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ABSTRACT
In this paper, we consider a variant of the Traveling Salesman

Problem (TSP), called Balanced Traveling Salesman Problem (BTSP)

[7]. The BTSP seeks to find a tour which has the smallest max-
min distance : the difference between the maximum edge cost and

the minimum one. We present a Mixed Integer Program (MIP) to

find optimal solutions minimizing the max-min distance for BTSP.

However, minimizing only the max-min distance may lead to a

tour with an inefficient total cost in many situations. Hence, we

propose a fair way based on Nash equilibrium [5], [11] to inject the

total cost into the objective function of the BTSP. We consider a

Nash equilibrium as it is defined in a context of fair competition

based on proportional-fair scheduling. For BTSP, we are interested

in solutions achieving a Nash equilibrium between two players:

the first aims at minimizing the total cost and the second aims

at minimizing the max-min distance. We call such solutions Nash
Fairness (NF) solutions. We first show that NF solutions for BTSP

exist and may be more than one. We show that NF solutions are

Pareto-optimal [10] and can be found by optimizing a sequence of

linear combinations of the two players objectives based onWeighted

Sum Method [13]. We then focus on extreme NF solutions which

are NF solutions having either the smallest value of total cost or the

smallest max-min distance. Finally, we propose a Newton-based

iterative algorithm which converges to extreme NF solutions in a

polynomial number of iterations. Computational results on small-

size instances from TSPLIB will be presented and commented.

1 INTRODUCTION
The Balanced Traveling Salesman Problem (BTSP) is a variation

of the classical Traveling Salesman Problem (TSP) where instead

of finding a Hamiltonian tour minimizing the total cost, we find a

tour minimizing the max-min distance. The latter is the difference
between the maximum edge cost and the minimum one in the tour.

BTSP has been introduced by Larusic and Punnen (2011) [7] for

finding Hamiltonian tours in several cases where the equitable

distribution of edges are important, for example, the nozzle guide

vane assembly problem [12] and the cyclic workforce scheduling

problem [15].

BTSP can be formally defined as follows. Given an undirected graph

G = (V ,E) where V = [n] := {1, . . . ,n}, |E | =m, ci j ∈ R+ is a cost
associated with every edge ij ∈ E and let Π(G) denote the set of all
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Hamiltonian cycles in G, BTSP can be defined as

min

H ∈Π(G)

{
max

i j ∈H
ci j − min

i j ∈H
ci j

}
. (1)

BTSP is NP-hard as the problem of finding a Hamiltonian cycle inG
can easily be reduced to it. In [7], the authors proposed four thresh-

olds heuristic algorithms to solve this problem. More precisely,

distinct elements of c are firstly sorted in the ascending direction,

i.e. z1 < · · · < zp . The proposed algorithms find a pair (zi , zj ) satis-
fying (i) a subgraph ofG with the edge set {(i, j) ∈ E |zi ≤ ci, j ≤ zj }
is Hamiltonian, and (ii) zi − zj is as small as possible. The existence

of Hamiltonian cycles in subgraphs is verified by necessary condi-

tions for a tour and heuristic procedures instead of exact algorithms

that are highly computationally expensive. As a consequence, the

optimality of obtained solutions is not certified. Moreover, by mini-

mizing only the max-min distance, the total cost of edges used in

the tour is neglected and it may lead to very inefficient tours in

many situations.

Another work relating to the fairness of a tour in TSP is the

equitable TSP proposed by Kindable et al. [6]. In the equitable TSP,

one tends to minimize the absolute difference between the total

cost of two perfect matchings, which form a Hamiltonian cycle

in a graph. The problem is presented with the example about the

uniform distribution of distances to pedal for two people. Two inte-

ger programming formulations are proposed to solve the equitable

TSP exactly. However, this problem also may not guarantee the

efficiency of a tour in terms of the total cost.

