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ABSTRACT
In-memory database management systems (DBMSs) are impor-
tant elements of data pipelines, wherein they store data produced
over a sliding (or periodic) time window by real-time data sources
for analytics and monitoring purposes. These pipelines produce
vastly different amounts of data across time windows, dictating
that some memory over-provisioning is required for the DBMS. A
major source of DBMS memory overhead—which stresses mem-
ory provisioning demands—is storage of indexed keys by the
DBMS index data structures. However, such internal-key storage
is crucial for fast scans, which are important in these workloads.

This paper proposes an elastic index design framework,
which transforms an index with internal-key storage into an
elastic index that adjusts its memory overhead to the data size.
Under typical conditions, the elastic index offers the same per-
formance as the original index. When large amounts of data are
ingested, the elastic index temporarily shrinks so that the DBMS
does not exceed its memory budget. Shrinking is performed by
dynamically converting index nodes to a compact representation
with indirect key storage.

We demonstrate our design with an elastic B+-tree, whose
compact nodes use a novel blind trie representation. We show
that the elastic B+-tree can store 2×–5× the number of keys (de-
pending on key size) than a B+-tree with only moderate (< 25%)
degradation of index throughput. We also integrate the elastic
B+-tree into the MCAS in-memory storage system. Compared to
MCAS’ default B+-tree index, the elastic B+-tree can consume 3×
less space with 1.8%–2.6% throughput degradation on a workload
modeling analysis and monitoring of cloud log data.

1 INTRODUCTION
In-memory database management systems (DBMSs) [8, 9, 11, 26]
store the entire database in main memory and thereby avoid the
overhead and complexities of working with slow, block-based
storage media. An emerging use case for in-memory DBMSs
is as elements of a data pipeline [5, 27]. Here, the in-memory
DBMS stores data produced over a sliding (or periodic) time win-
dow by real-time data sources (e.g., transactions, sensors, logs,
etc.) During this window, the DBMS is used for hybrid transac-
tional/analytic processing (HTAP) to drive analytics and decision-
ing tasks, such as personalization, fraud detection, monitoring
and detection, etc. [5, 24, 28]. As data ages, becoming less rele-
vant for these tasks, it is moved from the in-memory DBMS into
longer-term slower storage.
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Figure 1: Data pipeline size variability: Size of daily data extracted
from a cloud provider’s object storage system logs, over a period
of 8 months, normalized to the average size over that period. (Ab-
solute numbers omitted for confidentiality.)

The memory requirements of an in-memory DBMS element
of a data pipeline can vary greatly across time windows. For
instance, Figure 1 shows the size of the data extracted each day
(for monitoring and analytics) from the logs of a commercial
cloud provider’s object storage system, which is used by both
customers and internal clients. There are many days in which
the size of the data is 1.5× that of the average data size over
the reported period, and in some days the data size exceeds the
average by 2×–3.5×.

This data size variability dictates that in-memory DBMS
pipeline elements need to be over-provisioned with memory
(with respect to their average utilization). It is desirable that such
over-provisioning be minimal, for cost and efficiency reasons.
However, DBMS index data structures, particularly secondary
indexes, impose significant memory overhead. For instance, the
above workload contains many high-cardinality columns that
require indexing, resulting in index sizes that are roughly the
same size as the data set—i.e., indexes take up ≈ 50% of DBMS
memory. Prior work and industry report similar index overhead
numbers [23, 33].

A major source of index memory overhead is from stor-
ing copies of the indexed keys, as occurs in B+-trees [6], skip
lists [25, 32], and BwTrees [18, 31]. However, this design choice
allows the index to store keys in-order and thereby provide ex-
tremely fast, cache-efficient scan operations, which are impor-
tant for data pipeline analytics workloads [15, 24]. Therefore,
the choices available today for addressing index memory over-
head are to drop indexes under memory pressure, which destroys
query performance, or to use specialized compact indexes [3, 33],
which are suboptimal for our target workloads (§ 2).
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Elastic indexes This paper proposes to rein in index memory
overhead by making it elastic. We propose an elastic index
design framework, which transforms an index with internal-key
storage into an elastic version.

Under normal conditions, the elastic index is identical to the
standard index, leveraging the extra space provided by limited
memory over-provisioning for its key storage and thereby offer-
ing optimal query performance. However, when a large amount
of data is ingested, the elastic index temporarily shrinks itself
until memory pressure subsides. To dynamically shrink itself,
the elastic index switches a portion of the nodes to a compact
representation with indirect key storage. Once memory pres-
sure subsides, the converted nodes gradually revert back to their
original form, storing keys internally.

The elastic index framework can be applied to any index with
internal key storage, such as a B+-tree, skip list, or Bw-Tree. The
design is parameterized by (1) the elasticity algorithm, which
adjusts the index’s space utilization by deciding when and which
nodes should start/stop using indirect key storage; and (2) the
compact node representation, which determines the space vs.
query efficiency tradeoff.

To demonstrate the design framework, we devise an elastic
B+-tree. For the elasticity algorithm, we propose a method that
piggybacks on node splits and merges as the point in time to
convert regular nodes to/from blind tries [13]. For the compact
node representation, we propose a novel blind trie representation.
Our blind trie obtains space efficiency comparable to the most
compact blind trie in the literature [12] but with query complexity
comparable to that of faster, but less compact, representations [4,
13].

We evaluate the elastic B+-tree using uniform and YCSB work-
loads, as well as by integrating it into the MCAS in-memory
data store. We find that an elastic version of the STX B+-tree [2]
can store 2×/5× the number of 8-byte/30-byte keys with only a
25% throughput degradation. To evaluate the space/performance
trade-off of the elastic B+-tree in a full system, we evaluate the
MCAS [29] in-memory data store on a workload modeling inges-
tion and querying of cloud log data. Depending on the elasticity
parameters, the elastic B+-tree consumes from 0.76× to 0.3×
the space of the default B+-tree index, with only 0.5% to 2.6%
degradation in query throughput.
Contributions We make the following contributions:

(1) The elastic index design framework, which enables stretching
a fixedmemory budget while gracefully degradingwhen large
amounts of data are consumed.

(2) Applying the framework to construct an elastic B+-tree.
(3) A novel blind trie representation, which serves as the main

building block of the elastic B+-tree.
(4) Empirically evaluating our algorithm against the state of the

art indexes in the literature.

2 THE CASE FOR ELASTIC INDEXES
We make the case for elastic indexes by explaining why exist-
ing approaches for addressing DBMS index size overheads are
suboptimal for our setting. We consider only ordered indexes—
such as B+-trees or tries—that support iteration, range selection,
etc. in addition to point queries. The reason is that in-memory
DBMSs serve as data pipeline elements to support analytics, mon-
itoring, and decisioning queries, which require multiple ordered
secondary indexes.

Giving up internal-key storage? Internal-key storage is fun-
damental to the performance of index operations. In principle,
comparison-based in-memory indexes such as B+-trees could
avoid internal-key storage by using indirection, i.e., by storing
pointers to keys’ tuples and loading a key from the database when
an index operation needs to read it for a comparison. However,
such a design would eliminate the spatial locality of having keys
co-located in index nodes, which means that any key access by
the index would incur CPU cache misses, severely slowing down
index operations.

