
Gamma Probabilistic Databases:
Learning from ExchangeableQuery-Answers
Niccolò Meneghetti

niccolom@umich.edu

University of Michigan-Dearborn

Dearborn, Michigan, USA

Ouael Ben Amara

benamara@umich.edu

University of Michigan-Dearborn

Dearborn, Michigan, USA

ABSTRACT
In this paper we propose a novel knowledge compilation tech-

nique that compiles Bayesian inference procedures, starting from

probabilistic programs expressed in terms of probabilistic query-

answers. To do so, we extend the framework of Dirichlet Proba-

bilistic Databases with the ability to process exchangeable obser-

vations of query-answers. We show that the resulting framework

can encode non-trivial models, like Latent Dirichlet Allocation

and the Ising model, and generate high-performance Gibbs sam-

plers for both models.

1 INTRODUCTION
Implementing inference algorithms for Bayesian statistics is dif-

ficult and expensive. It requires a deep knowledge of complex

topics in statistics, like Markov Chain Monte Carlo methods [21]

or variational inference [5], but also the ability to write code

that is efficient, scalable, and easy to verify and maintain in the

long term. As a result, most data scientists do not implement

their own inference algorithms from scratch, but rather rely on

special-purpose environments, such as Python[30], Julia [3], R

[32] and many other frameworks that are explicitly targeted at

statistical modeling and inference.

When it comes to Bayesian statistics, Probabilistic Program-

ming [67] is one of the most popular paradigms to ease the work

of data scientists. A probabilistic program consists of two com-

ponents: (i) the definition of a stochastic generative model and

(ii) a set of observations for such model. Together, the two com-

ponents define a posterior distribution over the latent variables

of the generative process, obtained by conditioning the process

w.r.t. the observations. Given a generative model and a set of

observations, a Probabilistic Programming compiler can build an

inference algorithm for the posterior distribution, without requir-

ing any additional implementation effort from the end-user. This

paradigm has been very successful, giving rise to languages like

Stan [10], Edward [65], PyMC3 [57], Pyro [4] and many others

[2, 25, 43, 47, 61, 64].

Most Probabilistic Programming frameworks are developed to

operate as independent and autonomous tools, with limited ca-

pabilities to integrate with existing database systems. They often

adopt non-relational data models to encode the training data, and

use imperative languages to define the stochastic generative pro-

cesses. This is in stark contrast with standard database systems,

where the data is strongly relational and the processing is de-

fined in terms of declarative query-languages. As a result, the two

systems are often deployed in a loosely coupled configuration,

where the database is used exclusively for data storage, indexing

and retrieval, while the analytical tool is forced to operate on
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replicas of the data, exported from the database. This configura-

tion is both inefficient and cumbersome to maintain [7]. A better

integration would be very desirable: legacy database systems

often store sensitive data that was expensive to collect in the first

place; it would be beneficial to move the computation close to

where such data resides. Beyond efficiency considerations, data-

base systems offer a number of features that are hard to replicate

by other systems. These include the support for transactions, the

use of standardized policies for access control, resource manage-

ment, data replication, data partitioning, indexing, normalization

and compression, the clean separation between modeling and

computation, the extensive use of cost-based optimization. Fur-

thermore, database systems can exploit knowledge about the

structural properties of both the data [52] and the queries [38]

to speed-up processing. The challenges and opportunities posed

by the integration of machine learning processing into standard

database systems are discussed in great detail in [7, 33, 51].

With the goal of narrowing the gap between database sys-

tems and statistical analysis tools, in this paper we introduce a

novel, database-friendly Probabilistic Programming framework.

Our approach is database-friendly in the sense that we encode

the training data in relational form, and express the stochastic

processes in terms of probabilistic query-answers. Probabilistic

queries are just regular relational queries that are run against

a probabilistic database [63], a database that contains both de-

terministic and probabilistic data [16, 19]. The answer to such

queries will vary depending on the values taken by the database

latent random variables. Thus, a probabilistic query defines a

stochastic generative process for all its plausible answers and,

when paired with a set of observed query-answers, it determines

a well-formed probabilistic program.

In this paper we make two main contributions:

(1) We introduce a novel data model to express probabilistic

programs in terms of query-answers.

(2) We propose a knowledge compilation technique to com-

pile probabilistic programs into inference methods.

To achieve the first goal, we extend the data model adopted by

Dirichlet Probabilistic Databases [46] with the ability to process

exchangeable observations [15] of query-answers. Two query-

answers are said to be exchangeable if they are stochastically

independent when the state of the underlying probabilistic data-

base is known, but dependent when the state is unknown. Thus,

exchangeability is a relaxation of the assumption of independent

and identically distributed (i.i.d.) query-answers made in [46].

This is a radical extension of [46], since the new data model can

account for correlations across multiple observed query-answers,

but also variate the number of the internal latent variables in a

dynamic fashion, as a function of the observations [48].

To achieve the second goal, we devise a novel knowledge

compilation method, inspired by [20], that translates a collec-

tion of exchangeable query-answers into a Gibbs sampler [23]

for the corresponding posterior distribution. This paper does
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not describe the implementation of a new database system. Our

contribution consists of the formulation of a well-founded data

model for exchangeable query-answers and the development of

knowledge compilation technique for supporting inference. We

show that the two components are powerful enough to repre-

sent non-trivial models, like Latent Dirichlet Allocation [6] and

the Ising model [41], and to compile high-performance Gibbs

samplers for both models.

2 PRELIMINARIES
A probabilistic database [63] is a database that stores uncertain

data. For ease of presentation, and without lack of generality,

we assume that uncertainty only affects certain attributes in the

database schema. Figure 1 depicts a simple probabilistic database

that stores information about a set of employees (Ada and Bob);

the database contains two uncertain attributes, one for defining

the roles of the employees (either tech-lead, developer, or QA en-

gineer) and another for the employees’ level of experience (either

junior or senior). Each probabilistic tuple can be seen as a random

choice, that decides the value assigned to an uncertain attribute.

The database prescribes a probability distribution for all these

choices: the parameters in Θ = {θi, j }i, j define the likelihood of

each assignment. For example, the likelihood of the assignment

Role[Ada] = Lead is 1/3 according to the probabilistic database

in Figure 1. A possible world is a collection of assignments that

covers all the random tuples. The database in Figure 1 consists

of four probabilistic tuples, for a total of 36 possible worlds. It is

easy to realize that that each possible world represents a deter-

ministic database instance. Furthermore, the database defines a

probability distribution over the set of all possible worlds.

In this paper we use query-answers to identify subsets of pos-

sible worlds. A query-answer simply represents the belief that

a certain relational query should return a certain answer, i.e. a

certain (deterministic) relation instance. For example, if we want

to identify all the possible worlds where only senior employees

can take the role of tech-leads, we can do so by means of the

following query-answer (q1):

σ
role=Lead∧exp,Senior(R ▷◁ S) ⊆ ∅ (1)

Similarly, we can express the belief that Ada is either a developer

or a QA engineer using the following query-answer (q2):

σ
emp=Ada∧role=Lead(R) ⊆ ∅ (2)

The first query-answer identifies a subset of 25 possible worlds,

while the second identifies another subset of 24 possible worlds.

Using lineage [26] expressions, we can represent each query-

answer with a Boolean formula. For example, all the possible

Roles (R)

emp role Θ

Ada Lead θ1,1 = 1/3

Ada Dev θ1,2 = 1/3

Ada QA θ1,3 = 1/3

Bob Lead θ2,1 = 1/7

Bob Dev θ2,2 = 3/7

Bob QA θ2,3 = 4/7

Seniority (S)

emp exp Θ

Ada Senior θ3,1 = 1/10

Ada Junior θ3,2 = 9/10

Bob Senior θ4,1 = 1/2

Bob Junior θ4,2 = 1/2

Figure 1: A simple probabilistic database.

worlds identified by q1 must satisfy the following Boolean ex-

pression:

((Role[Ada] , Lead) ∨ (Exp[Ada] = Senior)) ∧ ...

... ∧ ((Role[Bob] , Lead) ∨ (Exp[Bob] = Senior))

Similarly, query-answer q2 can be expressed as follows:

(Role[Ada] , Lead)

The parameters in Θ determine the probability of observing a

certain query-answer. For example, the likelihood of observing

q1 is given by

P[q1 |Θ] = [1 − (θ1,1 · (1 − θ3,1))] · [1 − (θ2,1 · (1 − θ4,1))]

Similarly, the likelihood of query-answer q2 is given by

P[q2 |Θ] = (1 − θ1,1)

Let’s imagine that two independent observers sample two possi-

ble worlds from our probabilistic database, and that the possible

world sampled by the first observer belongs to q1, while the

possible world sampled by the second observer belongs to q2.
Under these assumptions, we say thatq1 andq2 are two exchange-
able [15] query-answers. When the parameters in Θ are known

quantities, the two observations represent two stochastically in-

dependent events. In other words P[q2 |Θ,q1] = P[q2 |Θ] = 2/3.

The same is not true when Θ is not fully known. For example,

let’s now assume that θ1 = (θ1,1,θ1,2,θ1,3) is a latent random

vector, uniformly distributed over the three-dimensional proba-

bilistic simplex. Under these assumptions, the probability of q2
conditioned on q1 can be computed as follows:

P[q2 |Θ \ {θ1},q1] =

∫
Dom(θ1)

P[q2 |θ1] · P[θ1 |Θ \ {θ1},q1] dθ1 ≈ 0.74

Therefore P[q2 |Θ\{θ1},q1] , P[q2 |Θ\{θ1}] andwe can conclude
that q1 and q2 are not independent.

The main goal of this paper is to show how to learn the pa-

rameters of a probabilistic database from observations, using a

collection of exchangeable query-answers as training data.

The remainder of this paper is organized as follows: in Section

2.1 we discuss some required background knowledge in predicate

logic; we introduce the concept of dynamic Boolean expression

(Section 2.2), the base building block for supporting dynamic

variable allocation [48] in our data model. We show how to use

dynamic Boolean expressions to describe the state of a collec-

tion of exchangeable latent variables (Section 2.4) and later we

apply these new concepts to extend the probabilistic database

model from [46], formalizing the definition of “Gamma Proba-

bilistic Database” (Section 3). We conclude our discussion with

experimental results (Section 4).

