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ABSTRACT

Capacity planning is an essential activity in the procurement and
daily running of any multi-server computer system. Workload
placement is a well known problem and there are several solu-
tions to help address capacity planning problems of knowing
where, when and how much resource is needed to place work-
loads of varying shapes (resources consumed). Bin-packing algo-
rithms are used extensively in addressing workload placement
problems, however, we propose that extensions to existing bin-
packing algorithms are required when dealing with workloads
from advanced computational architectures such as clustering
and consolidation (pluggable), or workloads that exhibit complex
data patterns in their signals, such as seasonality, trend and/or
shocks (exogenous or otherwise). These extentions are especially
needed when consolidating workloads together, for example, con-
solidation of multiple databases into one (pluggable databases)
to reduce database server sprawl on estates. In this paper we
address bin-packing for singular or clustered environments and
propose new algorithms that introduce a time element, giving a
richer understanding of the resources requested when workloads
are consolidated together, ensuring High Availability (HA) for
workloads obtained from advanced database configurations. An
experimental evaluation shows that the approach we propose
reduces the risk of provisioning wastage in pay-as-you-go cloud
architectures.

1 INTRODUCTION

When employing LT. to satisfy requirements, regardless of the
type, combination or configuration, one thing has always been
prevalent, which is the question of consumption, whether it is
prior to a migration, re-platform, upgrade or installation. Under-
standing what resources are required over a period of time is
key to the management of all I'T. systems. As hardware specifi-
cations increase, for example, in performance and capacity, the
actual physical infrastructure decreases but with the adoption
of virtualisation, the problem of server sprawl, arguably stays
the same. The trade off between system separation conflicts with
true consolidation that requires the workloads to be combined
together or share the same infrastructure. Knowing how best
to fit workloads together is a problem that has always been an
important problem to solve.
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Bin-packing is a well understood concept and used extensively
in many fields of business. In computing, bin-packing can be
used to place smaller workloads into larger infrastructure to
establish how resources should be assigned to a set number of
tasks. However, bin-packing requires additional constraints when
dealing with advanced system architectures such as clustering
and elasticising workloads once placed.

In this paper, we tackle placement of different workloads from
advanced databases configurations into complex cloud architec-
tures, and make the following contributions:

o We identify the challenges and opportunities presented by
advanced architectural features, when placing database
workloads into complex cloud infrastructrures.

We present a new bin-packing algorithm for provisioning
database workloads that takes into account fine-grained
monitoring information and advanced architectures such
as clustered Oracle databases that enable High Availability
(HA).

We evaluate the algorithms in experiments that involve
the placement of diverse workloads into real world-cloud
architectures.

2 PROBLEM DESCRIPTION

This section provides more detail on the problem to be solved,
which is multifaceted. When the placement problem is broken
down it becomes apparent that these facets are inter-related, that
is to say, all parts of the problem need to be addressed together,
rather than just individual elements. Before describing the prob-
lem, we provide some details on how workloads are executed
on complex advanced database architectures and the relevent
metrics.

Clustering. Clusters are groups of servers (also known as nodes)
that are managed together, participating to act as one system,
usually to provide high availability, as shown in Fig 1. These clus-
ters reduce downtime and outages by allowing another server
to take over should an outage occur or maintenance be required.
Database clustering is the running of a database across multiple
servers while accessing shared storage, for example, database
datafiles that are stored on a SAN (Storage Area Network), NAS
(Network Attached Storage) or a disk array. In Fig 1 we can see
that the user’s wish to access the HR, Sales or Call Centre ap-
plications from any web server. The Net Services layer of the
technology stack, handles client access and directs users connec-
tions to the node where the service is running, for example, Sales
is directed to run from node 2. A heartbeat between the nodes en-
sures cluster integrity, should one of the nodes no longer react or
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produce a heartbeat, the service fails over and user connections
are handled by the remaining nodes. This type of architecture
facilitates a 24*7 SLA and is common in enterprises today.

Application / Web Servers

HR HR HR
Sales Sales Sales
Call Ceantar Call Center Call Center

Oracle Net Services Client Access
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Figure 1: Oracle Database with Oracle RAC Architecture
(6]

Workloads. Workloads consist of collections of tasks submitted
by users. These tasks can be small units of work or individual
pieces of SQL such as Data Modification Language statements
(DML) that perform inserts, updates and deletes, that serve a
web application, for example by way of an Online Transaction
Processing system (OLTP). Other workloads consist of larger
units of work such as batch jobs that aggregate information in
the database periodically, for example, aggregation of sales data
from hourly into daily, weekly or monthly, which is a common
feature in data warehousing (OLAP). Another type of workload
is a Data Mart that can be described as somewhere in-between
OLTP and OLAP. Data marts consist of a combination of smaller
DML OLTP units of work with medium OLAP type aggregations.
Data Marts can be a subset of a large data warehouse that are
subject-orientated such as sales, HR or Call Centre that are an
aggregation of days and weeks rather than months or years.

Pluggable Databases (PDBs)

Figure 2: Oracle Database Multitenant Architecture [5]

These units of work vary in the amounts of resources con-
sumed, and when analysed in a time series format, the task often

dictates when the consumption of resources consumed to satisfy
the task takes place. When these tasks are analysed via a trace
we see those tasks exhibiting different patterns in their resource
consumption. For example, in Fig 3 we have four workloads for
CPU side by side. The first task, OLTP, shows a progressive trend
with subtle repeating patterns (Seasonality). The next two tasks
are OLAP showing a more definitive pattern of repeating tasks
with little trend.

