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ABSTRACT
The relational equality-join is one of the most performance-
critical operators in database management systems. For this rea-
son, there have been many attempts to implement this operator
on FPGAs in various sort-merge and hash join variants. However,
most achieve suboptimal performance because they ineffectively
use the limited memory bandwidths of current FPGA platforms.
In this paper, we present an FPGA-based implementation of the
partitioned hash join (PHJ), where both PHJ phases are executed
on the FPGA. Contrary to prior work, we consider a commonly
used PCIe-attached FPGA card with dedicated on-board memory.
We discuss how to utilize this on-board memory effectively and
propose a solution that uses this memory to store partitioned
tuples, minimizing data transfers to system memory and thus
optimally using the available bandwidth. In our experimental
evaluation we demonstrate up to 2x faster end-to-end join times
than state-of-the-art 32-threaded hash join implementations on
the CPU.

1 INTRODUCTION
The relational equality-join is among the most performance-
critical operators in relational databases and can consume signif-
icant memory and CPU resources. Finding efficient CPU-based
implementations for the in-memory equality-join has a long
history of research [2–4]. The importance of this operator also
makes it an attractive target for acceleration using specialized
computing devices such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs), the latter of which we
focus on in this paper.

FPGAs can be integrated into computer systems in different
ways, and this significantly impacts how the FPGA can inter-
act with off-chip memory, e.g., system memory managed by the
CPU. Two common CPU-FPGA architectures are the discrete
and the coupled architecture [10]. In a coupled architecture, the
FPGA is closely coupled with the CPU, sitting, e.g., in a dedicated
mainboard socket [7], and directly interfaces with the CPU to
facilitate cache-coherent accesses to system memory. In contrast,
a discrete FPGA architecture places the FPGA on a dedicated ac-
celerator card [18], which is attached to the host system through,
e.g., a PCIe connection. Accesses to system memory are still pos-
sible with this architecture, but need to go through the memory
controller. Offsetting this more limited access to system memory,
discrete FPGA boards often feature dedicated on-board memory
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which can be directly accessed by the FPGA at the full bandwidth
of the memory. Discrete FPGA accelerators cards are more com-
mon than coupled architectures and can also easily be retrofitted
into existing servers.

For either architecture, the often low bandwidth between
FPGA and the host’s system memory fundamentally limits how
much host-resident data the FPGA can process at any given
time [11]. This poses the challenge of using this bandwidth as
effectively as possible to maximize the benefit of offloading an
operation to the FPGA. Kara et al. [21] and Chen et al. [10] ad-
dress this challenge on coupled FPGA platforms respectively for
the partitioning phase and the join phase of the partitioned hash
join (PHJ), an implementation variant of the equality-join. In
their implementations, partitioned tuples are placed in system
memory. This limits the amount of bandwidth available to read
input tuples from system memory, or for writing result tuples
to system memory, as a significant portion of the bandwidth is
already being used to manage the partitioned tuples. Partitioning
may also take multiple passes [21], because the size of each par-
tition is not known in advance. This further reduces the effective
usage of bandwidth to system memory as tuples then have to be
transferred multiple times.

In this paper, we investigate using a discrete FPGA platform
with dedicated on-board memory for the PHJ. The discrete plat-
form’s on-board memory allows us to address the abovemen-
tioned challenges by executing both phases of the join on the
FPGA and placing partitioned tuples in the on-board memory.
This way systemmemory bandwidth can be usedmore effectively.
However, using the on-board memory also poses new challenges:
(1) It is unclear how to lay out partitions in the memory. Ideally

the partitions should be arranged in a way that allows them to
grow to arbitrary and different sizes, as this would guarantee
that partitioning can be done in a single pass.

(2) The storage of partitioned tuples in on-board memory must
satisfy the performance requirements of the partitioner and
join components on the FPGA.

(3) On-board memory typically consists of multiple memory
channels, which each make up a fraction of the available ca-
pacity and need to be accessed simultaneously to reach peak
bandwidths.

(4) Memory accesses should be mostly sequential to fully exploit
the available bandwidth.
Focussing specifically on the PHJ, we show in this paper how

a discrete FPGA platform with dedicated memory resources can
be effectively utilized for offloading data-intensive DBMS op-
erators. We propose a page management solution (Section 3)
that addresses the aforementioned challenges to utilize the on-
board memory of a discrete FPGA platform and thus facilitates
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an FPGA-based PHJ implementation (Section 4) that achieves op-
timal bandwidth utilization with respect to system memory. We
also provide a comprehensive performance model of our design
(Section 4.4). Our evaluation (Section 5) shows that the imple-
mentation utilizes the available bandwidth to system memory on
our test platform optimally and can outperform state-of-the-art
multi-threaded in-memory CPU-based join implementations for
large input relations. While we demonstrate optimal bandwidth
utilization for the specific example of the partitioned hash join
(PHJ) in this paper, the techniques presented here may also be
more widely applicable to other data-intensive operators, espe-
cially ones that also benefit from partitioning and hashing, like
aggregation.

2 BACKGROUND
The Partitioned Hash Join. The partitioned hash join (PHJ) or

GRACE hash join [23] is a hash join that splits the operation into a
partitioning and a join phase. It was originally devised to facilitate
larger-than memory joins but also has beneficial properties in an
in-memory setting [31]. For a hash join in general, tuples from
the build input relation are first inserted into a hash table based
on the join key. The hash table is then probed with tuples from
the second input relation (called probe relation). Tuples from
the probe relation matching the join keys of build tuples in the
hash table then produce the join results. For the PHJ, the tuples
of both input relations are first partitioned based on the join
key. Then, in the join phase, building and probing hash tables
is done separately for each pair of partitions, instead of once
for the entire input. The PHJ is a good fit for an FPGA-based
join implementation, as the partitioning facilitates building hash
tables in the fast, but low-capacity on-chip memory of the FPGA.

Read Volume [B] Write Volume [B]
(a) 𝑟𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = ( |R | + |S |) ·𝑊 𝑤𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = ( |R | + |S |) ·𝑊
(b) 𝑟 𝑗𝑜𝑖𝑛 = ( |R | + |S |) ·𝑊 𝑤𝑗𝑜𝑖𝑛 = |R ⊲⊳ S | ·𝑊𝑟𝑒𝑠𝑢𝑙𝑡

(c) 𝑟𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = ( |R | + |S |) ·𝑊 𝑤𝑗𝑜𝑖𝑛 = |R ⊲⊳ S | ·𝑊𝑟𝑒𝑠𝑢𝑙𝑡

Table 1: Read and write volumes between the FPGA and
systemmemory for different join phase placement options.

PHJ Phase Placement. Let us briefly consider the possibilities
for placing PHJ phases in a CPU-FPGA setting. Not considering
the case where the join is performed fully on the CPU, there are
three options which result in different data volumes that at least
need to be transferred between system memory and the FPGA:
(a) partition on the FPGA, join on the CPU — the approach chosen
in [21], (b) partition on the CPU, join on the FPGA — the approach
chosen in [10], (c) partition and join on the FPGA—which has not
been considered in prior work. Table 1 shows the minimal data
volumes for the three options, assuming an input tuple width𝑊
and a result tuple width𝑊𝑟𝑒𝑠𝑢𝑙𝑡 , and input relations R and S.

To the best of our knowledge, no existing work has attempted
to design a bandwidth-optimal (as discussed below) FPGA join
solution on a discrete FPGA platform. In contrast to coupled
platforms, discrete platforms are an interesting target due to their
on-board memory, which can be viewed as an additional level
in the memory hierarchy and thereby provides opportunities to
minimize more expensive accesses to higher levels — i.e., system
memory — in the memory hierarchy. The on-board memory
gives us the opportunity to choose option (c) — executing both
PHJ phases on the FPGA. On a coupled platform this option
would mean that in addition to 𝑟𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 and𝑤 𝑗𝑜𝑖𝑛 ,𝑤𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

and 𝑟 𝑗𝑜𝑖𝑛 would also have to be transferred from and to system
memory, which is undesirable due to limited bandwidth to system
memory being the bottleneck of current accelerator designs. On
the discrete platform however, these data volumes can be handled
by the on-board memory by placing the partitions there, making
option (c) the most sensible choice for an FPGA-accelerated join
on a discrete platform.