2.1 Boolean Expressions
Boolean variables take values in the set B = {⊤,⊥}. Let X =
{x1,x2, . . . ,xn } be a finite set of n Boolean variables; we denote

by Asst (X ) the set of all possible assignments to all the variables

in X . A Boolean function [12] over X is a function from Asst (X )
into B. Boolean functions can be represented as Boolean expres-

sions, sentences generated by the following grammar:

ϕ ::= xi = ⊤ | xi = ⊥ | ¬ϕ1 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 (3)

A Boolean expression may consist of any combination of literals

(value-assignments to Boolean variables), logical disjunctions of

expressions (ϕ1 ∨ ϕ2), logical conjunctions (ϕ1 ∧ ϕ2), or logical
negations (¬ϕ1). For the sake of brevity we will often omit the

value-assignment symbol (=), writing xi and x i in place of xi = ⊤
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and xi = ⊥, respectively. Similarly, we will often omit the logical

conjunction symbol (∧), writing ϕ1ϕ2 in place of ϕ1 ∧ ϕ2. A term

is an expression that consists of a conjunction of literals, a clause

is an expression that consists of a disjunction of literals. We will

often represent the elements in Asst (X ) as term-expressions

over X .

A Boolean expression is in negation normal form (or NNF) if
it is negation-free, except for its literals [14]. It is in disjunctive

normal form (DNF) if it consists of a disjunction of terms; it is

in conjunctive normal form (CNF) if it consists of a conjunction
of clauses. A Boolean expression is read-once (RO) if each of its

variables appears in at most one literal [24]. A Boolean function

is read-once if it admits a RO representation. Verifying if such

representation exists takes polynomial time in the size of the

DNF representation of the function [24]. Converting an arbitrary

Boolean expression into NNF is always possible and takes linear

time in the size of the expression. Furthermore, RO expressions
remain such when converted to NNF.

We denote by Var(ϕ) the set of variables that appear in ex-

pression ϕ as literals. Let X be a set of variables that contains

Var(ϕ), we denote by Sat (ϕ,X ) the subset of Asst(X ) where ϕ
evaluates to ⊤, i.e. all the assignments that satisfy expression ϕ.
Notice that X may contain some variables that do not appear in

expression ϕ. The same Boolean function may be represented by

many different Boolean expressions. When two expressions ϕ1
and ϕ2 represent the same Boolean function, we say that they

are logically equivalent and write ϕ1 = ϕ2. We say that two ex-

pressions are independent when they do not share any variable.

We say that they are mutually exclusive if every assignment that

satisfies one expression never satisfies the other. We say that

expression ϕ1 entails expression ϕ2 (and write ϕ1 |= ϕ2 ) when
the expression ¬ϕ1 ∨ ϕ2 always evaluates to ⊤ (that is, when

every assignment that satisfies ϕ1 also satisfies ϕ2). The concepts
of satisfiability, logical equivalence, entailment, mutual exclusion

and independence are similarly defined for Boolean functions.

If ϕ is a Boolean expression and xi is one of its variables,

we denote by ϕ | |xi the expression obtained by replacing all the

instances of variable xi in ϕ with⊤, and simplifying the resulting

expression by applying the following logical equivalences: (i)

(⊤ ∧ ϕ) = ϕ, (ii) (⊥ ∧ ϕ) = ⊥, (iii) (⊤ ∨ ϕ) = ⊤, (iv) (⊥ ∨
ϕ) = ϕ, (v) ¬(⊤) = ⊥, (vi) ¬(⊥) = ⊤. Similarly, we denote by

ϕ | |x i the expression obtained by replacing all the instances of xi
with ⊥. If τ is a term-expression over some variables of ϕ, then
ϕ | |τ denotes the formula obtained by sequentially replacing in

ϕ all the variables that appear in τ . We say that variable xi in
inessential in expression ϕ if Sat (ϕ | |xi ,X ) = Sat (ϕ | |x i ,X ). If xi
in inessential, then ϕ can be rewritten without using xi . If ϕ is

a Boolean expression, we denote by [ϕ] its indicator function, a
function from Asst (Var(ϕ)) into {0, 1} that evaluates to 1 when

ϕ is satisfied and 0 otherwise.

Let ϕ be an expression where some variable xi appears more

than once. A Boole-Shannon expansion [60] allows us to rewrite

ϕ as the disjunction of two mutually exclusive expressions: ϕ =
(xi ∧ ϕ | |xi )∨(x i ∧ ϕ | |x i ). Notice that after the expansion variable
xi appears only once in each term of the disjunction.

In the remainder of this paper we will extend the grammar of

Boolean expressions to allow for the use of categorical variables.

A categorical variable xi is a variable that takes values in some

finite, discrete domainDom(xi ) = {v1, . . . ,vc } with cardinality c
possibly larger than 2. Categorical literals take the form (xi ∈ V ),
where V is a non-empty subset of Dom(xi ). When V contains a

single element, say vj , we will simply write xi = vj . It is easy

to verify that categorical literals respect the following logical

equivalences: (i) (xi ∈ V1) ∧ (xi ∈ V2) = (xi ∈ V1 ∩ V2), (ii)
(xi ∈ V1) ∨ (xi ∈ V2) = (xi ∈ V1 ∪ V2), (iii) ¬(xi ∈ V ) =
(xi ∈ (Dom(xi ) − V )), (iv) (xi ∈ Dom(xi )) = ⊤, (v) (xi ∈ ∅) =
⊥. If ϕ is a Boolean expression where each variable, no matter

if Boolean or categorical, appears at most once, then we say

that ϕ is read-once. Furthermore, we denote by ϕ | |xi ∈ V
∗
the

expression obtained by replacing all the literals in the form (xi ∈
V ) with ⊤, whenever V ∩ V ∗ , ∅, and with ⊥ otherwise. It is

straightforward to generalize Boole-Shannon expansions w.r.t.

categorical variables: ϕ =
∨
vj ∈Dom(xi )((xi = vj ) ∧ (ϕ | |xi = vj )).

We say that a categorical variable xi is inessential in expression

ϕ whenever Sat (ϕ | |xi = v,X ) = Sat (ϕ | |xi = v
′,X ), for every v

and v ′ in Dom(xi ). For economy of notation, in the remainder of

this paper we will treat Boolean variables as categorical variables

having domain cardinality c equal to 2.

D-trees [20] are NNF expressions where conjunctions are only

allowed between subexpressions that are independent, and dis-

junctions are only allowed between subexpressions that are ei-

ther independent or mutually exclusive. We represent d-trees as

sentences generated by the following grammar:

ψ ::= xi ∈ V | ψ1 ⊙ψ2 | ψ1 ⊗ψ2 | ⊕
xi (ψ1, . . . ,ψk ) (4)

If {ψ1, . . . ,ψk } is a collection of k d-trees that represent the

Boolean expressions {ϕ1, . . . ,ϕk }, then the d-tree ⊕
xi (ψ1, ...,ψk )

represents the disjunction

∨k
j=1 ϕ j , under the assumption that

ϕ j |= (xi = vj ) holds true for every j ∈ {1, . . . ,k}. Any Boolean

expression can be represented as a d-tree. Algorithm 1, proposed

in [20], shows a way to translate arbitrary CNF expressions into
well-formed d-trees.

The symbol ⊙ (respectively, ⊗) represents a conjunction (dis-

junction) between independent expressions. The symbol ⊕ rep-

resents a disjunction between mutually exclusive expressions.

If d-trees ψ1 and ψ2 represent the Boolean expressions ϕ1 and
ϕ2, respectively, then the d-tree (ψ1 ⊙ψ2) represents the expres-
sion (ϕ1 ∧ ϕ2), while the the d-tree (ψ1 ⊗ ψ2) represents the

expression (ϕ1 ∨ ϕ2), under the assumption that ϕ1 and ϕ2 are
independent. Intuitively, Algorithm 1 converts the input Boolean

expressionϕ into a collection of mutually-exclusive, read-once ex-

pressions, by repeatedly applying the Boole-Shannon expansion

to the variables that appear more than once (lines 3–6). All the

disjunctions and conjunctions in the resulting read-once expres-

sions are then translated into the ⊗ and ⊙ operators, since they

always combine subexpressions that are pairwise independent.

Algorithm 1: CompileDTree: Compilation of Boolean

expressions into d-tree expressions. Adapted from [20].

Input: A Boolean expression ϕ , in CNF.
Output: A d-tree expression ψ that represents ϕ .

1 CompileDTree(ϕ):
2 Remove redundant clauses from ϕ .
3 if variable x appears more than once in ϕ then
4 for vj ∈ Dom(x ) do
5 ψj ← CompileDTree(ϕ | |x = vj )
6 return ⊕x (((x = v1) ⊙ ψ1), . . . , ((x = vk ) ⊙ ψk ))
7 else if ϕ = ϕ1 ∨ ϕ2 and ϕ1 and ϕ2 are independent then
8 return CompileDTree(ϕ1) ⊗ CompileDTree(ϕ2)
9 else if ϕ = ϕ1 ∧ ϕ2 and ϕ1 and ϕ2 are independent then
10 return CompileDTree(ϕ1) ⊙ CompileDTree(ϕ2)
11 else if ϕ is a literal or a constant then
12 return ϕ
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Notice that the same Boolean expression may be represented

by several different d-trees, depending on the order in which

the Boole-Shannon expansions are performed. For example, the

DNF expression x1x2x3 ∨ x1x2x4 ∨ x1x5 may be represented as

⊕x1 (((x2⊙x3)⊗x5), (x2⊙x4)) or as ⊕
x2 ((x1⊙(x3⊗x5)), (x1⊙x4)).

Definition 1 (Almost Read-Once expressions). A d-tree

ψ is almost read-once (ARO) if the operator ⊗ is only applied to

read-once subexpressions.

Notice that Algorithm 1, by design, always generates ARO
expressions. Every Boolean expression can be compiled into

an almost read-once d-tree, but the size of the d-tree can grow

exponentially large w.r.t. the size of the expression.