When placing workloads, we must treat each workload sep-
arately by extracting the peak values of each metric from each
database instance on each node in each time interval, placing
them on the target node. This is simple enough as long as the
workloads are singular (independent of each other, and run on a
single node). When the workload is clustered it becomes more
complicated because, when placement commences, we must place
the workloads while ensuring that we do not compromise HA.
Therefore, for one clustered workload to be placed all workloads
in the cluster must be placed. If we place a clustered workload
without its sibling, we risk reducing a clustered workload to
a singular workload, the consequence being that we lose high
availability, thus compromising SLA’s. The same understanding
is required for pluggable databases [5], where a database may
be detached from a singular database instance and plugged into
another clustered database instance. This highlights that simple
bin-packing routines are not suitable.

Consolidation. Consolidation can be described as running sev-
eral workloads on a shared collection of nodes. There are several
drivers for consolidation, such as system simplification or reduc-
ing server sprawl, whether that is the number of servers, clusters,
databases or workloads. Server spawl can be described as a sit-
uation where servers are not being used to their full capacity,
leading to significant wastage in terms of space, power and cool-
ing, which can end up costing organizations substantial amounts
of money.

Consolidation of databases has become easier with the devel-
opment of pluggable databases where a database can be detached
from a singular or Clustered Container Database (CDB), and
plugged into another container DBMS that already has multi-
ple plugged in databases. Detaching and attaching pluggable
databases allows the pluggable database (and its associated data
files) to be relocated to another server and be managed by another
database instance (DBMS). This is shown in Fig 2, adding a fur-
ther layer of abstraction when working in conjunction with HA.
Each node in the cluster also houses a clustered container and
within each clustered container there are pluggable databases.
This architecture removes the support overhead of the database
instance serving one database when one database instance can
serve multiple plugged in databases while achieving HA. How-
ever, extracting the metric consumption on an instance with
multiple pluggable databases residing together is challenging as
the metric consumption is cumulative to the container. In this
pluggable architecture, one must first separate the resource con-
sumption for each pluggable, treating the pluggable database as
a singular database workload.

Problem Statement. The problem to be solved can be consid-
ered as follows. Assume we are given a collection of Workloads,
some of which are clustered, and a collection of computational
Nodes. Each workload has a time-varying demand for resources
defined using several metrics, and each server has a capacity de-
fined using the same metrics. The task is to assign the Workloads
to the Nodes, such that the demands placed by the workloads
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Figure 3: CPU Usage: Complex data structures.

are always within the capacity of the nodes, while respecting the
constraints imposed by the clustered workloads.

3 RELATED WORK

Resource allocation or workload(s) placement in cloud environ-
ments is a well understood problem and there have been extensive
studies and surveys undertaken as Hameed, Khoshkbarforoushha
et al [16] and Bhavani and Guruprasad [4] both allude to in their
survey’s from 2014. Furthermore Singh and Chana [22] produced
an extensive survey in 2016 that concluded that resource pro-
visioning is a challenging job and there is a need for more re-
search into optimal resource usage as this leads to improving
the resources consumed with the aim of reducing wastage. This
problem is ever more apparent in cloud computing with users
accessing any shape of resources (vectors) from anywhere with
the requirement of still being optimised. Vectors can be described
as multiple metrics making up a shape rather than one singular
metric. Most research has looked at consolidation from a Virtual
Machine (VM) perspective to satisfy Quality of Service (QoS),
and these are often single dimensions not vector dimensions.
For example, placing workloads based on priority or assigning
workloads to a VM via a migration to move problematic work-
loads should they exhaust a pool of resources as suggested by Yu,
Waui et al [24]. In this survey, they identify several key problems
of trying to figure out which applications can be consolidated
together. Bin-packing algorithms do not take into consideration
the divergent types of applications assigned to singular servers.

Other authors such as Sen, Ramachandra [21] and Zhang, Mar-
tin et al [25] view database workloads as controllable through the
internal features of the database system via resource managers.
However, they highlight the difficulties of the approach on cloud
platforms where the resources are shared in the infrastructure.
Halfpap and Schlosser [15] used an heuristic linear programming
model to solve a placement problem by dissecting a database and
where appropriate, replicating the data across multiple nodes. In
doing so, this placement technique shared the workload from
being cumulative on one node to being distributed between mul-
tiple nodes while keeping response times of the requests from
said database optimum.

Most computing placement problems seem to centre on the
provisioning of a VM (IaaS or PaaS) and not a workload SaaS
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or DBaaS. We identified in our previous work [18] that VM’s
mask the true signal of what the workload is actually consuming
and that forecasting future resource requirements with a view
to provisioning requires careful consideration of the nuances
within the signal. Masdari and Khoshnevis in their 2019 survey
[20] identified the techniques used to perform accurate forecasts
of the resources being consumed as a precursor to provision-
ing. However, they stopped short of proposing how to place the
workloads together once the forecasted future requirements are
obtained.

When it comes to vector placement, using the bin-packing
approach, several proposals have been put forward on prevalent
customer use cases. For example, Wang, Hayat et al [23] looked at
the scenario of a customer having multiple applications that make
up a system. They propose a collection of algorithms based on a
customers SLA as an important requirement to ensure business
continuity. As application code or SQL is executed, and response
times elongate this invariably lead to outages, provisioning the
applications optimally by keeping these application response
times as low as possible. Aydin, Muter et al [2], looked at another
use-case for a VM placement problem with an added dimension
of time. They looked for efficiencies in the power consumed by
VM’s fire-ups, with the aim of reducing energy consumption
of data centres by minimising the number of servers and their
fire-ups.