In this paper, to overcome the possible inefficiency of the solu-

tions for BTSP, we propose a fair way based on Nash equilibrium to

inject the total cost into the objective function of BTSP. Nash equi-

librium is the most common optimality notion for sharing resources

among users [5],[11]. We consider a Nash equilibrium to be fair as

it is defined in a context of fair competition based on proportional-

fair scheduling that aims to provide a compromise between the

utilitarian rule - which emphasizes overall system efficiency, and

the egalitarian rule - which emphasizes individual fairness. For

BTSP, we are interested in solutions achieving a Nash equilibrium

between two players: the first aims at minimizing the total cost

and the second aims at minimizing the max-min distance. We call

such solutions Nash Fairness (NF) solutions. We first show that NF

solutions for BTSP exist and may be more than one. We show that

NF solutions are Pareto-optimal [10] and can be found by optimiz-

ing a sequence of linear combinations of the two players objectives

based on Weighted SumMethod [13]. We then focus on extreme NF

solutions which are NF solutions having either the smallest value

of total cost or the smallest max-min distance. Finally, we propose

a Newton-based iterative algorithm which converges to extreme

NF solutions in a polynomial number of iterations. Computational
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results on small size instances from TSPLIB will be presented and

commented.

The paper is organized as follows. In Section 2, we present a

mathematical formulation for BTSP. The notion of Nash fairness

solution will be discussed in Section 3. In particular, we prove

the existence of NF solutions for BTSP and show that they are

optimal solutions of a weighted sum objective problem. In Section 4,

Newton-based iterative algorithms for finding extreme NF solutions

is given. Computational results on small size instances from TSPLIB

will be presented and discussed in Section 5.

2 MIP FORMULATION FOR BTSP
Although several heuristic algorithms [7] have been developed for

this problem, there is no exact formulation for the BTSP mentioned

in the literature to the best of our knowledge. To formulate a MIP

for BTSP, we first consider the directed version of G by replacing

every edge ij by two arcs (i, j) and (j, i). The costs ci, j and c j,i
associated respectively with (i, j) and (j, i) are both equal to ci j . A
Hamiltonian tour in the original undirected graph G correspond

now to a directed tour in the directed version. We propose a MIP

formulation (for complete graph G) for the BTSP as follows:

min t (2a)

s.t.

∑
j ∈[n]

x j,i = 1 ∀i ∈ [n] (2b)∑
j ∈[n]

xi, j = 1 ∀i ∈ [n] (2c)∑
i ∈Q

∑
j,i, j ∈Q

xi, j ≤ |Q | − 1 ∀Q ⊂ V (2d)

t ≥ u − l (2e)

u ≥ ci, jxi, j ∀i, j ∈ [n] (2f)

l ≤
∑
j ∈[n]

ci, jxi, j ∀i ∈ [n] (2g)

xi, j ∈ {0, 1} ∀i, j ∈ [n]. (2h)

where xi, j is the binary variables representing the occurrence of

arc (i, j) in the solution tour. The constraints (2b), (2c) are respec-

tively the in-degree and out-degree constraints which assure that

there is exactly one incoming arc and one outgoing arc incident to

every vertex. The constraints (2d) are the subtour elimination con-

straints. These constraints represent the classical Held-Karp (linear

programming) relaxation for the Asymmetric Traveling Salesman

Problem. Together with the integral constraints (2h), they assure

that the solution is a tour. In order to calculate the max-min distance

t , we need to determine the largest and the smallest edge costs u
and l in the solution tour. Constraints (2f) obviously allow to bound

u from below by the largest weight arc in the solution tour. There

will be exactly one non null term in the sum in the right hand side

of constraints (2g) as there is exactly one arc leaving each vertex i .
This non null term represents the weight of the arc leaving i in the

solution tour. Hence, constraints (2g) allow to bound l from above

by the smallest arc weight in the solution tour. As t is minimized, u
and t will respectively take the values of the largest and the smallest

edge costs.