2.2 Dynamic Boolean Expressions
In this paper we introduce the concept of dynamic Boolean ex-

pression. A dynamic expression is a regular Boolean expression

defined over the union of two disjoint sets of variables, the reg-

ular variables X = {x1, . . . ,xn } and the volatile variables Y =
{y1, . . . ,ym }. Each volatile variable yj is associated with an acti-

vation condition AC(yi ), a Boolean expression over the variables

in (X ∪Y )− {yi }. We say that a volatile variableyj is active when-
ever its activation condition is satisfied. Regular variables in X
are considered to be always active. A dynamic expression ϕ must

satisfy the following two properties: (i) for every volatile variable

yi and every assignment τ ∈ Sat (¬AC(yi ),Var(AC(yi ))) that
leaves it inactive, yi must be inessential w.r.t. expression ϕ | |τ , (ii)
if any volatile variable yi is essential in the activation expression

of some other volatile variable yj , then AC(yj ) |= AC(yi ) must

hold true. Property (ii) induces a natural partial order ≺a over

the volatile variables, that describes the evaluation dependencies

across the activation conditions: if R(yi ,yj ) ⊂ Y 2
is the relation

that associates each volatile variable yj with all the other volatile

variables yi that are essential in its activation expression, we

define ≺a as the transitive closure of R. It is easy to verify that

≺a is transitive, asymmetric and irreflexive, and that yi ≺a yj
entails AC(yj ) |= AC(yi ).

From now on we use the tuple (ϕ,X ,Y ) to define a dynamic

Boolean expression ϕ with regular variables X and volatile vari-

ables Y . We denote by Dsat (ϕ,X ,Y ) the set of assignments that

satisfy ϕ where all variables are active. More precisely, we define

Dsat (ϕ,X ,Y ) as the set of term-expressions {τ1, . . . ,τm } that
satisfy the following properties:

(1) ∀τ ∈ Dsat (ϕ,X ,Y ) X ⊆ Var(τ ) ⊆ X ∪ Y
(2) ∀τ ∈ Dsat (ϕ,X ,Y ) τ |= ϕ
(3) ∀τ ′ ∈ Sat (ϕ) ∃τ ∈ Dsat (ϕ,X ,Y ) τ ′ |= τ
(4) ∀τ ∈ Dsat (ϕ,X ,Y ) if y ∈ Var(τ ) ∩ Y then τ |= AC(y)
(5) ∀τ ∈ Dsat (ϕ,X ,Y ) if y ∈ Y −Var(τ ) then τ |= ¬AC(y)

For example, if ϕ = (x1 ∨ x2) ∧ (x1 ∨ y1) and AC(y1) = x1,
then ϕ is a valid dynamic expression and Dsat (ϕ, {x1,x2}, {y1})
is equal to {x1x2y1, x1x2, x1x2y1}. Notice that this set provides
a compact representation of Sat (ϕ, {x1,x2,y1}), where variable
y1 is ignored when inactive and therefore inessential.

Proposition 1. All the terms in Dsat (ϕ,X ,Y ) are mutually

exclusive.

∀τ ,τ ′ ∈ Dsat (ϕ,X ,Y ) τ , τ ′ ⇒ τ |= ¬τ ′ (5)

Proof. Let τ and τ ′ be two distinct terms in Dsat (ϕ,X ,Y ).
Let’s assume, by contradiction, that τ ∧ τ ′ is satisfiable (i.e. the
two terms are not mutually exclusive). It follows thatVar(τ )must

be different from Var(τ ′). By property (1) we can conclude that

there is at least one volatile variable that is active in one term and

inactive in the other. Let y be that variable. By properties (4) and

(5) we can conclude that one of the terms entails AC(y), while
the other entails ¬AC(y). This contradicts our initial assumption

that τ and τ ′ are not mutually exclusive. □

Proposition 2. The disjunction of the terms inDsat (ϕ,X ,Y ) is
logically equivalent to the disjunction of the terms in Sat (ϕ,X ∪ Y ).

∨τ ∈Dsat(ϕ,X ,Y ) τ = ∨τ ′∈Sat(ϕ,X∪Y )τ
′

(6)

Proof. Let’s denote by ϕ1 the expression (∨τ ∈Dsat(ϕ,X ,Y )τ ),

and by ϕ2 the expression ∨τ ′∈Sat(ϕ,X∪Y )τ
′
. Since ϕ2 is logically

equivalent to ϕ, by property (2) we can conclude that ϕ1 |= ϕ2.
Let’s now assume, by contradiction, that ϕ2 does not entail ϕ1.
This means that there is at least one term τ ′ in Sat (ϕ,X ∪ Y )
that does not satisfy ϕ1, nor any of the term expressions τ in

Dsat (ϕ,X ,Y ). This contradicts property (3), that states that there
is at least one term τ in Dsat (ϕ,X ,Y ) such that τ ′ |= τ . We can

conclude that ϕ2 |= ϕ1 and that the two expressions are logically

equivalent. □

Proposition 3. Let (ϕ1,X1,Y1) and (ϕ2,X2,Y2) be two dy-

namic Boolean expressions that do not share any variable (i.e.

(X1 ∪ Y1) ∩ (X2 ∪ Y2) = ∅). Let X = X1 ∪ X2 and Y = Y1 ∪ Y2.
The conjunction of ϕ1 and ϕ2 is a well-defined dynamic Boolean

expression (ϕ1 ∧ ϕ2,X ,Y ).

Proof. In order to prove the thesis, we need to identify an ac-

tivation condition for each volatile variable inY = Y1∪Y2. For the
variables in Y1 we keep the original activation conditions from

expression (ϕ1,X1,Y1); similarly, for Y2 we use the original acti-
vation conditions from expression (ϕ2,X2,Y2). In the resulting

dynamic expression (ϕ1 ∧ ϕ2,X ,Y ) the set Dsat (ϕ1 ∧ ϕ2,X ,Y )
is equivalent to the set {τ1 ∧ τ2 |(τ1,τ2) ∈ Dsat (ϕ1,X1,Y1) ×
Dsat (ϕ2,X2,Y2)}. The thesis follows immediately. □

Proposition 4. Let (ϕ1,X ,Y1) and (ϕ2,X ,Y2) be two mutu-

ally exclusive dynamic Boolean expressions that do not share any

volatile variable (Y1 ∩ Y2 = ∅).
If every term in Dsat (ϕ1,X ,Y1) leaves all the variables in Y2

inactive, and every term in Dsat (ϕ2,X ,Y2) leaves all the variables
in Y1 inactive, then the disjunction (ϕ1 ∨ ϕ2,X ,Y1 ∪ Y2) is a well-
defined dynamic Boolean expression.

Proof. If we assign to the volatile variables in Y = Y1 ∪ Y2
the same activation conditions as in expressions (ϕ1,X ,Y1) and
(ϕ2,X ,Y2), then Dsat (ϕ1 ∨ ϕ2,X ,Y1 ∪ Y2) consists of the union
of Dsat (ϕ1,X ,Y1) and Dsat (ϕ2,X ,Y2). □

In order to represent dynamic Boolean expressions as d-trees,

we extend the grammar from Equation 4 with an additional op-

erator ⊕AC(y): ifψ1 andψ2 are two d-trees representing the ex-

pressions ϕ1 and ϕ2, respectively, then the d-tree ⊕AC(y)(ψ1,ψ2)
represents the disjunction ϕ1 ∨ ϕ2, under the assumption that

ϕ1 |= ¬AC(y) and ϕ2 |= AC(y) hold true, and that variable y is

inessential in ϕ1. We define a dynamic d-tree as a collection of

regular d-trees joint by the ⊕AC(y) operator.

Proposition 5. Every dynamic Boolean expression ϕ with reg-

ular variables X , volatile variables Y , and activation conditions

AC(·) can be represented as a dynamic d-tree that satisfies the ARO
property.
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Algorithm 2: CompileDynDTree: Compilation of dy-

namic Boolean expressions into dynamic d-trees.

Input: A dynamic Boolean expression (ϕ , X , Y ).
Output: A dynamic d-tree expression (ψ , X , Y ).

1 CompileDynDTree(ϕ, X , Y ):
2 if Y , ∅ then
3 Let y be one of the maximal elements of Y w.r.t. ≺a

4 ψ1 ← CompileDynDTree((¬AC(y) ∧ ϕ), X , Y − {y })
5 ψ2 ←

CompileDynDTree((AC(y) ∧ ϕ), X ∪ {y }, Y − {y })
6 return (⊕AC(y)(ψ1, ψ2), X , Y )
7 else
8 return (CompileDTree(ϕ), X , ∅)

Proof. Algorithm 2 (CompileDynDTree) transforms an arbi-

trary dynamic Boolean expression into a well-formed dynamic d-

tree. At lines 2–6 the algorithm recursively partitionsAsst (X ∪ Y )
into a collection of disjoint subsets, so that all the assignments in

each subset all share the very same active variables. For each of

these subsets, the algorithm compiles a regular d-tree expression

over the appropriate active variables (line 8). Since the algorithm

invokes the CompileDTree procedure, the resulting d-tree ex-

pression is guaranteed to be almost read-once. Notice that the

disjunction ⊕AC(y)(ψ1,ψ2) at line 6 does not represent a regular
Boole-Shannon expansion, since variable y is made inessential

(i.e. eliminated) only inψ1, and not inψ2.
□

2.3 Boolean Expressions over Statistically
Independent Random Variables

Ifxi is a categorical variablewith domainDom(xi ) = {v1, . . . ,vc }
and θi = (θi,1, . . . ,θi,c ) is a c-vector of non-negative real num-

bers that sum up to 1, we denote by P[xi |θi ] the probability mass

function of a categorical distribution, that assigns value vj to
variable xi with probability θi, j

P[xi |θi ] =
c∏
j=1

θ
[xi=vj ]
i, j (7)

We can think at xi as a categorically distributed random variable

with parametersθi . Notice that when c = 2, Equation 7 represents

the probability mass function of a Bernoulli distribution over the

domain of a Boolean variable. Let X = {xi }i be a collection

of Bernoulli and categorical random variables parametrized by

Θ = {θi }i . It is easy to derive from Equation 7 a probability

distribution over the elements of Asst (X ). Let τ be an arbitrary

term-expression in Asst (X ), its probability can be computed as

follows

P[τ |Θ] =
n∏
i=1

c∏
j=1

θ
[τ |=(xi=vj )]
i, j (8)

Notice that Equation 8 states that all the random variables in X
are statistically independent, i.e. for every pair of distinct variables

x1 and x2, P[x1,x2 |Θ] = P[x1 |Θ] · P[x2 |Θ]. If ϕ is a Boolean ex-

pression over X , we define P[ϕ |Θ] as the probability of sampling

from Asst (X ) an assignment that satisfies ϕ.