A similar problem exists with index designs based on Patricia
tries [21], such as HOT [3]. These indexes do not rely on key
comparisons and so are able to store keys indirectly without
compromising index point query performance. Unfortunately,
large scans—which are common in analytics workloads [15, 24]—
slow down significantly if each scanned key has to be loaded
from the database (see § 6). Included-column queries [20]—i.e.,
whose result is computed solely from the values composing the
key and the included columns—are similarly slowed down.
Using prior index compression schemes? The elastic in-
dex approach provides better trade-offs than prior index node
compress schemes. The overhead of general-purpose compres-
sion [22]—i.e., decompressing and re-compressing each accessed
index node—is significantly higher than the indirect key accesses
performed on nodes compacted by an elastic index. While pre-
fix compression [14, 23]—which compresses a B+-tree leaf by
storing redundant prefixes only once—is cheap, its compression
ratio depends on the key distribution and it might even increase
space usage if keys do not share common prefixes. In contrast,
switching a node to a compact representation always saves space.
Using hybrid indexes? Hybrid indexes [33] improve index
space efficiency using a two-stage architecture, in which recently
added data is held in a small dynamic index while a compact, read-
only index holds the bulk of the index entries. A periodic merge
process migrates aged entries from the small dynamic index to
the compact index. Because the compact index does not support
individual-key updates, the merge process must rebuild it entirely.
In contrast, the elastic index design is fine-grained, converting
individual nodes to/from a compact representation, and supports
updates of the compact nodes. Moreover, the efficiency of the
hybrid index approach is predicated on a skewness assumption—
that updated index entries are those recently inserted. The elastic
index design does not require this assumption.

3 ELASTIC INDEX FRAMEWORK
The elastic index framework takes a baseline index whose nodes
internally store indexed keys (e.g., a B+-tree or skip list) and
transforms it into an elastic index. Under memory pressure, an
elastic index can trade off some query efficiency for better space
efficiency by dynamically converting its data structure nodes into
a compact representation, which stores keys indirectly instead
of explicitly.

Our framework targets the baseline index’s leaf nodes, which
are where index searches terminate, because these nodes occupy
most of the space in the index. The observation underlying the
elastic index transformation is that such leaves can be viewed as
“mini indexes”—as they map from keys to database tuples—with
their own abstract data type (ADT) interface. For example, the
B+-tree leaf ADT supports six familiar operations [6]: insert, re-
move, find, predecessor/successor, split, and merge. Therefore, a
compact node representation that implements the leaf ADT can
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co-exist in the index with the standard leaf nodes, without any
changes to the baseline index algorithm. In turn, the co-existence
of regular and compact leaves allows devising an elasticity algo-
rithm that responds to changing memory pressure by switching
leaves to/from their compact representation.

The elastic index framework is parameterized by the following:

• The compact node representation. The representation must
support the original index’s leaf operations. Designing a good
representation requires carefully balancing compactness and
the efficiency of leaf operations. While the elastic index trades
off some query efficiency for space efficiency, the goal is to
minimize impact on query efficiency.

• The elasticity algorithm. This algorithm monitors index
space consumption. In response to an increase in the data-
base size, it begins converting leaves to the compact represen-
tation. When the database size reduces, it converts compact
leaves back to the normal representation. The algorithm must
respond to change in memory consumption as quickly as pos-
sible while minimizing interference on index operation under
normal conditions. The main challenge in designing an elastic-
ity algorithm is how to pick the leaves that will be compacted.

Choosing these “parameters” creates a large design space.
Here, we initiate exploration of the design space by present-
ing an elastic B+-tree based on two main ideas: (1) basing the
compact representation on a novel blind trie [13] representation
(§ 5) and (2) having the elasticity algorithm piggyback on B+-tree
split/merge operations as the point to efficiently convert leaves
to/from the compact representation (§ 4).

4 B+-TREE ELASTICITY ALGORITHM
Our B+-tree’s elasticity algorithm operates by striving to keep
the size of the index constant once it reaches a certain thresh-
old, and leveraging the conversion of leaves to their compact
representation to index more keys with a fixed memory budget.
The idea is to detect a window of time in which significantly
more data than usual is ingested. In such a case, the index is
temporarily shrunk to make room for the extra data.

The algorithm is configured with a soft size bound that indi-
cates the maximum size the index should be allowed to grow
to. The algorithm attempts to keep index size below this bound.
When the index size grows close to the bound (e.g., reaches 90%
of it), the algorithm enters a shrinking state and starts convert-
ing leaves to the compact representation, which can index more
items without increasing the index’s overall memory consump-
tion. When the index size decreases because the data set size
decreases, the algorithm enters an expansion state and starts con-
verting leaves back to the standard representation. To prevent
scenarios of oscillation between shrinking and expansion, the
algorithm uses different thresholds for triggering shrinking and
expansion. That is, the algorithm switches from shrinking to
expansion only when the index size decreases far enough from
the size bound.

The elasticity algorithm works by compacting the index in-
crementally as the dataset grows, resulting in compact and stan-
dard nodes co-existing in the same tree. This approach mini-
mizes overhead on index operations, in contrast to existing ap-
proaches that compact the entire index in bulk [33], which can
take significant time. Our incremental approach also results in
a smoother space/efficiency trade-off, as only queries touching
compact nodes become slower.

The elasticity algorithm relies on a grow/shrink policy to
select which leaves to compact/decompact when the index
grows/shrinks. In the following, we describe the algorithm with
a policy that chooses leaves which experience B+-tree over-
flow/underflow events due to insertions/removals. There is, how-
ever, a design space of possible policies. For example, the policy
could pick infrequently accessed nodes for compaction, to mini-
mize the impact on query speed. We leave exploration of different
policies to future work.

The elasticity algorithm assumes that the compact leaf rep-
resentation provides leaves of varying capacity, i.e., maximum
number of keys that can be stored. The capacity of a leaf deter-
mines its size; the more compact the representation, the greater
capacity that can be offered by a (compact) leaf of size S . The
elasticity algorithm requires that a compact leaf with capacity of
2n keys be smaller than a standard B+-tree node with capacity of
n keys. (Blind trie representations, including ours, typically sat-
isfy this property.) Other than these requirements, the elasticity
algorithm is agnostic to the compact representation.
Shrinking When index size grows close to the size bound, the
elasticity algorithm enters a shrinking state. In the shrinking
state, the algorithm’s goal is to absorb insertions while (1) reduc-
ing the memory consumed by leaf nodes and (2) not increasing
memory consumption by inner nodes. We achieve this by mod-
ifying the way in which a leaf overflow is handled. Normally,
an insertion about to overflow a leaf will split the leaf into two
new leaves, which requires further insertions of separators in the
leaf’s ancestor inner nodes. Our algorithm piggybacks on this
operation, which is already costly and infrequent1 and replaces
the leaf through a compacting operation.

In the shrinking state, upon an insertion attempt into a full
n-key standard leaf, the elastic B+-tree replaces the leaf with a
compact node with a capacity of 2n keys (instead of splitting).
The compact node is initialized to contain the original leaf’s n
keys and tuple identifiers. The insertion is then performed into
the new compact leaf. As a result, we save space in two ways:
the new compact leaf is smaller than the original leaf, and no
insertions—possibly causing more splits—need to be performed
at the upper layers of the tree.

Subsequent insertions into the compact node might drive its
occupancy to the capacity, creating an overflow. Typically, we
handle the overflow as before, by replacing the overflowing com-
pact leaf with a compact leaf with double the capacity. While
this increases the size of the leaf, it still saves changes in the
inner nodes. However, as a compact leaf grows larger, queries
on it become slower (§ 5). Therefore, the elastic B+-tree caps
the maximum capacity that a compact leaf may reach due to
overflow handling. An overflow of a compact leaf with maximum
capacity results in a split of that leaf. In practice, we have found
that starting from a capacity of 16 keys and capping it at 128 keys
works well (§ 6).