Table 1: The BTSP results in TSPLIB instances

Instance Heuristic algorithms [7] Formulation (2)

att48 192 190
gr48 48 46
berlin52 151 149
brazil58 1125 1097

We have designed a special-purpose branch-and-cut algorithm

based on Formulation (2). Despite of the simplicity of the latter, the

algorithm is capable to find an optimal solution for instances of

BTSP up to 80 vertices within 1 hour CPU time. Our experiments on

instances from TSPLIB have been able to certificate the optimality

of solutions found by heuristic algorithms in [7]. Furthermore, as

shown in Table 1, our exact algorithm have disproved the optimality

of the solution given in [7] for several instances.

However, the purpose of this paper is not to design exact solu-

tions for BTSP and to compare with the results in [7]. Since optimal

solutions for BTSP may not be very efficient in terms of the total

cost, the purpose of the paper is to inject the latter into the objective

function in some fair ways allowing a trade-off between the two

objectives. The rest of the paper will be devoted to this question.

3 NASH FAIRNESS SOLUTIONS FOR BTSP
3.1 Characterization of NF solutions
Nash fairness (NF) solutions for maximizing the utilities of two-

player problem [5] are defined by using the Nash standard of com-

parison. Under the latter, a transfer of utilities between the two

players is considered to be fair if the percentage increase in the

utility of one player is larger than the percentage decrease in utility

of the other player [1].

Proportional fairness is a generalized NF solution for multiple

players. In that setting, the fair allocation should be such that, if

compared to any other feasible allocation of utilities, the aggregate

proportional change is less than or equal to 0 [5], [1], [11].

LetU be a set of possible states of the world or alternatives and
let I be a finite set, representing a collection of individuals. For each

i ∈ I , ui : U −→ R+ be a utility function, describing the amount

of happiness an individual i derives from each possible state such

that we prefer the alternative x to the alternative y if and only if

ui (x) ≥ ui (y).

Definition 3.1. [1] xN F ∈ U be a NF solution in multiple players

problem if and only if

n∑
j=1

uj (x) − uj (x
N F )

uj (xN F )
≤ 0, ∀x ∈ U , (3)

where uj (x) > 0, ∀j ∈ I ,∀x ∈ U .

Let P ,Q represent the total cost and the max-min distance in

a feasible solution tour for BTSP. We have then P > Q ≥ 0. We

first suppose that Q > 0. As P ,Q now are two positive utility

functions, we have a two-player problem. In the usual definition

of NF solutions [5], [1], the alternative assigned a greater value is

preferred. However, in BTSP, we prefer the alternative assigned a

smaller value for two utility functions P and Q . Thus, we need to
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modify the sign of each term representing the proportional change

in Definition 3.1.

In the remainder of this paper, we consider (P ,Q) as the solution
for the total cost and the max-min distance corresponding to a feasi-

ble solution tour. Let (P∗,Q∗) be a NF solution for BTSP, condition

(3) can be translated into the context of BTSP as follows

P∗ − P

P∗
+
Q∗ −Q

Q∗
≤ 0, ∀(P ,Q) ∈ S, (4)

which is equivalent to

PQ∗ +QP∗ ≥ 2P∗Q∗, ∀(P ,Q) ∈ S, (5)

where S is the set of solutions (P ,Q) corresponding to all feasible
solution tours for BTSP in G.

We note that in case Q∗ = 0, the condition (5) is also satisfied.

Hence, NF solution for BTSP can be generally stated as follows

Lemma 3.2. (P∗,Q∗) ∈ S be a NF solution for BTSP if and only if
PQ∗ +QP∗ ≥ 2P∗Q∗, ∀(P ,Q) ∈ S .

Remark 3.3. (P , 0) is always a NF solution (i.e a solution tour

with all equal edge costs).

3.2 Existence of NF solutions
In this section, we first show the existence of NF solutions for

BTSP. Let us recall that in the classical multiple players problem

mentioned in Section 3.1 where we prefer the alternative assigned

a greater value, the NF solution can be obtained with the objective

function

max

n∑
j=1

log uj ,

provided that U is convex. The necessary and sufficient first-order

optimality condition for this problem is exactly the Nash standard

of comparison principle for n players. Notice that the above NF

solution is the one maximizing the product of the utilities over U .