P[ϕ |Θ] =
∑

τ ∈Sat(ϕ,X )

P[τ |Θ] (9)

Computing P[ϕ |Θ] is known to be #P-hard in the size of ϕ [66]. If

ψ is a d-tree expression representing ϕ, computing P[ϕ |Θ] takes
polynomial time in the size ofψ [20]. Algorithm 3, adapted from

Algorithm 3: ProbDTree: Computation of the probabil-

ity of a d-tree expression being satisfied. Adapted from

[20].

Input: A d-tree expression ψ , a probability distribution P [· |Θ].
Output: The probability P [ψ |Θ].

1 ProbDTree(ψ , Θ):
2 if ψ = (xi = vj ) then
3 return θi, j
4 else if ψ = ψ1 ⊙ ψ2 then
5 return ProbDTree(ψ1, Θ) · ProbDTree(ψ2, Θ)

6 else if ψ = ψ1 ⊗ ψ2 then
7 return

1−[(1−ProbDTree(ψ1, Θ)) · (1−ProbDTree(ψ2, Θ))]

8 else if ψ = ψ1 ⊕ ψ2 then
9 return ProbDTree(ψ1, Θ) + ProbDTree(ψ2, Θ)

[20], shows how to compute P[ψ |Θ]. Notice that the algorithm
works seamlessly with both regular and dynamic d-tree expres-

sions. Ifϕ1 andϕ2 are two Boolean expressions overX , we denote

by P[ϕ1 |ϕ2,Θ] the probability of sampling from Sat (ϕ2,X ) an as-
signment that also satisfies ϕ1. Such probability can be computed

as follows

P[ϕ1 |ϕ2,Θ] =
P[ϕ1 ∧ ϕ2 |Θ]

P[ϕ2 |Θ]
(10)

We can use Equation 10 to define a proper probability distribution

over Sat (ϕ,X ), the subset ofAsst (X )where expressionϕ is satis-

fied: we simply associate each term τ in Sat (ϕ,X )with the proba-
bility P[τ |ϕ,Θ]. It is easy to verify that

∑
τ ∈Sat(ϕ,X ) P[τ |ϕ,Θ] = 1.

Similarly, we can associate each term τ ′ in Dsat (ϕ,X ,Y ) with
the probability P[τ ′ |ϕ,Θ] and obtain a proper probability dis-

tribution over Dsat (ϕ,X ,Y ). For brevity we will denote both

distributions by P[·|ϕ,Θ].
Let ϕ by a dynamic Boolean expression andψ be one of its al-

most read-once dynamic d-tree representations. In the following

we will show that sampling fromDsat (ϕ,X ,Y )w.r.t. distribution
P[·|ϕ,Θ] takes linear time in the size ofψ . First we show that sam-

pling from the solutions of a read-once expression takes linear

timew.r.t. the size of the expression. Given a read-once expression

ψ and a set of parametersΘ, Algorithm 4 (SampleReadOnceSat)

returns a term expression from Sat (ϕ,Var(ϕ)), sampled w.r.t. the

distribution P[·|ψ ,Θ]. Algorithm 5 (SampleReadOnceUnsat) re-

turns a term from Sat (¬ψ ,Var(ψ )), sampled w.r.t. the distri-

bution P[·|¬ψ ,Θ]. Notice that the two Algorithms invoke each

other at lines 19 and 21. Both Algorithms assume that all the

subexpressionsψi appearing in the input expressionψ have been

pre-annotated with their respective probabilities P[ψi |Θ]. This
computation can be done in linear time using Algorithm 3 and it is

here omitted for the sake of conciseness. Lines 2–7 in Algorithm 4

are straightforward: if we need to sample a term expression from

Sat ((xi ∈ V ), {xi }), we simply sample a value from V according

to the categorical distribution P[·|xi ∈ V ,Θ]; if instead we need

to sample a term from Sat ((ψ1 ⊙ψ2),X ), we simply sample one

satisfying assignment for each expression and then merge the

pair into a single assignment. To better understand lines 8–23,

consider the following Proposition:

Proposition 6. Let {ψ1, . . . ,ψk } be a collection of k mutually

exclusive Boolean expressions and letψ ∗ be the disjunction ∨ki=1ψi .
For every expressionψj in {ψ1, . . . ,ψk } the following holds true

P[ψj |ψ
∗,Θ] =

P[ψj |Θ]∑k
i=1 P[ψi |Θ]

(11)
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Algorithm 4: SampleReadOnceSat
Input: A read-once expression ψ , a probability distribution P [· |Θ].
Output: A term-expression τ sampled from Sat (ψ , X ) with

probability P [τ |ψ , Θ].
1 SampleReadOnceSat(ψ , Θ):
2 if ψ = (xi ∈ V ) then
3 return (xi = v∗), with v∗ sampled from P [xi |xi ∈ V , Θ]

4 else if ψ = ψ1 ⊙ ψ2 then
5 τ1 ← SampleReadOnceSat(ψ1, Θ)

6 τ2 ← SampleReadOnceSat(ψ2, Θ)

7 return τ1 ∧ τ2
8 else if ψ = ψ1 ⊗ ψ2 then
9 w1 ← P [ψ1 |Θ] · P [ψ2 |Θ]

10 w2 ← P [ψ1 |Θ] · (1 − P [ψ2 |Θ])

11 w3 ← (1 − P [ψ1 |Θ]) · P [ψ2 |Θ]

12 ws ← w1 +w2 +w3

13 r ← RndUniform(0,1)

14 if r < w1/ws then
15 τ1 ← SampleReadOnceSat(ψ1, Θ)

16 τ2 ← SampleReadOnceSat(ψ2, Θ)

17 else if r < (w1 +w2)/ws then
18 τ1 ← SampleReadOnceSat(ψ1, Θ)

19 τ2 ← SampleReadOnceUnsat(ψ2, Θ)

20 else
21 τ1 ← SampleReadOnceUnsat(ψ1, Θ)

22 τ2 ← SampleReadOnceSat(ψ2, Θ)

23 return τ1 ∧ τ2

Algorithm 5: SampleReadOnceUnsat
Input: A read-once expression ψ , a probability distribution P [· |Θ].
Output: A term-expression τ sampled from Sat (¬ψ , X ) with

probability P [τ |¬ψ , Θ].
1 SampleReadOnceUnsat(ψ , Θ):
2 if ψ = (xi ∈ V ) then
3 return (xi = v∗), with v∗ sampled from P [xi |xi < V , Θ]

4 else if ψ = ψ1 ⊗ ψ2 then
5 τ1 ← SampleReadOnceUnsat(ψ1, Θ)

6 τ2 ← SampleReadOnceUnsat(ψ2, Θ)

7 return τ1 ∧ τ2
8 else if ψ = ψ1 ⊙ ψ2 then
9 w1 ← (1 − P [ψ1 |Θ]) · (1 − P [ψ2 |Θ])

10 w2 ← (1 − P [ψ1 |Θ]) · P [ψ2 |Θ]

11 w3 ← P [ψ1 |Θ] · (1 − P [ψ2 |Θ])

12 ws ← w1 +w2 +w3

13 r ← RndUniform(0,1)

14 if r < w1/ws then
15 τ1 ← SampleReadOnceUnsat(ψ1, Θ)

16 τ2 ← SampleReadOnceUnsat(ψ2, Θ)

17 else if r < (w1 +w2)/ws then
18 τ1 ← SampleReadOnceUnsat(ψ1, Θ)

19 τ2 ← SampleReadOnceSat(ψ2, Θ)

20 else
21 τ1 ← SampleReadOnceSat(ψ1, Θ)

22 τ2 ← SampleReadOnceUnsat(ψ2, Θ)

23 return τ1 ∧ τ2

Proof.

P[ψj |ψ
∗,Θ] =

P[ψj ∧ψ
∗ |Θ]

P[ψ ∗ |Θ]
=

P[ψj |Θ]

P[ψ ∗ |Θ]
=

P[ψj |Θ]∑k
i=1 P[ψi |Θ]

(12)

□

To sample a term that satisfiesψ1 ⊗ψ2, at lines 8–23 Algorithm 4

samples one expression from the set {(ψ1ψ2), (¬ψ1ψ2), (ψ1¬ψ2)}
w.r.t. distribution P[· | (ψ1 ∨ψ2),Θ] and then proceeds to sample

a satisfying assignment for the selected expression. Notice that

the three expressions are all mutually exclusive, and this makes it

easy to compute P[· | (ψ1 ∨ψ2),Θ], as per Proposition 6. Similar

considerations apply to Algorithm 5.

Algorithm 6 (SampleDSat) generalizes Algorithm 4 to sample

from Dsat (ψ ,X ,Y ), the set of terms that satisfy a dynamic d-

tree expression ψ . Notice that the Algorithm takes linear time

in the size of ψ and works exclusively with almost-read-once

expressions, as the ones generated by Algorithm 2.

2.4 Boolean Expressions over Exchangeable
Random Variables

Letxi be a categorical variablewith domainDom(xi ) = {v1, . . . ,vc }
and αi = (αi,1, . . . ,αi,c ) be a c-vector of real-valued positive

numbers. We denote by P[xi |αi ] the probability mass function

of a Dirichlet-categorical compound distribution.

P[xi |αi ] =

∫
Sc

P[xi |θi ] · p[θi |αi ] dθi (13)

In Equation 13 the probability mass function P[xi |θi ] is defined
as in Equation 7, the symbol Sc denotes the c-dimensional prob-

abilistic simplex (the set of all real-valued c-vectors whose com-

ponents are non-negative and sum up to one), while p[θi |αi ]

denotes the probability density function of a Dirichlet distribu-

tion:

p[θi |αi ] =

∏c
j=1 θ

αi, j−1
i, j

B(αi )
(14)

In Equation 14 the symbol B(·) denotes the generalized Beta func-
tion, which serves as a normalizing factor in p[θi |αi ].