The elasticity algorithm maintains an invariant for compact
leaves that is similar to the invariant of B+-tree leaves, namely,
that a compact leaf with a capacity of 2k keysmust contain at least
k + 1 keys. A remove operation that would bring a compact leaf
beyond its lower threshold—cause an underflow—either replaces
the compact leaf with a compact leaf with capacity k , if k is
greater than the capacity of a B+-tree leaf, or simply replaces the
compact leaf with a standard B+-tree leaf.

1The amortized cost of a split in a B+-tree is O (1).
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Expansion When index size decreases far enough from the
size bound, the elasticity algorithm enters an expansion state, in
which it strives to regain query performance by switching com-
pact leaves back to the faster standard leaf representation. The
expansion process undoes the steps taken during the shrinking
state. Expansion occurs in two ways, as follows.

One part of the expansion process occurs naturally as a con-
sequence of removes, which are frequent operations once the
dataset size starts decreasing. As explained above, a remove that
underflows a compact leaf replaces it with a smaller compact leaf,
and eventually with a standard leaf.

The second aspect of the expansion process is aimed at cases
in which a compact leaf becomes popular but does not experi-
ence removals. Such a leaf could potentially offer queries lower
performance indefinitely. To avoid this problem, the elasticity
algorithm modifies the behavior of searches as follows. In the ex-
pansion state, a search that ends at a compact leaf with a capacity
of 2k keys may randomly decide to split the leaf into leaves of
capacity k . If k is equal to the B+-tree leaf capacity, we split into
standard leaves; otherwise, we split into compact leaves.

5 COMPACT NODE REPRESENTATION
Here, we describe SeqTree, our blind trie representation, which
serves as the compact representation of our elastic B+-tree nodes.
In § 5.4 we describe an optimization to reduce the space occupied
by the tuple identifiers stored in the node.

Recall that we target a database indexing setting. In this setting,
the index is indexing rows of a DBMS table, so the “values” stored
in the index are tuple identifiers (pointers to rows of the table).
In particular, the key can be extracted from the row it indexes
(e.g., the key is the value of a specific column). This property is
exploited by indexes such as HOT [3] to avoid storing explicit
copies of the keys. Instead, the search path in these indexes is
determined by the searched key’s bits and they load a stored key
from the database table at the last step of the search, to check
whether it matches the searched key.

5.1 Background: Blind tries
A trie is a search tree in which the position of a node in the tree
defines the key associated with it: the root is associated with the
empty string, and all descendants of the node associated with
key k share the common prefix k . A compressed trie is a path-
compressed representation of a trie in which the edges in every
non-branching path are merged into a single edge. Figure 2b
depicts a compressed trie indexing the keys in Figure 2a. Because
the edges on a search path contain all key bits, a compressed trie
stores keys directly, just without duplicating common prefixes.

A blind trie (also known as Patricia trie [21]) is a compressed
trie that does not label the edges but instead records in each
node the position of the bit in which the node’s children differ.
The blind trie does not explicitly store all key bits, and so is
more compact than a compressed trie. Figure 2c shows a blind
trie for the same set of keys. A blind trie search proceeds by
examining the discriminating bit indicated in the current node
and continuing to the appropriate child. However, to complete a
search, the algorithm must look up the indexed tuple (pointed to
by the leaf) to confirm that the indexed key matches the searched
key.

A blind trie requires only one node to be inserted for every
unique key stored. Its memory consumption is thus O(np + (n −

1) logk) bits, where n is the number of keys, k is the size of a key,

and p is the tuple identifier size. The constant factor behind the
O(·) notation is determined by the blind trie’s representation. For
example, we would like to avoid storing pointers to children in
each node.
Blind trie representations of B-tree nodes Work on
external-memory B-trees has explored replacing the B-tree’s stan-
dard node structure of a sorted key sequence with some blind
trie representation. Let n be the capacity of the B-tree node. The
blind trie representations leverage the fact that n is small (say,
n ≤ 256).

The String B-Tree [13] uses a straightforward representation,
in which each trie node contains two pointers to its children.
Suppose that the index of a discriminating bit can be represented
with 1 byte (i.e., the key size k ≤ 32 bytes) and that a pointer to a
trie node requires 1 byte (recalln ≤ 256). Then this representation
requires 3 B (bytes) per key (ignoring tuple identifiers). Bumbulis
and Bowman [4] proposed a more compact representation that
we call SubTrie. The SubTrie stores the nodes in an array sorted
in pre-order (depth-first) traversal order of the trie. In this order,
a node’s left child (if it exists) is simply the adjacent node in the
array. To facilitate finding right children and determining if a
left child exists, the SubTrie also maintains an array in which the
i-th entry stores the size of the i-th node’s left sub-tree (inclusive
of the node). The SubTrie thus requires 2 B per key, under the
same assumptions on key size and number of keys. The densest
representation, which we call SeqTrie, is due to Ferguson [12]. It
requires only 1 B per key, but its search complexity is linear in
the number of indexed keys (see § 5.2 for details).

5.2 The SeqTree representation
We present SeqTree, a blind trie representation whose space effi-
ciency is comparable to the SeqTrie but with improved search
time. The SeqTrie obtains optimal space efficiency by storing
only an array of size n − 1 whose entries are the discriminat-
ing bits—without any auxiliary information. However, a SeqTrie
search must sequentially scan this entire array. Our observation
in SeqTree is that this search can be sped up considerably by
maintaining a small auxiliary tree that helps a search quickly
identify a small range in the array in which its result is found,
and thereby reduces the length of the sequential scan it must per-
form. The storage cost of the auxiliary tree is negligible, because
the blind trie is only meant to replace a B+-tree leaf, and so it
stores a small number of keys. As a result, the SeqTree’s space
efficiency in practice is comparable to the SeqTrie’s but its search
performance is comparable to the SubTrie.

Next, we explain the SeqTrie representation and how it is
searched. We then explain how the SeqTree algorithm is ob-
tained by adding a small auxiliary tree to the SeqTrie, which is
used to locate the range within a target key must reside without
performing a full sequential scan of the array.
SeqTrie The SeqTrie maintains an array in which entry i con-
tains the first bit discriminating between the i-th and (i + 1)-th
keys, where the keys are sorted in lexicographic order and bits
are numbered from zero, starting from the most significant bit
(see the rectangles in Figure 2a). The SeqTrie representation of
our example key set is shown in Figure 3a as the array named
BlindiBits. We use this name as the array contains the discrimi-
nating bits of the blind index (Blindi). The SeqTrie also stores an
array with the values associated with the stored keys, denoted
V 0, . . . ,V 6 (as in Figure 2c).
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msb Lsb
#dec 0 1 2 3 4 5 6 7 8
165d 0 1 0 1 0 0 1 0 1
166d 0 1 0 1 0 0 1 1 0
170d 0 1 0 1 0 1 0 1 0
171d 0 1 0 1 0 1 0 1 1
214d 0 1 1 0 1 0 1 1 0
233d 0 1 1 1 0 1 0 0 1
235d 0 1 1 1 0 1 0 1 1

(a) Indexed keys and their binary repre-
sentation.
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(b) Compact trie.
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(c) Blind trie.