A current common theme with placement in a cloud setting is
server sprawl and provisioning VM’s. Doddavula, Kaushik and
Jain [12], suggested reducing server sprawl with the introduction
of a vector packing algorithm. In their novel approach, they
classify vectors based on resource consumption, and then through
Matrix multiplication determine the possible combinations. By
then applying rules, either the workload is full or a magnitude
of full determine where the workload should reside with other
workloads until the maximum of the target server threshold is
reached. However, in a clustered environment this approach will
face challenges as it’s possible that several workloads running on
the same cluster are full or a combination of classifications that
could break their algorithm. Clustered workloads that required
enforced SLA’s where workloads of differing priority may run
from x node in the cluster as explained in Section 2.
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4 BIN-PACKING

The basic bin-packing problem is the process of taking items
of differing volumes and packing them into a finite number of
bins in a way that minimises the number of bins used. The bin-
packing problem is NP-complete as described by both Garey [13]
and Korte et al [19], and thus approximate, heuristic, algorithms
are often used in practice. There are many approaches to bin-
packing, such as First-Fit Decreasing (FFD), Next-Fit (NF) and
Best-Fit (BF) as discussed by Carter and Bays [3]. We look at First
Fit Decreasing, and therefore, we treat all workloads being pro-
visioned as having equal priority. Elastic Resource Provisioning
(ERP) is assigning all workloads into one bin and elasticising the
bin to fit around the workloads being placed, as described by Yu,
Qiu et al. [24]. Our approach is to enhance FFD to tackle com-
plex architectures such as clustered workloads and empirically
evaluate them experimentally.

4.1 First Fit Decreasing Placement (FFD)

The notation used to describe bin-packing in this paper is listed in
Table 1 and illustrated in Figures 4 and 5. The available resource
is represented as a set of Nodes, each of which has a Capacity
defined using a set of Metrics, that can include CPU, memory
usage, logical IOs per second, etc. The bin-packing task is to
assign a set of Workloads to the nodes. The Demand associated
with each workload is defined in terms of the same metrics that
are used to describe the nodes, but the Demand varies over a
set of Times. The time-varying demand may be based on mea-
sured or predicted loads; our earlier work has explored the use
of time series analysis techniques to model database workloads
for capacity planning [18].

Sorting Workloads. First fit decreasing sorts workloads such
that they can be assigned largest-first, and hence we need a
notion of size; here we define order in terms of the demand
across different metrics, normalising according to the total usage
for each metric.

Overall demand for each metric (CPU, IOPS, MEMORY, STOR-
AGE) is obtained from the demand of each workload:
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Notation

Interpretation

Nodes = {n1,....,ny}
Workloads = {w1, ..., Wy}
Metrics = {myq, ..., mm}
Times = {t1, ..., t+}
Assignment(n;) —» W

Capacity(ni, mj)
Demand(wi, mj, ty.)

isClustered(w;)
Siblings(w;)

Computational Nodes.

Workloads.

Metrics (CPU, IOPS, etc).

Time intervals.

The set of workloads W C Workloads
assigned to n;.

The maximum capability of node n;
in relation to metric m;.

The peak demand that workload w;
has for resource of type m; during
time interval ty.

True if w; is in a clustered workload.
The set of workloads s € Workloadss
in the cluster of which w; is a member.

Table 1: Notation for workload assignment.

overall_demand(m) = Z

n;€Nodes wijeWorkloads
Z Demand(wj,m,t;) (1)
tr€Times

Then the normalised demand of a workload w is the nor-
malised sum of its demand over all metrics:

DI

mjEMetrics tj€Times

normalised_demand(w) = (

@)

Then the workloads can simply be sorted by their normalised
demand. In practice, when assigning clustered workloads, clus-
ters are considered in the order of the demand of their most
demanding workloads, and then the workloads within a cluster
are also sorted locally.

(Demand(w, mj, i) [overall_demand(my))

Node Capacity. The capacity of a node i for a metric m at time
t is the original capacity of the node minus the resource usage of
the workloads assigned to the node:

node_capacity(n, m,t) = Capacity(n, m)—

®)

( Z Demand(w;, m, t)

w; €Assignment (n)

Fitting. A workload w can be added into a node n if there is
capacity for all the metrics at all times.

fits(w,n) =Vm € Metrics Vt € Times
4)

A clustered workload, isClustered from Table 1, sonsists of
database instances (workloads) that are siblings of each other as
shown in Fig 1. The node is the number of nodes on which W; is
to be run, and w € ClusteredWorkload is the set of workloads
that need to be assigned to the target nodes discretely. A rule is
enforced where all Siblings must be packed into discrete target
nodes before the cluster is said to be packed. If at any point one
of the Siblings fails to pack into a discrete target node then all

Demand(w, m, t) < node_capacity(n, m,t)



siblings are rolled back and the resources are released back to
node_capacity.

5 APPROACH

Using techniques based on First Fit Decreasing (FFD) and the
definitions from Section 4, our aim is to place database workloads
into a target Oracle Cloud Infrastructure (OCI) [7] that supports
clustered workflows. The aim is to achieving savings in costs,
both financial (pay-as-you-go) and to release resources back to
the cloud pool for utilisation elsewhere.

5.1 Workload Placement Algorithm

A high level description is shown in Algorithm 1. One of the
major challenges of workload placement in computing estates
that have adopted clustered configurations, is accounting for
clustered workflows, that must be placed in their entirety or not
at all. Identifying the workload is clustered and on how many
nodes is key to placing the workload in the target cloud OCI
configuration.

Algorithm 1: FitWorkloads

Input: Workloads (from Table 1)

Nodes (from Table 1)

Result: Assignment(n) (from Table 1)

NotAssigned

Assignment(n) = @ for all n € Nodes

NotAssigned = 0

foreach w € Workloads ordered by normalised_demand

[

[N}

©w

(Equation 2) do
4 assigned = false
5 foreach n € Nodes do
6 if isClustered(w;) then
7 if w; not already added to Assignment with

cluster or included in NotAssigned then
8 assigned =
FitClusteredWorkload(Siblings(w;),
Nodes, Assignment, NotAssigned)
9 if assigned then

L break

Ise if fits(w,n) then
Add w to Assignment(n)
assigned = true

10

11

(o)

12

13

14 reduce node Capacity (Equation 3) by
Assignment

break

15

16 if (not assigned) then

L Add w to NotAssigned

17

18 Report on Workloads Assigned, NotAssigned and Nodes
Capacity

Firstly we extract key information as inputs, ordering work-
loads by demand. Key configuration data is stored in a central
repository [8] that stores whether a workload is clustered or not.
If a workload is part of a cluster then we set a flag for that partic-
ular workload (represented by isClustered in Table 1), and the
full set of workloads with which it is clustered can be obtained
using Siblings in Table 1.

