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ABSTRACT
Projected and subspace clustering aim to find groups of similar

objects within a subspace of the full-dimensional space. Where

subspace clustering tries to identify clusters in all possible sub-

spaces, projected clustering assigns each point to a single cluster

within one projected subspace, resulting in a much smaller result

set. PROCLUS is an adaptation of the k-medoids clustering algo-

rithm, CLARANS, to projected clustering. Even though PROCLUS

is the first projected clustering algorithm, it is still competitive

in comparative empirical studies.

PROCLUS is, however, still too slow for large-scale data or

real-time interaction when used in information retrieval pro-

cesses. Therefore, we propose novel algorithmic strategies to

reduce computations and exploit the massive parallelism offered

by modern graphical processing units (GPUs). To take advantage

of their high degree of parallelism, standard sequential algorithms

need to be significantly restructured. We therefore also propose

a novel GPU-parallelized algorithm, GPU-FAST-PROCLUS, that

takes advantage of the computational power of modern GPUs.

We provide experimental studies that demonstrate the benefit

of our proposed strategies and GPU-parallelizations. In this ex-

perimental evaluation, we obtain 3 orders of magnitude speedup

compared to PROCLUS.

1 INTRODUCTION
Clustering, the task of grouping similar objects, is an often em-

ployed data mining task, e.g., for finding groups of customers

that exhibit similar traits. However, clustering within the full-

dimensional space becomes meaningless for higher-dimensional

data as distances become increasingly similar [7]. This implies

that clusters might only exist within subspace projections of

the full-dimensional space, e.g., for a group of customers, a trait

like height might not be important for the grouping. The discov-

ery of such clusters can be made by subspace clustering [4, 19],

which finds clusters that exist within all possible subspaces. Pro-

jected clustering [2], like subspace clustering, aims to find clusters
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within a subspace of the full-dimensional space but only reports

disjoint clusters, each in one subspace projection. By that, pro-

jected clustering reduces the size of the result set and makes it

easier to understand for the user.

The first projected clustering algorithm is PROCLUS [2], an

adaptation of the K-medoids approach, CLARANS [28], to find

clusters in projected subspaces. Today, PROCLUS is still one of

the fastest subspace or projected clustering algorithms while

remaining competitive in evaluations [26]. However, it still takes

up to several minutes to perform PROCLUS on small datasets of

just a few thousand data points [2, 26].

Data mining is usually part of information retrieval and data

science processes. A successful process produces the information

for a task quickly [9]. For real-time interaction, this means exe-

cuting data analysis within 100𝑚𝑠 [32]. We propose algorithmic

strategies to make PROCLUS fast enough for real-time interac-

tion on even a million data points. This includes strategies to

reduce computations and to utilize modern multi-core hardware.

Furthermore, we address the challenge of determining the right

set of parameters for a clustering algorithm, and leverage the

fact that we can reuse partial results between parameter set-

tings to provide even higher speedups when computing several

PROCLUS clusterings with different parameter settings.

Modern GPUs with their thousands of cores provide high com-

putational throughput. However, this throughput comes with a

vastly different computational model. Since PROCLUS is devel-

oped for a single-core model, a novel algorithmic approach must

be taken for it to benefit from the computational power offered

by GPUs.

Our contributions include:

• Algorithmic strategies to reduce the number of compu-

tations by reusing distances and partial results between

iterations and parameter settings, as well as by an alterna-

tive trade-off between speed and space.

• GPU-parallelized versions of PROCLUS and of our pro-

posed algorithmic strategies.

• An experimental evaluation of PROCLUS and our pro-

posed strategies showing 3 orders of magnitude speedup

across parameters and data distributions.
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Table 1: Notation

𝐷𝑎𝑡𝑎 ∈ R𝑛×𝑑 Dataset with 𝑛 points and 𝑑 dimensions

𝑘 Number of clusters

𝑙 Average number of dimensions

𝑖𝑡𝑟𝑃𝑎𝑡 Max number of iterations w/o changes

𝑚𝑖𝑛𝐷𝑒𝑣 Threshold to identify bad medoids

𝐴 Constant to determine size of 𝐷𝑎𝑡𝑎′

𝐵 Constant to determine size of𝑀

𝑖𝑡𝑟 Iteration counter

𝑡 , 𝑡 ′ The current and previous usage

𝑝 Point in 𝐷𝑎𝑡𝑎

𝐷𝑎𝑡𝑎′ ⊆ 𝐷𝑎𝑡𝑎 Random subset of full dataset

𝑀 ⊂ 𝐷𝑎𝑡𝑎′ Greedily selected subset of 𝐷𝑎𝑡𝑎′

𝑀𝐶𝑢𝑟 ⊂ 𝑀 Set of current medoids selected from𝑀

𝑀𝐵𝑒𝑠𝑡 ⊂ 𝑀 Set of best medoids

𝑀𝐵𝑎𝑑 ⊂ 𝑀𝐶𝑢𝑟 Set of replaced medoids in𝑀𝐶𝑢𝑟

𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 𝑖’th medoid

𝐷𝑖𝑠𝑡 Distance matrix

𝛿𝑖 Distance to the closest medoid

𝐿𝑖 ⊆ 𝐷𝑎𝑡𝑎 Set of points w/ radius 𝛿𝑖 of medoid𝑚𝑖

Δ𝐿𝑖 ⊆ 𝐿𝑖 Change in set 𝐿𝑖 between iterations

𝜆𝑖 Indicates increase or decrease in Δ𝑖
𝑀𝐼𝑑𝑥𝑖 The index of𝑚𝑖 in𝑀

𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑 Indicates the distances computed

𝐻𝑖, 𝑗 Sum of dist. of 𝑝 ∈ 𝐿𝑖 to𝑚𝑖 in dim. 𝑗

𝑋𝑖, 𝑗 Avg. dist. to medoid𝑚𝑖 in dim. 𝑗

𝑌𝑖 Average distance to medoid𝑚𝑖

𝜎𝑖 Standard deviation of 𝑋𝑖, 𝑗
𝑍𝑖 𝑗 Measure of spread for 𝐶𝑖 in dim. 𝑗

𝐷𝑖 ⊆ {1, . . . , 𝑑} 𝑖’th subspace projection

𝐶𝑖 ⊆ 𝐷𝑎𝑡𝑎 𝑖’th cluster

𝐶𝐵𝑒𝑠𝑡 Best clustering so far

𝜇𝑖 Centroid of cluster 𝐶𝑖
𝑤𝑖 Cost of a cluster 𝑖

𝑐𝑜𝑠𝑡 Weighted cost of the full clustering

𝑐𝑜𝑠𝑡𝐵𝑒𝑠𝑡 Lowest cost found so far

Δ𝑖 Dist. to closest medoid in subspace 𝐷𝑖

2 BACKGROUND
We provide important notations in Table 1. |𝐴| denotes the size
of a set 𝐴, | |𝑎 | | is the absolute value of a scalar 𝑎, | |𝑝 | |1 is the

L1-norm of a point 𝑝 , and | |𝑝 | |2 is the L2-norm. The norm in

subspace projection 𝐷𝑖 is denoted using a superscript, e.g., | |𝑝 −
𝑞 | |𝐷𝑖

1
. PROCLUS uses Manhattan distance | |𝑝 − 𝑞 | |1, Manhattan

segmental distance | |𝑝 − 𝑞 | |𝐷𝑖

1
/|𝐷𝑖 |, and Euclidean distance | |𝑝 −

𝑞 | |2.
We use subscript to index matrices, sets, lists, and points, e.g.,

𝐷𝑎𝑡𝑎𝑝,𝑗 refers to dimension 𝑗 of data point 𝑝 . Superscript is used

to refer to a version of amatrix, a set, or a list at a specific iteration,

e.g., 𝐻𝑡
is 𝐻 in the current iteration 𝑡 , 𝐻𝑡−1

is 𝐻 in the previous

iteration.