On the contrary in BTSP, we prefer the alternative assigned

a smaller value for two utility functions P ,Q . Thus, there exists
a NF solution which can be obtained by minimizing instead of

maximizing the product of the utilities.

Theorem 3.4. (P∗,Q∗) = argmin(P,Q )∈S PQ is a NF solution.

Proof. Obviously, there always exists a solution (P∗,Q∗) ∈ S
such that

(P∗,Q∗) = argmin

(P,Q )∈S
PQ .

Now ∀(P ′,Q ′) ∈ S we have P ′Q ′ ≥ P∗Q∗. Then

P ′Q∗ +Q ′P∗ ≥ 2

√
P ′Q ′P∗Q∗ ≥ 2P∗Q∗,

The first inequality holds by the Cauchy-Schwarz inequality.

Hence, (P∗,Q∗) is a NF solution. □

Theorem 3.4 proves the existence of one NF solution for BTSP

that minimizes PQ , or equivalently minimizes (log P + logQ). How-

ever, finding such a solution may be difficult as it requires to min-

imize a concave function. In the following, we show that all NF

solutions can be found by minimizing an appropriate linear combi-

nation of P and Q based on the Weighted Sum Method [8]. More

precisely, all NF solutions can be obtained by solving the following

optimization problem

P(α) = min αP +Q s.t (P ,Q) ∈ S,

where α ∈ [0, 1] is the coefficient to be determined. For solving

P(α), we can solve the MIP (2) in Section 2 with αP + Q as the

objective function instead of Q .
Let α ∈ R+ and (Pα ,Qα ) be an optimal solution of P(α). Denote

Tα := αPα −Qα and C0 := {α ∈ R+ |Tα = 0}. Due to the definitions

of P and Q : P ,Q respectively represent the total cost and the max-

min distance in a solution tour, we always have P > Q ≥ 0. Hence,

if α ∈ C0 then α < 1, if not Tα ≥ Pα −Qα > 0.

Theorem 3.5. (P∗,Q∗) ∈ S is a NF solution if and only if there
exists a coefficient α∗ ∈ C0 such that (P∗,Q∗) is an optimal solution
obtained by solving P(α∗).

Proof. Firstly, let (P∗,Q∗) be a NF solution and α∗ = Q∗/P∗.
We will show that (P∗,Q∗) is an optimal solution of P(α∗).

Since (P∗,Q∗) is a NF solution, we have

P ′Q∗ +Q ′P∗ ≥ 2P∗Q∗, ∀(P ′,Q ′) ∈ S, (6)

Since α∗ =
Q∗
P ∗ , we have α

∗P∗ +Q∗ = 2Q∗.
Dividing two sides of (6) by P∗ > 0 we obtain

2Q∗ ≤
Q∗

P∗
P ′ +Q ′, ∀(P ′,Q ′) ∈ S, (7)

So we deduce from (7)

α∗P∗ +Q∗ ≤ α∗P ′ +Q ′, ∀(P ′,Q ′) ∈ S,
Hence, (P∗,Q∗) is an optimal solution of P(α∗) and then α∗ ∈ C0.
Now suppose α∗ ∈ C0, we show that (P∗,Q∗) is a NF solution.
Since T ∗ = α∗P∗ −Q∗ = 0, we have

α∗ =
Q∗

P∗
.

If (P∗,Q∗) is not a NF solution, there exists a solution (P ′,Q ′) ∈ S
such that

P ′Q∗ +Q ′P∗ < 2P∗Q∗,

We have then

αP ′ +Q ′ =
P ′Q∗ +Q ′P∗

P∗
<

2P∗Q∗

P∗
= α∗P∗ +Q∗,

which contradicts the optimality of (P∗,Q∗). □

Corollary 3.5.1. NF solutions are Pareto-optimal solutions over
S .