B(αi ) =

∫
Sc

c∏
j=1

θ
αi, j−1
i, j dθi =

∏c
j=1 Γ(αi, j )

Γ(
∑c
j=1 αi, j )

(15)

By Γ(α)we denote the standardGamma function

∫ +∞
0

zα−1e−zdz.
Under the above assumptions, we can describexi as a categorically-
distributed random variable whose parameters are determined

Algorithm 6: SampleDSat
Input: An almost read-once dynamic d-tree expression ψ , a

probability distribution P [· |Θ].
Output: A term-expression τ sampled from Dsat (ψ , X ) with

probability P [τ |ψ , Θ].
1 SampleDSat(ψ , X , Y , Θ):
2 if Y , ∅ and ψ = ⊕AC(y)(ψ1, ψ2) then
3 r ← RndUniform(0,1)

4 if r < (P [ψ1 |Θ]/(P [ψ1 |Θ] + P [ψ2 |Θ])) then
5 return SampleDSat(ψ1, X , Y − {y }, Θ)
6 else
7 return SampleDSat(ψ2, X ∪ {y }, Y − {y }, Θ)
8 else if ψ = ⊕x (((x = v1) ⊙ ψ1), . . . , ((x = vk ) ⊙ ψk ))

then
9 ws ←

∑k
i=1 P [(x = vi ) ∧ψi |Θ]

10 Sample vj ∈ Dom(x ) with prob. P [(x = vj )∧ψj |Θ]/ws

11 return SampleDSat(ψj , X , ∅, Θ)

12 else
13 return SampleReadOnceSat(ψ , Θ)
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by another random variable (θi ) that is Dirichlet-distributed. Ac-
cordingly, we will often refer to p[θi |αi ] as the prior density of

random variable θi , to P[xi |αi ] as the likelihood of random vari-

able xi , and to αi as to a set of hyper-parameters. The integral

in Equation 13 admits a closed solution, that provides a con-

venient way to express the likelihood P[xi |αi ] as a categorical
distribution:

P[xi |αi ] =

∏c
j=1 α

[xi =vj ]
i, j∑c

j=1 αi, j
(16)

Let x̂i = {x̂i [1], . . . , x̂i [q]} be a set of q categorically-distributed

random variables that take values in Dom(xi ) and all share the

same random parameters vector θi . By construction, vector x̂i
is a random variable itself and follows a Dirichlet-multinomial

compound distribution.

P[x̂i |αi ] =

∫
Sc

P[x̂i |θi ] · p[θi |αi ] dθi (17)

In Equation 17 the symbol P[x̂i |θi ] represents the probability

mass function of a multinomial distribution. If we denote by

n(x̂i ,vj ) the number of times random variable xi takes value vj
in x̂i , then P[x̂i |θi ] is defined as follows:

P[x̂i |θi ] =
c∏
j=1

θ
n(x̂i ,vj )
i, j (18)

Under the above assumptions, we say that the random variables

{x̂i [1], . . . , x̂i [q]} are pairwise exchangeable [15] and condition-

ally independent. They are exchangeable because P[x̂i |αi ] is in-
variant w.r.t. to any permutation of the assignments to the vari-

ables in {x̂i [1], . . . , x̂i [q]}. They are conditionally independent

because they are statistically independent whenever the value of

random variable θi is known. In other words, for every pair of

distinct variables x̂i [n1] and x̂i [n2] in x̂i , P[x̂i [n1], x̂i [n2]|θi ] =
P[x̂i [n1]|θi ] · P[x̂i [n2]|θi ]. Both properties follow immediately

from Equation 18. From now on, we will refer to the variables

{x̂i [1], . . . , x̂i [q]} as exchangeable instances of latent variable xi .
The likelihood of a set of instances (P[x̂i |αi ]) can be expressed

as follows

P[x̂i |αi ] =
Γ(
∑c
j=1 αi, j )

Γ(q +
∑c
j=1 αi, j )

·

c∏
j=1

Γ(αi, j + n(x̂i ,vj ))

Γ(αi, j )
(19)

Notice that, by Equation 19, the probability P[x̂i [n1], x̂i [n2]|αi ]
is not equal to P[x̂i [n1]|αi ] · P[x̂i [n2]|αi ]. In other words, when

the value of variable θi is not known, the random variables x̂i [n1]
and x̂i [n2] are not statistically independent. Since the Dirichlet

distribution is a conjugate prior for the multinomial distribution,

the posterior density p[θi |x̂i ,αi ] is another Dirichlet distribution:

p[θi |x̂i ,αi ] =
P[x̂i |θi ] · p[θi |αi ]

P[x̂i |αi ]
=

∏c
j=1 θ

αi, j+n(x̂i ,vj )−1
i, j

B(αi + n(x̂i ))
(20)

In Equation 20 the symbol n(x̂i ) denotes the c-vector (n(x̂i ,v1),
..., n(x̂i ,vc )). The posterior predictive P[xi |x̂i ,αi ] takes a form
similar to Equation 16

P[xi |x̂i ,αi ] =

∫
Sc

P[xi |θi ]·p[θi |x̂i ,αi ]dθi =
∏c

j=1(αi, j+n(x̂i ,vj ))
[xi =vj ]∑c

j=1(αi, j+n(x̂i ,vj ))

(21)

Let X = {xi }i be a collection of random variables, A = {αi }i
be a set of hyper-parameters associated with the variables in X ,

and X̂ = ∪xi ∈X (x̂i ) be a collection of exchangeable instances of

the variables in X . Two distinct random variables in X̂ are sta-

tistically independent when they refer to distinct variables in X ;

otherwise they are exchangeable and conditionally independent

(but not fully independent). Similarly to what we did in the previ-

ous sections, we can build Boolean expressions using the random

variables in X̂ (instead of X ) as literals. We call these formulas

o-expressions (or observed expressions), to distinguish them from

regular expressions that only refer to variables in X . Let ϕ be an

o-expression. We say that ϕ is correlation-free if each random vari-

able appearing in it is statistically independent from all the others.

This means that each variable in X can contribute at most one in-

stance toϕ, and the same instance may possibly appear more than

once. For example, the o-expression (x̂1[1]x̂2[1] ∨ ¬x̂1[1]x̂3[1])
is correlation-free, but the o-expression (x̂1[1]¬x̂1[2]) is not. We

say that two o-expressions ϕ1 and ϕ2 are conditionally indepen-

dent when Var(ϕ1) and Var(ϕ2) do not overlap. We say that they

are independent when P[ϕ1 ∧ ϕ2 |α1,α2] = P[ϕ1 |α1] · P[ϕ2 |α2].

This happens when there are no two variable instances from

ϕ1 and ϕ2 that refer to the same variable in X . For example,

the o-expressions (x̂1[1]¬x̂2[1]) and (x̂1[2]¬x̂2[2]) are condition-
ally independent, but not fully independent; the o-expressions
(x̂1[1]¬x̂2[1]) and (x̂3[1]¬x̂4[1]), on the other hand, are fully in-

dependent. It is easy to see that full statistical independence

implies conditional independence. Let τ be a term expression in

Asst(X̂ − Var(ϕ)), that assigns a value to every random variable

in X̂ that does not appear in o-expression ϕ. By construction, τ
and ϕ are conditionally independent. Let ψ be an almost read-

once d-tree expression, obtained by applying Algorithm 2 to

o-expression ϕ. If ϕ is correlation-free, then so isψ and we can

use Algorithm 6 to sample terms from Sat (ϕ,Var(ϕ))w.r.t. condi-
tional distribution P[·|τ ,A]. Similarly, we can use Algorithm 3 to

compute P[ϕ |τ ,A]. Notice that P[·|τ ,A] assigns to each random

variable in Var(ϕ) a marginal likelihood that is a simple categori-

cal distribution, as per Equation 21. Similar considerations apply

to dynamic Boolean expressions.

3 GAMMA PROBABILISTIC DATABASES
The data model we introduce here is a generalization of the

Dirichlet Probabilistic Databases that were originally proposed

in [46].

Definition 2 (δ -tuples and δ -tables). Let V be a finite set

of two or more tuples that all share the same schema. A δ -tuple xi
is defined as a Dirichlet-categorical random variable, with latent

parametersθi and known hyper-parametersαi , that takes values in
V . A δ -table is a finite collection of pairwise independent δ -tuples,
whose domains do not overlap but all share the same schema.

Example 3.1. Figure 2 depicts two δ -tables, “Roles” (R) and
“Seniority” (S), and one deterministic relation “Evidence” (E). The
first δ -table consists of two δ -tuples, labeled x1 and x2. They
encode a probabilistic hypothesis about the roles served by two

employees in a fictitious company. In the example, each employee

can serve in exactly one of three positions: Tech Lead, Developer

or QA Engineer. The two δ -tuple assign a probability to each one

of these positions. Each δ -tuple is associated with a bundle of

three regular tuples, that defines its domain: the first δ -tuple (x1)
takes values in the set {(Ada, Lead), (Ada, Dev), (Ada, QA)}, the

second one (x2) takes values in the set {(Bob, Lead), (Bob, Dev),

(Bob, QA)}. For convenience each value is annotatedwith a unique

identifier (v1,1, v1,2, etc.). Each δ -tuple xi is also annotated with

a vector of latent parameters’ identifiers θi , together with an

assignment to the hyper-parameters αi , that fully determine its

distribution. When we depict a δ -table in tabular form, we report

the variables’ identifiers in column X , the values’ identifiers in
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Roles (R)

emp role X V Θ A

Ada Lead x1 v1,1 θ1,1 α1,1 = 4.1

Ada Dev x1 v1,2 θ1,2 α1,2 = 2.2

Ada QA x1 v1,3 θ1,3 α1,2 = 1.3

Bob Lead x2 v2,1 θ2,1 α2,1 = 1.1

Bob Dev x2 v2,2 θ2,2 α2,2 = 3.7

Bob QA x2 v2,3 θ2,3 α2,3 = 0.2

Seniority (S)

emp exp X V Θ A

Ada Senior x3 v3,1 θ3,1 α3,1 = 1.6

Ada Junior x3 v3,2 θ3,2 α3,2 = 1.2

Bob Senior x4 v4,1 θ4,1 α4,1 = 9.3

Bob Junior x4 v4,2 θ4,2 α4,2 = 9.7

Evidence (E)

role Φ

Lead e1

Dev e2

QA e3

Figure 2: A simple Gamma Probabilistic Database.

column V , the latent parameters in columns Θ and the hyper-

parameters in column A. A term expression in Asst({x1,x2})
represents a possible world for δ -table “Roles”, i.e. a deterministic

relation with exactly two tuples. For example, the term (x1 =
v1,1) ∧ (x2 = v2,2) identifies the possible world of δ -table “Roles”
where Ada is a tech lead and Bob is a developer. Overall, δ -table
“Roles” can be seen as a probability distribution over the collection

of its six possible worlds. Each possible world τ ∈ Asst({x1,x2})
has probability P[τ |A] defined as follows:

P[τ |A] =
n∏
i=1

©­«
∏c

j=1 α
[τ |=(xi=vj )]
i, j∑c
j=1 αi, j

ª®¬ (22)

Definition 3 (Gamma Probabilistic Database). A Gamma

Probabilistic Database is a finite collection of δ -tables and regular,
deterministic relations.