We use← for assignment and = for equality. For simplicity,

we use the index of point 𝑝 as the actual data point 𝐷𝑎𝑡𝑎𝑝 , and

vice versa. E.g. when computing a distance between point 𝑝 and

medoid 𝑚𝑖 we write 𝐷𝑖𝑠𝑡𝑚𝑖 ,𝑝 ← ||𝑝 −𝑚𝑖 | |2 as shorthand for

𝐷𝑖𝑠𝑡𝑚𝑖 ,𝑝 ← ||𝐷𝑎𝑡𝑎𝑝 − 𝐷𝑎𝑡𝑎𝑚𝑖
| |2.

2.1 PROCLUS
We briefly describe PROCLUS, details are found in [2]. PROCLUS

is an adaptation of the k-medoids algorithm, CLARANS [28], to

projected clustering. Given input 𝐷𝑎𝑡𝑎 ∈ R𝑛×𝑑 a 𝑑-dimensional

dataset with 𝑛 points, the number of clusters 𝑘 , the average num-

ber of dimensions 𝑙 , two scalars𝐴, 𝐵, minimum deviation𝑚𝑖𝑛𝐷𝑒𝑣 ,

and number of rounds without improvement 𝑖𝑡𝑟𝑃𝑎𝑡 , PROCLUS

proceeds in three phases initialization, iterative, and refinement.

PROCLUS outputs 𝑘 disjoint clusters in different subspace pro-

jections.

Initialization phase. First, greedily pick potential medoids

𝑀 from a subset 𝐷𝑎𝑡𝑎′ of the dataset 𝐷𝑎𝑡𝑎. The set of points

𝐷𝑎𝑡𝑎′ is a random sample of size 𝐴 × 𝑘 from 𝐷𝑎𝑡𝑎. From 𝐷𝑎𝑡𝑎′

PROCLUS greedily selects 𝐵 × 𝑘 points one by one, as the one

with the largest Euclidean distance to all other points in𝑀 , see

Algorithm 1 line 2-3.

Iterative phase. PROCLUS iteratively optimizes the set of

medoids𝑀𝐶𝑢𝑟 ⊂ 𝑀 of size 𝑘 . This is done through multiple sub-

phases, see lines 5-14. First, compute the set of points 𝐿𝑖 within

a sphere centered at each medoid𝑚𝑖 . Second, find the optimal

sets of dimensions for the sets of points 𝐿. Third, assign points

to the closest medoid within the selected subspace projection for

each medoid. Fourth, evaluate the clustering. If the cost of the

clustering is smaller than the best found so far, keep the current

set of medoids 𝑀𝐶𝑢𝑟 as the best set of medoids 𝑀𝐵𝑒𝑠𝑡 and the

corresponding clustering as 𝐶𝐵𝑒𝑠𝑡 . Compute a new 𝑀𝐶𝑢𝑟 for

the next iteration by replacing the bad medoids in 𝑀𝐵𝑒𝑠𝑡 . The

bad medoids 𝑀𝐵𝑎𝑑 are the medoids with a cluster size smaller

than |𝐷𝑎𝑡𝑎 |/𝑘 ×𝑚𝑖𝑛𝐷𝑒𝑣 or if no such exists, the medoid with the

smallest cluster. The iterative phase stops when no new𝑀𝐵𝑒𝑠𝑡

has been found for 𝑖𝑡𝑟𝑃𝑎𝑡 iterations.

Refinement phase. The last phase refines the clusters found
so far. First, let 𝐿 ← 𝐶𝐵𝑒𝑠𝑡 instead of the spheres and use 𝐿 to

find the best set of dimensions for the medoids. Within these

dimensions, assign points to the closest medoid. At last, define

a sphere for each medoid 𝑚𝑖 with radius Δ𝑖 ← min𝑗≠𝑖 | |𝑚𝑖 −
𝑚 𝑗 | |𝐷𝑖 /𝐷𝑖 in subspace 𝐷𝑖 . A point is an outlier if it lies outside

the sphere for all medoids.

ComputeL. Compute the set of points 𝐿𝑖 close to each medoid

𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 . For each medoid𝑚𝑖 , let 𝛿𝑖 ← min𝑗 !=𝑖 | |𝑚 𝑗 −𝑚𝑖 | |2
be the distance to the nearest medoid𝑚 𝑗 ∈ 𝑀𝐶𝑢𝑟 and 𝐿𝑖 ← {𝑝 ∈
𝐷𝑎𝑡𝑎 | | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑖 } be the set of points within the sphere

centered at𝑚𝑖 with radius 𝛿𝑖 .

FindDimensions. Find the best subspace projections. Com-

pute the average distances 𝑋𝑖, 𝑗 from all points in 𝐿𝑖 to𝑚𝑖 along

dimensions 𝑗 . Next, compute the average distances

𝑌𝑖 ←
(∑𝑑

𝑗=1 𝑋𝑖, 𝑗

)
/𝑑 for each medoid𝑚𝑖 across all dimensions

𝑗 , the standard deviation 𝜎𝑖 ←
√(∑𝑑

𝑗=1 𝑋𝑖, 𝑗

)
/(𝑑 − 1) for each

medoid 𝑚𝑖 across all dimensions 𝑗 , and a relative measure of

spread 𝑍𝑖, 𝑗 ← (𝑋𝑖, 𝑗 − 𝑌𝑖 )/𝜎𝑖 for each pair of dimension 𝑗 and

medoid𝑚𝑖 .

At last, for each medoid𝑚𝑖 pick the two dimensions with the

smallest 𝑍𝑖, 𝑗 , and after that pick the dimensions 𝑗 corresponding

to the lowest 𝑍𝑖, 𝑗 and add them to the subspace 𝐷𝑖 until a total

of 𝑘 × 𝑙 dimensions has been picked.

AssignPoints. Assign each point 𝑝 to cluster𝐶𝑖 with smallest

Manhattan segmental distance to medoid𝑚𝑖 within the subspace

projection 𝐷𝑖 .

EvaluateCluster. The cost of the clustering is the average

Manhattan segmental distance from centroid 𝜇𝑖 ←
∑
𝑝∈𝐶𝑖

𝑝/|𝐶𝑖 |
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Algorithm 1 PROCLUS(𝐷𝑎𝑡𝑎,𝐴, 𝐵, 𝑘, 𝑙, 𝑖𝑡𝑟𝑃𝑎𝑡,𝑚𝑖𝑛𝐷𝑒𝑣)
1: // Initialization Phase

2: 𝐷𝑎𝑡𝑎′ ← random sample from 𝐷𝑎𝑡𝑎 of size 𝐴 × 𝑘
3: 𝑀 ← Greedy(𝐷𝑎𝑡𝑎′, 𝐴, 𝐵, 𝑘)
4: // Iterative Phase

5: while 𝑖𝑡𝑟 < 𝑖𝑡𝑟𝑃𝑎𝑡 do
6: 𝐿 ← ComputeL(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟 )
7: 𝐷 ← FindDimensions(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟, 𝐿, 𝑘, 𝑙)
8: 𝐶 ← AssignPoints(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟, 𝐷)
9: 𝑐𝑜𝑠𝑡 ← EvaluateClusters(𝐷𝑎𝑡𝑎,𝐶, 𝐷, 𝑘)
10: 𝑖𝑡𝑟 ← 𝑖𝑡𝑟 + 1
11: if 𝑐𝑜𝑠𝑡 < 𝑐𝑜𝑠𝑡𝐵𝑒𝑠𝑡 then
12: 𝑖𝑡𝑟 ← 0, 𝑐𝑜𝑠𝑡𝐵𝑒𝑠𝑡 ← 𝑐𝑜𝑠𝑡 ,𝑀𝐵𝑒𝑠𝑡 ← 𝑀𝐶𝑢𝑟