Bandwidth-Optimality. Any join algorithm that cannot make
use of a pre-built index has to read at least ( |R| + |S|) ·𝑊 bytes
from memory for its input data and write |R ⊲⊳ S| ·𝑊𝑟𝑒𝑠𝑢𝑙𝑡 bytes
to memory as results, unless the tuples can be encoded in a more
compact way, e.g., using a compression method. Compression
has been shown to yield significant performance improvements,
e.g., for GPU-based distributed joins, where most time is spent
on communication between nodes [13]. This would however add
encoding effort on the CPU side, and is thus out of the scope of
this paper, as we are looking to construct a purely FPGA-based
solution. In the absence of such encoding, an FPGA join system
that utilizes the full available memory bandwidth without inter-
ruption for the whole duration of the join operation to transfer
the abovementioned data volumes from and to system memory
cannot be optimized further to improve end-to-end join perfor-
mance. Better performance is then only possible using a different
hardware platform with increased bandwidth. We call an FPGA
system that achieves this bandwidth-optimal, and demonstrate
in Section 5 that our system is bandwidth-optimal under most
conditions.

3 FPGA JOIN SYSTEM CONCEPT
In this section we present a bandwidth-optimal FPGA-based par-
titioned hash join system design for discrete FPGA platforms. We
first give an overview of the design in Section 3.1. In Section 3.2
we then present the central page management component of the
systemwhich is instrumental in being able to utilize the on-board
memory effectively and addresses the challenges of using the
on-board memory introduced in Section 1.

3.1 System Overview
A high-level overview of our design is shown in Figure 1. The
major underlying assumption of the design is that the partitions
of the input relations can fit into the on-board memory of the
FPGA. This places a hard upper limit on the number of total input
tuples, but allows us to use the bandwidth to system memory
exclusively for transferring input and result tuples, while the
on-board memory is only used for partitioned tuples. For par-
titioning and joining itself, we adapt existing concepts by Kara
et al. [21] and Chen et al. [10], respectively. By coupling these
components together with our page management component,
we can optimally use the limited bandwidth to system memory.

The arrows in Figure 1 denote the flow of tuples through the
system. While red arrows represent the bandwidth limitations
of the target platform, blue arrows indicate the processing and
transfer rates that the system components need to support to
achieve overall bandwidth-optimality. The multiple red arrows
between the FPGA and its on-board memory represent the mul-
tiple memory channels typically featured on discrete FPGA plat-
forms, which have to be considered to fully exploit the memory.
Achieving the target processing rates requires careful dimension-
ing and design of each of the system components to stay within
the resource limitations of the target FPGA. We discuss the tar-
get processing rates and bandwidths below, including high-level
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Figure 1: Overview of the proposed FPGA join system.

overviews of the system components and how they need to be
dimensioned to reach the given target rates, which is the key
to fully utilizing the system memory bandwidth and thus to a
bandwidth-optimal design.

During the partitioning phase of the PHJ, input tuples are first
read from host memory through 1 . The partitioner described by
Kara et al. consists of 𝑁 write combiners which group tuples into
64-byte batches that can later be efficiently written to memory.
Each write combiner can process one tuple per clock cycle, which
results in 𝑁 tuples per clock cycle total. By adjusting the number
of write combiners, the partitioner can be dimensioned to meet
throughput requirements. In the original partitioner design, there
is also a “Write Back” module that writes the partitioned batches
to memory. This is replaced by the page management compo-
nent in our design, which handles writing and reading the tuples
to and from on-board memory. In the figure, 2 transfers the
partitioned batches to the page management component, which
writes them to the FPGA’s on-board memory through 3 . These
three interfaces operate at the read bandwidth from system mem-
ory 𝐵𝑟,𝑠𝑦𝑠 , as this limits how quickly tuples can be transferred
from CPU-side buffers and as partitioning does not increase the
data volume.

In the join phase, partition-by-partition, the page management
component sequentially reads build and probe relation partitions
from on-board memory ( 4 ), and forwards them to the join stage
through 5 . In the join stage, multiple hash tables are built and
probed according to the datapath design by Chen et al. [10]. Their
design consists of a number of datapaths that each manage a sep-
arate hash table. Tuples are assigned to the datapaths according
to a datapath partitioning function, which partitions tuples or-
thogonally to the partitioning done in the partitioning phase. By
adjusting the number of datapaths present in the system, higher
or lower processing rates can be supported, up to the resource
limits of the target FPGA. While probing, the join stage produces
join results that are written back to system memory through 7 .
During a build phase, it is also possible that a hash table over-
flows. In this case, the overflowed build tuples are written back to
on-board memory through 6 and 3 . If an overflow occurs for a
partition, the join stage requests the overflowed build tuples and
all probe tuples for that partition again from page management
after it has finished the first round of probing for that partition.
For writing output tuples through 7 , the system is limited by the
available write bandwidth to system memory, 𝐵𝑤,𝑠𝑦𝑠 . To saturate
this bandwidth, the join stage should ideally accept partitioned
input tuples at 𝐵𝑟,𝑜𝑛−𝑏𝑜𝑎𝑟𝑑 through 5 , as this is the maximum
read bandwidth of the on-board memory and hence the maxi-
mum bandwidth that the pagemanagement component can reach
reading partitioned tuples from on-board memory through 4 .

Page 0
Channel 2

FPGA on-board Memory

Channel 0

Channel 1
Page 1 Page 2

Page 0 Page 1 Page 2

Page 0 Page 1 Page 2

Page Table (on the FPGA)

Rel PID 1st Page #Batches

R 0 42 500

S 0 0 600

... ... ... ...

S 8192 7 300

Batch 0 Batch 1 ...
0B 64B 128B

Page 0 (logical): Header

(not stored)

Figure 2: Managing partitions in on-board memory.

Note that, depending on the input data to the join operation,
either the input side or the output side can become a bottleneck: If
few output tuples are produced in relation to the size of the input
relations, the input side of the join stage would likely become its
bottleneck. If each probe relation tuple matches one or multiple
build tuple, the output side of the join stage will become its
bottleneck.

3.2 Page management
The page management component needs to address several chal-
lenges, which were already introduced in Section 1:
(1) The partitions should be arranged in memory in a way that
allows them to grow to arbitrary and different sizes, as this
guarantees that partitioning can be done in a single pass.

(2) It needs to accept and supply tuples at rates that allow other
system components to reach their target processing rates as
discussed in Section 3.1. Concretely, during partitioning, in-
coming tuple batches with the bandwidth 𝐵𝑟,𝑠𝑦𝑠 need to be
written to on-board memory, and while joining, tuples need
to be read from on-board memory partition-by-partition as
quickly as possible, ideally at 𝐵𝑟,𝑜𝑛−𝑏𝑜𝑎𝑟𝑑 .

(3) Multiple memory channels should be used effectively to be
able to read partitioned tuples at the maximum available band-
width.

(4) Memory accesses should also be mostly sequential to exploit
the available bandwidth fully.
To achieve bandwidth-optimality, (1) is most important, as

input tuples would need to be read from system memory twice
if single-pass partitioning was not possible. We thus employ a
page-based scheme for managing partitioned tuples in on-board
memory, shown in Figure 2: The on-board memory is logically
split into equal-sized pages and the tuples of each partition are
stored in a singly-linked list of pages. Pages are linked to each
other using a page header that stores a pointer to the partition’s
next page, if one exists.

During partitioning, to write tuple batches to on-board mem-
ory, the component keeps track of the current page and a write
offset within that page for each partition, and writes the tuples
to these offsets as they arrive from the partitioning stage. If, for
a partition, the current page is already full or no page has been
allocated yet, it is assigned the next free page in memory. This
way, arbitrarily many pages (up to the capacity of the on-board
memory) can be allocated to each partition, solving challenge (1).
While the way partitions are written to memory constitutes a
random write pattern, it is not an issue as the write bandwidth
is well below the maximum write bandwidth of the on-board
memory.
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Figure 3: Page management’s central role.

To be able to reach the maximum read bandwidth in the join
phase, addressing (3), we stripe the logical pages across the phys-
ical memory channels. As data is always written to the pages
in 64-byte batches, the striping is also done at this granularity.
This allows the page management component to read from all
memory channels simultaneously to reach the maximum band-
width when reading a partition. Reading partitions is supported
by a page table kept in the FPGA’s on-chip memory, which stores
for each partition the ID of the first page, as well as the total
number of tuple batches. As partitions only need to be read se-
quentially, the singly-linked nature of the page chains is a good
fit for this application, naturally addressing challenge (4) , as will
be discussed in Section 4.2 in detail.