Proof. Base on Theorem (3.5), all NF solutions can be obtained

by solving P(α). Now let (P∗,Q∗) be the corresponding NF solution
of P(α∗), we will show that (P∗,Q∗) is Pareto-optimal solution over

S by contradiction.

Let us assume that there exists another solution (P ′,Q ′) ∈ S
such that P ′ < P and Q ′ < Q . We have then

α∗P ′ +Q ′ < α∗P∗ +Q∗,

which contradicts the optimality of (P∗,Q∗).
Hence, NF solutions are Pareto-optimal solutions over S . □

The following remark asserts that there may be more than one

NF solution for BTSP.
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Remark 3.6. Let (P ,Q) and (P ′,Q ′) be two different feasible so-

lutions in BTSP. The two inequalities

P ′Q +Q ′P ≥ 2PQ and P ′Q +Q ′P ≥ 2P ′Q ′.

may be satisfied simultaneously.

The main question now is how to determine a coefficient α∗

allowing to find a NF solution according to Theorem 3.5. In the

next section, we present an iterative algorithm converging to α∗ in
a polynomial number of iterations. The value of α∗ found by this

algorithm corresponds to the NF solutions with the smallest total

cost or the smallest max-min distance.

4 ALGORITHMS FOR FINDING EXTREME
NASH FAIRNESS SOLUTIONS

As shown by Remark 3.6, there may be many NF solutions for

an instance of BTSP. Among these solutions, two solutions may

naturally be preferred to the others: the one with the smallest

P and the one with the smallest Q . Let us call the first Efficient
Nash Fairness (ENF) solution and the second Balanced Nash Fairness
(BNF) solution. We call both ENF solution and BNF solution extreme
Nash Fairness solution. In the following, we will focus first on

ENF solution. As we will argue at the end of the section, all the

subsequent results applied to ENF solution can be also applied to

BNF solution with slight changes.

Theorem 4.1. The ENF solution is unique.

Proof. Suppose (P ,Q) and (P ′,Q ′) are two ENF solutions. By

the definition of ENF solution, we have P ≤ P ′ and P ′ ≤ P that

imply P = P ′.
Furthermore, (P ,Q) and (P ′,Q ′) also are NF solutions. Hence

P ′Q +Q ′P ≥ 2PQ and P ′Q +Q ′P ≥ 2P ′Q ′.

Since P = P ′ > 0, we have

Q +Q ′ ≥ 2Q and Q +Q ′ ≥ 2Q ′.

These equations lead to Q = Q ′. □

We propose now an algorithm to find the coefficient α∗ such that
the optimal solution (P∗,Q∗) obtained by solving P(α∗) is the ENF
solution. This algorithm is inspired from the application of Newton

method (or the Newton-Raphson method) to linear fractional pro-

grams that was first discussed by Isbell and Marlow [4] and then

generalized to nonlinear fractional programs by Dinkelbach [3]. It

is often called the Dinkelbach method. The algorithm can be stated

as follows.

where Xi represents the solution tour correspond to (Pi ,Qi ).

Denote {αi } as the sequence constructed by Algorithm 1. We

will prove that Algorithm 1 terminates in a polynomial number of

iterations and the obtained solution (Pi ,Qi ) is the ENF solution.

Our proof will use the following lemmas.

Lemma 4.2. Let α ,α ′ ∈ R+ and (Pα ,Qα ), (Pα ′ ,Qα ′) be the opti-
mal solutions ofP(α) andP(α ′) respectively, ifα ≤ α ′ then Pα ≥ Pα ′

and Qα ≤ Qα ′ .

Algorithm 1

Input: An undirected graph G with n vertices, m edges and a

positive cost vector c ∈ Rm+ .
Output: A Hamiltonian tour corresponding to the ENF solution.

1: α0 ← 1, i ← 0

2: repeat
3: solve P(αi ) to obtain (Pi ,Qi ) and Xi
4: Ti ← αiPi −Qi
5: αi+1 ← Qi/Pi
6: i ← i + 1
7: until Ti = 0

8: return (Pi ,Qi ,Xi ).