13: 𝑀𝐵𝑎𝑑 ← ComputeBadMedoids(𝑀𝐵𝑒𝑠𝑡,𝑚𝑖𝑛𝐷𝑒𝑣)
14: Compute 𝑀𝐶𝑢𝑟 by replacing the bad medoids in 𝑀𝐵𝑒𝑠𝑡

with random points from𝑀

15: // Refinement Phase

16: 𝐿 ← 𝐶𝐵𝑒𝑠𝑡

17: 𝐷 ← FindDimensions(𝐷𝑎𝑡𝑎, 𝐿,𝑀𝐵𝑒𝑠𝑡, 𝑑, 𝑘, 𝑙)
18: 𝐶 ← AssignPoints(𝐷𝑎𝑡𝑎,𝑀𝐵𝑒𝑠𝑡, 𝐷)
19: 𝐶 ← RemoveOutliers(𝐷𝑎𝑡𝑎,𝐶,𝑀𝐵𝑒𝑠𝑡, 𝐷)
20: return 𝐶, 𝐷,𝑀

of cluster 𝐶𝑖 within subspace 𝐷𝑖 :

𝑤𝑖 ←
∑

𝑗 ∈𝐷𝑖
𝑉𝑖, 𝑗

|𝐷𝑖 |
,𝑉𝑖, 𝑗 ←

∑
𝑝∈𝐶𝑖

| |𝑝 𝑗 − 𝜇𝑖, 𝑗 | |
|𝐶𝑖 |

, (1)

𝑐𝑜𝑠𝑡 ←
∑𝑘
𝑖 |𝐶𝑖 | ×𝑤𝑖

|𝐷𝑎𝑡𝑎 | . (2)

Note that PROCLUS uses localized random search for the best

set of medoids and subspaces within a random subset of the data.

This implies that PROCLUS is non-deterministic, so results can

differ with the same parameters and dataset if the random seeds

differ. Any of these results are equally correct according to the

PROCLUS algorithm.

3 FAST-PROCLUS
We observe that PROCLUS performs many similar computations

that we exploit when we devise parallel algorithmic strategies.

Some of these computations are not just similar but repeated be-

tween iteration and function calls. We propose two strategies: (1)

thorough analysis of distance computations and storing partial

results for re-use, (2) parallel algorithms for the GPU. To make a

clear distinction between the speedup gained by reducing com-

putations performed, and the speedup gained by parallelization,

we describe our FAST-PROCLUS for the algorithmic improve-

ments, and in Section 4.1, we parallelize both PROCLUS and

FAST-PROCLUS.

The result of PROCLUS depends on user-selected parameters,

so the user usually does multiple runs to find the best parameter

setting. We propose a strategy that reuses temporary results be-

tween iterations and parameter settings to reduce computations.

This includes a heuristic to reduce conversion time by reusing

the best set of medoids found for the previous parameter setting.

The iterative phase of PROCLUS has several steps with a𝑂 (𝑛×
𝑘 × 𝑑) running time. These steps are the most time-consuming

and, therefore, the focus for improvement.

Compute distances to potentialmedoids only once.When

computing the set of points 𝐿𝑖 within the radius 𝛿𝑖 , PROCLUS

computes the distances from each medoid 𝑚𝑖 to each point 𝑝 .

These computations have a𝑂 (𝑛 × 𝑘 ×𝑑) run-time and are, there-

fore, one of the more expensive in PROCLUS.

For the medoids used in earlier iterations, the distances have

already been computed and do not change between iterations

since the distance measure is the Euclidean distance in full-

dimensional space. Furthermore, PROCLUS only picks the cur-

rent medoids𝑀𝐶𝑢𝑟 from a small set of 𝐵 × 𝑘 potential medoids

𝑀 where 𝐵 should be a small number. This implies that the reuse

of medoids is likely. We, therefore, propose to save the distances

across iterations. For this purpose, we introduce a distance ma-

trix 𝐷𝑖𝑠𝑡 ∈ R𝐵𝑘×𝑛 with all pairs of distances between medoids

and points. This requires 𝑂 (𝐵 × 𝑘 × 𝑛) space and is, therefore, a

trade-off between running time and space. For the cases where

space is a limiting factor, we later propose an adaptation of this

strategy that reduces the memory used by a factor 𝐵, at the cost

of a small increase in running time.

The distance matrix 𝐷𝑖𝑠𝑡 allows us to only compute the dis-

tances the first time a medoid is used, and therefore reduce the

computations inComputeL. To keep track of which distances have
been computed, we maintain an indicator vector 𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑 ∈
{𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}𝐵𝑘 that indicates if the distances to a medoid have

been computed. Furthermore, we introduce an index𝑀𝐼𝑑𝑥𝑖 to in-

dicate which of the potential medoids the 𝑖’th medoid𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟

corresponds to from the potential medoids𝑀 and the distance

matrix 𝐷𝑖𝑠𝑡 . For each iteration 𝑡 we check 𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑 to see if

the distances from each𝑚𝑖 to all points 𝑝 has been computed, if

not we compute the distances 𝐷𝑖𝑠𝑡𝑀𝐼𝑑𝑥𝑖 ,𝑝 ← ||𝑝 −𝑚𝑖 | |2 for all 𝑝 .
Afterward, we set 𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑𝑀𝐼𝑑𝑥𝑖 ← 𝑡𝑟𝑢𝑒 to indicate that the

distances have been computed.

Introduce sum of distances to medoids as temporary re-
sult. As part of selecting subspaces, we compute the average

distances 𝑋𝑖, 𝑗 to each medoid𝑚𝑖 from all points 𝑝 ∈ 𝐿𝑖 along

dimension 𝑗 . We observe that it is often the case that the set 𝐿𝑖
only changes for a fraction of the points between iterations since

the potential medoids are selected to be far apart. We denote the

change in 𝐿𝑖 by Δ𝐿𝑖 .

Theorem 3.1 (Computing the change Δ𝐿𝑖 in 𝐿𝑖 between

iterations). For medoid𝑚𝑖 and the set of points 𝐿𝑖 in the sphere
centered at𝑚𝑖 with radius 𝛿𝑖 , let:

Δ𝐿𝑖 ← {𝑝 ∈ 𝐷𝑎𝑡𝑎 | 𝛿𝑡
′
𝑖 < | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑡𝑖 ∨

𝛿𝑡
′
𝑖 ≥ ||𝑝 −𝑚𝑖 | |2 > 𝛿𝑡𝑖 }.

(3)

Then Δ𝐿𝑖 is the change in set 𝐿𝑖 between the current iteration 𝑡 and
the previous usage 𝑡 ′.

Proof. We have two cases, either the radius 𝛿𝑖 has increased,

implying that 𝛿𝑡
𝑖
> 𝛿𝑡

′
𝑖
, or it has decreased, implying that 𝛿𝑡

𝑖
< 𝛿𝑡

′
𝑖
.

In the first case, we can split the set 𝐿𝑡
𝑖
at the current iteration

𝑡 into two disjoint sets, the old set 𝐿𝑡
′
𝑖
at iteration 𝑡 ′ union with

the change Δ𝐿𝑖 :

𝐿𝑡𝑖 = {𝑝 ∈ 𝐷𝑎𝑡𝑎 | | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑡𝑖 }

= {𝑝 ∈ 𝐷𝑎𝑡𝑎 | | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑡
′
𝑖 }∪

{𝑝 ∈ 𝐷𝑎𝑡𝑎 | 𝛿𝑡
′
𝑖 < | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑡𝑖 }

= 𝐿𝑡
′
𝑖 ∪ {𝑝 ∈ 𝐷𝑎𝑡𝑎 | 𝛿

𝑡 ′
𝑖 < | |𝑝 −𝑚𝑖 | |2 ≤ 𝛿𝑡𝑖 ∨

𝛿𝑡
′
𝑖 ≥ ||𝑝 −𝑚𝑖 | |2 > 𝛿𝑡𝑖 }

= 𝐿𝑡
′
𝑖 ∪ Δ𝐿𝑖 .