4 FPGA JOIN SYSTEM IMPLEMENTATION
We now show how to implement the bandwidth-optimal par-
titioned hash join design presented in Section 3 on the Intel®
FPGA Programmable Acceleration Card D5005. Details on this
FPGA card can be found in Section 5. For the implementation, we
assume a tuple size of 8 bytes, with 4-byte join keys and 4-byte
payloads. Result tuples are 12 byte wide, as they consist of the
join key and the payloads of both joined tuples. This matches
the tuple sizes used in prior work [3, 10, 21]. In the general case
of larger tuples, the payload can act as an identifier for a larger
tuple kept in system memory (cf. surrogate processing [14]). We
discuss implementation details of each of the three system com-
ponents in the subsections below. As another major contribution,
we provide a performance model of the system in Section 4.4 that
may be used in a cost-based query optimizer to make offloading
decisions. This model can also be used to predict the performance
of our system design under different hardware constraints and
to guide scaling the design to future hardware with, e.g., higher
available bandwidths.

4.1 Partitioning
For the partitioning stage of our system, we port the write com-
biner design from [21] to OpenCL. In this design, tuples are read
from system memory in bursts, and assigned a partition ID using
the murmur hash function (see Section 4.3). Each of the read
tuples is then forwarded to one of 𝑛𝑤𝑐 write combiners. The
write combiners group partitioned tuples into bursts of eight
tuples belonging to the same partition, which are dispatched
to the page management component to be written to on-board
memory, as shown in Figure 3. On our target platform we can
read from system memory at 11.76 GiB/s. To saturate this at a
clock frequency of 200MHz or more, a 64-byte burst needs to be
processed in every clock cycle. We therefore use 𝑛𝑤𝑐 = 8 write
combiners in our implementation.

4.2 Page Management
The page management component implements the page-based
scheme for storing partitions in on-board memory introduced in
Section 3.2, and is active during both phases of the PHJ. It is a

critical part of our system for achieving bandwidth-optimality.
As shown in Figure 3, during partitioning, it accepts bursts of
eight tuples from the write combiners of the partitioning stage.
One burst is accepted and written to one of the on-board memory
channels in every clock cycle. The bursts are accepted in a round-
robin fashion. To enable this, per partition, we keep track of the
number of bursts already written to memory and the current
page used for the partition in local memory, making it possible to
quickly determine the destination address for an incoming burst.
As shown in Figure 2, a partition table stored in local memory
keeps track of the number of tuples and the first page ID of each
partition.

In the join phase, partitions are requested from page man-
agement by the join stage of the system. When a partition is
requested, the IDs of the first pages of both the build and probe
relation partition are looked up in the partition table. Then, a
64-byte cacheline is requested from each memory channel in
each cycle. As our target platform features four on-board mem-
ory channels, we read a total of 256 bytes or 32 tuples per cycle,
which is 47.68GiB/s at a clock frequency of 200MHz. Build re-
lation tuples are sent first to the join stage, followed by probe
relation tuples.

Given the linked-list nature of the paging scheme, two factors
are important to be able to issue four 64-byte read requests to on-
board memory continuously every clock cycle and thus maximize
bandwidth utilization: First, we place the page header at the
beginning of each page. This way, given a large enough page size,
when all cachelines for the current page have been requested, the
first cacheline containing the page header has already arrived,
making it possible to look up the ID of the next page and to
continue issuing requests. In contrast, putting the ID of the next
page at the end of each page would cause a gap in the memory
read requests every time a page has been fully requested (but
not yet fully received) from memory, as the system would first
have to wait for the end of the current page to be received from
memory to be able to start requesting the next page. Second,
the page size must be large enough that the page header arrives
frommemory before the page’s last cachelines are requested. The
memory read latency of the on-board memory in our case is in
the order of several hundred clock cycles. We hence choose the
page size to be such that 1024 cycles pass between requesting
the first and last cachelines of a page. Because we read 256 bytes
per cycle, this amounts to a page size of 256 KiB. Conversely,
it is also important to keep the page size as small as possible, to
retain flexibility in allocating differently-sized partitions. With
the chosen size, the 32 GiB of on-board memory (see Section 5)
are split into 131072 possible pages, which is still well enough
above the partition count of 8192 to satisfy this constraint.

4.3 Join
The objective of the join stage is to find join results by building
hash tables with pre-partitioned build tuples and probing these
with the respective probe tuples. Following the design by Chen
et al. [10], building and probing is done for multiple tuples in
parallel by employing a secondary partitioning of the tuples into
datapaths. Each datapath builds and probes its own hash table in
FPGA BRAMs. We adapt the join stage as follows for our full-PHJ
system:

Datapaths. In Chen et al.’s design [10], each datapath can pro-
cess one tuple every two clock cycles. The authors therefore use
16 datapaths for a processing capability of eight tuples per clock
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cycle, the number of tuples that can be read from system mem-
ory per cycle in their case. We are reading tuples from on-board
memory at four times the bandwidth used by Chen et al. Thus
the join stage should ideally be able to process 32 tuples per
cycle. To this end, we increase the throughput of each datapath
to one tuple per clock cycle by applying the forwarding registers
technique discussed by Kara et al. [21] for updating hash table
fill levels. Ideally, to reach a throughput of 32 tuples per cycle
for the whole join stage, we would also double the number of
datapaths to 32. However, we were not able to synthesize this
number of datapaths: Even though the amount of FPGA resources
consumed by the 32 datapaths is well within the bounds of the
used FPGA, routing signals and data between central modules
and the datapaths becomes a bottleneck and prevents successful
synthesis, despite applying further optimizations in the form of
sub-distributor and sub-collector modules.

Hash Tables. The hash tables in Chen et al.’s design have a
fixed bucket size of four and support no collision handling, which
means that if a bucket is full, the respective tuples overflow and
need to be handled separately in one or several additional passes.
This approach is chosen to minimize the logic resource usage
of the hash tables and to support a fixed throughput in each
hash table. Due to these benefits, we follow the same approach
for the hash tables in our design, but adapt it to guarantee that
no expensive overflows can happen for N:1 and near N:1 joins.
Such joins are the most common relational joins in practice [4],
and we thus specifically optimize for them and also focus our
evaluation exclusively on N:1 joins. To optimize for (near) N:1
joins, we size the hash tables such that the hash table buckets, in
combination with the datapath partitioning and the partitioning
on the input relations, cover the entire 32-bit value space of
possible join key values. Concretely, we partition input relations
into 213 = 8192 partitions. This reduces the value space of join
keys in each individual partition to 232−13 = 219 distinct values.
When joining, the tuples are again partitioned into 𝑛 distinct
datapaths, which reduces the value space of join keys in each
datapath to 219−log2 𝑛 , assuming 𝑛 is a power of two. We hence
size our hash tables to have 219−log2 𝑛 buckets. For this to work
out, all used hash functions have to use different bits of the
key value. We shuffle the bits of the key values using the 32-bit
murmur hash function [1] and then use a different set of the
resulting bits at each of the three steps: The least significant 13
bits of the murmur hash result determine the partition ID for a
tuple, the middle log2 𝑛 bits determine the datapath a tuple is
assigned to, and the remaining high bits determine the hash table
bucket. This way no overflows can occur for N:1 joins, where the
keys in the build relation are unique. Furthermore, as each bucket
has four slots, near N:1 joins —where up to 4 tuples with the same
key can exist in the build relation — can also be handled without
overflows. As all but the 19− log2 𝑛 highest bits of a tuple key are
used to first determine the tuples partition and then its datapath,
and hash tables are sized to have 219−log2 𝑛 buckets, only a single
unique tuple key can map to each hash bucket in a given datapath
while processing a given partition. Because of this, there is no
need to compare tuple keys during probing, as the presence of a
tuple in a hash bucket already guarantees that it has the correct
key. We thus only need to store tuple payloads in the hash tables,
which reduces BRAM usage. Note that this optimization may
not be possible in general, e.g., if limited resources of the target
FPGA prohibit a large hash table size such as the one chosen here.
Also note that N:M joins can still be handled by the design by

overflowing build tuples and performing one or several additional
build-probe passes, but this may carry significant performance
costs depending on the tuple distribution. This is an inherent
limitation of this hash table design [10]. Our optimzation avoids
this limitation for the most common joins, (near) N:1 joins.

