠) = 𝛼
∑
𝜎 ∈𝑠
S(𝜎) − 𝛽

∑
𝜎 ∈𝑠
T (𝜎), (1)

where 𝛼 and 𝛽 are weights to be calibrated. By doing this, we expect

that the algorithm favors shorter routes during the optimization in

order to add more services later on, thus improving the score.

4.2 Constructive heuristic
An initial solution is constructed by a greedy algorithm. The ser-

vices of each period are sorted in non-decreasing order of the start

time of their timewindows. A route is constructed for each period in

two phases: first, the mandatory services are inserted sequentially,

in the order in which they were sorted (this is always feasible for

the mandatory services in the instances provided by the company);

later, while possible, optional services are appended one by one in

the solution (i.e., an optional service is appended if the solution

remains feasible, otherwise it is skipped). Algorithm 2 summarizes

the steps of this heuristic. In the ILS, the solution obtained by Algo-

rithm 2 is optimized by invoking a VND procedure to the solution

built by the constructive heuristic.

Algorithm 2 The greedy constructive heuristic

1: procedure Constructive Heuristic(𝑀,𝑈 )

2: for each period 𝑑 ∈ 𝐷 do
3: 𝑀𝑑 ,𝑈𝑑 ← services in𝑀 and𝑈 for period 𝑑

4: Sort𝑀𝑑 and𝑈𝑑 in non-decreasing order of 𝑒𝑣𝑑𝑡
5: 𝜎𝑑 ← AppendAllMandatory (𝑀𝑑 )
6: while CanAppendOptionals (𝜎𝑑 ,𝑈𝑑 ) do
7: 𝜎𝑑 ← AppendOptionals (𝜎𝑑 ,𝑈𝑑 )
8: end while
9: end for
10: return 𝑠 = {𝜎1, . . . , 𝜎𝐷 }
11: end procedure

4.3 VND heuristic
A VND procedure is used to find a locally optimal solution using

a sequence of different neighborhoods 𝑁𝑘 (𝑘 = 1, . . . , 𝑘max). Algo-

rithm 3 shows the main steps of the VND heuristic. Starting with

the first neighborhood (𝑘 = 1), the heuristic explores the solution

space searching through the sequence of neighborhoods in a deter-

ministic way, controlled by the neighborhood change procedure

presented in Algorithm 4. The steps of these algorithms are detailed

in the following.

At each step of the VND, a neighbor 𝑠 ′ of the current solution
𝑠 is selected from the neighborhood 𝑁𝑘 (𝑠). A neighbor is always

selected by a first improvement move in the fitness function F
defined in (1). If there is no better neighbor in the 𝑘th neighborhood

(i.e., the current solution is locally optimal with respect to this

neighborhood), the algorithm changes to the next neighborhood,

𝑁𝑘+1. If, instead, a better neighbor is found, the algorithm returns

to the first neighborhood. The process continues while there is a

neighborhood to be explored, that is, it stops when the current

solution is locally optimal with respect to all neighborhoods.

For the VND, we implemented five classical neighborhood op-

erators from the traveling salesman and vehicle routing literature.

Swap: this operator swaps the positions of two visits inside a route.
2-opt: this operator reverses the visiting order between two visits

in a route.Relocate: this operator moves a visit to another position

in the route. Swap unrouted: this operator swaps the status of two
services, an unrouted service takes place of a performed service.

Insertion unrouted: this last operator inserts a visit in a route to

perform an unrouted service, increasing the number of services

performed by the patrol. Note that the first three operators, Swap,

2-opt and Relocate, may improve the fitness function by reducing

the riding time of a route, as they do not change the collected score.

The operator Swap unrouted may instead improve the fitness func-

tion by increasing the score or by reducing the riding time. The last

operator, Insertion unrouted, may improve the score at the expense

of an increase in the riding time.

Note that all described neighborhoods consist of intra-period

movements, in which they change routes of each period indepen-

dently. A solution may be further improved by performing inter-

period movements, exchanging services from different periods. For

example, a customer requiring services in more than one period

that is currently served in only a subset of those periods may have

the visits changed without changing the total score, perhaps de-

creasing the riding time. Inter-period movements are costly to be

evaluated because of the large number of neighbors. Hence, they

are not fully explored in a deterministic way, but are considered in

the perturbation step, described next.

Algorithm 3 Variable neighborhood descent heuristic

1: procedure VND(𝑠)
2: 𝑘 ← 0

3: 𝑠∗ ← 𝑠

4: while 𝑘 ≤ 𝑘max do
5: Let 𝑠 be an improved sol. in 𝑁𝑘 (𝑠∗) if any; otherwise 𝑠 ← 𝑠∗

6: 𝑠∗, 𝑘 ← NeighborhoodChange(𝑠∗, 𝑠, 𝑘)
7: end while
8: return 𝑠∗

9: end procedure

4.4 Perturbation procedure
The perturbation procedure is introduced to escape from the locally

optimal solution obtained by the VND used in the local search step.

