
A Supervised Skyline-Based Algorithm for Spatial Entity
Linkage

Suela Isaj

Aalborg University

Aalborg, Denmark

suela@cs.aau.dk

Vassilis Kaffes

University of the Peloponnese

Tripoli, Greece

vkaff@uop.gr

Torben Bach Pedersen

Aalborg University

Aalborg, Denmark

tbp@cs.aau.dk

Giorgos Giannopoulos

IMSI/Athena R. C.

Athens, Greece

giann@athenarc.gr

ABSTRACT
The ease of publishing data on the web has contributed to larger

and more diverse types of data. Entities that refer to a physical

place and are characterized by a location and different attributes

are named spatial entities. Even though the amount of spatial en-

tity data from multiple sources keeps increasing, facilitating the

development of richer, more accurate and more comprehensive

geospatial applications and services, there is unavoidable redun-

dancy and ambiguity. We address the problem of spatial entity

linkage with SkylineExplore-Trained (SkyEx-T), a skyline-based
algorithm that can label an entity pair as being the same physical

entity or not. We introduce LinkGeoML-eXtended (LGM-X), a
meta-similarity function that computes similarity features specif-

ically tailored to the specificities of spatial entities. The skylines

of SkyEx-T are created using a preference function, which ranks

the pairs based on the likelihood of referring to the same entity.

We propose deriving the preference function using a tiny training

set (down to 0.05% of the dataset). Additionally, we provide a

theoretical guarantee for the cut-off that can best separate the

classes, and we show experimentally that it results in a near-

optimal F-measure (on average only 2% loss). SkyEx-T yields an

F-measure of 0.71-0.74 and beats the existing non-skyline-based

baselines with a margin of 0.11-0.39 in F-measure. When com-

pared to machine learning techniques, SkyEx-T is able to achieve

a similar accuracy (sometimes slightly better one in very small

training sets) and more importantly, having no-parameters to

tune and a model that is already explainable (no need for further

actions to achieve explainability).

1 INTRODUCTION
Web data is growing continuously in size and heterogeneity,

providing rich and diverse information about different entities.

Nowadays, we can rely on different sources for the same infor-

mation, making the process of obtaining data more transparent

and source-independent. Some of this web data is connected to a

location, like a geographical point, or an address, thus, referring

to a physical spatial entity. A spatial entity, apart from pointing

to a location, is also characterized by an identity, which is con-

structed by a set of attributes, such as the name, the type, the

phone number, reviews of people, etc. For example, “Restaurant

Ambiance" is a spatial entity, located at (55.6,7.9), with the phone

+4511111111 and the tags “restaurant" and “cosy". Different and

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

independent sources can provide information about the same

spatial entity. However, this independence of the sources and

the ease of publishing data has also brought redundancy and

sometimes even ambiguity. Several records of the same spatial

entity might exist in the same source or across different sources.

Continuing the previous example, another source might contain

similar information about “Restaurant Ambiance", but now lo-

cated at (55.7,7.8), with a different phone +4522222222 and the

tags “restaurant" and “classy". The process of deriving which

records belong to the same real-world physical spatial entity is

known as spatial entity linkage.
The problem of spatial entity linkage is important for the re-

search fields that work with spatial entities such as influence

maximization in geo-social graphs, geo-recommender systems,

trajectory pattern mining, and for real world applications such as

social networks, logistics, geomarketing, cadastral management,

tourism, and leisure. Linked spatial entities contain a richer and

integrated representation of the real entity. Additionally, spatial

entity linkage can also improve the quality of the data for the

industries that use spatial entities as themain input for their activ-

ities, such as marketing companies, tax offices, etc. Hence, spatial

entity linkage is a problem that involves multiple stakeholders

in different fields. Unfortunately, research on spatial entity link-

age has not progressed at the same rate as the entity resolution

research. Many papers focus on entity linkage of human entities

[18, 19, 21, 25, 30, 65], while spatial entity linkage has only been

superficially addressed, usually contributing only a tool and leav-

ing the decisions to be made by the user, rather than providing

an automatic algorithm [6, 34, 42]. These papers give few details

about the accuracy of their methods and make arbitrary deci-

sions to choose thresholds and scoring functions. Only a handful

of the recent papers in the field [2, 24, 29, 31, 32] provide solid

progress on the accuracy of the models. Isaj et al. [29, 31] use

preference functions to form skylines and rank the pairs based on

the likelihood of referring to the same physical entity, but they

choose them in an ad-hoc fashion. On the other hand, [2, 24, 32]

propose domain-specific similarity functions and exploit them

directly or within machine learning algorithms to solve the task;

however, they do not investigate the explainability of the pro-

posed models. In the present paper, combining and extending

two different approaches (skyline-based and machine learning),

we propose a supervised skyline-based algorithm SkyEx-T that

exploits domain-specific similarity features, can be successfully

trained even on a very small training dataset and produces ac-

curate and easily explainable results. We make the following

contributions:

Series ISSN: 2367-2005 220 10.48786/edbt.2022.11

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.11

• We propose a supervised skyline-based algorithm SkyEx-T
that can learn a preference function and a cut-off using a

very small training set (down to 0.05% of the full dataset).

• We provide a theoretical guarantee for the cut-off selection

in SkyEx-T, and we show experimentally that the selected

cut-off yields a near-optimal F-measure.

• We incorporate domain knowledge via the domain-specific

LGM-X (inter-Linking Geo-spatial entities using Machine

learning - eXtended) similarity-based features, increasing

the effectiveness of SkyEx-T.
• We evaluate SkyEx-T on two real-world dataset of spatial

entities originating from four different sources and achieve

an F-measure that significantly beats the existing baselines

(0.11-0.39 margin).

SkyEx-T only shares the ranking of pairs as a common concept

with our previous approaches [28, 29, 31], while the underlying

algorithms are different. First, SkyEx-T is supervised and trains a

preference function. Second, the selection of the cut-off is entirely

novel, differently from SkyEx-F [31], which did an exhaustive

search for the threshold or SkyEx-D [29], which is density-based.

Third, the preference function is more expressive, given that

the features can be prioritized. Finally, SkyEx-T is much more

efficient, which results into reducing the runtime from hours to

a few seconds or minutes.

We study the related work in Section 2, formulate the problem

of spatial entity linkage in Section 3, describe the main compo-

nents of our solution, introduce LGM-X, and propose SkyEx-T
in Section 4, provide the experimental results in Section 5, and

finally, conclude and point to future work in Section 6.

2 RELATEDWORK
The entity linkage problem is addressed widely in several papers,

across various domains [12, 19, 25, 30, 36, 38, 59]. There are

several terms related to this problem, such as data integration,

entity resolution, deduplication, etc. The entity linkage process

consists of three main steps: blocking, pairwise comparison, and
pair labeling. Our work is focused on pairwise comparison and

the pair labeling.

Entity resolution. A vast amount of research in entity reso-

lution focuses on humans. Textual attributes [48], profile photos

[18], network of friends [36, 39], publications [37, 65, 66], social

media posts [25, 30] are used to distinguish the pairs of enti-

ties that might refer to the same individual. The spatial entity

resolution problem shares only the basics with the human en-

tity resolution problem in terms of comparing attributes such

as name, keywords, etc., while the recent advances of the entity

resolution research focus entirely on human networks, human ac-

tivities, temporal and spatial traces of humans, etc. Consequently,

they cannot apply to spatial entities.

Spatial data integration. In contrast to the general entity

resolution problem, spatial data integration specifically matches

and merges spatial objects. Spatial objects are fully determined

by their geographical coordinates (e.g. maps data) while a spatial

entity, besides being geo-located, is identified by a combination

of attributes (name, phone, categories, reviews of visitors, ad-

dress, rating, etc). There are several papers that integrate spatial

objects which come from sensors and radars [1, 4, 62, 64] but

these solutions are not applicable to spatial entities since they

by considering only the geographical information, often end up

merging records of different entities into one. Schafers et al [57]

produce an integrated view of road segments by matching them

in terms of the shape and length and the name of the street if

available, but this solution works only roads. Safra et al [54] pro-

pose location-based joins for spatial data and focus entirely on

the location of the objects. While they discuss the existence of

semantics for these spatial objects (hotels, shopping malls), they

do not deal with other attributes than locations.

Spatial entity blocking. There are several blocking tech-

niques that use textual attributes to group similar entities [20, 45,

46, 60], but few considering spatial entities and their geographi-

cal coordinates [6, 29, 31, 42]. In most of the works, the spatial

entities are grouped using user-defined distance thresholds. For

example, in the work of Karam et al. [34], the spatial entities that

are at most 5 m apart are grouped. Morana et al. [42] defines

a threshold based on the type of spatial entities, e.g., 50 m for

restaurants, but 500 m for parks. Following the same idea, the au-

thors of [29, 31] propose an algorithm, QuadFlex, that is inspired
from a quadtree and can adapt the radius based on the density

of the spatial entities in an area. In this way, the algorithm will

be more restrictive for spatial entities in the city center, setting

a smaller radius than spatial entities in the countryside. Spatial

blocking techniques are not in the scope of this work, so we use

the state of the art QuadFlex approach [29, 31] to create our pairs.

Spatial entity pairwise comparison. There is research on

spatial data integration, focusing on integrating spatial objects,

which, in contrast to spatial entities, are identified only by their

geographic coordinates and sometimes their shape [1, 4, 57, 62].

Spatial entities might share the same spatial object while still

belonging to different entities, e.g., a restaurant and a hairdresser

are located in the same geographical point, but on different floors

of the same building. As a result, we need to compare the at-

tribute values of spatial entities in order to decide whether they

belong to the same physical entity or not. The more similar two

spatial entities are, the more likely they refer to the same physi-

cal spatial entity. To measure the similarity, the attribute values

of the entities are compared, and similarity features are calcu-

lated. For name similarities, one could use Levenshtein distance,

Jaccard similarity, cosine similarity [25, 30], or more advanced

metrics such as a Soft-TFIDFmeasure combined with Levenshtein

similarity [43].

String similarity based comparison of spatial entities is used by

several works in the literature emphasize mainly on the textual

aspect of spatial entities to perform linkage, under the assumption

of e.g. lack [24] or unreliability [16] of other attributes, including

spatial ones. Santos et al. [56] present a thorough overview of 13

different string similarity functions for pairwise comparing pairs

of toponyms and deciding whether they correspond to the same

entity and perform an extended comparison of these functions

on the accuracy achieved. Additionally, the computed similarity

scores are used as training features in state-of-the-art supervised

machine learning algorithms for classification. However, these

metrics are general and not designed explicitly for spatial entities

as discussed next.

The metrics proposed in Davis et al. [17] and Deniz et al. [35]

are specifically designed for the name attributes of spatial entities

that mostly correspond to variations of the procedures used for

generic name matching. Davis et al. [17] present a hybrid, three-

stages method, i.e., the DAS similarity measure, that combines

features from token-based and edit-based approaches. Deniz et

al. [35] propose a four-stage process that takes into account ac-

centuation and other language-specific aspects of spatial entities

names. Recchia et al. [50] evaluates the set of algorithms pre-

sented in Christen et al. [11] on place names listed in the GEOnet

221

Names Server, that contains romanized entity names from 11

different countries. Based on their study, no similarity measure

achieves the highest accuracy in all datasets. A different approach

is followed in the problem of business places deduplication by

Delvi et al. [16]. In the proposed solution, authors identify words

of higher significance (core terms) that use to build a name model.

This model is properly combined with a spatial context model

using an unsupervised learning algorithm. Although the above

methods attempt to incorporate the specifics of spatial entities

name attributes, they do not achieve state-of-the-art accuracy

results in the entity matching problem.

Deep learning methods for name entity matching are also be-

ing proposed in the literature. Santos et al. [55] present a method,

based on Siamese RNNs, for addressing the task of entity match-

ing. Their method yields better accuracy results than traditional

classifiers on similarity-based training features. Alexis et al. [3]

propose an Attention-based network model and a hybrid scheme

model that combines individual machine and deep learning ap-

proaches and achieves the highest accuracy reported results on

the Geonames toponym dataset. However, these methods require

large amounts of data to properly engineer and train deep net-

work model architectures, which does not apply in our setting.