The two δ -tables R and S in Figure 2, together with the deter-

ministic table E, exemplify a well-formed Gamma Probabilistic

Database. In the following, with limited abuse of notation, we

use X to denote the set of all the δ -tuples in a Gamma database

({xi }i ), V to denote the set of all the value-identifiers ({vi, j }i, j ),
Θ to denote the set of all the latent parameters ({θi }i ) and A
to denote the set of all the hyper-parameters ({αi }i ). For the
sake of clarity, and without lack of generalization, we are going

to assume that all the tuples in the deterministic relations are

annotated with a unique identifier ({e1, e2, ...}).
The elements of Asst(X ) represent the possible worlds of a

Gamma database. If ϕ is a Boolean expression with Var(ϕ) ⊆ X ,

then the probability of sampling a possible world that satisfies ϕ
is given by the following Equation

P[ϕ |A] =
∑

τ ∈Sat(ϕ,X )

P[τ |A] (23)

Just like regular, deterministic databases, Gamma Probabilistic

Databases support the execution of queries. We represent queries

using positive set-based relational algebra operators [1]: σc (se-
lection), π (projection), ▷◁ (natural join). A Boolean query is a

relational algebra expression whose last operation is π∅(·), the
projection over the empty schema ∅. If R is a deterministic rela-

tion instance, the operator π∅(R) returns the value ⊤ whenever

R contains at least one tuple, and the value ⊥ when R is empty.

If q is a Boolean query, we denote by P[q |A] the probability of

sampling a possible world where q evaluates to ⊤. Notice that

possible worlds are well-formed deterministic database instances,

hence query evaluation is well defined. It is well-known that

Boolean queries can be represented in terms of Boolean expres-

sions encoding their lineage [8, 26]. Lineage expressions are built

according to the following rules:

(1) the lineage of a deterministic tuple ei is the term ei = ⊤.
(2) the lineage of a δ -tuple value vi, j is the term xi = vi, j .
(3) if t is a tuple obtained by joining tuples t1 and t2, with

lineage ϕ1 and ϕ2, then the lineage of t is ϕ1 ∧ ϕ2.
(4) if t is a tuple with lineage ϕ, then σc (t) has lineage ϕ when

t satisfies condition c , and lineage ⊥ otherwise.

(5) if deterministic relation R contains tuples {t1, . . . , tn }with
lineage expressions {ϕ1, . . . ,ϕn }, then expression π∅(R)
has lineage ∨ni=1ϕi .

Example 3.2. Let q be a Boolean query defined as follows

q = π∅(σrole=Lead∧exp=Senior(Roles ▷◁ Seniority))

The lineage of q is ((x1 = v1,1)(x3 = v3,1)) ∨ ((x2 = v2,1)(x4 =
v4,1)). Notice that q identifies the set of possible worlds where

there is at least one senior tech lead.

If q is a Boolean query and ϕ is its lineage expression, the

probability of sampling a possible world where q evaluates to ⊤

(that we denote as P[q |A]) is equal to the probability of sampling

a possible world where ϕ is satisfied (P[ϕ |A]). This means that we

can use Algorithms 2 and 3 to compute P[q |A], or Algorithm 6

to sample a possible world where q evaluates to ⊤. Furthermore,

we can compute the posterior density of any latent parameter θi
in Θ w.r.t. the observation of query q being satisfied [46]:

p[θi |ϕ,A] =
c∑
j=1

p[θi |(xi = vj ),A] · P[(xi = vj )|ϕ,A] (24)

By construction, the literals of a lineage expression ϕ may refer

to either deterministic tuples or to δ -tuples. If all the literals

in ϕ refer to deterministic tuples, then P[ϕ |A] must be equal to

1 and we say that ϕ is a deterministic lineage expression. If at

least one the literals in ϕ refers to δ -tuple, we say that ϕ is a non-

deterministic lineage expression. Notice that all the considerations

we made in Section 2.3 remain valid for lineage expressions.

From now on, for the sake of conciseness, we will identify

Boolean queries with their lineage expressions (and often write

ϕ in place of q). When a Boolean query ϕ represents an observed

event that is used to derive a posterior density, as in Equation 24,

we call ϕ a query-answer.

A Belief Update [46] is the act of re-parametrizing the prob-

abilistic database to minimize the Kullback–Leibler (KL) diver-

gence between the database itself and its posterior distribution

w.r.t. some query-answer ϕ. The KL-divergence is defined as

follows:

KL
div(A′,A) =

n∑
i=1

∫
Dom(θi )

p[θi |ϕ,A] · ln

(
p[θi |ϕ,A]

p[θi |A′]

)
dθi

(25)

In response to observing ϕ, a Belief Update replaces the old pa-

rameters A with a new set of parameters A∗, defined as follows

A∗ = argmin

A′
KL

div(A′,A) (26)

As shown in [46],A∗ can be computed by matching the sufficient

statistics of p[Θ|A∗] with the ones of p[Θ|ϕ,A]. To do so, one
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should pick A∗ to satisfy the following set of constraints:

∀θi, j
∫

1

0

ln(θi, j ) · p[θi, j |α
∗
i ] dθi, j =

∫
1

0

ln(θi, j ) · p[θi, j |ϕ,αi ] dθi, j

(27)

The integrals on the left-hand side of Equation 27 admit a closed

solution (𭟋(αi, j )−𭟋(
∑c
j=1 αi, j ), where𭟋(·) denotes theDigamma

function). Furthermore, [46] shows that the expectations on the

right-hand side of Equation 27 can be computed in polynomial

time in the size of the database wheneverϕ is a hierarchical query

[13]. Beyond hierarchical queries, computing a Bayesian update

remains a #P-hard problem in the general case.

3.1 Exchangeable query-answers
The framework proposed in [46] defines Belief Updates under the

assumption that all query-answers are Boolean-valued, correlation-

free, and pair-wise independent. In this paper we relax the lat-

ter assumption, allowing the use of exchangeable query-answers,

represented by Boolean expressions that are conditionally inde-

pendent. Before doing so, we formalize the concepts of cp-table
[63] and o-table. LetH be a Gamma probabilistic database, and

q be a non-Boolean query. Running q againstH produces a cp-
table q(H), that is a regular relation instance where each tuple

is annotated with its lineage expression [63].

Example 3.3. Let q be a non-Boolean query defined as follows

q = π
role
(σ

role,QA∧exp=Senior(Roles ▷◁ Seniority))

Its execution against the Gamma probabilistic databaseH from

Figure 2 produces the cp-table q(H) shown in Figure 3. Notice

that the two lineage expressions in q(H) are not independent.

role Φ

Lead (x1 = v1,1 ∧ x3 = v3,1) ∨ (x2 = v2,1 ∧ x4 = v4,1)

Dev (x1 = v1,2 ∧ x3 = v3,1) ∨ (x2 = v2,2 ∧ x4 = v4,1)

Figure 3: The cp-table generated by query q(H).

Both deterministic relations and δ -tuples qualify as cp-tables,
since they have well-defined lineage expressions. Furthermore,

cp-tables are closed w.r.t. the operators σ , π and ▷◁: running a

query against a set of cp-tables returns another cp-table. Let’s
denote by Φ = {ϕ1, . . . ,ϕr } the set of lineage expressions in a

cp-table. It is easy to see that each item in Φ represents a Boolean

query. Therefore, in the following we will model cp-tables as
finite collections of Boolean queries, and identify non-Boolean

queries by the lineage expressions they generate (accordingly,

we will often write Φ in place of q).
Let ϕ and χ be two independent lineage expressions, gener-

ated by two distinct, independent cp-tables. We denote by oχ (ϕ)
the o-expression obtained by replacing in ϕ each literal in the

form (xi ∈ V ) with the expression (x̂i [χ ] ∈ V ). In other words,

oχ (ϕ) replaces every random variable in ϕ with an exchange-

able instance of it, defined as per Section 2.4. We say that the

o-expression oχ (ϕ) is an exchangeable observation of expressionϕ,
identified by χ . In order to generate exchangeable observations,

we extend our query language with a new relational algebra

operator, the sampling-join (▷◁::).

Definition 4 (Sampling-Join, ▷◁::). Let R1 and R2 be two cp-
tables. The expression (R1 ▷◁:: R2) denotes a many-to-one natural

join, where the join attributes form a key for the right-hand side R2

(hence, each tuple in R1 can have at most one matching tuple in R2).
Let t1 be a tuple from R1, with lineage χ , and t2 be a tuple from R2,
with lineage ϕ. If t3 is a tuple in (R1 ▷◁:: R2), obtained by joining t1
with t2, then its lineage is defined as (χ ∧ oχ (ϕ)). In other words,

every tuple in (R1 ▷◁:: R2) represents an exchangeable observation

of a tuple from R2.

If χ is a deterministic lineage expression, then (χ ∧ oχ (ϕ))
is a well-formed o-expression, since χ has no random variables.