Figure 2: Different tries indexing a 7-row table whose rows are indexes by keys shown in (a). Rectangles mark the first bit in which two
consecutive keys differ. The notation V x refers to the value associated with the x -th key, e.g., a tuple identifer.
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(a) SeqTree arrays. BlindiTree is the physical layout of the tree shown in (b).
BlindiBits is the trie’s SeqTrie representation. Numbers above array entries
indicate their index.
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(b) SeqTree logical representation. The boxed number next to a node shows
its index in the BlindiBits array.

Figure 3: SeqTree representation for the key set of Figure 2a with tree of height 3.
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(a) SeqTree arrays
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(b) Insert logic representation

Figure 4: SeqTree representation for the key set of Figure 2a, after insertion of the mapping 186 7→ Vinser t .

SeqTrie search The search has predecessor semantics, i.e., it
returns the position of the searched key or, if the searched key is
not indexed, the position of the largest key smaller than it. (This
enables insertions and range scans to use the search procedure
to locate the position in which the key should be inserted or the
scan should start, respectively.) Let SKey denote the searched
key. The search proceeds under the assumption that SKey is one
of the indexed keys. It scans the array sequentially, attempting
to find SKey’s position. Initially, we assume SKey is the first key
(indexed 0). Suppose we assume SKey is the j-th key and we scan
entry i . Let bi = BlindiBits[i]. Then bit bi is 0 in the i-th key but 1
in the (i + 1)-th key. Thus, if SKey[bi ] = 1, it cannot be that SKey
is the i-th key (or any smaller key). We call this case a hit, and
we now assume tht SKey’s position is i + 1. If SKey[bi ] = 0, then
SKey cannot be the (i + 1)-th key, but our assumption that SKey
is the j-th key may still be true. We call this case amiss. Following
a miss, we need not check any discriminating bit b > bi , because
for any such entry, the relevant key has bit bi set and therefore
cannot be SKey. We thus keep scanning the array but ignore any
such bit.

At the end of the sequential scan, the “assumed” position j will
be SKey’s position if SKey is one of the indexed keys. We verify

this by loading the j-th key from the database and comparing
it to SKey. If they do not match, then we now know the bit bd
discriminating SKey and the j-th key, as well as whether SKey
is greater or smaller than the j-th key. Suppose SKey is greater
than the j-th key. To find SKey’s successor, we scan the array
to the right of the j-th entry, looking for an index i such that
bi = BlindiBits[i] < bd . This means that the (i + 1) key has bit
bi set and is therefore larger than SKey, but the i-th key does
not have it set. Therefore SKey’s predecessor is the i-th key. The
case where SKey is smaller than the j-th key is similar, except
we scan to the left of the j-th entry.
SeqTree representation The SeqTree augments the SeqTrie
with an explicit tree representation of the top levels of the blind
trie. Figure 3b shows the logical representation of a tree of height
3 for our example key set (Figure 2). The tree is physically laid
out as an array in a compact representation, where the left and
right children of the node indexed i are indexed 2i + 1 and 2i + 2,
respectively. Each tree node points to the SeqTrie array entry
that it represents. The array BlindiTree in Figure 3a shows the
tree’s physical layout. Given a node u in the tree, we denote by
ind(u) the index of u’s entry in the SubTrie array. For example,
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suppose u is the root of the tree in Figure 3b. Then u corresponds
to the discriminating bit 2, whose index in BlindiBits is 3. Thus,
ind(u) = 3, i.e., the value stored in index 0 of BlindiTree is 3
(Figure 3a). We use a special ENDTREE marker, denoted ET in
the figure, to indicate when a trie node does not have a child.2
Notice that, for instance, because the node of discriminating bit
3 (whose BlindiTree index is 2) does not have a left child, entry 5
in BlindiTree contains ET .

Crucially, in practice using a small tree size imposes almost
no space overhead, because the tree can occupy space that was
previously unused due alignment considerations. (For example,
a 3-level tree requires only 7 B.)
SeqTree search The BlindiTree enables the search to begin as a
standard trie search, until it reaches the end of the tree and must
continue by sequentially scanning the array. Our key insight
is that the node in which a search “falls off” the tree defines
the range in the SeqTrie array that must contain the searched
key, if it exists. To see this, notice that the SeqTrie array can
also be viewed as containing the discriminating bits (i.e., trie
nodes) sorted in in-order traversal order of the trie. (In-order
traversal visits a node’s left subtree, then the node, and then its
right subtree.) This allows us to define the range associated with
a tree node recursively as follows. The range of the tree’s root is
the entire SeqTrie array. Assume the range of tree node u is [i, j].
Then the range of u’s left child is [i, ind(u) − 1] and the range of
u’s right child is [ind(u) + 1, j].

Searching the SeqTree is thus simply a matter of maintaining
the range of the current tree node on the search path, and then
performing a sequential search on that range after “falling off”
the tree. One subtle point is that if the search reaches tree node
index i where BlindiTree[i] = ET , then its result is simply the
i-th key. (For example, as Figure 3b shows, the index of tree node
3 in BlindiTree is 5, which corresponds to the 5th key.)
Identifying a predecessor As with the SeqTrie, once the Se-
qTree search terminates, the found key is loaded from the data-
base and compared to the search key. If they do not match, the
search key’s predecessor needs to be located. The predecessor
search can occur sequentially, in the SeqTrie, or by traversing
the tree. Which case occurs depends on b, the index of the bit
discriminating the search key from the key loaded from the data-
base.

We refer to the tree node in which the search fell off the tree as
the tree position, or TreeP. If b is greater than the discriminating
bit that TreeP represents, then a search for the predecessor would
arrive at TreeP and similarly fall off. Therefore, the predecessor
search needs to be performed in TreeP’s range, as in the SeqTrie
algorithm. On the other hand, if b is smaller than the discrimi-
nating bit that TreeP represents, we need to find the predecessor
by ascending up the tree until reaching an ancestor u of TreeP
that represents a discriminating bit which is smaller than b. This
is the point where we would have to insert a new trie node, if
we were inserting the searched key into the trie. Therefore, the
predecessor is either the largest node in u’s left subtree or the
smallest node in u’s right subtree, depending on whether the
search for our key traverses right or left at u.
Putting it together Overall, the flow of the SeqTree search is
as follows. The search first traverses the SeqTree until finding
the searched key’s assumed position, as described above. The
indexed key is then looked up and compared to the searched key.

2Technically, ET is the maximum number of keys plus one, i.e., an invalid index.

If they do not match, a second-stage procedure is used to find
the searched key’s predecessor, either by traversing the tree or
by performing a sequential search as in the SeqTrie.