In our recent works [24, 32], we propose the LGM-Sim meta-

similarity function, i.e. a series of processing and matching steps

that can be applied on top of any baseline similarity function, that

incorporates domain knowledge for the toponym interlinking

problem. We demonstrate that applying our method on top of

several baseline similarity functions improves the interlinking

effectiveness by a large extent. Moreover, we utilize training fea-

tures derived from LGM-Sim within classifiers, showing a further

increase in accuracy. These works of ours, as well as the baseline

work of [56], which we compare against and demonstrate large

increase in interlinking accuracy, consider exclusively name simi-
larity features and ignore the spatial features. Thus, in the current

work, we reutilize the LGM-Sim meta-similarity as component

of our method, extending its application both in the names and

the addresses of POIs.

Spatial entity pair labeling. After having pairwise similari-

ties and features, the pairs need to be labeled as positive if they

belong to the same physical entity or as negative, otherwise. Se-

hgal et al. [58] stand between spatial data integration and spatial

entity integration because their entities have names, geographical

coordinates, and types but they refer to spatial objects represent-

ing landscapes (lakes, hills, rivers, etc.). They used supervised

learning to calculate the similarity of the spatial entity/object

types and another classifier that learns the weights of each simi-

larity in a training set and assigns the class accordingly. Similarly,

Karam et al. [34] and Berjawi et al. [6] assign weights to the

similarity scores of the attributes: Berjawi et al. [6] arbitrarily

constructs a similarity score based on an average of the attribute

similarities, while Karam et al. [34] use the coefficient
2

3
for

the name, the coordinates and the type of the entity and the

coefficient
1

3
for the website, the address and the phone num-

ber. Morana et al. [42] uses textual and semantic attributes and

takes the labeling decision based on belief theory [49]. Isaj et al.

[28, 29, 31] propose a skyline-based labeling method that instead

of assigning weights, construct a preference function using the

Pareto dominance concept and separate the classes by defining

the number of skylines. However, their proposed algorithms need

the number of skylines 𝑘 as a parameter, which has to be found

either through exhaustive experiments, or by a computationally

heavy unsupervised technique. Moreover, the preference func-

tion is chosen heuristically, without having a procedure in place

that would choose the best preference function for the under-

lying dataset. SkyEx-T improves this significantly because it is

supervised, learns the preference function and the cut-off from

a very small training set, and provides guarantees for applying

the learned model on the test set. Furthermore, all the research

mentioned above [6, 29, 31, 34, 42, 58] uses general similarity

metrics, sometimes with slight tuning [58], which are not very

effective on spatial entities.

Summary. While we can observe significant advances in the

field of entity resolution, the spatial entity linkage has only been

explicitly addressed in very few papers. The research in spatial

entity pairwise comparison has proposed effective spatial metrics

for measuring the similarity between entities [16, 35, 55] and the

current state of the art [2, 24, 32] achieves high accuracy without

the need to train deep networks. In contrast to the current spatial

entity linkage works, our proposed solution SkyEx-T uses LGM-
X features, which extend the state of the art LGM-Sim features

used for toponym interlinking [24, 32]. Moreover, for spatial

pair labeling, instead of using weights like in [6, 34, 58], we use

the Pareto operator similarly to Isaj et al. [28, 29, 31]. However,

differently from [28, 29, 31], besides the Pareto operator, we

can also prioritize features, and the preference function is not

chosen heuristically; instead, we propose a supervised algorithm

for selecting the preference selection and the cut-off using very

little labeled data.

3 PROBLEM DEFINITION
In this section, we introduce definitions and formulate the prob-

lem of Spatial Entity Linkage. We define a spatial entity as:

Definition 3.1. A spatial entity 𝑠 is a uniquely identified entity,

located in a geographical point with coordinates ⟨𝑙𝑜𝑛𝑔, 𝑙𝑎𝑡⟩, and
described by a set of attributes 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑛} with values

{𝑣𝑎1 , 𝑣𝑎2 , ..., 𝑣𝑎𝑛 }.

Example 3.2. An example of a spatial entity is a restaurant

located in a point ⟨55.7, 8.9⟩ with the name “Restaurant Amelie”,

with the phone number of +4511111111, the address “Vestergade

23”, and categories such as {food, coffee, cosy}. In this case, the

name, the phone number, the address, and the categories are the

attributes 𝑎1, 𝑎2, 𝑎3, and 𝑎4, respectively. Similarly, the values

of the attributes are 𝑣𝑎1 = “Restaurant Amelie”, 𝑣𝑎2 = +45111111,

and 𝑣𝑎3 = {food, coffee, cosy}.

To discover which spatial entities belong to the same physical

entity, we need to compare them. The spatial entities can be

compared to each other in an exhaustive way (Cartesian product),

or, to reduce the number of comparisons, they can be grouped in

blocks based on one or more attributes [20, 31, 45, 46, 60]. Within

the blocks, the spatial entities are compared pairwise with respect

to their attribute values. From the pairwise comparison, we obtain

features, defined as follows:

Definition 3.3. A feature 𝑋𝑎𝑛
(𝐴×𝐴 ↦→[0, 1]) is a function that

computes the similarity between the values 𝑣
𝑎𝑛
𝑖

and 𝑣
𝑎𝑛
𝑗

of the

attribute 𝑎𝑛 for the spatial entities 𝑠𝑖 and 𝑠 𝑗 , respectively.

Note that from the definition, there can be more than one

computed features for the same attribute, for example:

Example 3.4. Let us consider two spatial entities 𝑠1 and 𝑠2
named “Amelie” and “Ami”, respectively. Let 𝑎1 be the name at-

tribute. Thus, we have 𝑣
𝑎1
1

= “Amelie” and 𝑣
𝑎1
2

= “Ami”. We can

222

compute several similarities on the name attribute, e.g., Jaccard,

cosine, Jaro-Winker similarity. Let 𝑋
𝑎1
1
, 𝑋

𝑎1
2
, and 𝑋

𝑎1
3

be the Jac-

card, cosine, and Jaro-Winker computed similarities of 𝑣
𝑎1
1

and

𝑣
𝑎1
2
. Therefore, we have 𝑋

𝑎1
1

= 0.6, 𝑋
𝑎1
2

= 0.6123724, and 𝑋
𝑎1
3

=

0.8333333.

For two spatial entities, we compute 𝑁 features for their 𝑛

attributes and obtain a featured pair of spatial entities:

Definition 3.5. A featured pair of spatial entities ⟨𝑠𝑖 , 𝑠 𝑗 , 𝑋 ⟩
is formed by two spatial entities 𝑠𝑖 and 𝑠 𝑗 and their

features 𝑋 = {𝑋𝑎1
1
, 𝑋

𝑎1
2
, 𝑋

𝑎2
3
...., 𝑋

𝑎𝑛
𝑁
}, where the 𝑁 fea-

tures are computed for their respective pairs of attribute

values {⟨𝑣𝑎1
𝑖
, 𝑣

𝑎1
𝑗
⟩, ⟨𝑣𝑎2

𝑖
, 𝑣

𝑎2
𝑗
⟩, ..., ⟨𝑣𝑎𝑛

𝑖
, 𝑣

𝑎𝑛
𝑗
⟩} for the attributes

{𝑎1, 𝑎2, ..., 𝑎𝑛}.

Note that we need methods to compare the different attributes

of the spatial entities. In the next sections, we will discuss simi-

larity metrics and machine-learning techniques to compare the

spatial entities (the features). The intuition behind the compar-

ison is that the more similar two spatial entities are regarding

their features, the more likely it is that they refer to the same

physical spatial entity. Thus, we want to assign a label to each

pair; a positive label if the entities of the pair have high values

of similarities and are the same physical spatial entity, and a

negative label if they are different physical spatial entities.

Definition 3.6. A labeled pair of spatial entities ⟨𝑠𝑖 , 𝑠 𝑗 , 𝑋,𝐶𝑖 𝑗 ⟩
is formed by a featured pair of spatial entities and their class 𝐶𝑖 𝑗 .

The class 𝐶𝑖 𝑗 takes the value 1 (𝐶𝑖 𝑗 = 1) when the pair ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ is
likely to refer to the same physical spatial entity, or 0 (𝐶𝑖 𝑗 = 0),

otherwise.

Problemdefinition: For any given pair of spatial entities ⟨𝑠𝑖 , 𝑠 𝑗 ⟩,
the Spatial Entity Linkage problem determines whether 𝑠𝑖 and 𝑠 𝑗 re-
fer to the same physical spatial entity or not, meaning that 𝐶𝑖 𝑗 = 1

or 𝐶𝑖 𝑗 = 0, respectively.
In other words, the Spatial Entity Linkage problem aims to

transform unlabeled pairs of spatial entities into labeled ones. In

the next sections, we introduce our solution that computes the

features of the pairs and labels them based on the similarity of

the spatial entities.

4 SKYEX-T WITH LGM-X
In this section, we introduce our approach to solve the spatial en-

tity linkage problem, SkyEx-T with LGM-X features, which uses

domain-specific features for expressing the similarity between

spatial entities and a skyline-based algorithm trained on a tiny

dataset for labeling the pairs of spatial entities.

4.1 Overview of SkyEx-T with LGM-X
We briefly introduce the main components and the workflow of

our proposed approach (Fig. 1). We start with a set of pairs of

spatial entities. In order to obtain this set of pairs, we can either

construct the full Cartesian product of our spatial entities, or use

some of the proposed blocking techniques to reduce the number

of candidates. Since the construction of this set of candidate pairs

is orthogonal to our method, we use the blocking technique as in

Isaj et at. [29, 31]. We apply LGM-X meta-similarity function (de-

tailed in Section 4.2) to produce domain-specific features, which

better captures the characteristics of spatial entity names (Step 1

in Fig. 1). LGM-X produces featured pairs of spatial entities. We

start by reducing the dimensionality of the featured pairs, with

respect to the distinct features they contain (Step 2 in Fig. 1 and

detailed in Section 4.3.1). This process aims to keep only a subset

of (most informative with regards to the spatial entities’ similar-

ity) features for each pair. From this step we obtain featured pairs

but with fewer features. Then, in Step 3, we learn the preference

function 𝑝 (Sections 4.3.2 and 4.3.3) and the cut-off 𝑐𝑡 (Section

4.3.4) by training SkyEx-T, which are needed to label the pairs.

Finally, in Step 4, we use the preference function 𝑝 to put the

pairs in the test set into skylines, and the cut-off 𝑐𝑡 to separate

the ranked pairs and assign them into a class (Section 4.3.5). This

final step produces the labeled pairs.

4.2 Feature extraction with LGM-X
In this section, we present the LGM-X (inter-Linking Geo-spatial

entities using Machine learning - eXtended), our proposed train-

ing features to feed the SkyEx-T algorithm for better captur-

ing and exploiting the different attributes of spatial entities and

their geographical coordinates. In the following subsections, we

present a summary of the LGM-Sim [24] algorithm, a meta-

similarity function that aims to capture meaningful entity char-

acteristics and incorporate the specifics of spatial entities at-

tributes related to their name and address. By meta-similarity,

we mean a series of processing and matching steps that can be

applied on top of any baseline similarity function (e.g. Leven-

shtein, Jaro-Winkler) and produce a similarity score between

two strings. Consequently, we discuss the training features we

introduce, i.e. features derived from the proposed meta-similarity

and additional entity specific features, that enhance the process

of similarity matching.

4.2.1 LGM-SimOverview. LGM-Sim aims at properly split-

ting the strings of compared attributes of the spatial entities into

discrete lists of terms, with each list containing terms of different

semantics. Each of these lists are assigned individual weighting

scores to create an ensemble for deciding whether two entities

refer to the same physical entity or not. This approach has the

advantage that pays more attention to entity terms that are of

greater significance in discovering the correct correlation among

the examined entities; correspondingly, less significant terms

contribute less to the final decision, i.e., assigned a small weight

score, or not at all, e.g. frequent terms like cafe, park or church.

LGM-Sim takes as input the strings of the two name attributes

and first pre-processes them in order to remove accentuation

and punctuation marks. Next, a process decides whether the

terms within the two strings should be alphanumerically sorted.