(4)

And analogously for the decrease in 𝐿𝑖 . □
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To avoid recomputing the entire 𝑋𝑖, 𝑗 , we propose to maintain

a matrix 𝐻𝑡 ′ ∈ R𝐵𝑘×𝑑 with the sum of distances to each medoid

𝑚𝑖 to all points in 𝐿𝑡
′
𝑖
along dimension 𝑗 from the previous usage

𝑡 ′:

𝐻𝑡 ′

𝑀𝐼𝑑𝑥𝑖 , 𝑗
=

∑
𝑝∈𝐿𝑡′

𝑖

| |𝑝 𝑗 −𝑚𝑖 𝑗 | |. (5)

Theorem 3.2 (Computing 𝐻 iteratively). For medoid𝑚𝑖 ∈
𝑀𝐶𝑢𝑟 , set 𝐿𝑡

𝑖
in radius 𝛿𝑡

𝑖
at iteration 𝑡 and change Δ𝐿𝑖 since the

previous usage 𝑡 ′ we can split the sum of distances 𝐻𝑡
𝑀𝐼𝑑𝑥𝑖 , 𝑗

into
two parts:

𝐻𝑡
𝑀𝐼𝑑𝑥𝑖 , 𝑗

← 𝐻𝑡 ′

𝑀𝐼𝑑𝑥𝑖 , 𝑗
+ 𝜆𝑖 ×

∑
𝑝∈Δ𝐿𝑖

| |𝑝 𝑗 −𝑚𝑖 𝑗 | |, (6)

where 𝜆𝑖 is 1 if the sphere increases in size and −1 if it decreases.

Proof. We again have two cases. Either the change is an

increase or decrease. For increase, using Theorem 3.1 and since

𝐿𝑡
′
𝑖
and Δ𝐿𝑖 are disjoint, we have:

𝐻𝑡
𝑀𝐼𝑑𝑥𝑖 , 𝑗

=
∑
𝑝∈𝐿𝑡

𝑖

| |𝑝 𝑗 −𝑚𝑖 𝑗 | | =
∑

𝑝∈𝐿𝑡′
𝑖
∪Δ𝐿𝑖

| |𝑝 𝑗 −𝑚𝑖 𝑗 | |

=
∑
𝑝∈𝐿𝑡′

𝑖

| |𝑝 𝑗 −𝑚𝑖 𝑗 | | +
∑

𝑝∈Δ𝐿𝑖
| |𝑝 𝑗 −𝑚𝑖 𝑗 | |.

(7)

Analogously for decrease. □

Weuse Theorem 3.2 to update𝐻 and then compute the average

distance 𝑋𝑖, 𝑗 ← 𝐻𝑡
𝑀𝐼𝑑𝑥𝑖 , 𝑗

/|𝐿𝑖 | across dimension 𝑗 from all points

in 𝐿𝑖 to𝑚𝑖 .

Only updating 𝐻 with the change in 𝐿𝑖 requires that during

ComputeL we do not calculate the set 𝐿𝑖 , but instead the change

Δ𝐿𝑖 in points as in Theorem 3.1. Notice that Δ𝐿𝑖 can be computed

in the same way as 𝐿𝑖 , the only difference being the condition that

we keep points between the current 𝛿𝑡
𝑖
and the previous 𝛿𝑡

′
𝑖
radius

of the set 𝐿𝑖 . To maintain radius 𝛿𝑡
′
𝑖
we must keep the previous

radius for any of the 𝐵 × 𝑘 potential medoids. Furthermore, we

maintain the size of the set 𝐿𝑖 , |𝐿𝑡𝑀𝐼𝑑𝑥𝑖
| ← |𝐿𝑡 ′

𝑀𝐼𝑑𝑥𝑖
| + 𝜆𝑖 × |Δ𝐿𝑖 |,

for all potential medoids.

We can now update 𝐻 between iterations instead of recom-

puting the sum of distances for each iteration. This implies that

we can reuse computations and reduce the running time.

3.1 Multiple parameter settings
A drawback for most subspace and projected clustering algo-

rithms, including PROCLUS, is that the result depends on the

selected parameters. In practice, these algorithms are typically

run multiple times with different parameters. For PROCLUS, the

important parameters are the number of clusters 𝑘 and the aver-

age number of dimensions 𝑙 .

When running for multiple different parameter settings, PRO-

CLUS performs many similar computations. We observe that if

we have the same potential medoids𝑀 for all parameter settings,

both the distance matrix 𝐷𝑖𝑠𝑡 and the sum of distances 𝐻 can

be reused. To achieve this, we only once greedily pick potential

medoids for the largest 𝑘 and use this set 𝑀 for all parameter

settings. Having a constant |𝑀 | = 𝐵 × 𝑘 picked from a set of

size |𝑆 | = 𝐴 × 𝑘 corresponds to an increase in 𝐴 = |𝑆 |/𝑘 and

𝐵 = |𝑀 |/𝑘 as 𝑘 decreases. In other words, the first selection of 𝐴,

𝐵, and 𝑘 impacts the values for 𝐴 and 𝐵 in subsequent parameter

settings for different 𝑘 . Please note that 𝐴, 𝐵, 𝑘 , and 𝑙 are only

used to determine the size of𝑀 and 𝑆 and do not otherwise im-

pact greedy picking, so the likelihood of picking a specific𝑀 for

any given execution is unchanged. We thus trade-off selection of

𝐴 and 𝐵 for speed. We implement both this faster version reusing

the computations saved in 𝐷𝑖𝑠𝑡 , 𝐻 ,𝑀 , and 𝑆 , as well as one that

follows the original PROCLUS sampling strategy, and study the

speedup gained in the experiments, Section 5.

As an additional speedup option, we introduce a heuristic that

reusing medoids found to be good in one setting as initializa-

tion in other settings, as this may lead to faster convergence.

Therefore, instead of initializing each parameter setting with

the current medoids𝑀𝐶𝑢𝑟 as a random subset of the potential

medoids𝑀 , we initialize the current medoids as a random subset

of the previous best medoids𝑀𝐵𝑒𝑠𝑡 . In the experiments, Section

5, we study the speedup this initialization provides.

3.2 Trade-off between running time and
space

We propose an adaptation of FAST-PROCLUS, called FAST*-

PROCLUS, that reduces the space complexity at the cost of a

slight increase in running time. Instead of saving the distance

matrix 𝐷𝑖𝑠𝑡 and the sum of distances 𝐻 to all potential medoids,

which require𝑂 (𝐵 × 𝑘 ×𝑛) and𝑂 (𝐵 × 𝑘 ×𝑑) space, respectively,
we only keep these temporary results from the previous itera-

tion 𝑡 − 1. This requires only 𝑂 (𝑘 × 𝑛) space but implies that we

can only reuse the computations in 𝐷𝑖𝑠𝑡 and 𝐻 from iteration

𝑡 − 1 instead of any earlier iteration 𝑡 ′. However, it is often the

case that few of the current medoids are replaced, and we can,

therefore, still reuse most of the computed distances.

Since we no longer need to keep track of which of the potential

medoids are in use, we do not use the index 𝑀𝐼𝑑𝑥 . Instead, we

use 𝑖 ∈ 𝑀𝐵𝑎𝑑 to identify for which of the medoids we need to

recompute the distance matrix 𝐷𝑖𝑠𝑡 and reset the previous 𝛿𝑡−1
𝑖

,

size of 𝐿𝑖 and the sum of distances 𝐻 before we compute Δ𝐿𝑖 .

4 GPU-PROCLUS
Modern GPUs provide high computational power through thou-

sands of cores at the cost of a restrictive parallel computational

model. This stands in contrast to the sequential model of the

CPU that most algorithms follow. Therefore, when developing

algorithms for the GPU, several properties must be considered.

We use the term parallel to denote parallel execution under the

GPU’s computational model.

Programming the GPU is more like using vector registers,

where the same operation is performed on each element on a

given execution cycle. This is known as the Single Instruction

Multiple Data (SIMD) model. GPUs similarly use a Single Instruc-

tion Multiple Thread (SIMT) model where hundreds or thousands

of threads are executed at the same time.

On NVIDIA GPUs, instructions are grouped into vector in-

structions known as warps, where 32 threads are scheduled to-

gether and share a program counter. This implies that all cores in

a warp must perform the same instruction at all times. Further-

more, cores are grouped into streaming multiprocessors (SMs).

The warps are scheduled on a given SM. Warps on the same SM

can share fast access L1-cache associated with that SM and can

also synchronize.

In the CUDA programming environment, the CPU program

spawns functions, known as kernels, onto the GPU. The functions

spawn on invocation of a given number of threads to be executed

concurrently. These threads may be organized into blocks. All
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threads within a thread block are executed within the same SM.