When placing workloads, if the workload w is from a single
database instance then we simply check if the workload fits
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(Equation 4) into an available node, and if so, add it to Assignment
for that node. We report back to the user all workloads that have
been fitted (by way of Assignment), and any that have not (by
way of NotAssigned).

If, however, the workload is clustered we extract the related
Sibling workloads in the cluster from a central repository; as we
use the Oracle Enterprise Manager system [8] and the OEM in-
telligent agent to capture all performance and configuration data
relating to the database instances. OEM utilises a database schema
to hold information relating to the workloads, and databases in-
stances, and we handle this via a Global Unique Identifier (GUID).

5.2 Fitting Clustered Workloads

The fitting of clustered workloads, aims to enforce high avail-
ability by placing all workloads in a cluster before it can report
back that the workloads are fitted. For example, if the clustered
workload has three nodes with a database instance running on
each node as described in Fig 1, then it must place the workloads
on three discrete target nodes or it will roll back what has already
been placed. We show this in Algorithm 2.

Firstly we understand how many nodes make up the cluster
(1,2,.,N) nodes, which gives an indication of how many target
nodes are required. We cannot fit a clustered workload from
three nodes into two target nodes, therefore, we perform a test
to ensure that the requisite number of target nodes are available.
If there are not enough target nodes then we stop otherwise we
loop through all of the workloads ensuring that the siblings of
the cluster are assigned to discrete target nodes. Each time an
assignment takes place the amount of resource of the target node
is reduced by the vector of the workload. Finally, we report on
what workloads are assigned to each target node.

5.3 Evaluating the Placement

Once the workloads from all database instances have been as-
signed and placed in their target nodes. We overlay each workload
by the time frequency (Hourly), allowing an understanding of the
existing data signals (peaks and troughs) when the workloads are
consolidated together. A simple groupby () per hour and per
metric shows the newly consolidated data signal. In traditional
bin-packing exercises, the max_value of a metric is taken and
then bin-packing is based on that value, however, if a peak is
singular, for example, without pattern then the prospect of over
provisioning becomes apparent. When the new trace is displayed
over an XY (Stacked), which we show in Section 7.2 and Fig 7. We
can clearly see the consolidated workloads exhibit their complex
traits such as seasonality, trend and shocks against the threshold
limit of the bin. This simple approach allows us to understand
and where possible, perform or feed into further elastication ex-
ercises that can be performed on the bin to fit the consolidated
workloads more tightly.

6 EXPERIMENTAL SETUP AND
WORKLOADS

Firstly we execute a selection of workloads (OLTP, OLAP and
Data Mart) on different Oracle database configurations of vary-
ing versions (10g, 11g and 12C) on a Oracle Enterprise Linux
Operating System or Oracle Exadata (clustered workload) [9].
Executing the workloads for 30 days allows key database fea-
tures such as optimisers and caching to be warmed up or routine
backups to take place, which all consume resources and influence



Table 2: Table of Experiments

Experiment Workloads

Target Bins

Basic Single Database Instance

Basic Clustered Workloads

Basic different sized target bins
Moderate Combined (Clustered and Sin-
gle Instance)

Moderate scaling

5 DM)

and 10 DM
Moderate different sized target bins
5 DM
Complex (Scaling & different sized bins)
and 10 DM

10 Workloads (10 OLTP, 10 OLAP and 10 DM)

10 Workloads (10 RAC OLTP (5*2 Exadata nodes))

10 Workloads (10 OLTP, 10 OLAP and 10 DM)

20 Workloads (4 * 2 node clustered + 5 OLTP, 6 OLAP and
50 Workloads (10 * 2 node clustered + 10 OLTP, 10 OLAP
20 Workloads (4 * 2 node clustered + 5 OLTP, 6 OLAP and

50 Workloads (10 * 2 node clustered + 10 OLTP, 10 OLAP

4 * OCI Bare Metal equal size

4 * OCI Bare Metal equal size

4 * OCI Bare Metal unequal size
4 * OCI Bare Metal unequal size
4 * OCI Bare Metal equal size

6 * unequal OCI Bare Metal

16 * unequal OCI Bare Metal

Algorithm 2: FitClusteredWorkload

Input: ClusteredWorkload, including sibling data (from
Algorithm 1)

Nodes (from Table 1)

Assignment(n) (from Table 1)

NotAssigned (from Algorithm 1)

Result: assigned

foreach w € ClusteredWorkload ordered by

normalised_demand (Equation 2) do

assigned = false

[

)

3 if target_nodes are <= source_nodes then

4 foreach n € Nodes do

5 if fits(w,n) then

6 Add w to Assignment(n)

7 assigned = true

8 reduce node Capacity (Equation 3) by

Assignment

9 break
10 if (not assigned) then

Remove all members of ClusteredWorkload
from Assigned

Add all members of ClusteredWorkload to
NotAssigned

increase node Capacity (Equation 3) by
Assignment

break

not enough nodes to fit

11

12

13

14

15

16 Report on Workloads Assigned and NotAssigned
17 return assigned

the bin-packing routines by way of providing a different met-
ric values between a cold and warm database. We also monitor
the workloads to ensure the workloads are running smoothly
without error. The workloads are executing Data Manipulation
Language (DML) statements such as inserts, updates and deletes
while performing large data aggregations, for example Business
Intelligence (BI) reports through a Java environment consisting
of a web container, giving us an N-Tier architecture using the Or-
acle load generator Swingbench [14]. This environmental setup
is reflective of Database Management systems in use today.
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We utilise the Oracle Enterprise Manager [8] system to exe-
cute and capture all performance and configuration data via an
Intelligent Agent, which captures metrics such as CPU, IOPS,
Memory and Storage used. The agent executes commands to
retrieve the max_values of key metrics such as sar, iostat, and
memory on the host and metrics specifically from the database
are also obtained such as storage used, memory used, CPU %
used and logical read/writes. The agent captures these metrics
at 15 minute intervals and stores the values in a central repos-
itory. Aggregations on the data captured every 15 minutes are
then performed providing a max_value for each metric for each
database instance and host hourly, daily, weekly or monthly.