Afterwards, the algorithm initiates the process of splitting the

initial strings into three separate lists of terms each, i.e., (i) two

base lists, (ii) two mismatch lists and (iii) two frequent terms
lists. It firsts identifies frequent terms within the two strings and

moves them to the respective lists, i.e., the frequent terms lists.
This way, it isolates the least significant terms that are the least

important in determining whether the two strings refer to the

same entity or not. The other two types of lists will contain terms

that potentially are of higher significance in determining whether

two strings describe the same entity. Specifically, the base lists
will contain terms from the two strings that (loosely) match to

each other and the mismatch lists will contain the rest of the

terms that failed to match through the two strings. Finally, for

each type of list, individual similarity scores are computed which

are differently weighted in order to produce the final similarity

score of the two spatial entities. All the parameters of LGM-Sim,

i.e., comparison thresholds and individual score weighting, are

automatically learned on a training dataset. Additionally, the set

223

Figure 1: Overview of SkyEx-T with LGM-X

of frequent terms are automatically gathered by the corpus of

spatial entities contained in this training dataset.

4.2.2 LGM-X Features. In this work, we adopt the set of

training features presented in Santos et al. [56] and Giannopoulos

et al. [24] and further extend it with entity-specific defined fea-

tures, that concern numerical and spatial aspects of the compared

entities. Specifically, we encode several generic similarity mea-

sures, like Damerau-Levenshtein, Jaro-Winkler, Jaccard N-Grams

etc., as features for the classifiers. Moreover, we consider a set of

training features where the custom sorting function of LGM-Sim

is performed on the utilized set of generic similarity measures.

This function decides whether to sort the terms of each string

alphanumerically or not, before computing the similarity score

of the entity names. Further, we generate a corresponding set of

features by applying LGM-Sim on top of the basic generic simi-

larity measures. Additionally, we consider the three individual

similarity scores computed on the three types of individual lists

that LGM-Sim splits the two entity names into. Note that the

above set of features are applied to the name and address (only

the text part of it) attributes of spatial entities. In addition to these,

we define features that concern numerical and spatial aspects

of the compared entities. Specifically, the numerical distance of

the address numbers of the compared spatial entities form one

integer feature, whereas the Euclidean distance of their geograph-

ical coordinates form one float feature. Eventually, we consider

six groups of training features (Table 1): (i) the basic similarity

features as presented in Santos et al. [56]; (ii) the sorted similarity

features; (iii) the LGM-Sim based similarity features; (iv) the indi-

vidual scores on the split of the attributes produced by applying

LGM-Sim based Damerau-Levenshtein similarity on respective

attributes; (v) the numerical feature on address number; and (vi)

the spatial feature on geographical coordinates. For the latter

two feature types, we consider normalized distances between the

numerical values for a POI pais, which can be straightforwardly

handled also as a similarity score, in line with the rest of the string

similarity features. Note that if an attribute is missing for one or

both entities in a given pair, the corresponding LGM-X features

would return 0, given that there is no measurable similarity for

that specific attribute in the given pair.

We note that, in the current setting, no (hyper)parameter tun-

ing or feature engineering efforts are required for producing the

aforementioned features: the parameters (weights, thresholds)

of LGM-Sim have been learned in our previous work [24], on a

toponyms dataset (Geonames), so LGM-Sim is used in the current

dataset “as is”
1
. Further, applying a series of baseline similarity

functions on the names and the addresses of POI pairs of our set-

ting is also straightforward. Thus features (i), (ii) and (iii) above

can directly be produced without any tuning or feature engi-

neering effort. Similarly, producing distance scores on the street

number and the geographical coordinates is also straightforward.

Table 1: The LGM-X training features for spatial entities

Feature Type
Attribute Name Address Coordsname no

Basic similarities 14 14

Sorted similarities 13 13

LGM-Sim based sims. 13 13

Individual sim. scores 3 3

Numerical 1

Spatial 1

4.3 Pair labeling with SkyEx-T
In this section, we present SkyEx-T (Skyline Explore - Trained),

our skyline-based algorithm which labels the candidate entity

pairs as positives when there is a high likelihood that they belong

to the same spatial entity, and negative, otherwise. In the follow-

ing subsections, we will detail how SkyEx-T learns the preference

function 𝑝 in a small training set, selects a cut-off ratio 𝑐𝑡 , and

then ranks the data based on the preference 𝑝 and separates the

classes according to 𝑐𝑡 .

4.3.1 Reducing the dimensionality. Each pair is de-

scribed as a set of 𝑁 LGM-X features {𝑋𝑎1
1
, 𝑋

𝑎1
2
, 𝑋

𝑎2
3
, ..., 𝑋

𝑎𝑛
𝑁
}

that are computed on the values of the attributes {𝑎1, 𝑎2, ..., 𝑎𝑛}
as described in Section 4.2.2. Note that the LGM-X features al-

ways return a value for every pair (see above). To have a simpler

notation, from now on, we will not use the superscript of the

attribute in the features but will simply write {𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑁 }.
Some of these features are highly correlated, given that they mea-

sure the similarity of the same attributes, e.g., measuring Jaccard

and cosine similarity on the names of the spatial entities. To re-

move highly correlated features, we use the mutual information
measure (MI) [15] to detect the dependency between two vari-

ables. MI can detect different relationships, and it is not limited

1
Actually, we can consider the above procedure as a case of “transfer learning”

where a model’s hyperparameter tuning is performed on a completely different

dataset (in this case, Geonames). As we can see next in the evaluation results, the

LGM-Sim features also perform well in the current setting, indicating a successful

reutilization of previous findings and data in a different setting

224

to linear correlation (like Pearson’s correlation). MI measures the

similarities of the joint distribution of the two variables. If 𝑝𝑥 (𝑥)
and 𝑝𝑦 (𝑦) are the marginal probability density functions of vari-

ables 𝑥 and 𝑦, respectively, and 𝑝𝑥,𝑦 (𝑥,𝑦) is the joint probability
function of both 𝑥 and 𝑦, then the MI of 𝑥 and 𝑦 is defined as:

𝑀𝐼 (𝑥,𝑦) =
∫
𝑥

∫
𝑦

𝑝𝑥,𝑦 (𝑥,𝑦)𝑙𝑜𝑔
𝑝𝑥,𝑦 (𝑥,𝑦)
𝑝𝑥 (𝑥)𝑝𝑦 (𝑦)

(1)

After the features are pairwise compared using MI, we iden-

tify those pairs of features that are highly correlated. Then, we

remove one from each of the highly correlated pairs; we choose

to remove the feature with the largest mean correlation overall.

Using the remaining features, we need to build a model to predict

the class of the pairs.

4.3.2 Preference functions. We propose having a function

that is expressed as a preference of feature values; the pairs that

are ranked better with respect to the preference function are the

pairs that are likely to refer to the same physical entity.

Definition 4.1. A preference function 𝑝 : 𝑃 ↦→𝑃𝑘 is a function

that takes as input a set of pairs 𝑃 = {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} and outputs the

partially ranked (some pairs share the same rank) list of pairs

𝑃𝑘 = {⟨𝑠𝑖 , 𝑠 𝑗 , 𝑘⟩} with respect to their feature values, where

𝑘 ∈ [1,𝑚] is the rank of a pair ⟨𝑠𝑖 , 𝑠 𝑗 ⟩, and 𝑚 is the maximal

rank.

The preference function ranks the pairs from the most pre-

ferred pairs to the least preferred ones, meaning that the first

rank pairs are more likely to correspond to the same spatial entity

than the rest. To show that a pair ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ is preferred over an-

other pair ⟨𝑠 ′
𝑖
, 𝑠 ′
𝑗
⟩, we will use the symbol ≻, so ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ≻ ⟨𝑠 ′𝑖 , 𝑠

′
𝑗
⟩.

The definition of the preference is based on the definition of the

skylines. We use a definition similar to [29]:

Definition 4.2. A skyline of level𝑘 is a set of pairs 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (𝑘) =
{⟨𝑠𝑖 , 𝑠 𝑗 ⟩} ranked in the 𝑘𝑡ℎ position according to the preference

function 𝑝 such that for each pair ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ∈ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (𝑘) and for

each pair ⟨𝑠 ′
𝑖
, 𝑠 ′
𝑗
⟩ ∈ 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (𝑘 ′) where 𝑘 ′ > 𝑘 , ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ≻ ⟨𝑠 ′𝑖 , 𝑠

′
𝑗
⟩.

Let us now further detail the components of the preference

functions: the preferred feature direction and the preference opera-
tors, defined as below:

Definition 4.3. The preferred feature direction 𝑑 () : 𝑋 ↦→N is

a function that takes as input the list of values of a feature 𝑋 ,

orders them preferring either high values (ℎ𝑖𝑔ℎ()) or low values

(𝑙𝑜𝑤 ()), and outputs the rank for each feature.

𝑑 () is a generic way to express the preferred feature direction,

but in practice, we will use ℎ𝑖𝑔ℎ() or 𝑙𝑜𝑤 () based on the feature.

Instead of coefficients, the preference function only specifies if we

prefer high or low values of a feature. For example, for a pair to be

labeled as positive (they are the same physical spatial entity), we

would prefer a high Levenshtein similarity, so ℎ𝑖𝑔ℎ(𝑋levenshtein).
Note that we can construct a very basic preference function by

using the preferred feature direction on only one feature. For

example, 𝑝 = ℎ𝑖𝑔ℎ(𝑋levenshtein) will rank the pairs 𝑃 based on

their Levenshtein similarity and assign them to skylines. If we

want to include more than one preferred feature direction in a

preference function, we will need the preference operators. We

introduce two types of preference operators: the Pareto operator
and the priority operator:

Definition 4.4. The Pareto operator

a
is a binary operator

connecting two preferred feature directions according to the

Pareto optimality concept.

The Pareto optimality [8] concept is widely used in multi-

criteria optimization problems. A combination of (𝑥1, 𝑥2, ..., 𝑥𝑘) is
Pareto optimal when there is no other combination that can increase
an 𝑥𝑣 without decreasing at least one 𝑥𝑤 . In our context, the Pareto
operator prefers one solution over the rest if it is better in terms

of at least one feature value, while for the remaining feature

values it is either the same or better. Let us illustrate this concept

with an example:

Example 4.5. Let us consider the pair of spatial entities ⟨𝑠1, 𝑠2⟩,
which are compared with regards to their name. We have two

computed features that indicate the similarity of the name:𝑋1=0.7

and 𝑋2=0.3. Since a high similarity is likely to indicate a match

of the pairs, we prefer high values. Hence, the preferred feature

direction is ℎ𝑖𝑔ℎ() for both features. Given that we have no in-

formation on whether we should prefer one feature over another,

we choose to connect these features with the Pareto operator, so

ℎ𝑖𝑔ℎ(𝑋1)
a
ℎ𝑖𝑔ℎ(𝑋2). This means that for another pair ⟨𝑠3, 𝑠4⟩

to be preferred over ⟨𝑠1, 𝑠2⟩ (⟨𝑠3, 𝑠4⟩ ≻ ⟨𝑠1, 𝑠2⟩), ⟨𝑠3, 𝑠4⟩ has to
be better at least in one of the features values, while not being

worse in the other features. For example {𝑋1 = 0.7, 𝑋2 = 0.4},
{𝑋1 = 0.9, 𝑋2 = 0.3}, {𝑋1 = 0.8, 𝑋2 = 0.4}would be combinations

which are preferred over the {𝑋1 = 0.7, 𝑋2 = 0.3}.
Besides the Pareto operator, we can also choose to prefer one

feature over another. We introduce the priority operator defined

as follows:

Definition 4.6. The priority operator ⊲ is a binary operator

connecting two preferred feature directions such that the feature

direction on the left side of the operator is preferred over the one

on the right side.