Two inter-period operators are used, which both attempt to modify

the current solution in the set of periods.
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Algorithm 4 Neighborhood change procedure

1: procedure NeighborhoodChange(𝑠∗, 𝑠, 𝑘)
2: if F(𝑠) > F(𝑠∗) then
3: 𝑠∗ ← 𝑠

4: 𝑘 ← 1

5: else
6: 𝑘 ← 𝑘 + 1
7: end if
8: return 𝑠∗, 𝑘
9: end procedure

Two periods are randomly chosen and an arbitrary number of

shaking movements are applied, limited by a maximum number of

tries and a maximum number of successful movements. The Swap
inter-period operator randomly chooses a service in the route of

a chosen period and tries to swap it with every other service in

a successive period. TheMove inter-period chooses one service

routed in a period and tries to insert it in every position of the route

of a different period. In either case, if a try succeeds in finding an

improved solution, then the move is applied. Only feasible moves

are considered.

5 COMPUTATIONAL EVALUATION
In this section, we present the computational results that we ob-

tained. First, we briefly describe the instances we address. Then,

we report the calibration of the main ILS parameters. Finally, we

present the results obtained by the ILS. The algorithm was coded

in Python 3.7.3 and executed on an Intel Xeon CPU E5-2640 v3

2.60 GHz with 64 GB of memory, running under Windows 10 Pro

20H2 64-bits.

5.1 Instances
The company provides security services in a number of provinces

of Italy. We were provided with the data of four of such provinces.

Each of them is different in the number of customers and frequency

of tasks. Table 1 reports for each province, in order, the number of

instances, the number of periods (column |𝐷 |), the total number of

customers (column |𝑉 |), and the total number of services (column

|𝑇 |). The traveling times have been obtained by using the OSRM

application.

Table 1: Details of the real-life instances

Province Instances |𝐷 | |𝑉 | |𝑇 |

Parma 5 7 175 1382

Pescara 5 7 160 987

Sassari 9 7 122 1044

Roma 8 7 121 1234

5.2 Parameter calibration
As the size of the instances changes by province, we defined a

different time limit 𝑇max (the maximum time allowed for the ILS

execution) for each of them, based on the number of customers.

We set 𝑇max, in minutes, to 120, 120, 60, and 60 for Parma, Pescara,

Sassari, and Roma instances, respectively.

As the fitness function F defined by (1) used to guide the algo-

rithm has two parameters, 𝛼 and 𝛽 , we ran preliminary tests for all

combinations of 𝛼 = [1, 2, 3, 4, 5] and 𝛽 = [0.1, 0.3, 0.5, 0.7, 0.9]. For
any combination, we evaluated the reported solutions considering

(i) the total score, (ii) the mean of the distances traveled by the pa-

trols, (iii) the mean of the patrol times, (iv) the mean of the waiting

times, and (v) the 𝑄𝑜𝑆 level obtained. For each instance, a ranking

of the parameter combination results was created. To merge all

rankings into a unique one, we assigned scores for each ranking

as follows: from position 1 to 5 of a ranking the score is 5, from 6

to 10 the score is 4, from 11 to 15 the score is 3, from 16 to 20 the

score is 2, and from 21 to 25 the score is 1. Then, we summed the

scores for each combination. Note that the higher is the ranking,

the larger is the sum. The winning combination was determined as

𝛼 = 5 and 𝛽 = 0.9 and was used in all successive experiments.

5.3 Computational experiments
To compare the solutions obtained by the ILS with the ones in

use at the company, several criteria have been considered: 𝑘𝑚, the

average distance traveled by the patrols; 𝑑𝑣 , the average distance

between two consecutive visits; T , the average riding time; 𝑢𝑐 , the

average number of unvisited customers; 𝑄𝑜𝑆 , the average QoS; 𝛿 ,

the average time between two visits at the same customer; and S,
the total collected score.

Table 2 reports the above parameters computed for the solutions

in use at the company. It is important to highlight that the solutions

by the company do not always satisfy the constraint on the desired

interval of 𝛿 = 90 minutes between two visits to the same customer.