Storing the values in a central repository this way, enables
the ability to align the metrics uniformly over consistent ob-
servations such as hourly in an overlay manner, allowing an
easy comparison of all database instances. Using python open
source libraries such as numpy and pandas we then executed
the algorithms and empirically evaluated the placement of the
workloads into target bins. We could use average_values from
the metrics captured but we choose max_values for the simple
reason of provisioning on an average will usually be lower than
a max_value and if a VM hits 100% utilised it will panic and may
cause an outage. Therefore, we always place on a max_value
from a metric.

Each workload generates complex data traces as shown in
Fig 3, highlighting repeating patterns (seasonality), trend and
shocks. Shocks are reflective of large IO operations, for exam-
ple online database backups, and this can be seen in the metric
IOPS. In Fig 3 we have displayed four workloads side-by-side
for CPU usage that highlights these complex patterns, which are
indicative of systems employed by most enterprises today. As
workloads become larger in size, arguably the result is slower
execution times and this is shown by the workloads exhibiting
trend. Each experiment increases in complexity and scale as the
number of workloads increase, which is described in Table 2.
Each experiment and its results are discussed in detail in Section
7 where we produce charts that highlight the workloads consoli-
dated together after being placed on a particular node. The target
configuration is Oracle Cloud Infrastructure (OCI) [7] using the
Bare Metal Configuration as shown in Table 3.

In the experiments we are only testing the database placement
algorithms, as they are orthogonal to modelling. The placement
algorithms do not know if the traces being inserted as inputs to
the algorithms are actual or modelled, however, it is perfectly
plausible that the inputs have first been predicted to obtain an



estimate of future resource consumption to model what a place-
ment design may look like, which is a common planning exercise
in any estate migration. Once the workloads are placed we also
evaluate the consolidated workloads assigned to the target nodes
to identify if there is any wastage that can be further eliminated
by, for example, an elastication exercise.

Table 3: OCI Target Bin Configuration
(BM.Standard.E3.128) [7]
Shape Metric Comments
128 OCPU Equivalent to
Compute Shape 2048 GB’s Memory 980 SPECInts [10]
Block Storage per bin
Equivalent to
Block Storage 32 * 4TB Volumes 1,120,000 IOPS per bin
Shape 35,000 IOPS per vol 128000GB Physical
Storage
Network Shape 2" 50Gbps throughput 65 per physical NIC

Max 128 VNICS

7 EXPERIMENTS AND ANALYSIS

We conducted several experiments that start off simple and then
grow in complexity providing a detailed evaluation of the algo-
rithms that reflect use cases of estates employed by customers
today. For the purposes of saving space in the paper we have
only included some of the most prominent charts and results that
are interesting. Furthermore we do not describe all experiments
listed in Table 2 to save space in the paper. The experiments we
do show highlight the algorithms working to their full potential.
We aim to answer the following questions:

(1) Minimum targets needed - What is the minimum number
of target bins needed to fit all workloads across all vectors
(metrics)?

(2) First Fit Decreasing Simple Placement - How do we place
the workloads equally across equal sized bins?

(3) First Fit Decreasing Clustered Placement - If there are
clustered workloads can we ensure that all clustered work-
loads are placed without compromising High Availability?

(4) Evaluating the placement - Once the workloads are placed
(consolidated) together can we identify wastage with the
aim to resize the target nodes, obtaining a tighter fit, re-
ducing over provisioning?

We have included sample outputs from each experiment and
the reader will note that these are not uniform in their outputs
and this is because we wish to only highlight prominent outputs
that answer questions the experiments pose. If we are to supply
full sample outputs for each experiment we would quickly ex-
haust space in the paper. Also, we have used sample outputs as
opposed to full UI screenshots, also saving space and showing
the algorithms working. In our opinion, UI design although an
important feature of any application is not as important, to this
paper, as the algorithms working.

In all of our experiments we executed our algorithms multi-
ple times with both adequate and inadequate target nodes and
resources to ensure that the algorithms would place and reject
workloads appropriately. In the experiments we report in this
paper we took the average number of workloads we expect cus-
tomers to provision per Oracle Cloud Architecture, i.e., customers
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Can we fit all instances into minimum sized
bin for Vector CPU?

List of workloads

['DM_12C_1"': 424.026, 'DM_12C_2': 424.026,
'DM_12C_3"': 424.026, 'DM_12C_4': 424.026,
'DM_12C_5": 424.026,'DM_12C_6"': 424.026,
'DM_12C_7"': 424.026,'DM_12C_8"': 424.026,
'DM_12C_9"': 424.026, 'DM_12C_10': 424.026]

Target Bins @

['DM_12C_1"': 424.026, 'DM_12C_2': 424.026,
'DM_12C_3": 424.026, 'DM_12C_4': 424.026,
'DM_12C_5": 424.026,'DM_12C_6": 424.026]

Target Bins 1
['DM_12C_7":
'DM_12C_9":

424.026,
424.026,

'DM_12C_8"': 424.026,
'DM_12C_10"': 424.026]

Figure 6: Sample output: Minimum Number of
Nodes CPU

mostly provision a 1-to-1 relationship of an instance per VM.
However, consolidation of workloads is rising as the technology
allows; for example combining database workloads together is
more achievable with the introduction of Pluggable databases
[5] where one database can be detached from one instance and
’plugged’ into another instance. An instance includes the memory
structures and optimiser that serves the database. The instance is
then shared across multiple VM’s that make up a physical cluster
thus bin-packing multiple instances together is becoming more
apparent.