Tuple Distribution. Another critical detail of the join stage is
the way tuples are distributed to the datapaths. In the original
design [10], two distinct mechanisms, shuffle and dispatcher are
used. Shuffle is used to distribute the𝑚 (𝑚 = 8 in [10]) incoming
build tuples per clock cycle to the datapaths and to send up to
one build tuple per clock cycle to each datapath. For this, each
datapath has a single first-in, first-out (FIFO) buffer, which is
used to channel the tuples to the datapath and mitigate temporal
imbalance in the distribution of tuples among the datapaths. In
contrast, the dispatcher mechanism distributes probe tuples to
the datapaths using a cross-bar architecture. Without going into
further detail, this means that each datapath has𝑚 input FIFOs
for probe tuples, and thus needs to support probing up to 𝑚
tuples per clock cycle. One of the implications of this is that
the hash tables in the datapaths need to be replicated across
several BRAMs to support parallel probing (as a single BRAM
only supports one read access per cycle). Additionally, for this
mechanism, 𝑚 · 𝑛 FIFOs are needed to connect the datapaths
to the module that reads partitioned tuples. This is feasible for
𝑚 = 8 and 𝑛 = 16 in [10]. But, in our case𝑚 is 32, and 𝑛 is 16, and
we are additionally using larger hash table sizes, making the costs
of the dispatcher mechanism design prohibitively high for our
implementation. We hence distribute both build and probe tuples
using the less expensive shuffle mechanism. The disadvantage
of this is that the system becomes sensitive to skew in the probe
relation, and we study this effect in our evaluation in Section 5.
To reduce high fan-out and fan-in of central modules caused
by the many FIFO connections between these modules and the
datapaths, we also use a sub-distributor and -collector module
between central modules and groups of four datapaths, as also
described in [25].

Result Materialization. Finally, efficiently returning result tu-
ples to the CPU also requires special care. This aspect was not
discussed in the original join design by Chen et al. [10]. Up to
four result tuples can be produced per cycle and per datapath
(if a probe tuple matches a completely full hash table bucket).
The data volume of the produced results can thereby far exceed
the bandwidth available for writing back the results to system
memory, and to saturate that bandwidth, result tuples need to be
written at a granularity of 64 bytes at a time. In our case, result tu-
ples are 12 byte wide, and we satisfy the granularity requirement
by incrementally building bursts of result tuples that can then
efficiently be written to system memory. First, we build bursts of
eight tuples locally in each datapath. This allows handling the up
to four produced results with relatively little logic. For every four
datapaths a burst builder module then collects one small burst
from one of its datapaths per clock cycle and assembles larger
192 byte wide bursts of 16 tuples. A central module collects the
larger bursts and writes one of them to system memory every
three clock cycles, saturating the bandwidth if enough results are
produced. Each of the aforementioned modules is connected to
its predecessor using FIFO buffers, which buffer up to a total of
16 384 results. This allows building a backlog of results in probe
phases, when results are produced more quickly than they can
be written to memory, and hence facilitates continuously writing
results to memory in build phases, when no results are produced.
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As each individual burst builder module can collect eight tuples
or 96 bytes per cycle (17.88GiB/s at 200MHz), the design can
also saturate the bandwidth if only one of the modules is active,
which could happen when input tuples are heavily skewed and
all tuples need to be processed in the same datapath.

4.4 Performance Model
Wenow develop a performancemodel for the proposed FPGA join
system that can be used to accurately estimate the full end-to-end
time required to execute a join operation using the FPGA system.
By adjusting its parameters, the model may also be used to pre-
dict the performance of the system on other FPGA platforms, e.g.,
ones with larger host-FPGA bandwidth. The model can further
be used to analyze performance bottlenecks and guide the dimen-
sioning of system components (like the number of datapaths) to
achieve bandwidth-optimality on potential future platforms.

Parameter Description Value/Unit
𝑓𝑀𝐴𝑋 FPGA system clock frequency 209MHz
𝐿𝐹𝑃𝐺𝐴 FPGA/host communication latency ∼ 1ms

𝑛𝑝 Number of partitions 8192
𝐵𝑟,𝑠𝑦𝑠 System mem. bandwidth (read) 11.76GiB/s

𝑊 Input tuple width 8 B/tuple
𝑛𝑤𝑐 Number of write combiners 8
𝑃𝑤𝑐 Write combiner processing rate 1 tuple/cycle

𝑐 𝑓 𝑙𝑢𝑠ℎ Cycles to flush write combiners 𝑛𝑝 · 𝑛𝑤𝑐

= 65 536
𝐵𝑤,𝑠𝑦𝑠 System mem. bandwidth (write) 11.90GiB/s

𝑊𝑟𝑒𝑠𝑢𝑙𝑡 Result tuple width 12 B/tuple
𝑛𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ𝑠 Number of datapaths 16
𝑃𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ Datapath processing rate 1 tuple/cycle

𝑐𝑟𝑒𝑠𝑒𝑡 Cycles to reset hash tables 1561
Table 2: Summary of parameters used in the model.

Table 2 shows a summary of parameters used in our implemen-
tation and for this model. Note that 𝑓𝑀𝐴𝑋 is the clock frequency
of the synthesized FPGA system which will be used in the evalua-
tion. The execution time estimated by the model may for example
be used by a cost-based query optimizer to decide for or against
offloading a join operation to the FPGA.

Partitioning. In the partitioning phase, tuples are processed
with the following rate:

𝑃𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛,𝑟𝑎𝑤 = min
{
𝑛𝑤𝑐 · 𝑃𝑤𝑐 · 𝑓𝑀𝐴𝑋 ,

𝐵𝑟,𝑠𝑦𝑠

𝑊

}
= min {1712Mtuples/s, 1578Mtuples/s}

=
𝐵𝑟,𝑠𝑦𝑠

𝑊
= 1578Mtuples/s

(1)

As we have dimensioned the system to be able to saturate the
available bandwidth 𝐵𝑟,𝑠𝑦𝑠 on our target platform, the second
term becomes the limiting factor, and hence the raw throughput
of the partitioning stage is 1578 million tuples per second.

However, the total partitioning time is subject to two addi-
tional latencies: First, after the partitioning stage has read all
input tuples from system memory, it needs to additionally flush
the remaining buffered tuples in the write combiners to on-board
memory [21]. In our case, this takes up to 65 536 clock cycles, as
each of the eight write combiners can have up to 8192 bursts of
tuples buffered (one for each partition), and the page manage-
ment component writes one burst per cycle to on-board memory.

This adds a constant latency of 𝑐 𝑓 𝑙𝑢𝑠ℎ
𝑓𝑀𝐴𝑋

= 314 µs to the total parti-
tioning time. Second, when invoking the FPGA system from the
host code and waiting for it to finish, there is a certain latency
associated with the operation, because the OpenCL framework
running on the host needs to communicate with the system
running on the FPGA through the PCIe bus, which can require
multiple PCIe round-trips. In practice, we have observed latencies
between 0.8ms and 1.2ms, so we model the latency here with
the constant 𝐿𝐹𝑃𝐺𝐴 = 1ms.

In combination, the total partitioning time 𝑇𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑁 ) as a
function of the number of tuples 𝑁 in the input relation is:

𝑇𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (𝑁 ) = 𝑁

𝑃𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛,𝑟𝑎𝑤
+
𝑐 𝑓 𝑙𝑢𝑠ℎ

𝑓𝑀𝐴𝑋
+ 𝐿𝐹𝑃𝐺𝐴 (2)

Join. For the join phase, we focus on N:1 joins and therefore
assume that no hash table overflows occur and each tuple needs
to be processed only once in the join stage. In contrast to the
partitioning phase, where the input and output data volume is
equal, for the join phase the number of join results produced
in relation to the number of input tuples depends on the join’s
selectivity. Depending on how many join results are produced,
either the tuple processing rate of the join stage’s datapaths
or the rate at which result tuples are written back to memory
become the bottleneck of the join phase. Ideally, input tuples
are distributed across all datapaths in the join phase. Thus the
number of cycles needed to process 𝑛 tuples is:

𝑐𝑝,𝑖𝑑𝑒𝑎𝑙 (𝑛) =
𝑛

𝑛𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ𝑠 · 𝑃𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ
(3)

However, if the keys of the input tuples are skewed, tuples may
not be distributed evenly across the datapaths, which can in the
worst case result in all tuples being processed by a single datapath.
Akin to Amdahl’s Law, we model this by assuming that in the
case of skew, some fraction 𝛼 of the tuples can only be processed
sequentially, using one datapath, while the rest is processed in
parallel, using all datapaths. Thus 𝑐𝑝 becomes:

𝑐𝑝 (𝑛, 𝛼) = 𝛼 · 𝑛
𝑃𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ

+ (1 − 𝛼) · 𝑛
𝑛𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ𝑠 · 𝑃𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ

(4)

How 𝛼 can be approximated depends on the exact scenario: If
it is known that the distribution of tuple keys follows a discrete
probability distribution, we have found that 𝛼 can be approxi-
mated well by the percentage of tuples that make up the 𝑛𝑝 most
frequent values in the relation, which can be obtained using, e.g.,
the cumulative distribution function in the case of a Zipf distri-
bution. It is conceivable that these most frequent values would
dominate the processing time in the case of high skew, as they
could in the worst case be distributed across all 𝑛𝑝 partitions,
thus forming a critical path for the processing. If a histogram of
the input relations is available, a scan of the histogram could be
done to obtain an approximation of the 𝑛𝑝 most frequent values
in the input. Lastly, if nothing is known about the input relation,
one could obtain a worst-case estimate by setting 𝛼 = 1. Because
both input relations can be skewed independently of each other,
𝛼 exists for both input relations, denoted as 𝛼R or 𝛼S, respectively.