The priority operator expresses an order of the feature impor-

tance; for example, if the cosine similarity is more likely to detect

matches than the Jaccard similarity, we prioritize those pairs

that have high cosine similarity over those with high Jaccard

similarity. Let us give an example:

Example 4.7. Let us consider the pair of spatial entities ⟨𝑠1, 𝑠2⟩
of the previous example, with the similarities of the name:𝑋1=0.7

and𝑋2=0.3. Let us suppose that𝑋2 can detect the class better than

𝑋1. Even though high values of both features are preferred, we

would be more interested in having high values of 𝑋2. Thus, we

express the preference as ℎ𝑖𝑔ℎ(𝑋2) ⊲ ℎ𝑖𝑔ℎ(𝑋1). This means that

for another pair ⟨𝑠3, 𝑠4⟩ to be preferred over ⟨𝑠1, 𝑠2⟩ (⟨𝑠3, 𝑠4⟩ ≻
⟨𝑠1, 𝑠2⟩), ⟨𝑠3, 𝑠4⟩ has to have a higher 𝑋2 (regardless of the values

of𝑋1), or the same𝑋2 but a better𝑋1. For example {𝑋1 = 0.8, 𝑋2 =

0.3} and {𝑋1 = 0.6, 𝑋2 = 0.4} would be combinations which are

preferred over the {𝑋1 = 0.7, 𝑋2 = 0.3}.
After defining the preferred feature directions and the prefer-

ence operators, we can construct different preference functions.

Let us illustrate this with an example:

Example 4.8. Let us consider a pair of spatial entities ⟨𝑠1, 𝑠2⟩ of
the previous example, with the similarities of the name: 𝑋1=0.7

and 𝑋2=0.3 and physical distance (in meters) from each other

𝑋3 = 10. Since 𝑋1 and 𝑋2 express the similarity of the name, we

prefer a high value, so the preferred feature direction is ℎ𝑖𝑔ℎ(𝑋1)
and ℎ𝑖𝑔ℎ(𝑋2). On the contrary, we prefer the spatial entities to

be as close as possible to each other, thus, we prefer a low value

on the distance, so 𝑙𝑜𝑤 (𝑋3). Let us suppose that we do not have

any preferred order of 𝑋1 and 𝑋3, while 𝑋2 can detect the class

better than 𝑋1 and 𝑋3. In that case, we use the Pareto operator

between 𝑋1 and 𝑋3 as in ℎ𝑖𝑔ℎ(𝑋1)
a
𝑙𝑜𝑤 (𝑋3) and the priority

225

operator for 𝑋2 as in ℎ𝑖𝑔ℎ(𝑋2) ⊲ (ℎ𝑖𝑔ℎ(𝑋1)
a
𝑙𝑜𝑤 (𝑋3)). Hence,

the preference function is 𝑝 = ℎ𝑖𝑔ℎ(𝑋2) ⊲ (ℎ𝑖𝑔ℎ(𝑋1)
a
𝑙𝑜𝑤 (𝑋3)).

When we have few features and some domain knowledge,

we can select the preference function ourselves. However, when

having many features, there are many possible ways to connect

them with operators. In the next subsection, we introduce our

algorithm SkyEx-T that automatically determines a suitable pref-

erence function.

4.3.3 Preference Training. In this section, we explain the

procedure for training the preference function. In our previous

work, [29, 31], the preference function was chosen heuristically,

and the only operator was Pareto. Instead, in the present paper,

we add expressiveness and agility by introducing a preference func-
tion that can be trained on a very small training set, and thus

automatically learn optimal preferences for each dataset. We

propose the SkyEx-T algorithm (Skyline Explore - Trained) for

preference training which further reduces the dimensionality

and selects a preference function based on the importance of

each feature for classifying a pair. Then, 𝑆𝑘𝑦𝐸𝑥 − 𝑇 ranks the

pairs according to 𝑝 and finds the cut-off ratio for separating the

classes (this procedure will be detailed in the next section). The

pseudocode of SkyEx-T is formalized in Algorithm 1.

To learn which remaining features are more suitable for the

preference function, we calculate their correlation with the class

𝐶 .𝐶 is 0 if the pairs are not a match and 1 otherwise. We want to

find those features whose increase is usually associated with an

increase in the class label (𝐶 changes from 0 to 1). We use Pear-

son’s correlation because it is capable of detecting these mono-

tonic relationships between variables (𝜌𝑋𝑖
=

𝑐𝑜𝑣 (𝑋𝑖 ,𝐶)
𝜎𝑋𝑖

𝜎𝐶
, where

𝑐𝑜𝑣 (𝑋𝑖 ,𝐶) is the covariance of the feature 𝑋𝑖 and the class𝐶 , and
𝜎𝑋𝑖

and 𝜎𝐶 are the standard deviations of 𝑋𝑖 and𝐶 , respectively).

After having all 𝜌𝑋𝑖
values for each 𝑋𝑖 , we select those 𝑋𝑖

which have high absolute values of 𝜌𝑋𝑖
. We plot the absolute

values of 𝜌𝑋𝑖
in decreasing order and notice when |𝜌𝑋𝑖

| falls
considerable. This will be graphically associated with an elbow

in the curve. We denote the first elbow as 𝜀1 and the 𝑋𝑖 features

with |𝜌𝑋𝑖
| ≤ 𝜀1 as 𝑋𝜀

1

. 𝑋𝜀
1

are showing the strongest monotonic

relationships to 𝐶 , so their increase is closely related to 𝐶 . Given

that these are the most important features, they will be prioritized

over the rest of the features while using the Pareto operator

amongst 𝑋𝜀
1

themselves, treating them equally. In order to make

the function more accurate, we can refine it further using the

less important features. For that, we will again search for the

next elbow in the curve, denoted as 𝜀2. We denote with 𝑋𝜀
2

the

features with |𝜌𝑋𝑖
| ≤ 𝜀2 and 𝜌𝑋𝑖

> 𝜀1. 𝑋𝜀
2

will be connected by

the Pareto operator themselves, while they will be connected by

the priority operator with 𝑋𝜀
1

. To sum up, we have two groups

of features: 𝑋𝜀
1

and 𝑋𝜀
2

. We use the Pareto operator among the

𝑋𝜀
1

and 𝑋𝜀
2

but the priority operator for 𝑋𝜀
1

over 𝑋𝜀
2

. Let us

illustrate this procedure with an example:

Example 4.9. Let us suppose we have two spatial entities 𝑠1
and 𝑠2 with 10 features {𝑋1, 𝑋2, ...𝑋10}. After computing 𝜌𝑋𝑖

for

each feature and ordering their absolute values in a descending

order, we get these values {0.6, 0.56, 0.55, 0.54, 0.34, 0.33, 0.33, 0.32,

0.11, 0.06}, which are the |𝜌𝑋𝑖
| values of {𝑋3, 𝑋4, 𝑋7, 𝑋1, 𝑋9, 𝑋2,

𝑋5, 𝑋8, 𝑋10, 𝑋6}, respectively. Fig. 2 shows |𝜌𝑋𝑖
| values ordered

from the highest to the lowest. It is possible to notice the two

elbows in the curve, 𝜀1 and 𝜀2. Let us suppose that the preferred

direction of each feature is ℎ𝑖𝑔ℎ(). Then, the preference func-

tion will be as follows: 𝑝 = (ℎ𝑖𝑔ℎ(𝑋3)
a
ℎ𝑖𝑔ℎ(𝑋4)

a
ℎ𝑖𝑔ℎ(𝑋7)) ⊲

(ℎ𝑖𝑔ℎ(𝑋1)
a
ℎ𝑖𝑔ℎ(𝑋9)

a
ℎ𝑖𝑔ℎ(𝑋2)

a
ℎ𝑖𝑔ℎ(𝑋5)).

The above procedure is formalized in lines 1-10 in Algorithm 1.

We first initialize 𝑅𝑋 in line 1 to store all 𝜌𝑋𝑖
. Then we calculate

𝜌𝑋𝑖
for each feature and order 𝑅𝑋 in lines 2-3. We graphically

identify the elbows 𝜀1 and 𝜀2 in line 4. Then, we connect the

features within 𝑋𝜀
1

and 𝑋𝜀
2

by the Pareto operator in lines 5-10.

Finally, we prioritize 𝑋𝜀
1

over 𝑋𝜀
2

in line 11.

4.3.4 Skyline ranking and fixing the cut-off ratio. After
having the preference function, we can apply it to the pairs and

rank them accordingly. We use the skylines as in the work of

Isaj et al. [31] to first find those pairs who are preferred the most

when using preference 𝑝 . Let us suppose that 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (1) contains
all the pairs {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} that, given preference 𝑝 , ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ≻ ⟨𝑠 ′𝑖 , 𝑠

′
𝑗
⟩

for each ⟨𝑠 ′
𝑖
, 𝑠 ′
𝑗
⟩ ∈ Skyline(k), where 𝑘 > 1. Thus, all pairs in

𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (1) dominate the rest of the pairs. Then, we need to re-

move 𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (1) from the set of pairs. Applying the same prefer-

ence, we choose the next set of most preferred pairs (𝑆𝑘𝑦𝑙𝑖𝑛𝑒 (2)).
We continue this procedure until there are no more pairs left.

While moving from one skyline to the next, we need to define

which cut-off number of skylines best separates the classes. Given

that the preferred pairs are likely to indicate amatch, wewill label

as positive the first skylines up to the cut-off and the remaining

as negative. Cutting too early will result in high precision, but

low recall, while cutting too late will improve the recall, but at

the cost of lower precision. Thus, we use a well-known balanced

indicator, the F-measure (𝐹1 =
2∗precision∗recall
precision+recall). We measure the

F-measure for each cut-off and fix the cut-off to 𝑘𝑙 where the

F-measure is maximized. We express this cut-off as a ratio of
𝑘𝑙
𝑏

where𝑏 is themaximal level of skylines. Let us provide theoretical

guarantees that a cut-off ratio found in a training set can satisfy

the F-measure maximization in the whole dataset or the test set.

Theorem 4.10. Let us apply the preference function 𝑝 on two
random samples 𝑃1 and 𝑃2 from the pairs 𝑃 . If 𝑃𝑘

1
and 𝑃𝑘

2
are the

ranked pairs of 𝑃1 and 𝑃2 with regards to 𝑝 , and D1 and D2 are
the probability density of 𝑃𝑘

1
and 𝑃𝑘

2
, respectively, then D1 ∼ D2.

Proof. Based on the Central Limit Theorem [53], the sample

distributions will respect the population distribution, around the

same mean 𝜇 as the population 𝑃 but with a smaller standard

deviation proportional to the size of the sample
𝜎√
𝑛
. Let us denote

by 𝑓 (𝑘) the probability density function of the pairs with relation

to their skyline level 𝑘 . After applying 𝑝 on 𝑃1, 𝑃2 and 𝑃 , the new

ranked pairs in 𝑃𝑘
1
and 𝑃𝑘

2
will respect their order of ranking

in each sample. Note that 𝑓 (𝑘) is deterministic. Let us suppose

that we apply the preference 𝑝 in 𝑃 and we obtain the ranked

Figure 2: Finding 𝜀1 and 𝜀2

226

Algorithm 1 SkyEx-T training

Input: A set of labeled pairs 𝑃𝑡 = {⟨𝑠𝑖 , 𝑠 𝑗 ,𝐶𝑖 𝑗 ⟩}
Output: A trained preference function 𝑝 and cut-off 𝑐𝑡
1: 𝑅𝑋 ← ∅
2: Calculate 𝜌𝑋𝑖

for each 𝑋𝑖 and add each |𝜌𝑋𝑖
| to 𝑅𝑋

3: Order 𝑅𝑋 in a descending order

4: Find 𝜀1 and 𝜀2 elbows in 𝑅𝑋
5: for each 𝑋𝑖 that |𝜌𝑋𝑖

| ≤ 𝜀1 do
6: 𝑝1 = 𝑑 (𝑋1)

a
𝑑 (𝑋2) ...

a
𝑑 (𝑋𝑚)

7: end for
8: for each 𝑋𝑖 that |𝜌𝑋𝑖

| > 𝜀1 and |𝜌𝑋𝑖
| ≤ 𝜀2 do

9: 𝑝2 = 𝑑 (𝑋𝑚 + 1)
a
𝑑 (𝑋𝑚+2) ...

a
𝑑 (𝑋𝑛)

10: end for
11: 𝑝 = 𝑝1 ⊲ 𝑝2
12: 𝑃𝑘 ← ∅
13: 𝐹 ← ∅
14: while |𝑃𝑘 | < |𝑃 | do
15: Find Skyline(𝑘) = {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} | ∀⟨𝑠 ′, 𝑠 ′′⟩ ∈ 𝑃𝑡 − {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} ,

⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ≻ ⟨𝑠 ′, 𝑠 ′′⟩}
16: Remove Skyline(𝑘) from 𝑃 and add it to 𝑃𝑘
17: Label 𝑃𝑘 as positive