7.1 Experiment (Basic) - Placement of Single
Database Workloads (OLTP, OLAP & DM
Workloads)

Overview. The first experiment involves placing 10 OLTP, 10
Data Mart and 10 Data Mart workloads from a source configu-
ration of Oracle single database instances as described in Table
2, into four equally sized target OCI bins of a configuration de-
scribed in Table 3. For the purpose of savings space in the paper
have not shown these charts here. We show the sample outputs
from the command line which we discuss in detail in results.

Results. In the sample outputs shown in Fig 6, we represent
one metric (CPU) in the vector, although in our outputs, we cover
all metrics in the vector. Each of the max_values taken from the
hourly time period are listed as one list and then placed into
the minimum number of bins. Each bin is represented within
square brackets °[]’. In Fig 6, each workload is labelled by us-
ing a precursor to the value. For example workload DM_12C_1
identifies, DM representing the type of workload thus Data Mart,
12C representing the version of Oracle database the workload
was executed with, and 1..10 being that actual workload. The
values after the *:” in Fig 6 is the max_value. As we show in Fig
6, we have successfully answered question 1, treating all work-
loads heuristically, what is the minimum number of target nodes
required to fit my workloads?
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Figure 7: RESULTS: Consolidated placed workloads & Potential Wastage

How many of the instances (Database Workloads)
can we get in 4 equal sized bins?

bin packed it looks like this
Target Bins @

workloads from the cluster will be placed as described in algo-
rithm 2. The target bins are of type equal sized Oracle Cloud
Infrastructure [7] and covered in Table 3.

Results. In the sample output shown in Fig 9, which we have
cropped for ease of reading and space within the paper, we show

{'DM_12C_9': 424.026, 'DM_12C_5': 424.026,

'DM_12C_10': 424.026} the algorithm’s command line output. This output is available
Target Bins 1 in all experiments but we focus particularly on clustered work-
{'DM_12C_8': 424.026, 'DM_12C_4': 424.026, loads to highlight our placement algorithms working clearly. The

'DM_12C_1': 424.026} target bin configurations are displayed along with the databases
Target Bins 2 instances and their max_values for a given time period. The first
{'DM_12C_7': 424.026, 'DM_12C_3': 424.026} block in Fig 9 titled ’Cloud Configurations’, lists the target OCI
Target Bins 3 bin vectors and their available space named OCIO,..,O0CI6. The
{'DM_12C_6": 424.026, 'DM_12C_2': 424.026} next block in Fig 9 titled ’ Database instance / resource usage:’,

Figure 8: Sample output: Workloads placed equally
across targets (CPU)

In Fig 8 we answer question 2, which is can we place the
workloads equally across the target nodes? In the sample output
shown in Fig 8 the target nodes are represented by brackets
’{})°. Question 3 is not answered in this experiment as there are
no clustered workloads however, we will answer this question
in other experiments. Question 4 we ask in each experiment;
evaluating the target nodes after placement can we resize the
bins to obtain further savings? We have not shown these charts
for this experiment due to the space available. We discuss this
question in detail in Section 7.2 from charts a & b in Fig 7.

7.2 Experiment (Basic) - Placement of 10
Clustered workloads (RAC)

Overview. In this experiment, from Table 2, we focus on clus-
tered workloads of a type OLTP, which are executed on an Oracle
two node Exadata Machine [9]. There are 10 workloads, which
equates to five two node clusters executed on an Oracle 11G ver-
sion database. The workloads exhibit complex data structures as
shown in Fig 3 such as seasonality, trend and exogenous shocks.
In this experiment we are answering Question 3 of the first fit
decreasing placement algorithm with the aim of enforcing High
Availability. All workloads in a cluster must be placed or no
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lists the source RAC database instances and their vectors, which
we have also cropped for space within the paper by only showing
four clustered databases instances (8 workloads).

We inform the user of the instances we are intending to place
and as the algorithm is executed, providing a real-time decision
of each instance being placed however, we have not shown this
output here. Once executed we provide a summary of workloads
placed, refused or rolled back, for example, if an workload from
a clustered database instance has been placed but a sibling was
not placed. It will require a rollback and the counter ’rollback
count’ increments as shown in the block titled ‘Summary’ in Fig
9. We observed in our tests that once an instance is rolled back,
the resources are released and made available again, allowing a
smaller vector size to be placed. We also provide a list of work-
loads that failed to fit due to lack of resources, reporting a list
of failed instances to the user. In the block titled ’Cloud Target :
DB Instance mappings:’, we provide a mapping of the clustered
workloads that were placed and their siblings, including which
target node they are placed, note that no two instances from the
same cluster are ever placed in the same target node; they are
always placed discretely.

Evaluating the target nodes after placement, can we resize the
bins to obtain further savings (Question 4)? Charts a & b in Fig 7
show several interesting points. Chart 7a shows an external shock
that caused a spike and the FFD algorithm takes this max_value
when placing workloads. When the workloads are consolidated
together we can see trend as the line gradually rises. The avail-
able, target, resources are shown by the blue line and the large
spike fits below the line. However, Chart 7b displays the poten-
tial CPU resources that will not be utilised (orange). Therefore,



Cloud configurations:

0CIo OCI1 0CI11
metric_column
cpu_usage_specint 2728 2728 ... 2364 ...
phys_iops 1120000 1120000 ... 560000 ...
total_memory 2048000 2048000 ... 1024000 ...