Another significant factor affecting the processing time of
input tuples is the time required to reset fill levels of hash tables
in the datapaths between each processed partition. Fill levels
can be stored using 3 bits each, so we pack 21 of the 32 768
fill levels of each hash table into a 64 bit word. One word can
be reset per clock cycle, and hence resetting all fill levels takes
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𝑐𝑟𝑒𝑠𝑒𝑡 = ⌈ 3276821 ⌉ = 1561 clock cycles. This reset is repeated for
all 𝑛𝑝 = 8192 partitions, for a total processing time of:

𝑇𝑗𝑜𝑖𝑛,𝑖𝑛 ( |R|, 𝛼R, |S|, 𝛼S) =
𝑐𝑝 ( |R|, 𝛼R) + 𝑐𝑝 ( |S|, 𝛼S) + 𝑐𝑟𝑒𝑠𝑒𝑡 · 𝑛𝑝

𝑓𝑀𝐴𝑋
(5)

On the output side of the join stage, 12 byte-wide join result
tuples are written to system memory. This is limited by the avail-
able write bandwidth to system memory, 𝐵𝑤,𝑠𝑦𝑠 = 11.90GiB/s.
𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 is the time required to write all result tuples to system
memory and is a function of the number of join results |R ⊲⊳ S|:

𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 ( |R ⊲⊳ S|) = |R ⊲⊳ S| ·𝑊𝑟𝑒𝑠𝑢𝑙𝑡

𝐵𝑤,𝑠𝑦𝑠
(6)

As either 𝑇𝑗𝑜𝑖𝑛,𝑖𝑛 or 𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 can become the bottleneck of
the join phase, the total join phase time with the added latency
𝐿𝐹𝑃𝐺𝐴 to account for OpenCL overhead becomes:

𝑇𝑗𝑜𝑖𝑛 ( |R|, 𝛼R, |S|, 𝛼S, |R ⊲⊳ S|) =
max

{
𝑇𝑗𝑜𝑖𝑛,𝑖𝑛 ( |R|, |S|),𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 ( |R ⊲⊳ S|)} + 𝐿𝐹𝑃𝐺𝐴

(7)

End-to-end. Combining the execution time models for the par-
tition and join phases and summarizing common terms yields
an end-to-end model for the total execution time of a full join
operation:

𝑇𝑓 𝑢𝑙𝑙 ( |R|, 𝛼R,|S|, 𝛼S, |R ⊲⊳ S|) = 3𝐿𝐹𝑃𝐺𝐴 +
2𝑐 𝑓 𝑙𝑢𝑠ℎ
𝑓𝑀𝐴𝑋

+ 𝑊 ( |R| + |S|)
𝐵𝑟,𝑠𝑦𝑠

+max
{
𝑇𝑗𝑜𝑖𝑛,𝑖𝑛 ( |R|, 𝛼R, |S|, 𝛼S),𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 ( |R ⊲⊳ S|)}

(8)
Besides the latencies in the first two terms, the third term

shows that the system saturates the system memory bandwidth
𝐵𝑟,𝑠𝑦𝑠 during the partitioning phase. If 𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 dominates in
the last term, the join phase also saturates the system memory
bandwidth.

Let us briefly discuss the expected overheads associated with
the integration of the FPGA join with a query engine. As the
input to the join is sent and received as a stream of tuples the
integration could be implemented similar to an exchange operator
known from distributed databases [14]. Any necessary buffering
and re-coding could be done in a pipelined fashion with minimal
overhead [12].

5 EVALUATION
We now evaluate the bandwidth-optimal FPGA join system pre-
sented in Section 4. First, we separately evaluate the through-
put of the system’s partitioning and join stage, to confirm their
bandwidth-optimality. We then compare the system’s perfor-
mance to state-of-the-art CPU-based join algorithms. Although
the general case of N:M joins is supported using a basic overflow
handling mechanism, we have targeted optimizations towards
N:1 joins only and therefore consider those exclusively in this
evaluation.

We use a dual-socket system with two Intel® Xeon® Gold
6142 CPUs. These CPUs feature 16 physical cores and 32 threads
each, and run at a 2.60GHz base clock frequency, with a turbo
clock frequency of up to 3.70GHz. The system has 368.5 GiB
of system memory and runs CentOS 7.7.1908. Our target FPGA
board is the Intel® FPGAProgrammable Acceleration CardD5005,
which is attached to the system through a PCIe 3.0 16x interface
and features 32GiB of DDR4-2400 on-board memory. The FPGA
on this board can access system memory in a shared virtual
memory (SVM) model through the PCIe link. In preliminary

bandwidth measurements from an OpenCL system running on
the FPGA, we havemeasured peak bandwidths to systemmemory
of 11.76 GiB/s for reading and 11.90 GiB/s for writing, and peak
bandwidths to on-board memory of 50.56 GiB/s for reading and
65.35 GiB/s for writing. System and on-board memory can be
accessed concurrently at full bandwidth.

BRAM (M20K) Logic (ALM) DSP
(66.5%) / 11 721 (66.9 %) / 933 120 (3.8 %) / 1518

Table 3: Resource utilization on the Stratix® 10 SX 2800.
DSP blocks are exclusively used for hash calculations.

We compile code running on the CPU using GCC 7.3.1 with op-
timization level 2 (-O2). In our tests, compiling with -O3 did not
yield better, and in some cases even worse results than -O2. We
restrict CPU join implementations using numactl to run on only
a single socket to avoid any NUMA effects. The CPU-based join
implementations use all available 32 threads of a single socket.
To compile the FPGA system, we use version 20.1.0 build 177 of
the Intel® FPGA SDK for OpenCL™ with Intel® Quartus® Prime
version 18.1.2. We enable the -hyper-optimized-handshaking
optimization [19] that is available in the OpenCL tool chain for
Intel® Stratix® 10 FPGAs and improves the OpenCL system clock
frequency (𝑓𝑀𝐴𝑋 ) at the cost of slightly increased FPGA resource
usage. Table 3 shows the FPGA resource utilization of the synthe-
sized system. The OpenCL system runs at an 𝑓𝑀𝐴𝑋 of 209MHz.

At the beginning of each experimental run, input relations are
stored in contiguous host memory buffers which have either a
row- or column-based layout depending on what is supported by
the implementation of the respective join algorithm. Our FPGA
join system expects a row-based input layout. The 32 GiB of
on-board memory capacity limits the combined size of input
relations that the accelerator can process, and our experiments
are thus limited to this size. In practice, the limitation could be
lifted by spilling partition data to host memory when more than
32 GiB are needed for the partitions. We do not implement or
evaluate this, as our main focus is to evaluate the case where
partitions do fit into the on-board memory and the host memory
bandwidth can be used exclusively for reading inputs and writing
results. Having to read and write partitions in host memory
would reduce the performance of the accelerator, as the same
limited bandwidth is then used for reading and writing results.
Future FPGA platforms may also feature larger on-board memory
capacities, and supporting this would be easily possible with the
current design.

5.1 Partition and Join Throughput
To confirm that the partitioning and join stage of our join im-
plementation can saturate the available bandwidths from and to
system memory, we measure the throughput of both stages in
isolation. We report average throughputs of each phase, which
we define as number of tuples

processing time , in Figure 4. The processing time
includes the overhead 𝐿𝐹𝑃𝐺𝐴 of invoking OpenCL kernels on
the FPGA from the CPU side. For partitioning (Figure 4a), the
number of tuples is the number of tuples in the input relation |R|,
and input tuples are stored in system memory. For the join phase,
we consider throughput both in terms of processed input tuples
(Figure 4b) and in terms of produced result tuples (Figure 4c). In
the first case the number of processed tuples is |R| + |S|, while
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Figure 4: Throughput of (a) the partitioning stage, (b) the input side of the join stage, (c) the output side of the join stage.
For (a), we vary the input relation cardinality |R|. For (b) and (c), |R| = 1 × 107, |S| = 1 × 109 is used, varying the result rate.

in the latter case it is |R ⊲⊳ S|. Result tuples are written to sys-
tem memory. We also report the throughputs predicted by the
performance model from Section 4.4.