Furthermore, if χ is an o-expression (generated by another sam-

pling join), then (χ ∧ oχ (ϕ)) is a well-defined dynamic Boolean

o-expression (as per Section 2.2), with regular variables Var(χ )
and volatile variables Var(oχ (ϕ)), where all the volatile variables
share the same activation condition χ .

Definition 5 (o-table). We define o-tables as cp-tables whose
lineage formulas consist of o-expressions, that can be either regular

or dynamic Boolean expressions.

The sampling-join between a deterministic relation and a cp-
table always generates an o-table. The same applies to sampling-

joins between o-tables and cp-tables. Furthermore, under the

assumptions stated in Properties 3 and 4, o-tables are closed

w.r.t. the projection (π ), join (▷◁) and selection (σ ) operators. In
other words, we allow the join of two o-tables only when they

are independent; we also allow the use of projection over an o-
table only when it merges tuples that are mutually exclusive and

have activation conditions that respect the assumptions stated

in Property 4. We say that an o-table is safe when all its lineage

expressions Φ are pairwise conditionally independent.

Example 3.4. Let q(H) be the cp-table defined in Example 3.3,

and E be the deterministic relation from Figure 2. The sampling

join (E ▷◁:: q(H)) returns the o-table shown in Figure 4. Notice

that the two lineage expressions in (E ▷◁::q(H)) are conditionally
independent, therefore the o-table is safe.

role Φ

Lead

e1 ∧ (x̂1[e1] = v1,1 ∧ x̂3[e1] = v3,1) ∨ ..
.. ∨ (x̂2[e1] = v2,1 ∧ x̂4[e1] = v4,1)

Dev

e2 ∧ (x̂1[e2] = v1,2 ∧ x̂3[e2] = v3,1) ∨ ..
.. ∨ (x̂2[e2] = v2,2 ∧ x̂4[e2] = v4,1)

Figure 4: The o-table generated by query (E ▷◁:: q(H)).

Let Φ = {(ϕ1,X1,Y1), . . . , (ϕr ,Xr ,Yr )} be the set of lineage ex-
pressions generated by a safe o-table. Notice that the elements of

Φ can be either regular or dynamic Boolean expressions. Collec-

tively, they identify a set of possible worldsW for the underlying

database:W = {
∧r
i=1 τi |(τ1, ..,τr ) ∈ (Dsat (ϕ1,X1,Y1) × . . . ×

Dsat (ϕr ,Xr ,Yr ))}. While we cannot use Algorithm 6 to sample

directly fromW w.r.t. the conditional distribution P[·|Φ,A], it is
straightforward to design a Gibbs sampler [23] to perform approx-

imate sampling overW. To do so, we model each expression ϕi
in Φ as a random variable that takes values in Dsat (ϕi ,Xi ,Yi ).
We initialize the sampler by assigning to each ϕi a satisfying

assignment τi from Dsat (ϕi ,Xi ,Yi ), chosen at random. We de-

note byw0 the conjunction of all these satisfying terms. Notice

that w0 is a term-expressions inW. In order to sample a new

possible world w.r.t. P[·|Φ,A] we build a Markov chain of pos-

sible worlds, having P[·|Φ,A] as stationary distribution. If wn
is some arbitrary possible world inW, its successor wn+1 in

the chain is obtained by choosing at random one expression ϕi
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in Φ, and re-assigning a satisfying term to it, sampled from the

conditional distribution P[·|w−in ,A]. The symbolw−in denotes the

conjunction of all the terms inwn with the exclusion of τi , the
one assigned to expression ϕi . As discussed in Section 2.4, we

can use Algorithm 6 to sample a term from Dsat (ϕi ,Xi ,Yi ) w.r.t.
distribution P[·|w−in ,A].

Proposition 7. The probability of transitioning from possible

worldwn to possible worldwn+1 is equal the probability of tran-

sitioning from wn+1 to wn . Thus, the proposed Markov chain of

possible worlds is reversible.

Proof. Let’s denote by τi and τ
′
i the terms assigned to expres-

sion ϕi by possible worldswn andwn+1, respectively. The proba-

bility of transitioning fromwn town+1 is given by (P[τ ′i |w
−i
n ,A] ·

P[wn |A]). Similarly, the probability of transitioning fromwn+1
to wn is given by (P[τi |w

−i
n+1,A] · P[wn+1 |A]). Since wn and

wn+1 only differs in the value assigned to ϕi , we can infer that

w−in = w
−i
n+1. Furthermore P[wn |A] = (P[τi |w−in ,A] · P[w

−i
n ,A])

and P[wn+1 |A] = (P[τ ′i |w
−i
n ,A] · P[w

−i
n ,A]). The thesis follows

immediately. □

Since it is always possible to transition between two arbitrary

possible worlds inW in a finite number of steps, the proposed

Markov chain is irreducible. Furthermore, the chain is aperiodic,

since the choice of the expression ϕi to be used in a transition is

made at random.

If Φ is a set of lineage expressions generated by a safe o-table,
we can use the proposed Gibbs sampling strategy to perform an

approximate Belief Update w.r.t. the event of observing all the

expressions in Φ being satisfied. Such Belief Update should mini-

mize the KL-divergence between the database and the posterior

distribution P[Θ|Φ,A]. As discussed in Section 3, the parameter-

vector A∗ that minimizes the KL-divergence w.r.t. the posterior

distribution is the one that satisfies the following set of con-

straints:

∀θi, j
∫

1

0

ln(θi, j ) · p[θi, j |α
∗
i ] dθi, j =

∫
1

0

ln(θi, j ) · p[θi, j |Φ,αi ] dθi, j

(28)

Let
ˆW be a finite collection of possible worlds that satisfy all the

expressions in Φ, sampled from P[·|Φ,A] with the Gibbs method

described above. In order to approximateA∗, we can approximate

the expectations on the right-hand side of Equation 28 as follows:∫
1

0

ln(θi, j )p[θi, j |Φ,αi ] dθi, j ≈
1

| ˆW|

∑
ŵi ∈ ˆW

∫
1

0

ln(θi, j )p[θi, j |ŵi ,A] dθi, j

(29)

Since p[θi, j |ŵi ,A] is a Dirichlet density function, the integrals on
the right-hand side of Equation 29 always admit a closed solution

(the same closed solution that we identified for the left-hand side

of Equation 27).

3.2 Latent Dirichlet Allocation with
Query-Answers

In this Section we show how to express the Latent Dirichlet

Allocation model (or LDA [6]) in terms of query-answers. Let’s

assume that the text corpus is stored in a deterministic relation

called “Corpus” (C) with three attributes, dID, ps and wID, that

represent a document-identifier, a positional index, and a word-

identifier, respectively. If there areD documents of average length

L, then relation C has (D · L) records. LetW denote the size of

the vocabulary (i.e. the number of distinct values in column

wID in C). We model each topic as a δ -tuple with cardinality

W and parameters’ vector β , stored in a δ -table called “Topics”

(T ). If there are a total of K topics, then relation T consists of

K δ -tuples, for a total of (K ·W ) tuples. We assume that all

the hyper-parameters β in T are set to the same fixed value β∗,
imposing a symmetric Dirichlet prior over the topics’ definition.

Finally, we use an additional δ -table “Documents” (D) to store the
composition of each document in terms of topics. Each δ -tuple
in D represents a document, has cardinality K (the number of

topics) and parameters’ vector α . Furthermore, we assume that

all the hyper-parameters α in D are set to the same fixed value

α∗. Figure 5 exemplifies our proposed schema. For the sake of

brevity, the Figure does not include the latent parameters Θ, nor
the assignment to the hyper-parameters A.

Corpus (C )

dID ps wID Φ

D1 1 The e1,1
D1 2 Cat e1,2
D1 3 Naps e1,3
... ... ... ...

D2 1 Once e2,1
D2 2 Upon e2,2
... ... ... ...

DD L End eD,L

Topics (T )
tID wID Φ A

T1 Abate b1 = v1 β1,1
T1 Abdicate b1 = v2 β1,2
... ... ... ...

T1 Zealous b1 = vW β1,w
... ... ... ...

Tk Abate bk = v1 βk,1
... ... ... ...

Tk Zealous bk = vW βk,w

Documents (D)

dID tID Φ A

D1 T1 a1 = t1 α1,1
D1 T2 a1 = t2 α1,2
... ... ... ...

D1 TK a1 = tK α1,K
... ... ... ...

DD T1 aD = t1 αD,1

... ... ... ...

DD TK aD = tK αD,K

Figure 5: A Gamma Probabilistic Database for Latent
Dirichlet Allocation.

The Latent Dirichlet Allocation model can be formulated by

the following non-Boolean query:

q
lda
= π

dID, ps, wID
((C ▷◁:: D) ▷◁::T ) (30)

Let q = (d,p,w) be an arbitrary tuple in q
lda
(H), that identifies

document ad , position ed,p and word vw . The lineage of tuple q
is

ϕd,p,w =
K∨
i=1

[
(ad [ed,p ] = ti ) ∧ (bi [(ad [ed,p ] = ti )] = vw )

]
(31)

This lineage expression simply states that the word vw , observed

at position ed,p in document ad , must have been generated by

exactly one of the K topics defined in relation T . Notice that

ϕd,p,w is a dynamic Boolean expression: the number of observed

instances associated with random variable bi (that represents the
number of words observed for the i-th topic) varies dynamically

with the values assigned to variable ad [ed,p ]. Since qlda(H) has
exactly one tuple for each document d and position p, it is easy
to see that q

lda
generates a safe o-table. If we apply the Gibbs

sampling strategy discussed in Section 3.1 to q
lda
(H), the result-

ing sampling algorithm is functionally equivalent to the popular
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collapsed Gibbs sampler proposed by [27]. It is sufficient to com-

pute a Belief Update w.r.t. δ -tablesT andD, as per Equation 28, to

obtain the definitions of the topics and their allocation over the

text corpus. It is important to point out that q
lda
(H) only states

the statistical assumptions of the LDA model, without providing

implementation details for any specific inference method. We be-

lieve that this clear separation between probabilistic models and

inference algorithms is a very desirable property of the frame-

work, that can ease many of the data management problems that

arise with uncertain data. In this paper we decided to focus on

the translation of safe o-tables into Gibbs samplers, but it would

be plausible to support alternative inference methods, such as

Variational Inference [5] or Geometric Inference [71]. We leave

these directions open for future investigation.