18: Calculate 𝐹1(𝑘) and add 𝐹1(𝑘) to 𝐹

19: 𝑃𝑡 = 𝑃𝑡 − Skyline(𝑘)
20: end while
21: Find 𝑘𝑙 such that 𝐹1(𝑘𝑙) =𝑚𝑎𝑥 (𝐹1(𝑘)) ∀𝑘 ∈ {1, |𝐹 |}

22: 𝑐𝑡 =

∑𝑘𝑙
𝑖=1

𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑚𝑎𝑥 (𝑘)
𝑖=1

𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖
return 𝑝 , 𝑐𝑡

pairs 𝑃𝑘 . For every ⟨𝑠1, 𝑠2⟩ and ⟨𝑠3, 𝑠4⟩ in 𝑃𝑘 , if ⟨𝑠1, 𝑠2⟩ ≻ ⟨𝑠3, 𝑠4⟩,
⟨𝑠1, 𝑠2⟩ ∈ 𝑃1, and ⟨𝑠3, 𝑠4⟩ ∈ 𝑃1, thenwe have that ⟨𝑠1, 𝑠2⟩ ≻ ⟨𝑠3, 𝑠4⟩
in 𝑃𝑘

1
as well. Similarly, For every ⟨𝑠1, 𝑠2⟩ and ⟨𝑠3, 𝑠4⟩ in 𝑃𝑘 , if

⟨𝑠1, 𝑠2⟩ ≻ ⟨𝑠3, 𝑠4⟩, ⟨𝑠1, 𝑠2⟩ ∈ 𝑃2, and ⟨𝑠3, 𝑠4⟩ ∈ 𝑃2, then we have

that ⟨𝑠1, 𝑠2⟩ ≻ ⟨𝑠3, 𝑠4⟩ in 𝑃𝑘
2
. This means that 𝑓 (𝑘) will simply, in a

deterministic way, reorder the observations of the samples, which

already have similar distributions, strictly respecting the order in

the in 𝑃𝑘 . As a result, the new probability density distributions

will be similar, so D1 ∼ D2. □

Theorem 4.11. Let us apply the preference function 𝑝 on two
random samples 𝑃1 and 𝑃2 from 𝑃 and denote by 𝑃𝑘

1
and 𝑃𝑘

2
their

respective ranked pairs with regards to 𝑝 . If 𝑘1 is a cut-off in the
probability density function 𝐷1 =

∫ 𝑏1
1

𝑓1 (𝑘)𝑑𝑘 (limits in [1, 𝑏1])
of 𝑃𝑘

1
such as the F-measure is maximal, then 𝑘1𝑏2

𝑏1
will also be

a near-optimal cut-off for 𝑃𝑘
2
with probability density function

𝐷2 =
∫ 𝑏2
1

𝑓2 (𝑘)𝑑𝑘 (limits in [1, 𝑏2]).

Proof. The probability density distribution for the ranked

pairs 𝑃𝑘
1
and 𝑃𝑘

2
is

∫ 𝑏1
1

𝑓1 (𝑘)𝑑𝑘 and

∫ 𝑏2
1

𝑓1 (𝑘)𝑑𝑘 , respectively,
and the skyline levels lie in [1, 𝑏1] for 𝑃𝑘

1
and [1, 𝑏2] for 𝑃𝑘

2
. Chiu

et al. [10] present the preferred solutions of a decision maker

in relation to the mean, variance, and third moments of a dis-

tribution. In other words, a preferred cut-off in a probability

distribution D1 is a preferred solution for a probability distribu-

tion D2 as long as the mean, variance, and third moments are

similar. When sampling 𝑃1 and 𝑃2 from 𝑃 , we gain a sample of

pairs with a mean 𝜇 as in 𝑃 [53]. After ranking, the pairs near 𝜇

will be assigned in the 𝑘𝜇
1
-th skyline for the pairs 𝑃𝑘

1
and in 𝑘𝜇

2

skyline for the pairs 𝑃𝑘
2
. According to Theorem 1, D1 ∼ D2, so

𝑘𝜇
2
≃ 𝑘𝜇

1
. The variances will be𝜎1 =

∫ 𝑏1
1
(𝑘−𝑘𝜇

1
)2 𝑓 (𝑘)𝑑 (𝑘) and

𝜎2 =
∫ 𝑏2
1
(𝑘 − 𝑘𝜇

2
)2 𝑓 (𝑘)𝑑 (𝑘) for 𝑃1 and 𝑃2, respectively. Given

that 𝑘𝜇
2
≃ 𝑘𝜇

1
, we have that 𝜎1 ≃ 𝜎2. The third moment is an

indicator of skewness and it is defined as:𝑚3

1
=

∫ 𝑏
1

1
(𝑦−𝑘𝜇

1
)3𝑑𝐹 (𝑦)

𝜎3

1

and 𝑚3

2
=

∫ 𝑏
2

1
(𝑦−𝑘𝜇

2
)3𝑑𝐹 (𝑦)

𝜎3

2

for 𝑃1 and 𝑃2, respectively. Given

that 𝑘𝜇1 ≃ 𝑘𝜇2 and 𝜎1 ≃ 𝜎2, then𝑚
3

1
≃𝑚3

2
. The pairs in the first

skylines have a high likelihood to belong to the same physical

spatial entity and usually, they form a skewed long-tail distribu-

tion [29]. Let us suppose that 𝑘 = 𝑘1 is a cut-off in the probability

density function

∫ 𝑏1
1

𝑓 (𝑘)𝑑𝑘 such that when labeling pairs in

a skyline smaller than 𝑘1 as positive and the rest as negative,

the F-measure is maximized. In other words, 𝑘1 is the preferred

cut-off for the decision maker. According to the skewness condi-

tion [10], a similar cut-off in the probability density distribution∫ 𝑏2
1

𝑓 (𝑘)𝑑𝑘 of 𝑃2 will yield a near-optimal F-measure value. In

order for 𝑘1 to be applicable to 𝑃2, we need to express it as a ratio
𝑘1
𝑏1

and adapt it to 𝑃2 as in
𝑘1𝑏2
𝑏1

. □

Note that this process is stochastic, meaning that it might

not always find the optimal cut-off, but it will always find the

near-optimal cut-off value (we also show this experimentally in

Section 5). We will learn the cut-off ratio from a training set and

then, given Theorem 2, we will apply it to the test set. However,

having the cut-off ratio
𝑘1
𝑏1

requires that we rank all the pairs in

the training set and moreover, to find
𝑘1𝑏2
𝑏1

, we need 𝑏2, which

again will need the ranking of all the pairs in the test set. For a

big dataset, this procedure will be time-consuming. Therefore,

we use a simple derivative of Theorem 2, formalized in Lemma 1,

where instead of a cut-off in the number of skylines, we use the

percentage of the data belonging to the optimal level of skylines.

Lemma 4.12. If 𝑐1 =
∑𝑘

1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑏

1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖

is the ratio of the total pairs

in 𝑃𝑘
1
that belong to a skyline level of at most 𝑘1, where 𝑘1 is a

cut-off in the probability density function𝐷1 =
∫ 𝑏1
1

𝑓1 (𝑘)𝑑𝑘 (limits
in [1, 𝑏1]) of 𝑃𝑘

1
such as the F-measure is maximal, then 𝑐1 ∗ |𝑃𝑘

2
|

is a near-optimal cut-off for 𝑃𝑘
2
for maximizing the F-measure.

Proof. The cut-off 𝑘1 in 𝑃𝑘
1
corresponds to the skyline level

which can best separate the classes. Given that the probabil-

ity density distributions D1 and D2 of 𝑃1 and 𝑃2 are similar

(Theorem 1), for each pair ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ in 𝑃𝑘
1
, the probability of be-

longing to the positive class is 𝑃 (𝑘 ⟨𝑠𝑖 ,𝑠 𝑗 ⟩ ≤ 𝑘1) ∼
∑𝑘

1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑏

1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖

.

According to Theorem 2, the cut-off ratio
𝑘1
𝑏1

is near-optimal

for 𝑃𝑘
2
in order to best separate the classes. Let us denote with

𝑐2 =

∑𝑘
2

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑏

2

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖

the ratio of total pairs in 𝑃𝑘
2
that corresponds

to skyline levels up to 𝑘2. Given that Theorem 2 and D1 ∼ D2,∑𝑘
1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑏

1

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖

∼
∑𝑘

2

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖∑𝑏

2

𝑖=1
𝑆𝑘𝑦𝑙𝑖𝑛𝑒𝑖

. Thus, the ratio 𝑐1 ∼ 𝑐2, so 𝑐1 is the

near-optimal for 𝑃𝑘
2
. □

The skyline ranking is detailed in lines 12-19 in Algorithm

1. We start with an empty set of explored skylines 𝑃𝑘 in line 12.

Note that in line 13 we are initializing 𝐹 , which will keep the

F-measure for each cut-off. We will need 𝐹 later when we learn

the cut-off 𝑐𝑡 . While there are still pairs that are not ranked, we

227

find the next skyline that satisfies the preference function (line

15) and remove it from the pairs 𝑃𝑡 . We label all pairs in 𝑃𝑘 as

positive and calculate the F-measure for this cut-off in lines 17-18.

Then, we remove the current skyline and continue the ranking.

We find the best cut-off 𝑘𝑙 that maximizes the F-measure in line

21. We express the cut-off as a data ratio (Lemma 1), which makes

it applicable to any sample (line 22). Finally, we return the learned

preference function 𝑝 and the cut-off ratio 𝑐𝑡 .

4.3.5 Classification of Pairs. In the previous subsections,

we discussed the training of SkyEx-T (Algorithm 1) that deter-

mines the preference function, ranks the pairs, and selects the

cut-off. In this subsection, we will formalize SkyEx-T labeling

algorithm for classifying the pairs (Algorithm 2). We start with a

set of unlabelled pairs 𝑃 , a trained preference function 𝑝 and cut-

off ratio 𝑐𝑡 from Algorithm 1. We apply the preference function 𝑝

on 𝑃 . We rank the pairs in 𝑃 according to the preference function

𝑝 and assign them to skylines (1-5). Note that we do not rank all

the pairs but only the pairs in the first skylines that constitute

the ratio 𝑐𝑡 of all pairs, so a total of 𝑐𝑡 |𝑃 | pairs. We label all the

ranked pairs in 𝑃𝑘 as positive and the remaining unranked pairs

as negative (lines 7-8). Finally, we return the labeled 𝑃 ′.

Algorithm 2 SkyEx-T labeling

Input: A set of unlabeled pairs 𝑃 = {⟨𝑠𝑖 , 𝑠 𝑗 ⟩}, a trained prefer-

ence function 𝑝 and a cut-off ratio 𝑐𝑡
Output: A set of labeled pairs 𝑃 ′ = {⟨𝑠𝑖 , 𝑠 𝑗 ,𝐶𝑖 𝑗 ⟩}
1: 𝑃𝑘 ← ∅
2: while |𝑃𝑘 | < 𝑐𝑡 |𝑃 | do
3: Find Skyline(𝑘) = {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} | ∀⟨𝑠 ′, 𝑠 ′′⟩ ∈ 𝑃 − {⟨𝑠𝑖 , 𝑠 𝑗 ⟩} ,

⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ≻ ⟨𝑠 ′, 𝑠 ′′⟩} based on 𝑝

4: Remove Skyline(𝑘) from 𝑃 and add it to 𝑃𝑘
5: 𝑃 = 𝑃 − Skyline(𝑘)
6: end while
7: Set 𝐶𝑖 𝑗 = 1 (positive class) for all ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ∈ 𝑃𝑘 and add them

to 𝑃 ′.
8: Set 𝐶𝑖 𝑗 = 0 (negative class) for all ⟨𝑠𝑖 , 𝑠 𝑗 ⟩ ∈ 𝑃 − 𝑃𝑘 and add

them to 𝑃 ′.
return𝑃 ′

5 EXPERIMENTAL RESULTS
In this section, we describe our datasets and then, report the

results of our experiments with SkyEx-T.

5.1 Dataset
We are using two datasets of spatial entities for the experiments:

North Denmark spatial entities (North-DK) and the Fodor’s and
Zagat’s restaurants (Restaurants).