Threads in different blocks cannot synchronize automatically, so

computations performed in different blocks should be indepen-

dent to avoid a global synchronization. By independent we mean

computations that do not use the partial result of each other. Data

accessed by threads in different blocks must be located in global

memory, which is slower than the shared memory.

When multiple threads write to the same memory address,

race conditions can occur, where changes by one of them may be

lost. To avoid such behavior, the GPU provides atomic versions

of increment, addition, maximum, etc. However, these are more

expensive and should be avoided, if possible.

In this paper, our algorithms are structured such that they

may perform for-loops in parallel as threads. This entails that

each step of the for-loop iterations is performed concurrently by

different threads. We use a similar notation for thread blocks. If

the for-loop has more iterations than threads per thread block,

each thread handles multiple iterations.

4.1 GPU-friendly parallelization
PROCLUS has a long running time for larger datasets and thus

is too slow for interactive settings. We, therefore, propose an

algorithm capable of utilizing the computational power of the

GPU to reduce the running time. We present GPU-parallelized

versions of PROCLUS, FAST*-PROCLUS, and FAST-PROCLUS,

called GPU-PROCLUS, GPU-FAST*-PROCLUS and GPU-FAST-

PROCLUS.

In our GPU-parallelization approaches, we ensure a correct

PROCLUS result by only parallelizing independent computa-

tions, or else by synchronizing to ensure that all threads within

a block are at the same state. Furthermore, to avoid race con-

ditions between threads that compute part of a common result,

we use atomic operations. As mentioned above, PROCLUS is

non-deterministic due to local randomization, so results between

runs may differ both for the GPU versions and the CPU versions

of PROCLUS, but all our results are fully correct with respect to

the PROCLUS definition.

Each of the sub-functions Greedy, ComputeL, FindDimensions,
AssignPoints, and EvaluateCluster has a high time complexity and

will therefore be the focus of this section.

To avoid costly memory transfers between the CPU and the

GPU, all other computations are also performed on the GPU. Each

sub-function is formulated as a separate algorithm for readability.

However, since it is time-consuming to allocate and free memory

on the GPUs, we allocate all required memory at the beginning

of GPU-PROCLUS and reuse the same allocated memory for all

of the iterations.

Greedy. In PROCLUS [2], the greedy selection of potential

medoids repeatedly selects the point that is furthest away from all

other potential medoids. Algorithm 2 shows our GPU-parallelized

version of the greedy function. At line 1-4 we first pick a random

point 𝑀1 in 𝐷𝑎𝑡𝑎′ as part of 𝑀 and in parallel we compute the

Euclidean distance 𝐷𝑖𝑠𝑡𝑝 ← ||𝑀𝑖 − 𝑝 | |2 to all points 𝑝 in 𝐷𝑎𝑡𝑎′.
Each distance computation is completely independent of others

and can therefore be computed using different thread blocks. To

reduce the number of accesses to global memory, we compute

the maximal distance𝑚𝑎𝑥𝐷𝑖𝑠𝑡 within the same kernel call, line

5. However, to guarantee that the correct maximum𝑚𝑎𝑥𝐷𝑖𝑠𝑡 is

computed, we must ensure that all blocks have finished before

using the global maximum𝑚𝑎𝑥𝐷𝑖𝑠𝑡 . We, therefore, need to check

which points have the largest distance in a separate kernel call

at line 6-9.

Algorithm 2 Greedy(𝐷𝑎𝑡𝑎′, 𝐴, 𝐵, 𝑘)
1: Pick𝑀1 at random from 𝐷𝑎𝑡𝑎′.
2: 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ← 0 // shared variable

3: for 𝑝 ∈ 𝐷𝑎𝑡𝑎′ - in parallel as threads and blocks do
4: 𝐷𝑖𝑠𝑡𝑝 ← ||𝑀𝑖 − 𝑝 | |2
5: 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ← max(𝑚𝑎𝑥𝐷𝑖𝑠𝑡, 𝐷𝑖𝑠𝑡𝑝 ) // atomic

6: for 𝑖 ← 2, . . . , 𝐵𝑘 do
7: for 𝑝 ∈ 𝐷𝑎𝑡𝑎′ - in parallel as threads and blocks do
8: if 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 = 𝐷𝑖𝑠𝑡𝑝 then
9: 𝑀𝑖 ← 𝑝

10: 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ← 0

11: for 𝑝 ∈ 𝐷𝑎𝑡𝑎′ - in parallel as threads and blocks do
12: 𝐷𝑖𝑠𝑡𝑝 ← min(𝐷𝑖𝑠𝑡𝑝 , | |𝑀𝑖 − 𝑝 | |2)
13: 𝑚𝑎𝑥𝐷𝑖𝑠𝑡 ← max(𝑚𝑎𝑥𝐷𝑖𝑠𝑡, 𝐷𝑖𝑠𝑡𝑝 ) // atomic

14: return 𝑀

At line 6 to 13, we repeat this procedure until 𝐵 × 𝑘 potential

medoids has been picked. The only change is that we keep the

smallest distance to any already picked potential medoids from

point 𝑝 .

ComputeL. Computing the set of points 𝐿𝑖 for each medoid

𝑚𝑖 is done on the GPU as in Algorithm 3. First, pre-compute

the distances 𝐷𝑖𝑠𝑡𝑖,𝑝 between each medoid𝑚𝑖 and each point 𝑝 .

Each distance computation is completely independent and can

be performed completely in parallel, see line 1-3. Next, in parallel

over each pair of medoids𝑚𝑖 ,𝑚 𝑗 , find the distance 𝛿𝑖 from𝑚𝑖

to the closest medoid𝑚 𝑗 ′ , see line 4-7. For each medoid𝑚𝑖 , we

compute the set of points 𝐿𝑖 in the sphere with radius 𝛿𝑖 centered

at𝑚𝑖 . This is done by checking if the distance to each point 𝑝 is

within 𝛿𝑖 .

To save time, we allocate memory for the worst-case size of

𝐿𝑖 and add points to the first available location in the allocated

array. Adding each point 𝑝 to the set 𝐿𝑖 is done using atomicInc
to increment the location of points without race conditions, see

line 8-12.

Algorithm 3 ComputeL(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟 )
1: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel as blocks do
2: for 𝑝 ∈ 𝐷𝑎𝑡𝑎 - in parallel as threads and blocks do
3: 𝐷𝑖𝑠𝑡𝑚𝑖 ,𝑝 ← ||𝑚𝑖 − 𝑝 | |2
4: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel as blocks do
5: for𝑚 𝑗 ∈ 𝑀𝐶𝑢𝑟 - in parallel as threads do
6: if 𝑚𝑖 ≠𝑚 𝑗 then
7: 𝛿𝑖 ← min(𝛿𝑖 , 𝐷𝑖𝑠𝑡𝑚𝑖 ,𝑚 𝑗

) // atomic

8: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel as blocks do
9: for 𝑝 ∈ 𝐷𝑎𝑡𝑎 - in parallel as threads and blocks do
10: if 𝐷𝑖𝑠𝑡𝑚𝑖 ,𝑝 ≤ 𝛿𝑖 then
11: 𝑙 ← 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ( |𝐿𝑖 |) // atomic

12: 𝐿𝑖,𝑙 ← 𝑝

13: return 𝐿

FindDimensions. Finding the dimensions for the projected

subspaces follows the formula for the original PROCLUS closely.

Each entry of 𝑋,𝑌, 𝜎, 𝑍 can be computed completely indepen-

dently and therefore by different thread blocks. To avoid saving

𝑌 and 𝜎 to global memory we combine the computation of 𝑌 , 𝜎 ,
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and 𝑍 into one kernel call. This reduces the running time sub-

stantially, but since these kernel calls are small the impact on the

overall running time is minor.