Partitioning Stage. Figure 4a shows that partitioning through-
put grows with the size of the input relation |R|. For small input
relation sizes the latencies that we have mentioned in Section 4.4
— flushing the write combiner kernels and overhead for starting
OpenCL kernels from the host code — dominate the runtime of
the operation. The same latencies become insignificant for large
input relation sizes — for sizes larger than 64×220, the through-
put closely approaches the limit given by the available memory
bandwidth from system memory of 11.76GiB/s, which equates to
1578 million tuples per second, shown in the figure as a dashed
red line. The predictions of the performance model conform with
the measurements relatively well, although the model slightly
overestimates the real throughput for relation sizes larger than
4×220. This is likely due to variance in OpenCL overhead, which
we have estimated in the model with a constant 1ms.

In contrast to Kara et al.’s original design [21], which has
a maximum throughput of 514 million tuples per second, the
partitioning stage in our system can partition 1578 million tuples
per second, as partitioned tuples are not written back to system
memory through the same memory interface input tuples are
read, but instead are written to on-board memory, utilizing the
aggregated bandwidth of our target platform. We have also tested
the partitioning stage with constant input relation sizes under
varying skew. This does not affect the partitioning throughput,
so we omit these results here.

Join Stage. To evaluate join stage throughput, we run the join
phase for pre-partitioned input relations that are generated to
produce varying numbers of join results. The ratio between input
and result tuples is the major factor affecting the throughput of
the join stage, as its bottleneck can either be the rate at which
input tuples can be processed, or the rate at which output tuples
can be written to system memory. As we focus on N:1 joins,
where |R ⊲⊳ S| ≤ |S|, we express the number of results as the
ratio |R ⊲⊳ S|/|S|, which quantifies the percentage of probe
tuples that produce a result tuple. We refer to this as the result
rate. To produce different result rates, we generate the build
relation R to have unique keys from the range [1, |R|] and the
probe relation S to have randomly selected keys from a range that
is sized such that |R ⊲⊳ S|/|S| becomes the desired value. As the
effect of fixed latencies on the observed throughput at small input
sizes is already clear from our measurements of the join stage
throughput, we chose large input relation sizes here, allowing
us to observe the different bottlenecks in the join stage more

clearly. Importantly, the time used to calculate the throughput
here includes writing all join results to system memory.

Figures 4b and 4c confirm the effectiveness of our system
at high result rates of more than 60%. At these rates, it can be
observed in Figure 4c that the system outputs result tuples at
a rate of more than one billion tuples per second, saturating
the available write bandwidth to system memory of 11.90GiB/s,
represented by the dashed red line. From a result rate of 60 % to
80 % and from 80% to 100 %, Figure 4b also shows the throughput
on the input side of the join stage decreasing accordingly as more
results are produced than can be written to system memory. For
result rates of 40 % and below, the processing rate of the datapaths
becomes the bottleneck.

At the result rates of 0 % and 20 %, the peak processing rate of
the system’s 16 datapaths becomes the bottleneck of the opera-
tion. With 32 datapaths, the throughput on the input side of the
join stage could double at such low result rates, as it is not limited
by the available bandwidth on the output side when only few
or no results are produced. However, 16 datapaths can already
nearly saturate the available bandwidth for result rates as low
as 40 %, so the system can deliver optimal performance for such
join operations.

The maximum theoretical throughput of 16 and 32 datapaths
(𝑛𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ𝑠 · 𝑃𝑑𝑎𝑡𝑎𝑝𝑎𝑡ℎ · 𝑓𝑀𝐴𝑋 ) is shown in Figure 4b by the
lower and upper dashed green line, respectively. This shows
the significant effect of the latency for resetting the hash table
fill levels, which we have discussed in Section 4.4. The latency
considerably reduces the peak processing rate of the join stage
below what we have assumed when we designed the system, as
Figure 4b shows for the result rates of 0 % and 20 %. The attained
throughput falls significantly below the theoretical throughput
represented by the lower green dashed line at 3424Mtuples/s.
Reducing this latency is an opportunity to improve the end-to-
end throughput of the system at low result rates, irrespective of
the number of datapaths.

Overall, these results demonstrate the accuracy of the perfor-
mancemodel, and show that our system can saturate the available
bandwidth from and to system memory in both PHJ phases.

5.2 End-to-End Join Performance
Next, we evaluate the end-to-end join performance of our FPGA
system and compare it against three state-of-the-art CPU-based
hash join implementations running on 32 threads:
• The concise array table (CAT) join by Barber et al. [4]. As no

implementation from the original authors is available, we use
an implementation by Wolf et al. [33]. For a fair comparison,
we change the implementation’s tuple size from 16 bytes to
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Figure 5: End-to-end join time, varying |R| (|S| = 256 × 220).

8 bytes and disable the checksum computation on the result
columns.

• The optimized parallel radix hash join (PRO) and the optimized
non-partitioned hash join (NPO) by Balkesen et al. [3]. We use
the original implementations by the authors [5]. For PRO, 18
radix bits and two-pass partitioning are used.

For the following experiments, input relations are in system
memory at the start of the join operation, and time is measured
until all join results have been written to system memory. The
implementations by Balkesen et al. expect input relations in a
row-based input format, and the CAT join implementation ex-
pects input relations in a column-based format, so we supply the
input relations accordingly. Neither of the CPU join implemen-
tations materializes join results in memory, in contrast to our
FPGA implementation. Rather, the CPU implementations only
compute a total count of the number of join results. We consider
this as a reasonable advantage for the CPU, as a join operator
executing as part of a query plan could push results directly to
subsequent operators (keeping them in the CPU caches) rather
than materializing them in memory. This is not possible for a join
operator on an FPGA, which necessitates materializing results to
memory as an intermediate step.

As we focus on N:1 joins, build relation keys in all following
experiments are unordered, dense, and unique, i.e., from the range
[1, |R|] —where |R| is the number of tuples in the build relation —
and no duplicate keys exist. The payloads for the build and probe
relations are generated randomly from the full 32-bit integer
range.

Effect of Build Relation Size. We first aim to gain an under-
standing if and for which problem sizes the FPGA solution can
outperform CPU-based approaches. For this, we vary the build
relation size |R| at a fixed probe relation size of |S| = 256 × 220,
with a result rate of 100%. Figure 5 shows the end-to-end join
times under these conditions. For the implementations that par-
tition the build and probe relations, the reported end-to-end join
times are split into time spent on partitioning and time spent on
joining, indicated by darker and lighter colors of the bars, respec-
tively. The predictions of our performance model are also shown
for partitioning only and for partitioning and join combined.

A larger |R| naturally causes increased join times for all algo-
rithms, but the performance of the different algorithms scales
very differently with increasing |R|. While the FPGA join time at
|R| = 1 × 220 is 2-3 times slower than that of CAT or NPO, the
FPGA solution outperforms all CPU algorithms at |R| = 256× 220
by approximately a factor of two or more. Amongst the CPU
algorithms, the CAT join is the fastest up to |R| = 128 × 220,
after which PRO performs better than CAT, but CAT also is more

sensitive towards increased build relation sizes than PRO. While
NPO is nearly on par with CAT for small cardinalities of |R|, its
join times increase the most of all algorithms with increasing
|R|. This is not surprising, as the performance of non-partitioned
joins is known to be more sensitive towards larger build relation
sizes because probing larger hash tables quickly becomes more
expensive due to cache misses. The results also demonstrate the
accuracy of our performance model. Join and partitioning times
are accurately predicted, except for the extreme cases where the
build relation size exceeds 128 × 220, where join time is slightly
underestimated. This is because the assumption that there are
always enough buffered result tuples to write back during build
phases does not hold anymore in these cases, which causes results
to be transmitted back to system memory slightly slower than
assumed by the model. The 𝑇𝑗𝑜𝑖𝑛,𝑜𝑢𝑡 term of the model could be
adjusted to account for this, but we consider this unnecessary
given the low error caused by this effect.