North Denmark spatial entities North Denmark dataset

contains spatial entities from Denmark, originating from four

different sources, Google Places (GP), Foursquare (FSQ), Yelp,

Source Krak GP Yelp FSQ
Krak 3,789 17,405 902 7

GP 3,546 968 13

Yelp 460 12

FSQ 0

Table 2: The sources of the positive pairs

and Krak
2
. We refer to as North Denmark spatial entities (North-

DK). The spatial entities are retrieved by using the seed-driven

approach described in Isaj et al. [27]. From the spatial entities

we obtained (more than 120,000), we only use the 75,541 spatial

entities that have at least a phone number or a website, so we

can construct the ground truth from these. 51.50% of the spatial

entities originate from GP, 46.22% from Krak, 0.03% from FSQ,

and 2.23% from Yelp. The 75,541 retrieved spatial entities were

grouped using the spatial blocking techniques [31]. After the

spatial blocking, we obtained 777,446 pairs. To establish a ground

truth, similarly to [29, 31], we apply a commonly-used rule for

generating entity matching ground truths [25, 26, 30, 63]: if the

phone number or the website is the same, then we infer that

the pair refers to the same physical entity. By using this rule,

we obtain 27,102 positive pairs (3.5% of the total pairs). In Table

2, we observe that most of the positive pairs are from different

sources, especially from Krak and Google Places (64.2% of the

total positive pairs). Even though the spatial entities are uniquely

identified within a source, we can still find duplicates within the

same source. 28.7% of the total positive pairs originate from same-

source pairs, especially in Krak and in Google Places. Given that

the phone number and the website are used for generating the

ground truth, they are not used in the algorithm and in the pair

comparison. The spatial entities have geographical coordinates,

which are used in the spatial blocking [31] to generate the pairs,

and the pairs are compared against the names and addresses

using LGM-X.

Fodor’s and Zagat’s restaurants3 (Restaurants) is a

dataset of 864 restaurant entities, where 61.69% are extracted

from Fodor’s Travel
4
and 38.31% from Zagat website

5
. The en-

tities are characterized by the name, the address, the city, the

phone number, and the type of the spatial entity. Given that

the geographical coordinates are missing in the dataset, we do

not perform the spatial blocking but rather use all the pairs. We

obtain 372,816 pairs, 112 out of which refer to the same spatial

entity (0.03% of the total pairs). These 112 pairs are already given,

so we did not have to compute the ground truth for this dataset.

However, the phone number attribute has been used to derive

the class and form the ground truth, so we exclude the phone

number from the pairwise comparison of attributes. The pairs

are compared against the names and addresses using LGM-X.

5.2 SkyEx-T cut-off prediction
In this section, we evaluate the prediction of the cut-off 𝑐𝑡 for

SkyEx-T. The cut-off 𝑐𝑡 is learned from the training set as in

Algorithm 1. For comparison, we found the optimal cut-off 𝑐∗

that would yield the highest F-measure for the learned preference

function. To do so, we exhaustively tried all the cut-offs in the

test set, measured the F-measure for each of them, and noted the

highest value. In practice, this is not only time-consuming but

even impossible since the labels are not present in the test set.

By having the optimal cut-off, we can evaluate how accurately

SkyEx-T can predict the cut-off. We repeated this procedure 10

times on disjoint training sets for each of the training sizes and

report the averages in Table 3. We could not train on less than

1% of the data in Restaurants because there are only 112 positive

2
Krak (www.krak.dk) contains businesses, organizations, companies, etc. with their

attributes such as name, location, address, phone, categories, etc. Krak is part of

Eniro Danmark A / S., which is responsible for The Yellow Pages

3
https://www.cs.utexas.edu/users/ml/riddle/data.html

4
https://www.fodors.com

5
https://www.zagat.com

228

Table 3: SkyEx-T F-measure for estimated 𝑐𝑡 vs the optimal 𝑐∗ cut-off in North-DK

Training size 0.05% 0.1% 0.4% 0.8% 1% 4% 8% 12% 16% 20% 80%

SkyEx-T F-measure 0.682 0.690 0.708 0.705 0.706 0.736 0.717 0.718 0.711 0.711 0.727

SkyEx-T F-measure for c* 0.707 0.715 0.714 0.718 0.713 0.740 0.721 0.719 0.712 0.712 0.731

Difference of F-measure 0.025 0.025 0.006 0.014 0.007 0.004 0.004 0.001 0.001 0.001 0.005

Difference of F-measure in % 3.49% 3.46% 0.81% 1.90% 0.95% 0.48% 0.62% 0.13% 0.17% 0.13% 0.65%

Table 4: SkyEx-T F-measure vs SkyEx-T F-measure for estimated 𝑐𝑡 vs the optimal 𝑐∗ cut-off in Restaurants

Training size 1% 4% 8% 12% 16% 20% 80%

SkyEx-T F-measure 0.782 0.813 0.831 0.823 0.821 0.828 0.820

SkyEx-T F-measure for c* 0.841 0.840 0.840 0.839 0.834 0.839 0.838

Difference of F-measure 0.059 0.027 0.009 0.015 0.013 0.011 0.018

Difference of F-measure in % 6.99% 3.26% 1.07% 1.84% 1.54% 1.31% 2.18%

pairs in the whole dataset, and less than 1% of that would mean

that we would not have any positive pairs on the training set.

Thus, we cannot go lower that 1%.

For both datasets, SkyEx-T finds a cut-off that is nearly-optimal.

For small training sets (0.05% and 0.1% in North-DK and 4% in

Restaurants), SkyEx-T yields an F-measure that is around only

0.025 smaller than the optimal, corresponding to a 3.4% differ-

ence. When using 1% of the data as a training set in Restaurants,

SkyEx-T predicts a cut-off that results in an F-measure that is

0.059 smaller than the optimal. However, considering that 1%

of the training set in the Restaurants dataset contains only 1

or 2 positive pairs, the SkyEx-T prediction is in fact impressive.

The F-measure values improve rapidly when moving to larger

training sets; here, the difference between the F-measures is only

0.01, a small 0.95% difference on average, for 0.04%-8% training

sets on North-DK and on average 1.44% for 8%-20% training sets

on Restaurants. Furthermore, for 12%-20% of the data as train-

ing set, the loss in F-measure in the North-DK dataset is 0.001

(0.13%), which is insignificant. SkyEx-T predicts a cut-off that is
near-optimal, with a difference of only 0.01 in F-measure (1.34%)
in North-DK and 0.02 (2.6%) in Restaurants. Thus, we have ex-

perimentally validated our theoretical findings in Theorem 1,

Theorem 2, and Lemma 1.

5.3 Comparison with Spatial Entity Linkage
Baselines

Even though there are a good deal of papers on general entity

matching and on toponym matching [3, 32, 56], only a few con-

sider matching geo-located spatial entities [6, 34, 42]. In this sec-

tion, we compare against solutions that propose the full pipeline

for matching spatial entities (blocking + pairwise comparison +

pair labeling). Given that Restaurants are not geo-located, the fol-

lowing related work could not be applied to them (no coordinates

for using the blocking techniques, for calculating the Euclidean

distance, etc), so we use only the North-DK dataset.

Berjawi et al. [6] compare spatial entities using Euclidean dis-

tance on the coordinates and Levenshtein similarity for the rest

of the attributes (textual), and finally, add them all together. We

exclude the phone number and the website from the similarities

because we used them to derive the label (see above). If the total

score is higher than 0.75, the authors match the pairs with high

confidence. We further try different threshold values and report

the best results (with the suffix -Flex). Berjawi et al. [6] consider
two different versions: name + address + geographic coordinates

(V1) and name + geographic coordinates (V2). Morana et al. [42]

group together entities that share a token in the name or the

category, and compare them using Euclidean distance for the

geographical coordinates, Levenshtein distance for their name

and address and a semantic similarity using Wordnet (Resnik)

for the category. Regarding the weights, they use
1

3
for address,

phone, etc., and
2

3
for the name, category, and geographic similar-

ity. Finally, the top 𝑘 candidates for each entity are considered for

merging (we play with this parameter and report the best results).

Karam et al. [34] group together entities that are 5 m apart, com-

pare their names with Levenshtein distance, Euclidean distance

for the coordinates and the categories semantically. Finally, belief

theory is used to derive the label [49]. We additionally compare to

our earlier paper [29]: we use the same blocking technique Quad-
Flex, and then, for labeling the pairs, we use a threshold-based

(SkyEx-F) and an unsupervised skyline-based algorithm (SkyEx-
D). SkyEx-F tries different thresholds for separating the classes

(we report the best values in the table), and SkyEx-D separates

the classes by considering the density of the pairs in the skylines.

Instead, our proposed supervised SkyEx-T in the present paper

uses the LGM-X features and learns the preference function and

cut-off from a small training set.

The results are presented in Table 5. Berjawi et al.(V1)[6] yields

the highest precision of 0.93 but a very low recall of 0.26, while

Karam et al [34] yield the highest recall of 0.73 but a very low

precision of 0.23. Berjawi et al.(V1)-Flex [6], Berjawi et al.(V2)[6],

and Berjawi et al.(V2)-Flex[6] achieve a relatively good F-measure

of 0.63, but are still outperformed by the versions using QuadFlex
and SkyEx-D [29], SkyEx-F [29] and SkyEx-T. These three meth-

ods yield similar results, since they use the same spatial blocking

technique and skylines to rank the pairs. However, there is an

increase of 0.03 and 0.02 in F-measure, respectively, when using

SkyEx-T instead of SkyEx-D and SkyEx-F.
However, besides the small improvement in F-measure (0.02-

0.03 in F-measure), there are some important advantages of SkyEx-
T over SkyEx-D and SkyEx-F. First of all, SkyEx-F requires the

cut-off 𝑘 . Given that 𝑘 (the number of skylines) is not an intu-

itive parameter, the user might struggle to find a good threshold.

Second, SkyEx-T uses the LGM-X features and learns a suitable

preference function; thus, the improvement in F-measure when

compared to SkyEx-F is related to the use of better features and

a trained preference function. Finally, the greatest advantage of

SkyEx-T over both SkyEx-D and SkyEx-F is its superior runtime.

The runtime in the case of SkyEx-D and SkyEx-F could go up to

2 hours, while SkyEx-T are in the range of seconds or at most a

few minutes (see Section 5.5). This is explained by the fact that

SkyEx-F has to search for a good threshold in the whole dataset,

229

Table 5: Comparison with the Spatial Entity Linkage Base-
lines on North-DK

Approach Prec. Rec. F1

Berjawi et al.(V1)[6] 0.93 0.26 0.41

Berjawi et al.(V1)[6]-Flex 0.87 0.50 0.63

Berjawi et al.(V2)[6] 0.73 0.56 0.63

Berjawi et al.(V2)[6]-Flex 0.73 0.56 0.63

Morana et al.[42] 0.39 0.60 0.47

Karam et al.[34] 0.23 0.73 0.35

QuadFlex + SkyEx-D [29] 0.85 0.62 0.71

QuadFlex with SkyEx-F[29] 0.87 0.60 0.72

QuadFlex + SkyEx-T 0.88 0.63 0.74

and SkyEx-D has to loop through the skylines while calculat-

ing the density between them, while SkyEx-T learns the optimal

parameters from a very small training set.

5.4 Comparing SkyEx-T to Machine Learning
Solutions

Let us now consider if and how SkyEx-T can be compared to

general machine learning techniques. First, we note that related

work has not used machine learning for the problem of spatial

entity linkage, but only for toponym linking. Second, if we were

to successfully apply standard machine learning techniques for

spatial entity linkage, it would would require a) large amounts

of labeled data, which are unavailable in practice because most

of these entities originate from different (not interconnected)

online sources and there is no indication of linkage (no labels);

b) further tuned LGM-X features which again would require a

large training set. Thus, standard machine learning techniques

are infeasible in practice, while SkyEx-T is designed to deal with

very small training sets of spatial entities and use pre-trained

domain-specific features (no further tuning needed). However,

we still make a comparison for completeness, but maintain that

machine learning techniques cannot be considered as baselines

for the spatial entity linkage problem.