Proof. The optimality of (Pα ,Qα ) and (Pα ′ ,Qα ′) gives

αPα +Qα ≤ αPα ′ +Qα ′ , and (8a)

α ′Pα ′ +Qα ′ ≤ α ′Pα +Qα (8b)

By adding both sides of (8a) and (8b), we obtain (α−α ′)(Pα −Pα ′) ≤
0. Since α ≤ α ′, it follows that Pα ≥ Pα ′ .

On the other hand, inequality (8a) implies Qα ′ −Qα ≥ α(Pα −
Pα ′) ≥ 0 that leads to Qα ≤ Qα ′ . □

Lemma 4.3. During the execution of Algorithm 1, the sequence {αi }
is always non-negative and non-increasing. Moreover,Ti ≥ 0, ∀i ≥ 0.

Proof. We have α0 = 1 ≥ 0. Since P > Q ≥ 0 ∀(P ,Q) ∈ S , it
follows that αi+1 = Qi/Pi ≥ 0, ∀i ≥ 0.

Our proof is given by induction on i . If i = 0, then T0 = α0P0 −
Q0 = P0 − Q0 ≥ 0 and α0 = 1 ≥ Q0/P0 = α1. Suppose that our
hypothesis is true until i = k ≥ 0, we will prove that it is also true

with i = k + 1.
Indeed, we have

Tk+1 = αk+1Pk+1 −Qk+1 =
QkPk+1 − PkQk+1

Pk
. (9)

The inductive hypothesis gives αk ≥ αk+1 that implies Pk+1 ≥
Pk > 0 and Qk ≥ Qk+1 ≥ 0 according to Lemma 4.2. It leads to

QkPk+1 − PkQk+1 ≥ 0 and then Tk+1 ≥ 0.

On the other hand, from the definition of αk+2, we get

αk+1 − αk+2 =
αk+1Pk+1 −Qk+1

Pk+1
=
Tk+1
Pk+1

≥ 0. (10)

That concludes the proof. □

Lemma 4.4. Algorithm 1 terminates in a polynomial number of
iterations.

Proof. By contradiction, we first show that if Ti+1 > 0 then

Pi < Pi+1 and Qi > Qi+1.

Let assume that Pi ≥ Pi+1. According to Lemma 4.3, αi ≥ αi+1
that implies Pi ≤ Pi+1 as the result of Lemma 4.2. Thus, Pi = Pi+1.
From (9), if Ti+1 > 0 then QiPi+1 > Qi+1Pi . Since Pi = Pi+1 > 0,

we get Qi > Qi+1.

On the other hand, as (Pi ,Qi ) is the optimal solution P(αi ), it
shows that αiPi +Qi ≤ αiPi+1 +Qi+1. Using Pi = Pi+1, we obtain
Qi ≤ Qi+1 which leads to a contradiction.
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By repeating the same argument for Qi ≤ Qi+1, we also have a

contradiction.

Consequently, while Tk > 0, each ith (i ≤ k) iteration of Algo-

rithm 1 explores a Pareto-optimal solution (Pi ,Qi ) with the distinct

value of Qi .

Now let cmax
i and cmin

i be the maximum edge cost and the

minimum one in the solution (Pi ,Qi ). We have Qi = c
max
i − cmin

i
and due to the distinctness ofQi , we obtain c

max
i − cmin

i , cmax
j −

cmin
j , ∀i , j. We have then

(cmax
i , cmin

i ) . (cmax
j , cmin

j ), ∀i , j,

Thus, each Pareto-optimal solution obtained by an iteration of

Algorithm 1 has distinct pair of edges corresponding to the maxi-

mum edge cost and the minimum one. For graph G with n vertices,

we have at most O(n2) edges and then the maximum number of

distinct pairs of edges is O(n4).
Hence, the number of iterations in worst case is alsoO(n4). Con-

sequently, Algorithm 1 terminates in a polynomial number of itera-

tions. □

Theorem 4.5. We obtain the ENF solution by Algorithm 1.