5.3 SeqTree maintenance
Here we describe how a SeqTree is initialized and maintained.
Compacting a B+-tree node into a SeqTree To do this, we
need to convert the sorted key sequence stored in the B+-tree
node into a SeqTree. We first construct the SeqTrie, i.e., the
BlindiBits array, and initialize all BlindTree entries to ET . To
construct the BlindiTree, we start from the root, BlindTree[0].
We scan BlindiBits to find the minimum entry (discriminator bit),
and point the root at this entry. Next, the left (respectively, right)
child of the root is set to point to the minimum entry among all
BlindiBits entries to the left (respectively, right) of the root. To
initialize deeper levels, we look from the minimum entry in the
range starting with the lowest common ancestor (LCA) of the
node and the node to its left on the same level (or 0 if the node is
the leftmost in the level) and ending with the LCA of the node
and the node to its right (or the end of the array if the node is
the rightmost in the level). We use a lookup table to compute
the LCAs. Whenever the sequential range to scan is empty, the
child is left marked as ET . Initializing each level in the tree thus
requires scanning all the BlindiBits array.
Insertions & removals The search locates the position of the
new key in the BlindiBits SeqTrie array. To insert the key, the
array entries of the successor keys need to be shifted one position
to the right, providing room for the new key. Subsequently, the
BlindiTree SeqTree subtrees whose range the shifted positions
fall in are updated to point to the new location. In some cases, the
discriminating bit of the new key is such that a new node must
be inserted into the SeqTree tree. Suppose the new node x needs
to be inserted between node u and its child v . We splice x as a
child ofu, makingv its child, and the newly inserted key its other
child. Figure 4 shows an example. The figure shows the SeqTree
obtained after inserting the key 186 (mapped to value Vinser t )
into the SeqTree containing the key set of Figure 2a. SeqTree
removals proceed analogously to insertions; if a node of the tree
gets removed, its subtree is rebuilt.
Splits & merges A split takes a SeqTree B and splits it into a
left SeqTree BL and a right SeqTree BR , each with half of the keys.
A split eliminates a discriminating bit, the one that discriminates
the last key in BL from the first key in BR . We use the position
of this bit to split the SeqTree tree. Nodes to its left are moved to
BL and nodes to its right are moved to BR . Since the new trees
are not fully populated, we initialize the empty portions of the
trees as explained above for creating a SeqTree from a B+-tree
node. A merge is the reverse operation, which combines two
SeqTrees into one. A merge thus introduces a new discriminating
bit, whose position we use to merge the trees of the merged
nodes.

5.4 Breathing
In a standard B+-tree node, the space occupied by keys typically
dominates the space consumed by tuple identifiers. For example,
assuming tuple identifiers are 8 B in size (i.e., pointers), then
they consume only 20% of the B+-tree leaf for a key size of 32 B.
With SeqTree, however, the situation is reversed. Because keys
are stored indirectly and very compactly, space consumption of
tuple identifiers becomes a dominating factor. Since the SeqTree
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requires ≈ 1 B/key for 32 B keys, tuple identifiers will account
for almost 90% of the compact node’s space. Even with larger
keys, where SeqTree requires ≈ 2 B/key, tuple identifiers will still
account for ≈ 80% of the compact node’s space.

To address this problem, we introduce a breathing node opti-
mization to the SeqTree. The idea is to allocate roughly as much
space for tuple identifiers as needed for the items currently stored
in the node, rather than for the node’s full capacity. The motiva-
tion for this approach is the observation that in many workloads,
the occupancy of leaves is far from their capacity. For example,
when keys are distributed uniformly at random, the average oc-
cupancy of a B+-tree leaf is 70%. In such a case, breathing can
theoretically reduce a SeqTree’s memory consumption by 27%
(30% of the 90% taken by tuple identifiers, described above).

To provide “breathing room” for the node to grow, we allocate
additional slack space of s tuple ids. That is, a SeqTree node with
capacity n that holds k < n keys will have allocated space for
k + s tuple ids. Once insertions fill up the slack space of the
node, we replace to node’s tuple id array with an array larger
by s slots. When splitting a node with k keys, each new node
allocates space for k/2 + s tuple ids. The breathing parameter s
controls the trade-off between space efficiency and overhead on
insertions. For example, s = 1 implies almost no slack, so high
space efficiency, but every second insertion to the node will need
to reallocate the tuple id array. Importantly, however, breathing
does not impose overhead on searches.

6 EXPERIMENTAL EVALUATION
Our evaluation consists of the following:
• Evaluating the space vs. efficiency tradeoffs that the elastic
B+-tree creates on each type of index operation (§ 6.1).

• Evaluating the elastic B+-tree’s tradeoff on the YCSB work-
loads (§ 6.2).

• Evaluating the elastic B+-tree in a full-blown in-memory data
store (§ 6.3).

• Analyzing the factors affecting the SeqTree’s performance and
memory consumption (§ 6.4).

Setup In §§ 6.1 and 6.3, we use a server with 2 Intel Xeon E5-
2630 v4 (Broadwell) CPUs, each of which has 20 2.2 GHz cores.
The server is equipped with 64GB DDR4 DRAM. In §§ 6.2 and 6.4,
we use a server with 4 Intel Xeon E5-4669 v4 (Broadwell) CPUs,
each of which has 22 2.2 GHz cores, and 512GB DDR4 DRAM.
Both systems run Linux and all the code is compiled with GCC.
We use jemalloc for single-threaded experiments and tcmalloc
for multi-threaded ones.

6.1 Elastic index operation tradeoffs
In this section, we evaluate the space vs. operation efficiency
tradeoff provided by the elastic B+-tree, for various types of
index operations. We compare the following indexes:
• The elastic B+-tree, based on the STX B+-tree. We use the
SeqTree with tree level 2 for the compact leaf representation
with at most 128 keys per leaf (the baseline STX B+-tree leaf
capacity is 16). We set the breathing parameter to 4. We choose
these parameters based on the results of § 6.4.

• STX B+-tree, which serves as the upper bound for space usage
of the elastic B+-tree. We use 16-key leaves.

• SeqTree128, which is the STX B+-tree in which all leaves are
represented using the SeqTree with tree level 2, the breathing
parameter set to 4, and 128 keys per leaf. SeqTree128 thus

represents the elastic B+-tree’s maximum space savings, but
also its maximum overhead on index operations.

• HOT: Height-Optimized Trie [3], which has been shown to be
more space efficient and to generally outperform other state-
of-the-art indexes, such as Masstree and ART.

• We also compare against Masstree [19], skip list, Bw-tree [31],
and ART [16]. We omit the results of these indexes from the
plots, because these algorithms are always dominated by some
other algorithm: (1) Masstree and skip lists consume more
memory than STX; (2) Bw-tree’s space consumption is only
slightly smaller than that of STX, but it performs worse; and
(3) ART is outperformed by HOT, which is also more space
efficient.

We evaluate the efficiency of index insertions, lookups (point
queries), and scans (range queries) in a workload that exercises
the elastic B+-tree’s growth and shrink capabilities. Each experi-
ment consists of a single thread inserting 100M items into the
index and subsequently deleting them. Each item is a key/value
mapping that indexes a unique row in a 100M-row table. In-
sertions and deletions are performed in chunks of 10M keys.
After each such chunk, the thread performs 3M lookups of ran-
dom keys and 1M scans (iterating over 15 keys starting from a
random key). We measure the throughput of lookups and scans
after every chunk, and the insertion and deletion throughput of
each insertion or deletion chunk, respectively. We report average
throughputs over 10 runs of the test.

When testing the elastic B+-tree, we configure it to start
shrinking when the index sizes grows beyond 50M items
(1289MB), and to start expanding when the index size decreases
beyond 1081MB (see § 4). Because the latter threshold applies to
the elastic B+-tree in its shrinking state, it also corresponds to
50M items—the index is simply more compact. During the initial
insertion phase, the index initially uses B+-tree leaf nodes hold-
ing up to 16 keys, and then (on demand and gradually) replaces
some of them with SeqTree nodes holding up to 32, 64, and 128
keys, at which point it stops increasing the capacity of a node.
During the deletion phase, the elastic B+-tree gradually undoes
these leaf compactions. The query phase after each chunk can
thus execute on a partially compacted B+-tree, allowing us to
study the elastic B+-tree’s query overhead.