Algorithm 4 FindDimensions(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟, 𝐿, 𝑘, 𝑙)
1: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel, as blocks do
2: for 𝑗 ← 1, ..., 𝑑 - in parallel, as blocks do
3: 𝑠𝑢𝑚 ← 0 // local variable

4: for 𝑝 ∈ 𝐿𝑖 - in parallel, as threads do
5: 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + ||𝑝 𝑗 −𝑚𝑖, 𝑗 | |
6: 𝑋𝑖, 𝑗 ← 𝑋𝑖, 𝑗 + 𝑠𝑢𝑚/|𝐿𝑖 | // atomic

7: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel, as blocks do
8: for 𝑗 ← 1, ..., 𝑑 - in parallel, as threads do
9: 𝑌𝑖 ← 𝑌𝑖 + 𝑋𝑖, 𝑗/𝑑 // atomic

10: 𝜎𝑖 ← 𝜎𝑖 + (𝑋𝑖, 𝑗 − 𝑌𝑖 )2 // atomic

11: synchronize threads

12: 𝜎𝑖 ←
√
𝜎𝑖/(𝑑 − 1)

13: synchronize threads

14: 𝑍𝑖, 𝑗 ← (𝑋𝑖, 𝑗 − 𝑌𝑖 )/𝜎𝑖
15: Pick the dimensions 𝑗 with the two smallest 𝑍𝑖, 𝑗 values for

each medoids𝑚𝑖 .

16: Pick next 𝑘 × 𝑙 − 2 × 𝑘 smallest 𝑍𝑖, 𝑗 , append associated di-

mensions 𝑗 to subspace of corresponding medoids𝑚𝑖

17: return 𝐷

When computing𝑋𝑖, 𝑗 , we sum across a large number of points.

To avoid race conditions each addition to the global memory

location must be performed by atomicAdd. Instead of performing

the expensive atomic operations for each point, we let each thread

compute a part of the sum locally. Afterward, each thread adds

the local sum atomically to𝑋𝑖, 𝑗 in the global memory. To compute

the average, the local sum is divided by |𝐿𝑖 |. At last, 𝑍 is used to

pick the subspaces 𝐷 .

AssignPoints. Assigning each point 𝑝 to the closest medoid

𝑚𝑖 is done by first computing the distance 𝐷𝑖𝑠𝑡𝑝,𝑚𝑖
from each

point 𝑝 to each medoid𝑚𝑖 , which again can be done completely

in parallel. Remember that the distance measure used to assign

points is the Manhattan segmental distance in subspace 𝐷𝑖 , and

we can therefore not reuse the previously computed distances.

Next, for each point 𝑝 in parallel, we check which medoid is

closest and assign the point 𝑝 to the corresponding cluster 𝐶𝑖 .

Both steps are joined into one kernel to reduce the number of

global memory accesses, see Algorithm 5. Remember that ac-

cessing shared memory is faster than accessing global memory,

therefore, it has a large effect on the running time. We use atom-
icMin to find the smallest distance to a medoid and synchronize

to ensure that all medoids have been checked before selecting the

closest. This implies that we must compute the distances from

each point to all medoids in the same thread block. Adding the

points to set 𝐶𝑖 is done the same way as for 𝐿𝑖 .

EvaluateCluster. The evaluation of the clustering is the av-

erage Manhattan segmental distance to the centroid, not to the

medoid as in previous sub-functions. Therefore the first step is

to compute the centroid of each cluster.

The formulation of the cost-function in Eq. 2 is separated into

multiple steps that each could be parallelized in its own ker-

nel call; computing the mean 𝜇𝑖, 𝑗 of each cluster, the average

distance to the mean along each dimension 𝑉𝑖, 𝑗 , the average dis-

tance among the dimensions for each cluster𝑤𝑖 , and finally the

summed weighted cost for the entire clustering. However, this

would require saving temporary results of each step to global

Algorithm 5 AssignPoints(𝐷𝑎𝑡𝑎,𝑀𝐶𝑢𝑟, 𝐷)
1: for 𝑝 ∈ 𝐷𝑎𝑡𝑎 - in parallel, as threads and blocks do
2: for𝑚𝑖 ∈ 𝑀𝐶𝑢𝑟 - in parallel, as threads do
3: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑝 ←∞ // shared variable

4: 𝐷𝑖𝑠𝑡𝑝,𝑚𝑖
← ||𝑝 −𝑚𝑖 | |𝐷𝑖

1
/|𝐷𝑖 | // local variable

5: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑝 ← min(𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑝 , 𝐷𝑖𝑠𝑡𝑝,𝑚𝑖
) // atomic

6: synchronize threads

7: if 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑝 = 𝐷𝑖𝑠𝑡𝑝,𝑚𝑖
then

8: 𝑙 ← 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 ( |𝐶𝑖 |) // atomic

9: 𝐶𝑖,𝑙 ← 𝑝

10: return 𝐶

memory, which is expensive to access. To avoid this, we reformu-

late the cost-function into a sum of values that can be computed

in parallel and where only the final cost must be written to global

memory:

𝑐𝑜𝑠𝑡 =

∑𝑘
𝑖 |𝐶𝑖 | ×

∑
𝑗∈𝐷𝑖

∑
𝑝∈𝐶𝑖

| |𝑝𝑗 −𝜇𝑖,𝑗 | |
|𝐶𝑖 |

|𝐷𝑖 |
|𝐷𝑎𝑡𝑎 | (8)

=

𝑘∑
𝑖=1

∑
𝑗 ∈𝐷𝑖

∑
𝑝∈𝐶𝑖

| |𝑝 𝑗 − 𝜇𝑖, 𝑗 | |
|𝐷𝑖 | × |𝐷𝑎𝑡𝑎 |

. (9)

Eq. 9 allows both the mean 𝜇𝑖, 𝑗 and 𝑐𝑜𝑠𝑡 to be computed in

parallel using a thread block for each pair of medoids𝑚𝑖 and di-

mensions 𝑗 and then distribute the points among different threads

within these thread blocks. Since this is the case, we can combine

the computation of both into one kernel call, and synchronize

all threads in each block to ensure that the computation of 𝜇𝑖, 𝑗
has finished before using it. By this, we can avoid writing 𝜇𝑖, 𝑗 to

global memory but instead keep it as a shared variable. Writing

to shared memory is much faster then writing to global memory

and therefore provides a large reduction in running time.

To reduce the number of atomic operations in Algorithm 6,

we use a local temporary variable that each thread can save its

partial result to and then only perform one atomic operation per

thread at the very end. This strategy is used both to compute the

centroid 𝜇𝑖 and 𝑐𝑜𝑠𝑡 .

Algorithm 6 EvaluateCluster(𝐷𝑎𝑡𝑎,𝐶, 𝐷, 𝑘)
1: for 𝑖 ← 1, . . . , 𝑘 - in parallel as blocks do
2: for 𝑗 ∈ 𝐷𝑖 - in parallel as blocks do
3: 𝜇𝑖, 𝑗 ← 0 // shared variable

4: 𝑡𝑚𝑝 ← 0 // local variable

5: synchronize threads

6: for 𝑝 ∈ 𝐶𝑖 - in parallel as threads do
7: 𝑡𝑚𝑝 ← 𝑡𝑚𝑝 + 𝑝 𝑗
8: 𝜇𝑖, 𝑗 ← 𝜇𝑖, 𝑗 + 𝑡𝑚𝑝/|𝐶𝑖 | // atomic

9: 𝑡𝑚𝑝 ← 0

10: synchronize threads

11: for 𝑝 ∈ 𝐶𝑖 - in parallel as threads do
12: 𝑡𝑚𝑝 ← 𝑡𝑚𝑝 + ||𝑝 𝑗 − 𝜇𝑖, 𝑗 | |
13: 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + 𝑡𝑚𝑝/(|𝐷𝑖 | × |𝐷𝑎𝑡𝑎 |) // atomic

14: return 𝑐𝑜𝑠𝑡

Updated and iterations. We also update the best clustering,

the best subspace, the best medoids, the current medoids, and

the iteration counter for each iteration. However, this part is not

time-consuming and details are therefore omitted.
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RemoveOutliers. To remove ourliers, we compute the small-

est distance between two medoids𝑚𝑖 ,𝑚 𝑗 , for each medoid𝑚𝑖

in parallel as block and each𝑚 𝑗 using threads within that block

and use atomics to find the smallest distance Δ𝑖 . Then in parallel

across all points, we check if it lies within the Δ𝑖 radius of any
medoid𝑚𝑖 , else, it is reported as an outlier.