Proof. Let αn be the solution obtained by Algorithm 1 and

(Pn ,Qn ) be the optimal solution of P(αn ). By the stopping criteria,

Tn = 0 and αn ∈ C0. Hence,Ti > 0 ∀i < n and then αi < αi−1 ∀i ≤
n. According to Theorem 3.5, (Pn ,Qn ) is a NF solution. We will

prove that (Pn ,Qn ) is a NF solution with the smallest total cost.

Assume that (P ,Q) is another NF solution such that P < Pn . By
Theorem 3.5, there exists α ∈ C0 such that (P ,Q) is the optimal

solution of P(α). Furthermore, α ∈ (αn ,α0] (if not, Pα ≥ Pn ). Then
there exists 0 < i ≤ n such that α ∈ (αi ,αi−1]. Since α ≤ αi−1,
P ≥ Pi−1 and Q ≤ Qi−1 due to Lemma 4.2. Thus, we get

Q

P
≤

Qi−1
Pi−1

(11)

By the definitions of α and αi , inequality (11) is equivalent to α ≤ αi
which leads to a contradiction. Hence, (Pn ,Qn ) is the ENF solution.

□

For finding the BNF solution, we use a similar algorithm starting

from α0 = 0 instead of 1. In this case, the sequence {αi } is always
non-negative, non-decreasing and Ti ≤ 0 ∀i ≥ 0. After a polyno-

mial number of iterations, we also obtain a coefficient αn ∈ C0 and
then we can prove that the optimal solution (Pn ,Qn ) obtained by

solving P(αn ) is exactly the BNF solution. More precisely, we state

this algorithm as follows.

Algorithm 2

Input: An undirected graph G with n vertices, m edges and a

positive cost vector c ∈ Rm+ .
Output: A Hamiltonian tour corresponding to the BNF solution.

1: α0 ← 0, i ← 0

2: repeat
3: solve P(αi ) to obtain (Pi ,Qi ) and Xi
4: Ti ← αiPi −Qi
5: αi+1 ← Qi/Pi
6: i ← i + 1
7: until Ti = 0

8: return (Pi ,Qi ,Xi ).

Then, we also state some lemmas and theorems to prove that we

obtain BNF solution by using Algorithm 2.

Lemma 4.6. During the execution of Algorithm 2, the sequence {αi }
is always non-negative and non-decreasing. Moreover,Ti ≤ 0, ∀i ≥ 0.

Lemma 4.7. Algorithm 2 terminates in a polynomial number of
iterations.

Theorem 4.8. We obtain the BNF solution by Algorithm 2.

Remark 4.9. In caseQ = 0 (i.e a solution tour with all equal edge

costs), the optimal solution of BTSP is also the BNF solution.

5 NUMERICAL RESULTS
Let us denote NFBTSP for Nash Fairness Balanced TSP, the problem

of findingNF extreme solutions for BTSP. In this section, we conduct

several experiments aiming at solving NFBTSP with Algorithms

1 and 2 on rather small size instances from TSPLIB [14]. We also

solve the classical TSP and the BTSP [7] on the same instances. The

obtained solutions for three problems will be then compared and

commented.

For solving the three problems TSP, BTSP andNFBTSP, we design

a simple branch-and-cut algorithm devoted to minimize a linear

objective function over the MIP program in Section 2 (of course, for

TSP the constraints (2f) and (2g) are exluded). We use CPLEX 12.10

to implement our branch-and-cut algorithm. The constraints (2d)

are set as lazy cuts which are generated only when being violated

by some integer solution. For BTSP and NFBTSP, we also have some

specific branching rules for variable l inspired from the threshold

algorithm [9], [7]. For NFBTSP, this branch-and-cut algorithm is

used in each iteration of Algorithms 1 and 2 to solve the subproblem

P(α). All the experiments are conducted on a PC Intel Core i5-9500

3.00GHz with 6 cores and 6 threads.