The FPGA join outperforms all CPU-based joins at build rela-
tion sizes of 32×220 tuples andmore. It has a significant advantage
over CPU-based joins in the join phase of the partitioned hash
join, due to the fixed throughput that it achieves for unique build
relation key distributions. Looking at the time consumed for the
join phase of the FPGA-based solution, one can observe that it
is the same for all values of |R|. This is because, in this experi-
ment, the performance of the FPGA solution’s join stage is only
limited by the system memory write bandwidth, and the total
number of join results is the same for all values of |R| in this
experiment. The only factor increasing the absolute time used
for the FPGA-based join with higher |R| is the partitioning time,
which increases because the total number of partitioned tuples
increases and with it the time to transfer the tuples from system
memory.

It should be noted that the FPGA join system exploits the full
available bandwidth to system memory in both phases of the
partitioned hash join, except for small inefficiencies with the
partitioning at smaller build relation sizes that we have already
observed in our analysis of the partitioning stage throughput
in Section 5.1. Thereby our FPGA system reaches the optimal
performance that is attainable for any FPGA-based join on this
particular hardware platform.

We have also conducted experiments with varying probe rela-
tion sizes at fixed build relation sizes and found that the relative
performance between CPU and FPGA does not change with the
probe relation size. This means that the major factor affecting
the relative performance of our FPGA- and the CPU-based joins
is the size of the build relation |R|, with our FPGA system out-
performing CPU-based solutions for |R| ≥ 32 × 220.

Effect of Probe-Side Skew. Next, we analyze the effects of a
skewed probe relation key distribution. The experiment uses a
workload equivalent to Workload B used by Chen et al. [10]
(|R| = 16 × 220, |S| = 256 × 220). To evaluate different levels of
skew, keys in the probe relation S are generated following a Zipf
distribution, varying the Zipf exponent 𝑧 between 0 and 1.75 in
increments of 0.25. It should be noted that |R ⊲⊳ S| = |S| still holds
here, as build relation tuple keys follow a unique distribution
in [1, |R|] and the skewed probe tuple keys are generated in the
same range.

Figure 6 shows the results of the experiment. Without any
skew, the performance of the CAT join is roughly on par with
our FPGA system. This is identical to the result at |R| = 16 × 220
in Figure 5. With increasing 𝑧, and thereby increasing skew, the
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Figure 6: End-to-end join time for Workload B (|R| =
16 × 220, |S| = 256 × 220), varying probe-side skew.
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Figure 7: End-to-end join time, varying result cardinality
(|R| = 1 × 107, |S| = 1 × 109).

performance of our system deteriorates, although it remains rel-
atively stable below 𝑧 = 1.0. A similar performance degradation
can be observed for the CPU-based PRO, while NPO and CAT
exhibit better performance with increasing skew. This is a known
effect of the characteristics of the different CPU-based implemen-
tations [3]. Thereby CAT and NPO outperform our FPGA system
at high skew levels.

As alluded to in Section 4.4, 𝛼S is obtained by evaluating the
CDF of the Zipf distribution at 𝑛𝑝 . This predicts the real-world
behavior under skew well, but further work is necessary to con-
firm that this works equally well for other distributions or using
histograms.

Effect of Join Result Size. To investigate the effect of the num-
ber of produced join results on the end-to-end performance, we
generate the input relations in the same way as in Section 5.1.
Figure 7 reports end-to-end join times including partitioning
for these input relations and compares against CPU-based join
times. First considering the results of the FPGA system only,
the time spent in the partitioning phase does not change at the
different result rates. This is expected as the absolute number
of tuples that needs to be partitioned does not change with the
result rate. In contrast, the join times decrease with decreasing
result rates. This is a result of the join stage of the FPGA system
being less limited by the memory bandwidth to system memory
when emitting result tuples as fewer results are created, as we
have already discussed in Section 5.1. Likewise, the performance
of the join stage does not improve further when going from a
result rate of 20 % to 0 % because the join stage is already at the
peak processing rate attainable using 16 datapaths at a result
rate of 20 %. The performance of the join stage at low result rates
would improve with 32 instead of 16 datapaths. However, this
would have relatively little influence on the end-to-end join time,
as the end-to-end time is already dominated by the time spent

on partitioning at result rates of 20 % and 0%. As in the previ-
ous experiments, the performance model accurately predicts the
real-world behavior of the system for these input characteristics.

Comparing the FPGA system to the CPU-based solutions, the
FPGA outperforms PRO and NPO in all cases, and the perfor-
mance of PRO and NPO is also mostly constant across all result
rates. In contrast, the join time of the CAT join drops further
with each decrease in result rate. At |R ⊲⊳ S|/|S| = 0%, the join
time drops to 21 % of the time at |R ⊲⊳ S|/|S| = 100%. Because
of this, CAT outperforms the FPGA solution slightly for result
rates below 100%, and is even two times faster than the FPGA at
a result rate of 0 %. This is because the CAT join creates a bitmap
that marks all existing keys of build tuples during the build phase.
In the probe phase, this bitmap is used to prune tuples early that
cannot have a matching build tuple [4], saving memory accesses
to the tuple payloads and reducing processing time significantly.

5.3 Discussion
We have shown our FPGA-based system to be competitive with
state-of-the-art hash-join implementations on the CPU [3, 4].
Especially at large input sizes, the FPGA outperforms the CPU.

Limitations. In general, the implementation achieves the goal of
fully exploiting the available bandwidth to system memory on this
platform in both phases of the PHJ, with just three exceptions:

Small input sizes: For small input sizes the total join time
is dominated by fixed latencies such as resetting hash table fill
levels and the latencies involved with managing OpenCL kernels,
deteriorating throughput. Our performance model (Section 4.4)
can guide the decision for or against offloading in practice.

Skew: Skewed input relations can negatively impact join stage
throughput, as a majority of tuples may be routed only through
a single datapath at high skew levels, making it a bottleneck.
For probe relation tuples, where this is more problematic than
for build relation tuples, this deteriorated throughput is due to
our decision to remove the dispatcher mechanism from the join
stage that was present in the original system designed by Chen
et al. [10]. In practice, we find that only very highly skewed
key distributions significantly deteriorate the performance of the
system.

Too few join results: If the result rate is too low, the pro-
cessing rate of the join stage becomes the bottleneck and thus
reduces the rate at which results are written to system memory.
This may yet be improved by increasing the internal throughput
of the systems’ join stage, by e.g., scaling up the system to 32
datapaths. But this would make little difference in practice, as the
partitioning time dominates the end-to-end join time when few
results are produced anyway. The partitioning time is limited by
the available bandwidth, and thus cannot be further improved
without additional CPU-side processing, e.g., compressing input
data before transferring it.

Outlook. Besides reducing data volumes, future platforms with
higher bandwidth that use, e.g., PCIe 4.0 to attach the FPGA,
seem most promising to further improve partitioning as well
as join performance. We have demonstrated the quality of our
performance model in this evaluation, which can also be used to
predict performance for higher-bandwidth platforms by changing
its parameters. Taking the example of PCIe 4.0, which features
double the bandwidth of our current platform, the model would
tell us that end-to-end join performance can be doubled by just
scaling the number of write combiners in the partitioner from
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eight to 16, as the 16 datapaths in the join stage would still be able
to saturate the bandwidth with result tuples if no skew is present.
To support even higher bandwidths, the datapaths would also
have to be scaled up, likely also requiring a future FPGA to have
more available resources.

6 RELATEDWORK
Before discussing related work on join processing using FPGAs,
we also take a look at joins using CPUs and GPUs. Finally, we
analyze and discuss the hybrid FPGA-CPU join by Chen et al.,
and compare it against our design.

6.1 Joins on Other Hardware Platforms
CPUs. Efficient implementations of the relational join were ex-

tensively discussed in the research literature. We refer to [14, 29]
for excellent overviews on this topic. As larger caches and DRAM
became available on modern multi-core processors, tuning im-
plementations to these hardware characteristics received special
attention [2–4]. We have compared against these implementa-
tions as the fastest ones we are aware of. While we focus on join
processing on a single node, the efficient execution of joins in a
distributed setup is also subject of prior research [6].