4.2 GPU-FAST-PROCLUS
The proposed strategies for reducing computations need modi-

fications to fit the GPU. The lookup in the distance matrix 𝐷𝑖𝑠𝑡

and 𝐻 is as for FAST-PROCLUS. However, when computing the

distances, in ComputeL, we must ensure that all threads have

checked the flag 𝐷𝑖𝑠𝑡𝐹𝑜𝑢𝑛𝑑𝑀𝐼𝑑𝑥𝑖 before marking it as computed.

Since we would like to utilize as many cores as possible, we

distribute the distance computations among multiple thread

blocks. Instead of using community groups to synchronize across

thread blocks, we set the flag afterward in a separate kernel call.

Both 𝜆𝑖 and |𝐿𝑡𝑖 | are computed as in FAST-PROCLUS, but only

one thread per medoid𝑚𝑖 needs to compute this. Similarly for

FindDimensions, when computing the average distance 𝑋𝑖, 𝑗 , we

must ensure that 𝐻 is updated by all threads before comput-

ing 𝑋𝑖, 𝑗 ← 𝐻𝑖, 𝑗/|𝐿𝑖 |. Therefore, 𝑋𝑖, 𝑗 is computed in a separate

kernel call. The rest of GPU-FAST-PROCLUS proceeds as GPU-

PROCLUS.

5 EXPERIMENTS
We perform real-world experiments on a workstation with Intel

Core i7-9750HF 2.6GHz 12-cores, 16 GB RAM, and a GeForce GTX

1660 TI 6 GB dedicated RAM. For the larger synthetic datasets, we

move experiments to a workstation with an Intel Core i9 10940X

3.3GHz 14-Core, 258 GB RAM, and a GeForce RTX 3090 with 24

GB dedicated RAM. All algorithms have been implemented in

C++ or CUDA. For repeatability, the source code is provided at:

https://au-dis.github.io/publications/GPU-FAST-PROCLUS/.

Multi-core CPU-version. Some of the strategies proposed

for GPU-parallelization are directly applicable to the CPU as well.

We have therefore implemented multi-core CPU versions using

OpenMP
1
to study the speedup of parallelization on the CPU vs.

the GPU.

Algorithm parameters. The default parameters in all exper-

iments are 𝑘 = 10, 𝑙 = 5, 𝐴 = 100, 𝐵 = 10,𝑚𝑖𝑛𝐷𝑒𝑣 = 0.7, and

𝑖𝑡𝑟𝑃𝑎𝑡 = 5.

CUDA kernel configurations. For the CUDA kernel config-

urations, the block size of 1024 threads is used. If fewer threads

are required per block, only the required number of threads are

started. To reduce unnecessary synchronizations in AssignPoints,

Algorithm 5, 128 threads are used per block.

Synthetic data. For control of data distribution and size, we

use the synthetic dataset generator provided by [6]. However,

we modify the generator as [18] to generate clusters in any arbi-

trary subspace. The default parameters for the generated data are

64, 000 points with 15 dimensions, each dimension has values in

the range 0 to 100. The points are distributed among 10 Gaussian

distributed clusters in a subspace of 5 dimensions and with a

standard deviation of 5.0.

Real-world data. For experiments on real-world datasets we

use the datasets glass, vowel, pendigits [27] and part of the Sky-

Server dataset [33]. The glass dataset is of size 214 with 9 features,

vowel is of size 990 with 10 features, and pendigits is of size 7, 494

with 16 features. From the SkyServer dataset, we use an area

1
https://www.openmp.org/
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Figure 1: Speedup w.r.t. GPU-PROCLUS.

of size 1 × 1 measured in the spherical coordinates, referenced

as sky 1 × 1. This subset contains 30, 390 points and we extract

17 features including the spherical coordinates. We also extract

a 2 × 2 area with 133, 095 points and a 5 × 5 area with 934, 073

points.

All reported running times are averages of 10 runs on different

generated datasets. The real-world and synthetic datasets aremin-

max normalized, such that all dimensions have values between 0

and 1.

5.1 Scalability
PROCLUS uses randomized search, but besides this random be-

havior, GPU-PROCLUS and all the algorithmic strategies produce

the same clustering as PROCLUS. The important measure in this

work is, therefore, not the accuracy but solely the running time.

This section investigates how the size of the dataset and its di-

mensionality affect the running time of our proposed algorithms.

We first compare against PROCLUS, where we run with just one

parameter setting at a time. Later, in Section 5.3, we show how

GPU-FAST-PROCLUS can achieve even higher speedup when al-

lowed to reuse partial computations between parameter settings.

Figs. 2a-2b shows that the algorithmic strategies provide a fac-

tor of 1.2 to 1.4× speedup for both PROCLUS and GPU-PROCLUS.
However, the GPU-parallelization of each strategy provides an

additional 2, 000× speedup. This speedup increases with the input
size and stays constant after a certain input size. This is due to

the more points, the easier it is to utilize all cores on the GPU.

The speedup is so great that we can now perform PROCLUS

in less than 100𝑚𝑠 , the limit for real-time interaction [32], for

even 1, 000, 000 data points. Similarly, the multi-core CPU-version

provides up to 6× speedup. The comparatively low utilization

compared to the GPU could be due to the many context switches.

Figs. 2c-2d shows that the factor of speedup is higher for

a lower number of dimensions, ranging from 896 to 1, 265×
speedup. This could be caused by not all distance computations

being parallelized across dimensions to avoid atomic operations

and synchronizations.

Space usage. For FAST* compared to FAST, we see approxi-

mately 1.05 to 1.1× slowdown, see Fig. 1, but with the benefit of

a reduction in space usage. Fig. 3f investigate the reduction in

space usage. Space usage of GPU-FAST*-PROCLUS is approxi-

mately half of that of GPU-FAST-PROCLUS and the space usage

of GPU-PROCLUS and GPU-FAST*-PROCLUS is similar. Space

usage of all algorithms increases linearly in 𝑛, which is inline

with our space complexity analysis.
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Figure 2: Average running times of runs with a single parameter settings.

5.2 Effect of data distributions and
parameters

The performance of clustering, subspace, and projected clustering

algorithms is affected by the data distribution. Therefore, we ver-

ify that GPU-PROCLUS performs well across data distributions.

In Fig. 2e we vary the number of clusters and in Fig. 2f we vary

the data distribution using different standard deviations. Here,

we see that the running time of PROCLUS and GPU-PROCLUS

is largely unaffected.
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We show how different parameter settings affect the running

time of PROCLUS and our proposed algorithms. In Fig. 2g-2k,

we increase each of the parameters in PROCLUS one by one. We

observe that the running time stays almost constant for most pa-

rameters, except for 𝑘 and 𝐵, where we see that running time for

both PROCLUS and GPU-PROCLUS increases with 𝑘 or 𝐵. This is

clearly because distances for a larger set of current medoids or po-

tential medoids are computed. However, for all experiments, the

factor of speedup remains relatively constant at around 1100×.

5.3 Multiple parameter settings
simultaneously

As mentioned in Section 3, the result of PROCLUS depends on

the parameters, so it is often run with multiple sets of parameters.

GPU-FAST-PROCLUS uses this to reduce the number of distance

computations. In Fig. 3a-3e, we show the average running time

of testing 9 combinations of 𝑘 and 𝑙 . The reported running times

are averages per combination to make it easier to compare with

running times for just a single parameter setting. We see that

GPU-FAST-PROCLUS provides up to around 7000× speedup w.r.t
PROCLUS. Furthermore, in Fig. 3e GPU-PROCLUS and GPU-

FAST-PROCLUS run on more than 8, 000, 000 points, and we

see that the average execution time never exceeds a second. At

8, 000, 000 points, space becomes the limiting factor, exceeding

the 4.2 GB of free memory on our relatively small GPU.