Table 2 presents the results of three problems TSP, BTSP and

NFBTSP in several instances of TSPLIB with a range of nodes from

14 to 29. For NFBTSP, we also provide the number of iterations for

finding respectively the ENF solution and the BNF solution (column

"Iters") and its corresponding final value of α . We can see by the

values of P and Q in this table that the ENF and BNF solutions

for NFBTSP strike a better trade-off between two objectives: the

total cost and the max-min distance comparing with those for the

classical TSP and the BTSP. In particular, when the solutions for

classical TSP and for BTSP are too different: small P and bigQ in the
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Table 2: TSP, BTSP and NFBTSP results on TSPLIB problems

Instance TSP BTSP ENFTSP BNFTSP
P Q Time P Q Time P Q Time Iters alpha P Q Time Iters alpha

burma14 3323 472 0.10 4986 134 0.15 4986 134 1.40 4 0.027 4986 134 0.70 2 0.027

ulysses16 6859 1452 0.51 14032 868 0.70 7047 1399 4.42 3 0.199 13670 868 17.56 3 0.063

gr17 2085 311 0.21 4138 119 0.35 2227 234 5.53 3 0.105 3346 139 8.63 4 0.042

gr21 2707 328 0.01 8630 115 0.68 2989 278 1.24 3 0.093 5945 120 18.60 3 0.020

ulysses22 7013 1490 141.46 19168 868 1.68 7070 1471 356.97 3 0.208 7070 1471 651.38 4 0.208

gr24 1272 83 0.07 3886 33 1.85 1282 81 1.17 3 0.063 3847 33 49.17 3 0.009

fri26 937 118 0.13 2458 21 2.72 980 82 24.39 3 0.084 2447 21 55.06 3 0.009

bays29 2020 140 0.55 6757 38 7.95 3449 59 2,033.04 5 0.017 4558 44 2471.15 3 0.010

bayg29 1610 86 0.31 4252 29 4.12 1817 63 44.92 3 0.035 3246 35 2567.73 4 0.011

solution for TSP and big P and small Q in the one of BTSP, the two

extreme NF solutions for NFTSP give two interesting alternatives.

More precisely, the ENF solution (respectively BNF solution) offers

a better alternative than the solution of TSP (respectively BTSP)

with a significant drop on the value ofQ (respectively P ) and a slight
growth on the value of P (respectively Q). Table 2 also indicates

that Algorithms 1 and 2 seem to converge very quickly after only

maximum 5 iterations. One important issue is the CPU time for

solving NFBTSP is quite huge comparing with the CPU time spent

for solving TSP and BTSP. A deeper analysis on the iterations of

Algorithms 1 and 2 tells us that the smaller is the value of α , the
more difficult is P(α). Especially, the CPU time spent for solving

P(α) in the last iteration occupies a very big part of the overall CPU

time. Hence, a special-purpose algorithm for solving P(α) may be

more interesting than simply optimizing a linear function over the

MIP given in Section 2.

6 CONCLUSION
In this paper, we have made use of Nash fairness equilibrium to

achieve a trade-off between the efficiency estimated by the total

cost and the balancedness estimated by the max-min distance in so-

lutions for balanced TSP (BTSP). We have proven first the existence

of Nash Fairness (NF) equilibrium solutions for BTSP. Second, we

have designed Newton-based iterative algorithms to find the two

extreme NF solutions: the one with minimum total cost and the one

with minimum max-min distance. Numerical results conducted on

small size instances from TSPLIB have shown that comparing with

the optimal solutions of the original BTSP, the NF solutions found

by our algorithm have much smaller total cost with a reasonable

augmentation of the max-min distance. An important notice is that

the results in this paper can be also applied to various balanced com-

binatorial optimization [9] problems such as balanced assignment

problem , balanced spanning tree problem [2],... Another future

development of our work is the improvement of the CPU time for

solving the problem P(α) especially when α is very small. One of

the possible direction is to study the possibility of stopping the solv-

ing of P(α) once a improved solution of (P ,Q) is obtained instead

of stopping at optimality.
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