We run the benchmarkwith key sizes of 64 bits, 128 bits, and 30
bytes. In a nutshell, larger keys favor the elastic index. Compared
to with 64-bit keys, it achieves a better compression rate and its
performance degradation is smaller. Due to space constraints, we
detail only 64-bit the key results (Figure 5).
Elasticity facilitates efficient scans Figure 5a shows that de-
signs such as HOT, which obtain memory efficiency using un-
conditional indirect key storage, impose a heavy cost on scan
queries. With HOT’s indirect key storage, each scanned key has
to be loaded from the table, whereas the B+-tree holds the keys
in its leaves, and so can avoid these extra memory references.
HOT thus always pays the cost of indirect keys storage, mak-
ing the throughput of its scan queries 1.5–2× worse than of
STX. In contrast, the elastic B+-tree achieves B+-tree perfor-
mance under typical memory demands and only starts paying
undermemory pressure, at which point its scan query throughput
gracefully degrades—depending on the severity of the memory
pressure—until it converges with HOT’s scan performance. Once
the index sizes decreases, the elastic B+-tree’s scan throughput
gracefully improves until converging with the B+-tree’s scan

318



EDBT 2022, 29th March-1st April, 2022, Edinburgh, UK M. Hershcovitch, A. Khyzha, D. Waddington, and A. Morrison

10 20 30 40 50 60 70 80 90 100 90 80 70 60 50 40 30 20 10
Millions  of Items in the index

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e6

Start Shrinking Phase

Start Growing Phase

HOT
Elastic
STX
SeqTree128

(a) Scan throughput

10 20 30 40 50 60 70 80 90 100 90 80 70 60 50 40 30 20 10
Millions  of Items in the index

0

500

1000

1500

2000

2500

M
em

or
y 

co
ns

um
pt

io
n 

(M
B)

Start Shrinking Phase

Start Growing Phase

HOT
Elastic
STX
SeqTree128

(b) Space consumption

10 20 30 40 50 60 70 80 90 100 90 80 70 60 50 40 30 20 10
Millions  of Items in the index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e6

Start Shrinking Phase

Start Growing Phase
HOT
Elastic
STX
SeqTree128

(c) Lookup throughput

10 20 30 40 50 60 70 80 90 100
Millions  of Items in the index

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e6

Start Shrinking Phase

HOT
Elastic
STX
SeqTree128

(d) Insert throughput

90 80 70 60 50 40 30 20 10
Millions  of Items in the index

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

1e6

Start Growing Phase

HOT
Elastic
STX
SeqTree128

(e) Remove throughput

Figure 5: Space & throughput comparison of elastic B+-tree vs. other indexes (64-bit keys).

throughput. Under maximal memory pressure, the elastic B+-
tree’s scan throughput is a bit lower than that of SeqTree128.
This happens because SeqTree128 has only compact leaves and
a scan there typically traverses fewer leaves than in the elastic
B+-tree.
Memory consumption Figure 5b shows thememory efficiency
side of the tradeoff. While STX maintains the best scan query
throughput, its memory consumption grows linearly with the
number of inserted keys. The STX index size reaches 1281MB
once 50M items get inserted, which corresponds to the moment
the elastic index starts shrinking. In contrast to STX, the elastic
B+-tree’s size remains relatively flat from 50M to 100M items.
This is because every time a leaf node splits, it uses a more
compact representation for new nodes. At peak index size, the
elastic B+-tree’s space consumption is about 25% more than HOT.
BothHOT and SeqTree128, which always use indirect key storage,
are about 2.5× as memory efficient as STX at peak index size
(with SeqTrie being 10% smaller compared to HOT).
Lookup and insertion throughput (Figures 5c–5d) The elas-
tic B+-tree exhibits the same trend for both operation types: it
performs identically to STX until it starts shrinking, at which
point its throughput gracefully degrades. Lookups are also mea-
sured when the elastic B+-tree expands, and their throughput
eventually converges back to STX’s throughput. For lookups, the
elastic B+-tree’s throughput trends towards SeqTree128, which
is 30%-35% lower than that of HOT. The reason for this trend
is that HOT’s lookups are faster than SeqTree lookups, due to
HOT’s use of SIMD instructions and other optimizations. HOT is
about 10% faster than STX beyond 50M items, so the elastic B+-
tree cannot outperform HOT on lookups. The elastic B+-tree’s
insertion throughput similarly degrades as it starts shrinking,

which involves compacting leaves during insertions that cause
splits. At 100M items, the elastic B+-tree’s throughput is 25%
lower than STX’s.

Overall, we observe the same trend as with scans: under typical
memory demands, an elastic B+-tree performs identically to a B+-
tree. Once it starts shrinking due to memory pressure, its lookups
and insertions operations become slower, but in exchange, the
index can still fit into the configured memory budget.
Remove throughput Figure 5e shows the throughput of re-
move operations. STX removes are faster than HOT’s when the
index is at peak size, but STX’s remove throughput degrades to
HOT’s below 60M items. The elastic B+-tree remove through-
put is about 10% lower than STX’s, whereas SeqTree128 remove
throughput is 40%–45% lower than STX’s.
Operation cost To break down the cost of the elastic B+-tree
operations, we profile the execution of the entire insertion phase
of 100M items (including the last 50M items, during which the
elastic B+-tree enters the shrinking state). We find that 18.3% of
the execution time consists of work related to elasticity, broken
down as follows: 8.6% is spent on searching compact leaves (not
including loading keys from the table); 5% is spent on key compar-
isons in compact leaves; and 4.7% is spent on converting B+-tree
leaves to the compact SeqTrie representation and overflowed
compact leaves to higher capacity compact leaves (§ 4).

6.2 Elasticity in YCSB workloads
We use the framework of Wang et al. [31] to evaluate the indexes
on YCSB workloads [7]. We evaluate the core YCSB workloads:
A (50% read, 50% update), B (95% read, 5% update), C (read-only),
D (latest-read, 95% read, 5% insert), E (95% range scan of size
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Figure 6: Throughput of load and transaction phases of single-threaded YCSB runs.
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Figure 7: Index space consumption (a) and throughput of multi-threaded YCSB workload C runs (b)–(c).

1–100 (randomly chosen), 5% insert) and F (50% read, 50% read-
modify-write). Each workload is separated into two phases: a
load phase inserting 50 million uniformly distributed 64-bit keys,
and a transaction phase performing 100 million operations spe-
cific to the workload (for workload E we reduced the number of
transactions to 25 million) and with zipfian distribution of keys
to manipulate. Workloads B, C and D yield similar results and
hence are not shown in the plots.
Single-threaded experiments Here, we evaluate our elastic
B+-tree with different thresholds for shrinking the index. The
ElasticX version starts shrinking afterX% of the 50million loaded
items are inserted. We compare these variants to HOT, STX, and
STX-SeqTree with leaf node capacity of 128.

Figure 7a shows memory consumption. HOT consumes 50%
less memory than STX, and STX-SeqTree consumes even 10%
less than HOT. Memory consumption of the elastic index is al-
most proportional to the shrinking threshold: Elastic90, Elastic75
and Elastic66 consume 97%, 93%, 91% of STX’s memory measure-
ments, respectively.

Figure 6a shows the throughput of the load phase. Performance
of all elastic indexes is better than HOT’s. STX-SeqTree is more
than twice as slow as STX.