The strategy of reusing computations between parameter set-

tings consists of three parts: multi-param 1 reuses partial com-

puations,multi-param 2 reuses also greedy picking andmulti-
param 3 reuses also the previous best set of medoids. Compared

to GPU-FAST-PROCLUS executed with one parameter setting at

a time, the reuse of partial computations provides approximately

a factor 1.4× speedup, also reusing the greedy picking provides

approximately a factor 1.6× speedup, and also initializing with

the previous best set of medoids provides approximately a factor

2.3× speedup.

5.4 GPU-utilization
The utilization of the GPU is dependent on many factors like

memory throughput and and occupancy of the threads. Further

more, it can very at lot between the dataset, parameters, and from

kernel to kernel. We provide the utilization, inform of The mem-

ory throughput, theoretical occupancy, and achieved occupancy

provided by NVIDIA Nsight Compute
2
, for some of the most

interesting kernels and extreme cases. An example of what could

decrease the occupancy is if a block of threads uses more than

the registries that are available. The most time-consuming kernel

is Algorithm 6. Given the parameter settings used in this section

and a dataset with 4, 096, 000 points and 10 dimensions, it has a

theoretical occupancy of 100.00%, achieved occupancy of 99.99%,

and memory throughput of 86.54%. Reducing the dataset size to

8, 000 points reduces the utilization to a theoretical occupancy of

78.12%, achieved occupancy of 77.98%, and memory throughput

of 50.06%, this is because having 8, 000 points and 10 clusters

implies that we spawn around 800 threads per block, which is not

a good balance of the warps that can be executed per block. This

kernel together with most of our other algorithms has a high

utilization since we, in general, parallelize across a large number

of points and try to keep the threads that need to communicate

within the same block and do not exhaust the resources. On the

2
https://developer.nvidia.com/nsight-compute

other hand, a few kernels do not process all points, e.g., Algo-

rithm 3 line 4-7 spans 𝑘 blocks and 𝑘 threads per block. If 𝑘 < 32,

we do not have enough threads per block to utilize a full warp

and if 𝑘 × 𝑘 is less than the number of cores on the GPU, not all

cores are engaged. If the preceding and the succeeding kernels

were not depending on each other, streams could be used to run

two kernels concurrently to engage more cores. This kernel has

a theoretical occupancy of 50.00%, achieved occupancy of 3.12%,

and memory throughput of 1.64%. This is not a good utilization,

but not a time-consuming computation either, so these small

kernels do not have a large effect on the overall running time.

5.5 Performance on real world datasets
Running with 9 parameter settings, we show that GPU-FAST-

PROCLUS retains the high speedup on different real-world datasets.

In Fig. 3g, we show the running time on different real-world

datasets, and the experiments confirm that we obtain similar

speedups for real-world datasets as we achieve for synthetic

data. To be more specific, GPU-FAST-PROCLUS achieves 5490×
speedup compared to PROCLUS on the sky 5 × 5 dataset. As for
the synthetic data, the speedup is greatest for large datasets.

6 RELATEDWORK
Clustering is the task of grouping similar data points [35]. Distance-

based methods like k-means [24] or k-medoids [28] try to mini-

mize intracluster distance. Density-based methods like DBSCAN

[14], DPC [31] and SynC [8] find clusters as high density regions

separated by sparse regions.

In high dimensional data, clusters might only exist in sub-

spaces of the full-dimensional space, giving rise to subspace and

projected clustering [29]. Subspace clustering discovers clusters

in any possible subspace projection, allowing a data point to par-

ticipate in none or several clusters in different subspaces, whereas

projected clustering assigns each point to exactly one cluster in

one subspace projection. Subspace and projected clustering can

be categorized as top-down or bottom-up algorithms.

Bottom-up approaches [4, 11, 16, 19] find clusters in 𝑘 = 1

dimensional subspaces, then iteratively combine clusters in 𝑘-

dimensional subspaces to find clusters in (𝑘 + 1)-dimensional

subspaces. Top-down approaches [2, 3, 10, 13, 34] find clusters

in the full-dimensional space and iteratively update assigned

subspace projections to these clusters.

Subspace and projected clustering are time-consuming to com-

pute due to the number of subspaces increasing exponentially

in the number of dimensions, giving rise to works on efficient

algorithms. Some algorithms reduce the running time by pruning

subspace regions that cannot contain clusters [5, 19], approxi-

mating potentially dense areas by e.g. grid cells or histograms

[4, 11, 16, 23], or by locally optimizing to iteratively improve

candidate clusters and associated dimensions [2, 3, 10, 13, 25, 34].

While much effort has gone into algorithmic improvements

of subspace and projected clustering algorithms, the high com-

putational power of the graphics processing unit (GPU) remains

largely unexplored. To the best of our knowledge, GPUMAFIA

[1], a GPU version of SUBSCALE[12], and GPU-INSCY [18] are

the only GPU algorithms proposed for subspace clustering. We

review them in turn.

MAFIA is a bottom-up subspace clustering algorithm that com-

bines histogram approximations of overlapping dense subspace

regions as it moves from lower dimensional to higher dimen-

sional subspaces [16]. GPUMAFIA efficiently parallelizes these
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Figure 3: Average running times of runs with 9 parameter settings at a time.

core steps in different kernels. As PROCLUS uses a different clus-

tering notion that makes use of neither histograms nor dense

regions, and that cannot proceed in a bottom-up fashion on sub-

spaces, the algorithmic parallelization strategies in GPUMAFIA

are not applicable to the GPU-parallelization of PROCLUS.

SUBSCALE [20] is also density-based, but finds dense units,

similar to neighborhoods in DBSCAN, per dimension. The dense

units that overlap in dimensions can be combined and subjected

to DBSCAN to derive the actual clusters. In the GPU-parallelized

version of SUBSCALE[12], the identification of overlapping dense

units across dimensions and dense units is parallelized, and possi-

ble dense units are precomputed. Again, the clustering notion and

algorithmic strategy differ from PROCLUS such that it cannot

serve as inspiration for a GPU-parallelization of PROCLUS.

Finally, INSCY [5] is also a density-based subspace clustering

approach, but proceeds in a depth-first manner over potential

dense subspace regions using a specialized tree structure. GPU-

INSCY proposes a GPU-friendly version of the tree structure and

devises algorithmic strategies for efficiently handling multiple

dense regions in parallel. The GPU-parallelization is tailored to

INSCY and does not fit for PROCLUS that does not operate on

dense regions, and thus cannot benefit from a tree structured for

managing them.

As PROCLUS is an adaptation of k-medoids to projected clus-

tering [28], it is worth considering GPU-parallelized versions of

full dimensional k-medoids clustering [21, 30], or of the similar

k-means [15, 17, 22]. However, as opposed to k-medoids, which is

based on distances between objects that reside in the same space,

PROCLUS iteratively adds and removes dimensions from inter-

mediate projected clusters, which results in changes of distance

values and changes of projected subspaces. Thus, a GPU version

of k-medoids cannot serve as a subroutine of a GPU version of

PROCLUS.
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7 CONCLUSIONS
We substantially improve the running time of PROCLUS for large-

scale data to the extent that real-time interaction with PROCLUS

projected clustering becomes possible. We achieve this in our

GPU-FAST-PROCLUS, a GPU-parallelized version of PROCLUS

that also contributes several algorithmic improvements. Our im-

provements are two-fold; efficient algorithmic strategies for PRO-

CLUS, here termed FAST-PROCLUS, and an efficient paralleliza-

tion on the GPU.

The algorithmic improvements target the most costly oper-

ations in PROCLUS, restructuring computations such that we

can save and reuse distance computations and partial results.

In addition, we introduce strategies that reuse partial compu-

tations across multiple parameter settings to further speed up

FAST-PROCLUS. We demonstrate a trade-off between running

time and space consumption, thereby allowing the user to adapt

resource consumption as needed.

Our parallelized GPU-PROCLUS and GPU-FAST-PROCLUS

are restructured to execute more operations in parallel, and to

exploit the memory hierarchy of the GPU.

Our extensive experimental evaluation demonstrates 3 orders

of magnitude speedup for GPU-FAST-PROCLUS. This speedup

is stable across data distributions and parameter settings. The

GPU-parallelizations provide up to 2000× speedup while the algo-
rithmic strategies collectively provide around 2.5× extra speedup.
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