We compare to Support Vector Machine (SVM) [14], Decision

Trees [5], Random Forest [7], Extremely Randomized Trees (Extra

Trees) [23], Extreme Gradient Boosted Trees (XGBoost) [9], Multi

Layer Perceptron (MLP) [13]. We trained on 0.05%, 0.1%, 0.4%,

0.8%, 1%, 4%, 8%, 12%, 16%, and 20% of the North-DK dataset, and

1%, 4%, 8%, 12%, 16%, and 20% of the Restaurants dataset. For

each training size, we repeated the experiment 10 times with

disjoint training sets, and we report the averages F-measure in

Table 6, The choice of LGM-X features proved highly effective
for all methods, even on small training sets, which are atypical

for machine learning, a finding also shown experimentally for

LGM-Sim in [24]. LGM-X was used on a previously selected

set of hyperparameters (tuned in on slightly different entities

(toponyms) [32]) and was still able to generalize and achieve

good effectiveness on various dataset sizes and configurations.

We can notice a slight advantage of SkyEx-T over the ma-

chine learning techniques for small training sets. SkyEx-T has

the highest F-measure for 0.05%, 0.1%, 0.4% (together with MLP),

and 4% Overall, SkyEx-T is in the top 3 best methods in terms

of F-measure for North-DK in small training sets). For Restau-

rants, SkyEx-T is in the top 3 best methods for 1% and 4%. More

importantly, SkyEx-T starts at a very high F-measure when most

of the machine learning techniques fail Even though the training

of SkyEx-T is significantly lighter compared to machine learning

techniques (we only use the label for checking correlations), it

still achieves similar F-measure values as the machine learning

techniques, especially on small training sets. If we observe the

difference in percentage from the maximal F-measure for each

training size (Table 6), SkyEx-T differs on average by only 1.04%

for training sets up to 20% of the data. In Restaurants (Table 7),

SkyEx-T yields, on average, an F-measure of 4.85% less than the

maximal on training sets up to 20%. Furthermore, on training sets

less than 8%, this difference is only 3.63%, the second-best after

ExtraTrees, while SVM, MLP and XGBoost fail when trained on

1% of the data. Additionally, it is important to note that there

was no single best machine learning model that would give the

best F-measure consistently for all the training sizes; apart from

SkyEx-T, four different methods (RandomForest, ExtraTrees, XG-

Boost, and MLP) competed for the highest F-measure; thus, there

was no obvious winner.

Additionally to the results in terms of F-measure, we can

compare the methods in terms of other criteria. Consid-

ering that spatial entities are important in many business

applications, the models used for spatial entity linkage need

to be explainable for the end-user, especially when these

decisions have a high impact on the business. Moreover, “the

right to explanation" is now officially a requirement of EU’s

General Data Protection Regulation (GDPR) [33]. In the case

of SkyEx-T, the preference model is human-readable and

easily explainable. An example of a preference function is:

(high(SimName)
a

high(LGM_baseScore)
a

high(SimAddress))
⊲ (high(Sorted_Dice_bigrams)

a
high(Dice_bigrams)

a

high(Sorted_Soft_Jaccard)
a

high(LGM_Dice_bigrams)). It is

simple to understand which 𝑠1 and 𝑠2 matched noticing what

features the model prefers overall and which features over

others. As for the machine learning techniques, their complexity

usually comes with a lack of explainability.

For the linear SVM, we can use the proposed probability es-

timates by Platt [47] to derive individual feature effects on the

model outcome by perturbing one feature at a time through a

range of values, whilst keeping the other features fixed. The De-

cision Trees model interpretation is rather simple, in theory by

measuring the amount of “impurity", i.e., the reduced variance

or Gini index compared to the parent node.However, in practice,

this is feasible only in cases where the tree depth is rather small.

In our case, the depth of Decision Trees in Restaurants was 2-3

for training sets of 0-10%, 4-6 for 10-20%, 7-9 for 80% but very

large in North-DK, 28-34 for 0-10%, 30-42 for 10-20%, 40-45 for

80%, which makes the model unexplainable in practice. Neverthe-

less, both SVM and Decision Trees are outperformed, in terms of

F-measure, in most scenarios by other algorithms, as presented

in Tables 6. The interpretation gets even harder in tree-based

models, e.g., Random Forest, Extra Trees and XGBoost, which

consist of a large number of deep trees. Complex techniques, like

Impurity Feature Importance or Conditional Permutation Feature

Importance [61], are required to gain insights for the importance

of the training features where each approach has problems and

drawbacks and makes it difficult to apply in every case. Finally,

the MLP (MultiLayer Perceptron) model is far from explainable

since it is a type of a basic artificial neural network and, thus, it

is treated as a black-box in most cases.

There are several works that explicitly address explainability

and interpretability of machine learning techniques. [22, 40, 44,

51]. LIME [51] can explain any classifier by approximating it lo-

cally with an interpretable model. SHAP values [40] are additive

feature importance methods that use conditional expectations to

reach interpretability. DICE [44] propose a framework that works

with the importance of necessary tradeoffs, causal implications,

230

Table 6: SkyEx-T versus ML Techniques on North-DK

Training size 0.05% 0.10% 0.40% 0.80% 1% 4% 8% 12% 16% 20% 80%

F-measure

SVM 0.655 0.653 0.683 0.692 0.694 0.708 0.713 0.715 0.718 0.719 0.723

DecisionTree 0.596 0.589 0.609 0.613 0.612 0.622 0.632 0.634 0.641 0.644 0.667

RandomForest 0.678 0.682 0.696 0.702 0.700 0.715 0.721 0.725 0.727 0.730 0.749
ExtraTrees 0.670 0.676 0.693 0.700 0.699 0.710 0.717 0.721 0.723 0.726 0.744

XGBoost 0.673 0.679 0.700 0.705 0.704 0.717 0.724 0.728 0.731 0.733 0.747

MLP 0.678 0.688 0.708 0.719 0.709 0.719 0.719 0.724 0.731 0.724 0.727

SkyEx-T 0.682 0.690 0.708 0.705 0.706 0.736 0.717 0.718 0.711 0.711 0.727

Difference from Max F-measure in %

SVM 3.96% 5.36% 3.53% 3.76% 2.12% 3.80% 1.52% 1.79% 1.78% 1.91% 3.47%

DecisionTree 12.61% 14.64% 13.98% 14.74% 13.68% 15.49% 12.71% 12.91% 12.31% 12.14% 10.95%

RandomForest 0.59% 1.16% 1.69% 2.36% 1.27% 2.85% 0.41% 0.41% 0.55% 0.41% 0.00%

ExtraTrees 1.76% 2.03% 2.12% 2.64% 1.41% 3.53% 0.97% 0.96% 1.09% 0.95% 0.67%

XGBoost 1.32% 1.59% 1.13% 1.95% 0.71% 2.58% 0.00% 0.00% 0.00% 0.00% 0.27%

MLP 0.59% 0.29% 0.00% 0.00% 0.00% 2.31% 0.69% 0.55% 0.00% 1.23% 2.94%

SkyEx-T 0.00% 0.00% 0.00% 1.95% 0.42% 0.00% 0.97% 1.37% 2.74% 3.00% 2.94%

Table 7: SkyEx-T versus ML Techniques on Restaurants

Training size 1% 4% 8% 12% 16% 20% 80%

F-measure

SVM 0.196 0.777 0.847 0.846 0.858 0.875 0.889

DecisionTree 0.818 0.798 0.796 0.810 0.831 0.816 0.875

RandomForest 0.743 0.830 0.843 0.844 0.843 0.859 0.879

ExtraTrees 0.823 0.836 0.857 0.853 0.860 0.885 0.904

XGBoost 0.000 0.724 0.823 0.827 0.847 0.870 0.910
MLP 0.077 0.789 0.837 0.877 0.870 0.874 0.871

SkyEx-T 0.782 0.813 0.831 0.823 0.821 0.828 0.820

Difference from Max F-measure in %

SVM 76.23% 7.13% 1.23% 3.46% 1.41% 1.07% 2.30%

DecisionTree 0.56% 4.59% 7.16% 7.61% 4.56% 7.79% 3.84%

RandomForest 9.74% 0.77% 1.66% 3.67% 3.14% 2.88% 3.41%

ExtraTrees 0.00% 0.00% 0.00% 2.65% 1.18% 0.00% 0.66%

XGBoost 100.00% 13.46% 4.06% 5.61% 2.72% 1.70% 0.00%

MLP 90.62% 5.62% 2.40% 0.00% 0.00% 1.26% 4.22%

SkyEx-T 4.98% 2.78% 3.12% 6.09% 5.70% 6.41% 9.92%

and optimization issues in generating counterfactuals. Probabilis-

tic contrastive counterfactuals in Lewis [22] are used to compute

explanations at local, global, and contextual levels, that can be of

use to any user, regardless of their depth of knowledge. The ad-

vances of these works make it possible for any machine learning

model to be somehow explainable. However, these are several

steps, sometimes complex and labor intensive to use, which need

to be taken in order to achieve explainability, and moreover, they

do not generate a one-to-one mapping with the actual model. In

contrast, SkyEx-T is already explainable out-of-the-box without

the need for extra, labor-intensive steps; one can see which fea-

tures are important and in which order; one can see the whole

model and there is nothing else except what is defined in the

model (no other weights, hidden layers, etc.).

To sum up, all the machine learning techniques will need addi-
tional steps to improve their explainability and maybe not always
succeed, while SkyEx-T’s model is already human-readable and
straightforward explainable. Moreover, SkyEx-T has a very light

configuration, meaning no coefficients or layered structures. The

preferencemodel and cut-off are chosen in a straightforwardman-

ner in the training step and later applied to the test set. Thus, there

is no parameter tuning, hyperparameters, etc, very differently

from machine learning. This makes SkyEx-T more easily deploy-

able compared to machine learning. All in all, SkyEx-T achieves an
accuracy similar to machine learning, while having a straightfor-
ward explainability and no need for parameter/hypermater tuning.

5.5 Implementation and Runtime
SkyEx-T is implemented in R using the rpref package [52] for
skyline ranking, infotheo [41] for correlation calculations, and

skyex [28] for calculating the optimal cut-off. SkyEx-T has a

quadratic complexity 𝑂 (𝑛2). We report the average runtime of

10 samples for each training percentage in Fig. 3 in our larger

dataset, North-DK. We measured the preference training time,
which includes the calculation of correlations and constructing

the preference function, and skyline ranking time, which ranks

the training set based on the preference function and chooses the

best cut-off. For up to 1% of training set size, the total training

time is less than 7 seconds, up to 4% of training set size less than

a minute (Fig. 3). Since SkyEx-T needs a very small training dataset
to be trained adequately, the typical runtime will be in the range
of seconds or minutes.

6 CONCLUSION AND FUTUREWORK
We addressed the problem of spatial entity linkage with a skyline-

based approach, SkyEx-T, which, in contrast to the previousworks
[29, 31], trains the preference function and learns the cut-off for

separating the classes, requiring only a small training set. We in-

corporated advanced similarity features, computed with LGM-X,
which specifically capture the characteristics of spatial entities.

We showed that SkyEx-T significantly outperforms the spatial

entity linkage baselines with a margin of 0.11-0.39 in F-measure.

When compared to machine learning techniques, SkyEx-T pro-

vides a similar accuracy on small training sets while having a

straightforward explainability and easily deployable deployment

model. As future work, we plan to improve the scalability of

SkyEx-T and adapt it to other classification problems.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

% of training set

Training total
Preference training

Skyline ranking

Figure 3: North-DK 0.05%-20%

231

REFERENCES
[1] Rifaat Abdalla. 2016. Geospatial data integration. In Introduction to Geospatial

Information and Communication Technology (GeoICT). Springer, 105–124.
[2] Konstantinos Alexis, Vassilis Kaffes, and Giorgos Giannopoulos. 2020. Boost-

ing toponym interlinking by paying attention to both machine and deep

learning. In Proceedings of the Sixth International ACM SIGMOD Workshop on
Managing and Mining Enriched Geo-Spatial Data. 1–5.

[3] Konstantinos Alexis, Vassilis Kaffes, and Giorgos Giannopoulos. 2020. Boost-

ing Toponym Interlinking by Paying Attention to Both Machine and Deep

Learning (GeoRich ’20). Association for Computing Machinery, New York, NY,

USA. https://doi.org/10.1145/3403896.3403970

[4] Sandrine Balley, Christine Parent, and Stefano Spaccapietra. 2004. Modelling

geographic data with multiple representations. International Journal of Geo-
graphical Information Science 18, 4 (2004), 327–352.