4 EXPERIMENTS
In this section we present experimental results to validate our

framework in terms of (i) correctness and (ii) expressive power.

Correctness. In the first experiment we use the Latent Dirich-

let Allocation model, in its formulation discussed in Section 3.2,

to verify the soundness of our approach in a quantitative way.

LDA is fairly popular, and a plethora of well-established imple-

mentations and datasets are available for it. For our experiments

we chose to compare our prototype against Mallet [44], a general-

purpose NLP toolkit that includes a highly-optimized implemen-

tation of the collapsed Gibbs sampler originally proposed by [27].

The two implementations are evaluated against two large text

collections published
1
by the UCI Machine Learning Repository

[17]: NYTIMES and PUBMED. The NYTIMES dataset consists

of D=299,752 news articles, that collectively contain about 100

million tokens, with a vocabulary ofW =102,660 distinct words.

The PUBMED dataset consists of D=8,200,000 research paper ab-

stracts, for a total of about 730,000,000 tokens, over a vocabulary

ofW =141,043 distinct words. On both datasets we hold-out 10%

of the documents, selected at random, for testing and use the re-

maining documents for training the model. For both datasets we

set the number of topics (K ) to 20, the symmetric Dirichlet prior

over the documents’ composition (α∗) to 0.2 and the symmetric

Dirichlet prior over the topics’ composition (β∗) to 0.1. In Figures

6a and 6b we plot the perplexity of both the training- and the test-

set against the progress of the Gibbs sampler. The perplexity over

the training-set (Figure 6a) quantifies the ability of the model to

fit the training data. The perplexity over the test-set (Figure 6b)

quantifies the ability of the model to classify unseen data. In both

cases lower values of perplexity represent better performance.

Deriving the exact perplexity for LDA requires to iterate over all

the possible assignments of the model’s latent variables, making

the computation intractable [49]. To perform our experiment we

approximate the perplexity using the empirical likelihood esti-

mator provided with Mallet (evaluate-topics); the technical
details of the estimator are discussed in [68]. Since we use the

very same estimator to evaluate both our prototype and Mallet’s

implementation of LDA, our comparison is fair and unbiased.

From this experiment we can draw two conclusions: First,

the two implementations of LDA under exam are comparable

in performance, both in terms of predictive power and bare

computational efficiency. Second, this experiment highlights the

impact that dynamic Boolean expressions have on the perfor-

mance of our framework. As we mentioned in Section 3.2, the

second sampling-join in Equation 30 generates the dynamic term

1https://archive.ics.uci.edu/ml/datasets/bag+of+words

(bi [(ad [ed,p ] = ti )] = vw ) in the lineage expression of Equation

31. In practical terms, this means that the total number of ex-

changeable observations for all the random variables in the set

{bi }i is equal to (D · L), the total number of tokens in the dataset

(or, equivalently, the total number of records in relation “Corpus”

from Section 3.2). This mirrors the Gibbs sampler designed in

[27]. To appreciate the advantage of this approach, let’s consider

the following alternate formulation of LDA, that avoids the use

of dynamically-allocated random variables, and therefore the use

of any dynamic Boolean expression:

q′
lda
= π

dID, ps, wID
(C ▷◁:: (D ▷◁T )) (32)

Relations C , D and T are defined as in Section 3.2. Let q′ =
(d,p,w) be an arbitrary tuple inq′

lda
(H), that identifies document

ad , position ed,p and word vw . By design, the lineage of tuple q′

is free of any dynamic term:

ϕ ′d,p,w =
K∨
i=1

[
(ad [ed,p ] = ti ) ∧ (bi [ed,p ] = vw )

]
(33)

In practical terms, this means that total number of exchangeable

observations for the variables in {bi }i is equal to (K ·D ·L). While

this over-abundance of latent variables in q′
lda

does not prevent

the model from learning meaningful topics, the time required

for training is increased by a factor proportional to K . In our

experiments we observed a performance degradation factor of

10.46x. In conclusion, this first experiment validates our proto-

type in terms of correctness and shows that dynamic Boolean

expressions are essential to make our framework competitive

with highly-optimized tools like Mallet.

Expressive power. Unlike Mallet, our framework is designed

to support a variety of Bayesian models, beyond LDA. To prove

its expressive power, in our second experiment we formulate

the Ising model [41] in terms of query-answers. The Ising model

was originally proposed in the field of statistical mechanics as a

mathematical model of ferromagnetism. It defines a probability

distribution over a lattice of binary random variables, that take

values in the set {−1, 1}. We call these variables sites and we use

the lineage expression sx,y to identify each site by its position

(x ,y) in the the lattice. The Ising model postulates that the value

taken by each site is influenced by two factors: First, the action

of an external magnetic field, that determines the prior proba-

bility of each site taking value +1 or −1; second, the action of

ferromagnetic interactions that tend to align contiguous sites to

the same value. This model has been used as a simple tool for

image denoising [41]. In this context the lattice of sites repre-

sents a bitmap, the external field represents the evidence (i.e. a

black-and-white image contaminated with some high-frequency

white noise), and the ferromagnetic interaction acts as a smooth-

ing filter that separates the noise from the ground truth (i.e. the

original image). In our framework an image can be represented

with a δ -table having one binary δ -tuple per site:

Image (I )

x y v Φ A

0 0 +1 s0,0 = +1 α0,0,1
0 0 −1 s0,0 = −1 α0,0,−1

... ... ... ... ...

xmax ymax +1 sxmax,ymax
= +1 αxmax,ymax,1

xmax ymax −1 sxmax,ymax
= −1 αxmax,ymax,−1
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Figure 6

We denote by xmax and ymax the number of rows and columns

in the lattice. The set of hyper-parameters {αx,y,v }x,y,v en-

code the noisy input-image. We use a collection of exchangeable

query-answer to encode the effects of the ferromagnetic interac-

tions. Let’s define the two deterministic relations L1(x1,y1) and
L2(x2,y2), all containing one record per each location in the lat-

tice. We can encode the ferromagnetic interactions between each

site and its right neighbor using the following query-answer:

V1(x1,y1,v) := πx1,y1,v (σx1=x∧y1=y (L1 ▷◁:: I ))

V2(x2,y2,v) := πx2,y2,v (σx2=x∧y2=y (L2 ▷◁:: I ))

q := πx1,y1 (σ(x1=x2)∧y2=(y1+1)(V1 ▷◁ V2))

Similar query-answers can be used to encode the interactions

with the other three neighbors. Figures 6c and 6d exemplify

the use of the Ising model to clean up a black-and-white image.

The evidence (Figure 6c) is obtained by flipping each bit in the

original image with a probability of 0.05. The image in Figure 6d

is obtained by performing a maximum a posteriori estimation of

the model. We used the prior αx,y = (3, 0) for the black pixels

and αx,y = (0, 3) for the white ones. This second experiment

highlights our framework ability to express general probabilistic

programs in terms of query-answers. Section 8 of [46] offers

additional examples.

5 RELATEDWORK
We start our review of the related works from the classic proba-

bilistic programming languages like Stan [10], PyMC3 [57], Ed-

ward [65], or Pyro [4]. With respect to our framework, these

languages are more mature and offer greater flexibility in the

data model, supporting both continuous and discrete random

variables and a wide range of probability distributions. In terms

of inference, they often rely on general-purpose MCMC samplers

like [18] and [31], or black-box variational inference [39, 54].

Unlike our framework, generic probabilistic programming lan-

guages are designed to access the training data in the form of

flat files or array-shaped in-memory data structures from envi-

ronments like R or Numpy, remaining mostly disconnected from

existing data management systems and entirely oblivious to the

underlying structure of the data.

The database research community has been very active on

improving the support for machine learning (ML) workloads.

One line of work focuses on “factorized learning”, a method that

exploits join-level optimizations to speed-up common gradient-

descent ML tasks, expressed as relational queries. Factorized

learning has been successfully used to optimize linear models

[11, 40, 58], polynomial regression, ridge regression, factorization

machines and decision trees [37, 59]. For future work, we see

factorized learning systems as a candidate platform to execute

variational inference for our framework. Monte Carlo methods

have found many successful applications in the context of prob-

abilistic databases. Good examples include the Karp-Luby ap-

proximation algorithms for model counting [35, 36], the MC-SAT

slice sampler for relational domains proposed by [53], the factor-

ized Monte-Carlo database proposed in [69] and, more recently,

the simulation-oriented distributed systems like simSQL [9] and

BUDS [22]. Systems like [69] do not offer the same flexibility as

generic probabilistic programming, since the factorization of the

model is encoded in the database itself and not in the queries.

Similar considerations apply to simSQL and BUDS; while these

systems can be used to implement Gibbs samplers, the actual

code of the sampler must be provided by the end-user. For exam-

ple, to support distributed execution the authors of [9] settled for

the implementation of an uncollapsed LDA sampler. Another line

of work from the database community focuses on integrating the

support for array-shaped data into the standard relational model,

either for scientific data [34, 62], or for matrix- and tensor-shaped

data generated by ML workloads [42, 70]. All these systems are

fully relational at heart, and therefore compatible with our ap-

proach. The authors of [2] propose a probabilistic programming

framework based on Datalog, that supports both recursion and

continuous distributions. Unlike our work, no inference method

is provided. The authors of [50] show how finite exchangeability

can be used to support tractable, lifted inference.

6 CONCLUSIONS AND FUTUREWORK
We introduced a novel probabilistic programming framework,

where probabilistic programs are expressed as sets of exchange-

able query-answers. Our system can encode non-trivial models

like Latent Dirichlet Allocation, and derive a functional collapsed

Gibbs sampler for it. We plan to expand our work in several di-

rections: First, we will investigate the use of alternative inference

methods, like variational [5] and geometric inference [71]. Sec-

ond, we plan to integrate our framework into a proper database

system, as done in [45, 46]. Third, we want to extend the frame-

work to allow the explicit modeling of causality [55, 56], with

distinct operators for conditioning and intervention, and explore

the use of continuous variables, in the spirit of [29] and [28].
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