Figures 6b and 6c show throughput of the transaction phase for
each workload, with uniform and zipfian distribution of keys for
transaction operations, respectively. Except for the scanworkload
(E), STX has slightly better performance than HOT, with the
gap being narrower with zipfian keys, while with uniform keys
HOT is closer to Elastic90. The elastic indexes cause a drop in
performance the lower the shrinking threshold is: starting the
shrinking phase earlier in the run decreases the throughput.
Scan performance The E workload, which consists predomi-
nantly of scan operation, is where STX significantly outperforms
all the blind trie implementations. The STX B+-tree stores full

keys in its leaf nodes, whereas blind tries require bringing the
keys from the database table. As a result, in Figure 6b, HOT’s
throughput is more than 3× lower than STX’s. The elastic B+-
trees, however, perform better than HOT, because they only com-
pact some of the leaf nodes into a blind trie representation. The
flip side of the elastic approach is that the elastic B+-tree is less
compact than SeqTrie128. For example, Elastic66 and Elastic50
use 30% more space than SeqTrie128. Their scan throughput is
comparable, however, because the fraction of compact leaves is
much higher than 70% and compact leaves are larger (up to 128
keys). The result is that scans have a high probability of com-
pleting from a single compact leaf and therefore behaving as a
SeqTree128 scan.
Multi-threaded experiments Here, we compare three in-
dexes: (1) BTreeOLC, which is a B+-tree with multi-threading
support via Optimistic Lock Coupling [17, 31], (2) BTreeOLC-
SeqTree, which integrates the SeqTree leaves with capacity of
128 items into BTreeOLC, and (3) HOT. Although we have not
implemented an elastic BTreeOLC, we use BTreeOLC-SeqTree
and BTreeOLC as the lower and the upper bounds for memory
consumption of the elastic BTreeOLC, and, similarly, the up-
per and the lower bounds for performance. In other words, we
evaluate the expected performance and memory consumption
under normal conditions (BTreeOLC) as well as in the worst-
case performance-wise, obtained under maximal leaf compaction
(BTreeOLC-SeqTree).

In the transaction phase of all the workloads (with uniform
and zipfian distribution of keys), the indexes exhibit similar be-
haviors with scaling close to linear. HOT scales the best, followed
by BTreeOLC and BTreeOLC-SeqTree. Figure 7b shows represen-
tative results from workload C. (The results of other workloads
are similar, and omitted due to space constraints.) For insertions
(Figure 7c), BTreeOLC-SeqTree scales up to 80 threads, but not
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Figure 8: Impact of using the elastic B+-tree in the MCAS key-value store: index space consumption (a) and single-threaded throughput
(b)–(c) of HOT and the STX B+-tree vs. the elastic B+-tree with different size bounds (ElasticXX). Size bounds are specified as percentages
of the dataset size. (Absolute values are shown above the bars (MBs (a) and Kops/sec (b)–(c).)

linearly. HOT scalability is linear up to 16 threads, then slows
down. BTreeOLC scales the best, resulting in 2.5× the throughput
of HOT and 1.66× the performance of BTreeOLC-SeqTree with
80 threads.

6.3 In-memory data store
Here, we show that in the context of a full system, the elastic B+-
tree can provide significant space savings with comparable (if not
equal) transactional throughput to other indexes. Our study ve-
hicle is the Memory Centric Active Storage (MCAS) system [29].
MCAS is a network-attached, in-memory storage system, built
from the ground up to support advanced storage technologies,
such as persistent memory. MCAS uses a partitioned architecture,
in which operations in each partition are handled by a single-
threaded execution engine.

Our experiments use MCAS to model a monitoring/analytics
component in a commercial cloud provider’s object storage sys-
tem. This component ingests data about object accesses extracted
from the logs of the object store system (as in Figure 1) and an-
swers queries for monitoring, anomaly detection, and so on.

We implement support for in-memory indexed data tables in
MCAS using its active data object (ADO) [30] functionality. (An
ADO plugin provides custom functionality to the MCAS store; in
our case, this is the implementation of an indexed multi-column
table and a domain-specific API for loading and querying its
data.)
Dataset & methodology We load MCAS with data from the
Storage Networking Industry Association’s (SNIA) I/O Traces,
Tools and Analysis (IOTTA) repository [1]. This repository con-
tains a set of anonymized logs of REST operations issued on a
single bucket in IBM’s object storage system [10]. For our evalua-
tion, we use a 12-hour log trace containing 48M rows. Each row
has 4 8-byte columns: the request’s timestamp, type, target object
ID, and size. (The original logs contain many additional columns
that were removed from the public data in the repository.) The
table in MCAS is indexed by 16-byte tuples of timestamp and
object ID.

We evaluate MCAS with different indexes: (1) HOT; (2) the
STX B+-tree; (3) elastic B+-trees (based on STX) with varying
shrinking size bounds, where we denote ElasticXX for an elastic
B+-tree that starts shrinking when the index size reaches XX%
of the dataset size (i.e., of the space consumed by 48M fixed-size
rows in our table); and (4) STX-SeqTree128, which is an STX B+-
tree whose leaves are compacted using SeqTree with leaf node
capacity of 128, which represents themaximum space savings and
overhead of our approach. Apart from the differing size bounds,
the elastic B+-trees use the parameters detailed in § 6.1.

Benchmark description In our experiments, we configure our
MCAS ADO to use the evaluated index type. We use the same
machine for the client (performing the operations) and server.
We first load MCAS with the trace’s log data by performing
insert operations (one for each row in the log). Thus, the dataset
size is every experiment is identical and only the index size
varies. After data ingestion, we measure two types of workloads:
lookups of the indexed keys and scans of 1000 keys starting from
a random key. We report the index memory consumption and
the throughput obtained during the load phase (insertions) and
the query phase (lookups and scans). We report single-threaded
results averaged over four benchmark runs, each starting with
an empty database.
Memory efficiency Figure 8a shows the effectiveness of index
memory elasticity given a fixed memory budget. With STX, the
index size is 1.2× the dataset’s size (so overall, the index consumes
54% of theMCASmemory).With the elastic B+-tree, as we tighten
the elastic B+-tree’s size bound and cause shrinking to start once
the index reaches 83%, 66%, 50%, or 33% of the dataset’s size, index
memory consumption decreases accordingly to 76%, 55%, 39%,
and 30% of the B+-tree’s index size. For comparison, SeqTrie128—
in which all B+-tree leaves are compacted using SeqTree and
thus represents the maximum space savings and overhead of
our approach—reduces index memory consumption to 26% of
the B+-tree’s index size. Because this workload has 16-byte keys,
which are larger than the key size in § 6.1, both the elastic B+-tree
and SeqTrie128 achieve better compression rates than in those
experiments. HOT is significantly more memory efficient than
STX. It uses 30% of the space of STX, which is comparable to
Elastic33.
Throughput Figures 8b–8d show the throughput trade-offs
caused by the more compact representations. For scans, STX
has the best throughput—2.3× that of HOT. But a major result
is that Elastic33’s scan throughput is 1.73× that of HOT, despite
both having essentially identical space use. In fact, Elastic33’s scan
throughput is higher than that of Elastic50 and Elastic66. The
reason is that scans in Elastic33 traverse fewer leaves, as it has
fewer B+-tree leaves, so typical leaves are compact and hold
many keys.