Table 2: Evaluation of the solutions in use at the company

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S

Parma 156.85 2.51 431.63 1.40 92.56 85.39 4117.57

Pescara 53.42 1.14 339.69 21.12 48.63 30.74 693.43

Sassari 40.81 2.39 217.21 1.12 92.72 45.38 718.86

Roma 92.56 5.65 379.76 0.50 83.12 87.73 1393.28

Since the ILS algorithm contains a random factor in the pertur-

bation step, we have run the algorithm multiple times for each

instance. Table 3 reports the average results obtained for five runs

of the ILS, and Table 4 shows the comparison with the real-life

solutions currently adopted by the company. Table 5 reports the

difference reported in Table 4, but in terms of percentages in order

to better highlight the results (we have decided to exclude column

𝑢𝑐 from Table 4 because all values were −100%).
The results obtained by the ILS show several improvements with

respect to the real ones. The only negative result is noticed for

the distance 𝑘𝑚 traveled by the vehicles. This happens because,

in order to maximize the score, more optional services have been

performed, and this requires more km to be traveled. The two

measures used in our guide fitness function, T and S, were highly
improved. The average travel time was reduced by 10 to 42% for the

tested instances, while the total score was increased by 11 to 96%.

Moreover, although not directly used in the fitness function, other

criteria were also improved, as theywere used to choose the weights
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𝛼 and 𝛽 in this function. Note that in our solutions, no customer is

left unvisited. Moreover, almost all tasks are performed, as the 𝑄𝑜𝑆

is above 97%. The distance𝑑𝑣 between two visits is similar to the one

obtained by the company, which indicates that the neighborhood

operators were able to find routes as good as those designed by the

experienced workers of the company. Furthermore, the 𝛿 parameter,

the interval between two consecutive visits to the same customer,

is always respected in the solutions of our ILS algorithm, which we

recall is not the case in the solutions by the company.

Table 3: Evaluation of the solutions obtained by the ILS

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S
Parma 179.69 2.17 335.46 0 98.22 153.51 4572.60

Pescara 127.78 3.32 197.35 0 98.29 93.25 1365.20

Sassari 69.98 4.29 170.64 0 98.52 122.85 1052.60

Roma 115.61 5.40 338.04 0 97.10 131.08 1750.60

Table 4: Absolute differences between ILS and company

Province 𝑘𝑚 𝑑𝑣 T 𝑢𝑐 𝑄𝑜𝑆 𝛿 S
Parma 22.84 −0.34 −96.17 −1.40 5.66 68.12 455.03

Pescara 74.36 2.18 −142.34 −21.12 49.65 62.50 671.77

Sassari 29.17 1.90 −46.57 −1.12 5.80 77.46 333.74

Roma 23.05 −0.25 −41.71 −0.50 13.98 43.34 357.32

Table 5: Percentage differences between ILS and company

Province 𝑘𝑚 𝑑𝑣 T 𝑄𝑜𝑆 𝛿 S
Parma 14% −13% −22% 6% 79% 11%

Pescara 139% 190% −42% 102% 203% 96%

Sassari 71% 79% −21% 6% 171% 46%

Roma 24% −4% −10% 17% 49% 26%

Average 62% 63% −23% 58% 125% 44%

6 CONCLUSIONS AND FUTURE RESEARCH
This paper presented a study on a car patrolling application that

arose from a large Italian company, which has to plan routes to

perform mandatory and optional services at customers. The result-

ing optimization problem is a challenging variant of a multi-period

orienteering problem. Because of its difficulty, we decided to solve

it with an iterated local search (ILS) metaheuristic, which was en-

riched with a variable neighborhood descent.

Through a computational analysis, we observed that the ILS

consistently improved the company solutions. The improvement

obtained was remarkable for both the total collected score and

for the overall quality of service (a measure of the percentage of

optional services that were performed). In the province of Pescara,

just to give an example, the quality of service was remarkably

increased by 102%. Another important result obtained by the ILS

comes from the fact that all solutions were feasible with respect to

the constraint that imposes a required elapsed time between two

consecutive visits to the same customer. This constraint is indeed

not always satisfied in the solutions by the company.

We present four suggestions for future studies. First, the mod-

ification of the cluster: the current clusters were provided by the

company, but we foresee that changing their configuration might

help improve the solutions even further. Second, the insertion of dy-

namic and stochastic features in the problem: in the current version

of the problem, dynamic occurrences such as alarm triggering or

unexpected urgent services are not considered; by embedding them

into a new problem that considers dynamic and stochastic aspects,

we may obtain a more sophisticated model, to be used on-the-fly

during the execution of the activities. Third, a more elaborated eval-

uation of the quality of service: in our study, the quality of service

is evaluated using an overall measure of the number of services

performed, which may introduce unfairness as some customers

may have been poorly served while others fully served; introducing

a quality of service measured per single customer might improve

the fairness of the resulting solutions. Finally, the development of

an integer linear programming model represents another interest-

ing topic for future research. This model might be used to provide

proven optimal solutions, or at least to assess the quality of the

solutions found by the metaheuristic.
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