[5] William A Belson. 1959. Matching and prediction on the principle of biological

classification. Journal of the Royal Statistical Society: Series C (Applied Statistics)
8, 2 (1959), 65–75.

[6] Bilal Berjawi, Elisabeth Chesneau, Fabien Duchateau, Franck Favetta, Claire

Cunty,MaryvonneMiquel, and Robert Laurini. 2014. Representing Uncertainty

in Visual Integration.. In DMS. 365–371.
[7] Leo Breiman. 2001. Random Forests. 45, 1 (2001). https://doi.org/10.1023/A:

1010933404324

[8] Yair Censor. 1977. Pareto optimality in multiobjective problems. Applied
Mathematics and Optimization 4, 1 (1977), 41–59.

[9] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting

system. In Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining. 785–794.

[10] W Henry Chiu. 2010. Skewness preference, risk taking and expected utility

maximisation. The Geneva Risk and Insurance Review 35, 2 (2010), 108–129.

[11] P. Christen. 2006. A Comparison of Personal Name Matching: Techniques

and Practical Issues. In Sixth IEEE International Conference on Data Mining -
Workshops (ICDMW’06). 290–294. https://doi.org/10.1109/ICDMW.2006.2

[12] Peter Christen, Tim Churches, and Markus Hegland. 2004. Febrl–a parallel

open source data linkage system. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 638–647.

[13] RonanCollobert and SamyBengio. 2004. Links between Perceptrons,MLPs and

SVMs. In Proceedings of the Twenty-First International Conference on Machine
Learning (ICML ’04). Association for Computing Machinery, 23. https://doi.

org/10.1145/1015330.1015415

[14] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[15] Thomas M Cover and Joy A Thomas. 1991. Information theory and statistics.

Elements of Information Theory 1, 1 (1991), 279–335.

[16] Nilesh Dalvi, Marian Olteanu, Manish Raghavan, and Philip Bohannon. 2014.

Deduplicating a Places Database. In Proceedings of the 23rd International Con-
ference onWorldWideWeb (WWW ’14). Association for ComputingMachinery,

New York, NY, USA, 409–418. https://doi.org/10.1145/2566486.2568034

[17] Clodoveu Davis Jr and Emerson Salles. 2007. Approximate String Matching

for Geographic Names and Personal Names. 49–60.

[18] Matthew Edwards, Stephen Wattam, Paul Rayson, and Awais Rashid. 2016.

Sampling labelled profile data for identity resolution. In 2016 IEEE International
Conference on Big Data (Big Data). IEEE, 540–547.

[19] Julia Efremova, Bijan Ranjbar-Sahraei, Hossein Rahmani, Frans A Oliehoek,

Toon Calders, Karl Tuyls, and Gerhard Weiss. 2015. Multi-source entity

resolution for genealogical data. In Population reconstruction. Springer, 129–
154.

[20] Vasilis Efthymiou, Kostas Stefanidis, and Vassilis Christophides. 2015. Big

Data Entity Resolution. In 2015 IEEE International Conference on Big Data (IEEE
BigData 2015).

[21] Donatella Firmani, Barna Saha, and Divesh Srivastava. 2016. Online entity

resolution using an oracle. Proceedings of the VLDB Endowment 9, 5 (2016),
384–395.

[22] Sainyam Galhotra, Romila Pradhan, and Babak Salimi. 2021. Explaining black-

box algorithms using probabilistic contrastive counterfactuals. In Proceedings
of the 2021 International Conference on Management of Data. 577–590.

[23] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely random-

ized trees. Machine learning 63, 1 (2006), 3–42.

[24] Giorgos Giannopoulos, Vassilis Kaffes, and Georgios Kostoulas. 2020. Learning

Advanced Similarities and Training Features for Toponym Interlinking. In

European Conference on Information Retrieval. Springer, 111–125.
[25] Oana Goga, Howard Lei, Sree Hari Krishnan Parthasarathi, Gerald Friedland,

Robin Sommer, and Renata Teixeira. 2013. Exploiting innocuous activity for

correlating users across sites. In Proceedings of the 22nd international conference
on World Wide Web. 447–458.

[26] Oana Goga, Patrick Loiseau, Robin Sommer, Renata Teixeira, and Krishna P

Gummadi. 2015. On the reliability of profile matching across large online social

networks. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1799–1808.

[27] Suela Isaj and Torben Bach Pedersen. 2019. Seed-driven geo-social data

extraction. In Proceedings of the 16th International Symposium on Spatial and
Temporal Databases. 11–20.

[28] Suela Isaj and Torben Bach Pedersen. 2020. skyex: an R Package for Entity

Linkage. In International Conference on Extending Database Technology. 587–
590.

[29] Suela Isaj, Torben Bach Pedersen, and Esteban Zimányi. 2020. Multi-Source

Spatial Entity Linkage. IEEE Transactions on Knowledge and Data Engineering
(2020).

[30] Suela Isaj, Nacéra Bennacer Seghouani, and Gianluca Quercini. 2019. Profile

reconciliation through dynamic activities across social networks. In Inter-
national Conference on Advanced Information Systems Engineering. Springer,
126–141.

[31] Suela Isaj, Esteban Zimányi, and Torben Bach Pedersen. 2019. Multi-source

spatial entity linkage. In Proceedings of the 16th International Symposium on
Spatial and Temporal Databases. 1–10.

[32] Vassilis Kaffes, Giorgos Giannopoulos, Nikos Karagiannakis, and Nontas

Tsakonas. 2019. Learning domain specific models for toponym interlink-

ing. In Proceedings of the 27th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 504–507.

[33] Margot E Kaminski. 2019. The right to explanation, explained. Berkeley Tech.
LJ 34 (2019), 189.

[34] Roula Karam, Franck Favetta, Rima Kilany, and Robert Laurini. 2010. Inte-

gration of similar location based services proposed by several providers. In

International Conference on Networked Digital Technologies. Springer, 136–144.
[35] Deniz Kılınç. 2016. An accurate toponym-matching measure based on ap-

proximate string matching. Journal of Information Science 42 (2016), 138–149.
https://doi.org/10.1177/0165551515590097

[36] JooYoung Lee, Rasheed Hussain, Victor Rivera, and Davlatbek Isroilov. 2018.

Second-level degree-based entity resolution in online social networks. Social
Network Analysis and Mining 8, 1 (2018), 19.

[37] Furong Li, Mong Li Lee, Wynne Hsu, and Wang-Chiew Tan. 2015. Linking

temporal records for profiling entities. In Proceedings of the 2015 ACM SIGMOD
international conference on management of data. 593–605.

[38] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.

2020. Deep entity matching with pre-trained language models. Proceedings of
the VLDB Endowment 14, 1 (2020), 50–60.

[39] Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across

Social Networks Using Network Embedding.. In IJCAI. 1774–1780.
[40] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting

model predictions. In Proceedings of the 31st international conference on neural
information processing systems. 4768–4777.

[41] Patrick E Meyer and Maintainer Patrick E Meyer. 2009. Package ‘infotheo’. R
Packag. version 1 (2009).

[42] Anthony Morana, Thomas Morel, Bilal Berjawi, and Fabien Duchateau. 2014.

Geobench: a geospatial integration tool for building a spatial entity match-

ing benchmark. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. 533–536.

[43] Erwan Moreau, François Yvon, and Olivier Cappé. 2008. Robust similarity

measures for named entities matching. In COLING 2008, 22nd International
Conference on Computational Linguistics, Proceedings of the Conference, 18-22
August 2008, Manchester, UK. 593–600.

[44] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. 2020. Explaining

machine learning classifiers through diverse counterfactual explanations. In

Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
607–617.

[45] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, andW. Nejdl. 2012. Beyond

100 million entities: large-scale blocking-based resolution for heterogeneous

data. In WSDM.

[46] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. 2016. Comparative analysis

of approximate blocking techniques for entity resolution. PVLDB (2016).

[47] John Platt. 2000. Probabilistic Outputs for Support Vector Machines and

Comparisons to Regularized Likelihood Methods. Adv. Large Margin Classif.
(2000).

[48] Gianluca Quercini, Nacéra Bennacer, Mohammad Ghufran, and Coriane Nana

Jipmo. 2017. LIAISON: reconciLIAtion of Individuals Profiles Across SOcial

Networks. In Advances in Knowledge Discovery and Management. Springer,
229–253.

[49] Ana-Maria Olteanu Raimond and Sébastien Mustière. 2008. Data matching–a

matter of belief. In Headway in spatial data handling. Springer, 501–519.
[50] Gabriel Recchia and Max Louwerse. 2013. A Comparison of String Similarity

Measures for ToponymMatching. COMP 2013 - ACM SIGSPATIAL International
Workshop on Computational Models of Place (11 2013), 54–61. https://doi.org/

10.1145/2534848.2534850

[51] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should

i trust you?" Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 1135–1144.

[52] Patrick Roocks. 2016. Computing pareto frontiers and database preferences

with the rPref Package. (2016).

[53] Murray Rosenblatt. 1956. A central limit theorem and a strong mixing condi-

tion. Proceedings of the National Academy of Sciences of the United States of
America 42, 1 (1956), 43.

[54] Eliyahu Safra, Yaron Kanza, Yehoshua Sagiv, Catriel Beeri, and Yerach Doyt-

sher. 2010. Location-based algorithms for finding sets of corresponding objects

over several geo-spatial data sets. International Journal of Geographical Infor-
mation Science 24, 1 (2010), 69–106.

[55] Rui Santos, Patricia Murrieta-Flores, Pável Calado, and Bruno Martins. 2018.

Toponym matching through deep neural networks. International Journal of
Geographical Information Science 32 (2018), 324–348. https://doi.org/10.1080/

232

13658816.2017.1390119

[56] Rui Santos, Patricia Murrieta-Flores, and Bruno Martins. 2018. Learning to

combine multiple string similarity metrics for effective toponym matching. In-
ternational Journal of Digital Earth 11 (2018). https://doi.org/10.1080/17538947.
2017.1371253

[57] Michael Schäfers and Udo W Lipeck. 2014. SimMatching: adaptable road net-

work matching for efficient and scalable spatial data integration. In Proceedings
of the 1st ACM SIGSPATIAL PhD Workshop. 1–5.

[58] Vivek Sehgal, Lise Getoor, and Peter D Viechnicki. 2006. Entity resolution in

geospatial data integration. In Proceedings of the 14th annual ACM international
symposium on Advances in geographic information systems. 83–90.

[59] Kai Shu, Suhang Wang, Jiliang Tang, Reza Zafarani, and Huan Liu. 2017.

User identity linkage across online social networks: A review. Acm Sigkdd
Explorations Newsletter 18, 2 (2017), 5–17.

[60] Liangcai Shu, Aiyou Chen, Ming Xiong, and Weiyi Meng. 2011. Efficient

spectral neighborhood blocking for entity resolution. In 2011 IEEE 27th Inter-
national Conference on Data Engineering. IEEE, 1067–1078.

[61] Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn.

2007. Bias in Random Forest Variable Importance Measures: Illustrations,

Sources and a Solution.” BMC Bioinformatics, 8(1), 25. BMC bioinformatics 8
(2007).

[62] PG Tabarro, Jacynthe Pouliot, Richard Fortier, and Louis-Martin Losier. 2017.

A WebGIS to support GPR 3D data acquisition: A first step for the integration

of underground utility networks in 3D city models. The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 42 (2017),
43.

[63] Sheila Tejada, Craig A Knoblock, and Steven Minton. 2001. Learning object

identification rules for information integration. Information Systems 26, 8
(2001), 607–633.

[64] Volker Walter and Dieter Fritsch. 1999. Matching spatial data sets: a statistical

approach. International Journal of geographical information science 13, 5 (1999),
445–473.

[65] Qing Wang, Dinusha Vatsalan, and Peter Christen. 2015. Efficient interactive

training selection for large-scale entity resolution. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 562–573.

[66] Yutao Zhang, Jie Tang, Zhilin Yang, Jian Pei, and Philip S Yu. 2015. Cosnet:

Connecting heterogeneous social networks with local and global consistency.

In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1485–1494.

233