GPUs. GPUs also provide an interesting acceleration platform
for joins. Fundamental designs of join algorithms on GPUs are
discussed by He et al. [17]. Kaldewey et al. [20] utilize NVIDIA’s
Unified Virtual Addressing (UVA) for a hash join implementation
that does not need to fit all data into the scarce GPU device
memory. Because UVA extends the memory pool by also using
host memory, the bottleneck is ultimately the PCIe bandwidth for
host memory access, resulting in an overall throughput of 2-6.1
GB/s. Another partitioned hash join is presented by Sioulas et
al. [32]. They among other things evaluate the impact of the input
data location for the join. While they achieve throughputs of 4
billion tuples per second for GPU-resident data, for CPU-resident
data only 1.2 billion tuples per second are possible due to the PCIe
bottleneck. We also consider the case of CPU-resident data and
achieve similar throughput, which shows that GPUs suffer from
limited interconnect memory bandwidth just like FPGAs. Lutz et
al. [24] analyze and evaluate themost recent NVLink interconnect
technology for join processing on GPUs. For an optimized no-
partitioning hash join the authors achieve a speedup of up to 18×
over PCIe 3.0. This also shows that GPU-based join accelerators
can benefit greatly from faster interconnects, which is in line
with our observations for FPGA-based accelerators. Gao et al. [13]
show that a distributed GPU-based hash join can be scaled to 1024
GPUs and achieve an impressive throughput of 1.8 trillion input
tuples per second, using lightweight compression to reduce data
transfer volumes. Both the use of compression and considering
distributed contexts may be promising avenues for future work
also for FPGA-based joins.

While GPU-based acceleration approaches achieve outstand-
ing performance, a distinct advantage of FPGAs over GPUs is
the ability to create deep on-chip processing pipelines, which
helps to avoid off-chip memory data movement. FPGAs allow full
flexibility for the implemented circuit, while GPUs have fixed in-
struction sets and memory hierarchies. This makes FPGAs more
power-efficient. As interconnect technology for FPGAs is likely
to improve in the future, like it already has for GPUs, it makes
sense to at least consider FPGAs as a more power-efficient ac-
celerator alternative to GPUs, even if GPUs currently provide
superior performance.

6.2 Joins on FPGAs
Windowed Joins. Several works have explored using FPGAs

for time- and energy-efficient stream processing [26] and in this
context also for windowed join operations [27, 28]. Here we
target full (un-windowed) relational equi-joins.

Relational Joins. A wide range of prior work on relational join
processing using FPGAs exists [11, 30]: Halstead et al. [15, 16]
present a non-partitioned hash join on the multi-FPGA Convey-
MX platform and report throughputs of around 620 million tu-
ples per second using a combined memory bandwidth of 76 GB/s.
Casper and Olukotun [8] implement a sort-merge join on another
multi-FPGA platform with a combined memory bandwidth of
115.2 GB/s, and reach a throughput of 800 million tuples per
second. They however assume that input data is already stored
in FPGA on-board memory. Chen and Prasanna [9] further ex-
pand the sort-merge approach by partially sorting data on the
CPU and performing final sorting and merging on FPGAs. This
hybrid approach yields better bandwidth utilization but overall
lower throughput as they target a lower-end FPGA platform than
previous solutions. Kara et al. [22] perform first experiments
with high bandwidth memory (HBM) as FPGA on-board memory.
Their hash join implementation can process 80 GB/s if data is
already in HBM, but throughput falls to 10 GB/s if data needs
to be loaded from host memory first. Peak throughput can also
only be reached for small build relations of up to only a few ten
thousands of tuples.

A common theme amongst all these works is that join through-
put in relation to the available bandwidth is relatively low, i.e., the
available memory bandwidth is used ineffectively. This is because
data often needs to be transferred from and to memory multiple
times to perform the full join operation. We have shown that
high join throughput can be achieved even on a relatively low-
bandwidth platform (PCIe 3.0) if efficient bandwidth-utilization
is considered throughout the design process. For this we utilized
existing bandwidth-efficient FPGA-based concepts for the two
PHJ phases: Kara et al. [21] implement the partitioning operation
on the coupled HARP v1 FPGA platform where the FPGA can
communicate to the host memory through a cache-coherent QPI
interface. Although this design can in theory process 12.78 GB of
input data per second, the QPI interface on this particular plat-
form only offers a bandwidth of around 6.5 GB/s bidirectionally,
which thus becomes the bottleneck of the design. As partition
buffers are allocated in system memory and the FPGA cannot
dynamically control their size, their design may also have to
fall back to two-pass partitioning if a partition exceeds the pre-
allocated size, further reducing throughput. In our design, both
problems are solved by using a faster PCIe interface and being
able to dynamically allocate partitions in the on-board memory
of the discrete FPGA platform. On a similar coupled platform
(HARP v2) Chen et al. [10] implement a partitioned hash join
where they rely on input that is partitioned on the CPU. We
discuss and compare their design to ours below.

6.3 Comparison to Hybrid
The join solution proposed by Chen et al. executes the partition-
ing phase of the PHJ on the CPU, and uses a novel design on the
FPGA for the join phase. Chen et al. do not include partitioning
on the FPGA based on a roofline analysis of their target platform,
which shows that partitioning on the CPU is more efficient due
to limited FPGAmemory bandwidth. We adopt their FPGA-based
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join phase with modifications, but also include partitioning on
the FPGA.

On our target platform, partitioning on the FPGAmakes much
more sense than on the coupled HARP v2 platform, for two main
reasons: First, partitioning can be executed much more efficiently
on the FPGA than on the CPU, as the on-board memory of the
FPGA makes it possible to partition in a single pass, reducing
both bandwidth and computation requirements. Chen et al.’s de-
cision to place the partition phase on the CPU is largely based on
the memory access requirements for the partitioning, as the CPU
has higher-bandwidth access to memory. Single-pass partition-
ing drastically reduces the required memory accesses. Second, a
hybrid implementation would perform inferior to the FPGA-only
one, because the FPGA part of the system would have to simul-
taneously read partitioned tuples from host memory and write
result tuples back to host memory during the join phase. This is
because the FPGA-based partitioner can place partitions directly
in the FPGA’s on-board memory, while a CPU-based partitioner
places partitions in host memory. Therefore the throughput of
the join phase would be severely limited in comparison to the
FPGA-only solution, as the full PCIe bandwidth can only be used
unidirectionally by the FPGA on our target platform. The slower
join phase could potentially be offset by better partitioning perfor-
mance on the CPU, but we find that comparing our FPGA-based
partitioning results from Section 5 to the CPU-based partitioner
used by Chen et al. [10], shows similar partitioning performance
for both solutions.

Besides the major conceptual difference of choosing an FPGA-
only approach, we have also discussed implementation changes in
comparison to Chen et al.’s solution in Section 4. As an important
factor we discuss how to materialize join results back to host
memory, which was not included in the original design [10].
When directly comparing the Hybrid results [10, Figure 6b] to
ours, which is possible for the result at |R| = 16 × 220 and |S| =
256 × 220 in Figure 5 (Workload B in Chen et al.’s evaluation)
we observe two things: First, the partitioning time is practically
equivalent, second, the join phase runtime is 30 % lower for the
hybrid solution. The first reaffirms our decision to include the
partitioning into the FPGA system on this target platform, while
the latter is a result of the higher available bandwidth onHARP v2,
as well as the lack of result materialization to host memory in the
hybrid design. In contrast to the hypothetical “FPGA-only” results
included in Chen et al.’s evaluation, our solution exhibits much
better partitioning performance, as already discussed. Finally, it
is important to note that offloading a join operation to our system
takes the entire load of executing that operation off of the CPU
and frees it up to perform arbitrary other tasks, which is not true
for the hybrid solution.

7 CONCLUSION
In this paper we have developed a bandwidth-optimal partitioned
hash join (PHJ) implementation on a PCIe-attached FPGA board
with dedicated on-board memory. To our knowledge this is the
first bandwidth-optimal solution on such an FPGA platform. We
optimize usage of the limited bandwidth to system memory by
using the FPGA board’s on-board memory to store partitions
and utilizing a novel paging scheme to enable single-pass par-
titioning of tuples read from system memory. We have shown
in our evaluation that the FPGA system can saturate the avail-
able PCIe bandwidth in both PHJ phases, partitioning 1.6 billion
8-byte tuples per second, and processing build and probe tuples

at up to 2.8 billion tuples per second in the join phase, writing
back up to 1 billion result tuples per second to system memory.
Comparing against three state-of-the-art 32-threaded CPU-based
join solutions using common workloads has shown that if the
build relation cardinality is larger than 32 million tuples, the end-
to-end join time of our FPGA system is faster than all CPU-based
variants, unless inputs are heavily skewed or the join is particu-
larly selective. We have also presented an accurate performance
model of the FPGA system, which considers skew as a factor
and can be used to decide for or against offloading a join to the
accelerator at query-optimization time. The model parameters
can be easily adjusted to make predictions about the performance
of the design on other/future FPGA platforms, e.g., ones using
PCIe 4.0 for higher host-FPGA bandwidth.
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