Database instances / resource usage:

0CI16

681.25
280000
512000

RAC_T_OLTP_1 RAC_1_OLTP_2 RAC_2_OLTP_1 RAC_2_OLTP_2 RAC_3_OLTP_1 RAC_3_OLTP_2 RAC_4_OLTP_1 RAC_4_OLTP_2

metric_column

cpu_usage_specint 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00 1,363.00
phys_iops 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00 16,341.00
total_memory 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00 13,822.00
USED_GB 53.47 53.47 53.47 53.47 53.47 53.47 53.47 53.47
SUMMARY Cloud Target : DB Instance mappings:

Instance success: 8. OCIQ : RAC_1_OLTP_1, RAC_2_OLTP_2
Instance fails: 12. OCI1 : RAC_2_OLTP_1, RAC_3_OLTP_2
Rollback count: 0. OCI2 : RAC_3_OLTP_1, RAC_4_OLTP_2
Min OCI targets reqd: 10 OCI3 : RAC_4_OLTP_1, RAC_1_OLTP_2
Original vectors by bin-packed allocation:

0CIo RAC_1_OLTP_1 RAC_2_OLTP_2
metric_column
cpu_usage_specint 2728 1,363.31 1,363.31
phys_iops 1120000 16,340.62 16,340.62
total_memory 2048000 13,822.21 13,822.21

Figure 9: Sample output: 10 RAC Workloads First Fit Decreasing High Availability Enforced

elasticising the target cloud node, and reassigning the resources
would reduce wastage. In this experiment we have successfully
placed clustered workloads proving our placement algorithms
(Algorithm 2) and evaluated the consolidated workloads in their
target nodes, successfully identifying potential wastage that may
occur.

7.3 Experiment (Complex) - Placement of
combined workloads (Clustered & Single
Instance), varying sized bins at scale

Overview. This experiment is the most complex of all of the
experiments we conducted. In this experiment we are answering
the question of scale by placing a large number of workloads of
varying size into different sized target nodes. The target nodes
reduced in their available resources, which arguably, reflects
the use case most customers face today when undertaking a
migration exercise that involves procuring and placing workloads
from on-premises advanced configurations such as clustering
into cloud configurations. We tackle this experiment by running
a combination of algorithms which are the following;: -

e What is the minimum number of target nodes I require
based on the size of my vectors?

e What is the maximum number of workloads I can fit into
the available target nodes while keeping the integrity of
the clustered workloads?

e Can we work at scale, which is a plethora of eclectic work-
loads into varying sizes of targets?
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Firstly we obtained an estimate on the minimum number of
target nodes based on the max_values obtained for each metric
within the vector from each workload. Taking the configura-
tions based in Table 3, the number of nodes needed to place 50
workloads was: -

e CPU - On this metric the advice was 16 target bins
e IOPS - On this metric the advice is 10 target bins

e Storage - On this metric the advice is 1 target bin
e Memory - on this metric the advice is 1 target bin

From analysis of the workloads we identified that some of
our workloads are CPU and IOPS heavy, therefore, allowing
the algorithms to utilise 16 available target nodes was key to
meeting the demands of the experiment bearing in mind it is a
question of scale. Utilising 16 target nodes of OCI configurations
of varying sizes, these being 10 target bins 100%, 3 being 50%
and 3 25% available resource from Table 3. In Fig 9 under Section
"Cloud Configurations", which we have cropped to aid viewing
we show OCI11 (50%) and OCI16 (25%). Placing our workloads
heuristically on a first fit decreasing method, all workloads are
treated equally, but focusing on enforcing High Availability as
there is a combination of both single and clustered workloads.

Results. The results of this experiment were very much the
same as the previous experiments in that the algorithms (Algo-
rithms 1 and 2) worked as expected. All the algorithms fitted their
workloads in a First Fit Decreasing manner. All the Algorithms
evaluated the nodes once placement of the workloads took place
to identify further efficiencies. However, what we wish to focus



Rejected instances (failed to fit):
metric_column cpu_usage_specint phys_iops total_mem

RAC_1_OLTP_1 1,363.31 47,982.17 13,882.21
RAC_7_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_9_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_9_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_8_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_1_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_8_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_10_OLTP_1 1,241.99 47,982.17 12,723.78
RAC_7_OLTP_2 1,241.99 47,982.17 12,723.78
RAC_10_OLTP_2 1,241.99 47,982.17 12,723.78

Figure 10: Sample output: Experiment 4 RAC workloads
failed to fit

on in this experiment was the instances that failed to fit as shown
in Fig 10.

From the sample output shown in Fig 10 it would suggest
there is a random nature to the instances not being fitted and
this is explained because of the following. When we first list the
instances, their workloads, vectors and the amount of resource
consumed we order them in descending order with the largest
single instance being first then the largest RAC instances. By
optimally sorting on size we avoid the algorithm rolling back
already placed instances as the available target nodes exhaust
their resources with siblings not been placed. We must treat the
siblings of the clusters equally then sort order based on the size
of the total cluster.

8 CONCLUSIONS AND FUTURE WORK

Summary. In this paper we evaluated the technique of Vector
Bin-Packing utilising the First-Fit Decreasing algorithm against
databases that employ advanced technologies such as cluster-
ing and pluggable databases with a view to fitting a variety of
workloads into complex target cloud configurations such as Ora-
cle Cloud Infrastructure with a Bare Metal configuration. When
placing workloads into Cloud configurations because most cloud
providers provision on multiple dimensions such as IOPS, Stor-
age, CPU and Memory, a vector approach is required. If the Cloud
Consumer is also a Cloud Provider then the vectors are likely
to increase in number, covering other areas of cloud technol-
ogy, for example Network throughput, Bandwidth or Virtual
Network Interface Cards (VNIC) configuration to name but a
few. The approach adopted provides the ability to place work-
loads on scaleable vectors, by increasing the number of metrics
[m1,..,mm].

We wanted to understand once the workloads were placed
could we make further efficiencies? Given placement algorithms
only take the max_value of a metric that is associated with its
workload over time, once a workload migrates architectures,
the signal changes, especially when analysed in a time series
format as described from our earlier work [18]. Therefore, over-
provisioning is possible without understanding if there are re-
peating patterns or trends within the signal. The charts in Fig’s
7a and 7b, indicated by the colour orange shows that what, was
initially, provisioned may not be used. Our approach identified
this wastage.

e What is the maximum number of target nodes needed to
consolidate my workloads?