For insertions and lookups, due to the fact that index oper-
ations are only part of end-to-end performance, the elastic B+-
tree’s significant space savings do not come at a matching per-
formance loss. Compared to STX, insert throughput degrades
by 0.37%–1.8% and lookup throughput degrades by 0.5%–2.6%.
HOT is slightly faster than the B+-tree variants: its insertion and
lookup throughput is 0.28% and 5.5% higher, respectively, than
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Figure 9: Throughput of STX B+-tree variants with SeqTree leaf representation (64-bit keys).
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Figure 10: Space & throughput comparison of STX-SeqTree vs. STX-SubTrie, normalized to STX-SeqTree (64-bit keys).
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Figure 11: Space & throughput comparison of STX-SeqTree for different breathing parameters, normalized to without breathing (64-bit
keys).

that of STX. Compared to Elastic33, which uses the same space
as HOT, HOT’s insertion and lookup throughput is 2.2% and 8.4%
higher, respectively.
Takeaway Our results illustrate the type of workload that the
elastic B+-tree targets. This is a workload where on one hand,
scan performance is important, making a B+-tree the index of
choice and an index such as HOT a suboptimal choice. But on
the other hand, a non-elastic B+-tree would not be able to absorb
dataset size spikes (as in Figure 1) due to its high memory usage,
requiring either dropping the index, paging data to secondary
storage, or failing to ingest new data. In such a setting, an elastic
B+-tree offers B+-tree-like scans under typical conditions with
graceful degradation in throughput when the dataset size spikes.

6.4 SeqTree analysis
To evaluate various aspects of the SeqTree’s performance, we
evaluate STX-SeqTree and STX-SubTrie, which are variants of the
STX B+-tree whose leaf representation is a SeqTree or SubTrie,
respectively.

We evaluate the B+-tree variants using the index microbench-
marks framework of Levandoski et al. [18]. Our experiment con-
sists of inserting 50 million of uniformly distributed 64-bit and

128-bit keys, and afterwards performing 50 million uniformly dis-
tributed searches. Results are averages of 5 runs on an otherwise
idle machine; variance is not shown, as it is negligible.
Tree Levels Figure 9 shows how the tree level parameter affects
the throughput of the STX-SeqTree for various leaf capacities,
with breathing disabled. We show results for 64-bit keys; 128-bit
key results are similar. For a given leaf-node capacity leafSlots,
up to (log2 leafSlots − 1) tree levels are available in the SeqTree.

For insertions, a small tree level enables better throughput over
the baseline of the level 0 as leafSlots grows. The performance
boost peaks with medium values of tree levels: although adding
more of them enables locating the place for the insertion faster,
the insert needs to update the growing number of levels of the
tree in SeqTree. Performance peaks at level 3 with leafSlots set
to 512, and at level 2 otherwise.

For searches, as leafSlots increases, larger values of tree lev-
els result in higher throughput. Peak performance is not at the
maximum tree level: it is at level 5 for leafSlots set to 128, and at
level 6 with leafSlots set to 256 or 512.

Theoretical memory consumption of a SeqTree node grows
with levels, as the amount of tree meta-data increases. However,
in practice, levels 1–3 do not introduce any overhead, as the
SeqTree implementation leverages alignment of leaf nodes in
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memory. Levels 4 and 5 introduce minor overheads, and levels 6
and 7 use around 10% of extra space.
Comparison with SubTrie In Figures 10a, 10b and 10c, we
compare the performance of STX-SubTrie and STX-SeqTree the
tree levels parameter set to 2 and with breathing disabled, and
normalize the results w.r.t. the latter. We omit graphs for inser-
tions, as their performance trend are analogous to the searches;
the graph of space efficiency for 128-bit keys is analogous to
64-bit too.

With the increase of the number leafSlots of leaf node entries,
the SubTrie consumes more space peaking at 20% of space over-
head for 512 leaf slots. The overhead comes from the SubTrie
maintaining an additional array of the size (leafSlots − 1), with
each cell being an integer holding values up to leafSlots and
thus requiring 1 byte when leafSlots is under 256 and 2 bytes
afterwards.

STX-SeqTree is almost always slightly faster than SubTrie, but
it has a drop in performance with 64-bit keys and over 128 leaf
slots: in that case the throughput of insertions and searches in
the SubTrie is 20% and 40% higher, respectively.

Nevertheless, we use the SeqTree as the blind trie for the elastic
B+-tree, because of SeqTree’s space efficiency and performance
with leafSlots ≤ 128. We empirically find that leaf nodes of
capacity as high as 128 become frequent in the elastic B+-tree
only once it holds three times as many items as a B+-tree would
for a fixed size bound. Specifically, if X is the amount of items
a B+-tree can hold without overflowing the size bound, then at
4X items 10% of the leaves in the elastic index are SeqTree nodes
with capacity of 128, and that number reaches 37% at 5X items.
Breathing Figure 11 shows the space usage and throughput of
STX-SeqTree with different values of the breathing parameter
and leaf capacity, using 64-bit keys. Figure 11a shows the overall
space consumed by all leaf nodes normalized to STX-SeqTree
with breathing disabled. Empirically (though not shown), leaf
nodes are filled on average at 70% of their capacity, so ideally,
the remaining 30% of the space could be saved by breathing. In
practice, breathing saves 20% when leaf capacity is ≥ 64. This is
due to our implementation, e.g., we only condense the tuple id
array of SeqTree, leaving its SeqTrie array intact.

Measurements for breathing parameters 1, 2 and 4 often coin-
cide. This happens because the associated space overheads are
small, and overheads need to be at least 64MB to be visible, as
jemalloc allocates memory from the OS with 64MB granularity.

Breathing causes a small degradation in search performance
(Figure 11b), since there is one more pointer to dereference before
reaching the data pointer. The search performance degradation
is in small leafSlots and with leafSlots ≥ 64 there is almost no
performance degradation. Inserts (Figure 11c) suffer a notable
performance degradation with breathing due to the extra work
of allocating a new node and copying the old content into it.

Since setting the breathing parameter to 4 enables almost all
the compression possible at 20% without almost no performance
penalty in search andwith 10% performance degradation in insert,
we choose it for the elastic B+-tree. Our experiments with 128-bit
keys showed similar results.

7 RELATEDWORK
There is a vast literature on DBMS indexes. In § 2, we discuss
the most relevant efforts, and why they are not a good fit for our
context. Here, we discuss additional related work.

Several works explore representing a B+-tree node with dif-
ferent blind trie representation instead of using the standard
sorted key sequence representation [4, 12, 13]. (We discuss these
representations in detail in § 5.1.) These works do not target in-
memory indexes. Further, they do not selectively and dynamically
switch between different node representations.

HOT [3] is a generalized Patricia (blind) trie that adapts the
number of bits considered in each node (the span of the node) to
the key distribution, so that every node has a high fan-out inde-
pendent of the data set. SeqTree—our blind trie representation—is
more space efficient (§ 6), but its queries are slower. In principle,
HOT can be used as a compact node representation within the
elastic index framework. However, the HOT implementation is
limited to holding at most 32 keys/node, whereas the SeqTree
has no such limitation.

8 CONCLUSION
This paper proposes an elastic index framework, a novel approach
to address the index memory overhead problem in in-memory
DBMS data pipeline elements. The framework transforms a space-
inefficient index that directly stores keys into an elastic version
that can temporarily shrink itself in response to memory pressure.

To demonstrate our framework, we design an elastic B+-tree,
whose compact nodes use a novel blind trie representation. We
evaluate the elastic B+-tree using uniform and YCSB workloads,
as well as by integrating it into the MCAS in-memory data store.
We find that the elastic B+-tree can be 2×–5×more space efficient
than a B+-tree with only moderate impact on query throughput.
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