496

e What size do I need those target nodes to be?

o How should those workloads be placed in the target nodes?

o Is the target node adequately sized once placement of the
workloads takes place?

o Will placement of the workloads compromise my SLA’s?

Given the popularity of advanced database features such as
high availability and consolidation we had to extend the existing
FFD bin-packing algorithms rather than simply mapping a data-
base instance as a I-to-1 mapping to a VM. By consolidating the
workloads together, gave us additional complexities to take into
consideration. For example, pluggable databases are still attached
to a global database memory structure consuming resources. By
treating a pluggable database as a single instance workload we
were able to reduce complexity within the algorithms, allowing
us to place pluggable databases. Our algorithms needed to be
multi-faceted in that they can place simple, complex and very
complex vectors attributed to any database workload regardless
of the source database configurations. By treating pluggable and
standby databases as a single instance workload allowed us to
perform workload placement without introducing further no-
tation in our formulas. A standby database will usually be in
recovery mode applying all archivelogs from all nodes in the
primary cluster therefore, a standby is a single instance which
is more IO resource intensive than memory or CPU as we have
shown in our earlier work [17].

Central Repository. Using an intelligent agent capable of Mon-
itor Analyse Plan and Execute (MAPE) (Arcaini et al [1]) to iden-
tify, capture, store metric and configuration data centrally, al-
lowed us to align the time series data of the workloads uniformly.
An intelligent agent executes a command for example sar or IO-
STAT at a particular time with the command results being stored
in a central repository within a database schema. Aggregations
are performed on the metric data to an hourly value and while
this has the negative affect of smoothing the signal (averaging
the time points) it allowed us to compare the workloads at any
given time period easily, as shown in Fig 5, reducing the amount
of data wrangling in the application layer by python libraries
such as Pandas, Numpy etc.

Benchmarks. Comparing Servers with different performance
speeds such as IOPS or CPU is a challenge and there we utilised
benchmarks. SPECInt 2017 [10] was used to compare the work-
load consuming CPU on one architecture compared with another
chip architecture. Storage benchmarks were also provided based
on Transaction Processing Performance Council [11] benchmarks.
However, RDBM systems utilise complex memory algorithms
that often bypass fetch operations of the database therefore, logi-
cal reads were taken as the metric. However, given our approach
and algorithms allows placement on a vector that is scaleable,
other Metrics such as physical IOPS could be used if one chooses
to do so.

Automation. With the manual approach of performing a work-
load placement exercise, technicians tend to adopt a spreadsheet
approach when placing workloads into clouds. This approach can
be cumbersome, for example, manually researching, converting
the CPU (SPECint), IO speeds and Memory between the source
and target architectures, so creating the spreadsheet is time con-
suming. Often these spreadsheets build in complexity and are
bespoke to individual customers resulting in inflexibility, result-
ing in ‘expert friendly’ analysis that only the author understands.
We wanted to automate this process with the aim of reducing the



level of effort technicians spend manually building spreadsheets,
reducing errors from miscalculations that may occur in bespoke
spreadsheets and reduce the time to complete a placement plan
from weeks/months to hours/days.

When we execute our algorithms we are effectively retrieving
the configuration and performance data from a central repository.
For example, extracting the CPU make, model and its SPECInt
value that is obtained by the intelligent agent, therefore perform-
ing a comparison rather than manually researching this data. The
Algorithm can then quickly place and store the placement design
of the workloads as a ’plan’ in a normalised database schema,
rather than having complex sets of bespoke spreadsheets. This
approach worked well, allowing us to execute the placement
algorithms in minutes rather than days or weeks.

Conclusion. In conclusion, we believe that there is a need for ac-
curate workload placement especially when provisioning services
such as IaaS, PaaS, DBaa$ or SaaS, whether that is on-premise,
remote or hybrid clouds. However, knowing which algorithm or
collection of placement algorithms to use is key as one simply
can not utilise a standard approach or an off-the-shelf technique
when advanced workload configurations such as clustering are
employed as our experiments show. We focused on the First-Fit
Decreasing bin-packing method on advanced databases archi-
tectures such as Clustering and Pluggables and found that we
needed to extend the FFD algorithm to accommodate sibling
workloads within the cluster, especially when the cluster is con-
suming resources unevenly.

Future Work. During our experiments we found curious be-
haviour causing us to extend our new FFD Algorithm further, and
this was attributed to ordering the workloads prior to placement,
something we did not expect. The result was to insert steps 1
and 3 of algorithms 1 and 2 to include ordering in descending
order with the largest workload being the first to be placed while
also ordering the largest available resource target nodes being
first. However, we did not account for the siblings when ordering
clustered workloads. Therefore, we had to order the workloads
and their siblings together. The reasoning for this is to account
for the siblings in a cluster that consume resources unevenly.
When clustered instance workloads are listed individually one
workload within a cluster can be located considerably down the
pecking order compared with its sibling if a simple ordering ex-
ercise takes place. Eventually the target nodes are exhausted of
their resources and placement ceases. If the target node runs out
of available resources before the sibling is placed then a rolling
back exercised is performed.

Therefore, it is critical to order on the cluster and its siblings
in descending order. This is more of a work around really rather
than a solution. We are working on a solution to this problem but
the likely answer will be to take the cumulative approach of the
total amount of resources consumed per cluster and order based
on number of nodes then resources consumed. We also intend to
enable a user defined priority assignment function. Assigning a
user defined priority to a workload allows for separation between
live systems as some systems may be more critical than others.
In our earlier work we leveraged Machine Learning (Supervised)
coupled with Time Series Analysis [18] to predict future resource
consumption of a workload and we see a combination of those
techniques and placement to create a more informed choice when
one is making decisions on what systems can be placed based on
their future resource consumption.
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