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ABSTRACT

Accurate cardinality estimates are a key ingredient to achieve
optimal query execution plans. For RDF engines, specifically un-
der common knowledge graph processing workloads, the lack
of schema, correlated predicates, and various types of queries
involving multiple joins, render cardinality estimation a partic-
ularly challenging task. In this paper, we develop a framework,
termed LMKG, that adopts deep learning approaches for effec-
tively estimating the cardinality of queries over RDF graphs. We
employ both supervised and unsupervised approaches that adapt
to the subgraph patterns and produce more accurate cardinality
estimates. To feed the underlying data to the models, we investi-
gate efficient representations and put forward a novel encoding
that represents the queries as subgraph patterns. Through exten-
sive experiments on both real-world and synthetic datasets, we
evaluate our models and show that they overall outperform the
state-of-the-art knowledge graph approaches and novel learned
estimators for RDBMS, NeuroCard and MSCN, in terms of ac-
curacy and execution time while maintaining minimal space
overhead.

1 INTRODUCTION

Due to the versatility of the graph model and the ability to create
links between different data sources, knowledge graphs are a
widely applied concept to model structured knowledge. Since
the idea of adapting knowledge graphs for enterprise usage, ini-
tially proposed by Google, several major companies such as Face-
book and Amazon tailored knowledge graphs to their needs,
complemented by substantial academic research efforts in vari-
ous domains. Specifically in the past years, techniques to mine
knowledge graphs have been widely investigated and more re-
cently hugely impacted by deep learning models. Efforts for the
improvement of RDF graph representation and embeddings by
deep learning models have led to a promising performance in
the widely studied tasks of question answering and link predic-
tion [20]. Deep learning has also performed exceptionally well
when considering the tasks of graph generation and process-
ing [40, 54]. However, one area remains vaguely explored and
that is the usage of deep learning models for cardinality estima-
tion in knowledge graphs.

Intuitively, producing efficient query plans heavily relies on ac-
curate cardinality estimates [24]. Although an RDF database can
be seen as a single table composed of three columns (subject, pred-
icate, object), traditional techniques used in relational databases
have been shown to perform poorly for SPARQL queries [11,
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18, 34, 42]. The challenges in cardinality estimation come di-
rectly from the nature of RDF data and the lack of a rigid schema.
First, present correlation between individual predicates renders
the use of traditional cardinality estimation techniques, like his-
tograms, inapt [34]. In other words, although the cardinality
of two predicates independently may be quite selective, their
co-occurrence can be quite common—leading to an inaccurate
estimate if independence is assumed. Moreover, SPARQL queries
typically include many (self-) joins between RDF triples [11].
Hence, to accurately estimate cardinalities, we need to go be-
yond the join uniformity assumption [18, 42]. Finally, it is not
uncommon for SPARQL queries to contain more than one type
of query pattern, for instance both a star and a chain pattern.
Such queries further contribute to the challenges concerning
cardinality estimation [18, 42].

In this paper, we introduce LMKG, a learned model framework
for cardinality estimation in knowledge graphs. LMKG learns to
estimate the cardinality of the most used?ypes of queries (i.e., star
and chain queries [2]) and additionally, provides algorithms for
handling complex queries such as snowflake or tree queries. Moti-
vated by recent research advancements for cardinality estimation
in relational databases [27, 52] and the ability of neural networks
to detect interconnections between variables, with LMKG, we
establish the problem of cardinality estimation of knowledge
graph patterns as a deep learning problem, covering both types
of learning. LMKG offers the creation of an unsupervised cardi-
nality estimator (LMKG-U) by employing autoregressive models
with subgraph pattern encodings. By encoding queries as sub-
graph patterns, LMKG also provides the possibility for creating a
supervised cardinality estimator (LMKG-S).

LMKG efficiently learns correlations between subgraph pat-
terns and, as a result, provides distinctively accurate cardinality
estimates. When designing the models of LMKG, we take into
consideration the mentioned cardinality estimation challenges.
Thus, to handle the challenge of high correlation between terms
and to cope with the large number of (self-) joins, LMKG learns
over relevant subgraph patterns and not over independent terms
or triples. To deal with the high number of patterns, LMKG pro-
vides an efficient sampling approach for generating relevant
training data. Furthermore, since knowledge graphs can include
data from various sources and consequently have large term do-
main sizes, we propose the usage of a term compression strategy.
The compression strategy enables us to apply the models even
when considering knowledge graphs with many distinct terms.
Moreover, the compression strategy is a necessity for LMKG-U
since the unsupervised model cannot be applied to heterogeneous
datasets without it. In addition to most typically used encodings,
a novel subgraph encoding coined SG-Encoding is introduced.
The SG-Encoding can incorporate various subgraph patterns
while at the same time maintaining a compact representation.
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Finally, for handling complex queries, we propose approaches
tailored to the LMKG models.

We perform a comprehensive overview of the suggested mod-
els by examining their suitability based on the datasets, the query
types, and the query sizes. Through experimental evaluation on
both real-world and synthetic datasets, we perform a thorough
analysis of the models of the LMKG framework and we com-
pare our approach with seven different cardinality estimators
for knowledge graphs or relational databases and we show that
LMKG generally outperforms them across several measures.

The main contributions of this paper are:

(1) We formulate the problem of cardinality estimation in
knowledge graphs (Section 3) through the lenses of super-
vised and unsupervised deep learned models.

(2) To tackle the problem of cardinality estimation in knowl-
edge graphs and to handle the respective challenges, we
develop the framework LMKG! (Section 4) that includes
models of different types that can be tailored to a specific
dataset or a sample workload (Section 5).

(3) To featurize subgraphs and provide them as input in the
models, we explore different representations including our
newly introduced SG-Encoding (Section 5.1.2).

(4) To reduce the input and output dimensionality when con-
sidering heterogeneous knowledge graphs, we propose
the usage of a term compression strategy (Section 5.2.1).

(5) We explain how LMKG can handle complex queries (Sec-
tion 6), analyze the challenges of training data creation
(Section 7.1) and give an overview of the most suitable
use-cases and limitations of LMKG (Section 7.2).

(6) We report on a comprehensive experimental study, evalu-
ating the LMKG framework against the state-of-the-art ap-
proaches, and objectively discuss the challenges of learned
knowledge graph cardinality estimation (Section 8).

2 RELATED WORK

Cardinality Estimation in Knowledge Graphs: Early work
on cardinality estimation either uses statistics gathered on proper-
ties of the ontology [41] or a summary of graph patterns [29]. The
Jena ARQ optimizer [44] uses pre-computed statistics and single-
attribute synopsis for estimating join selectivities. However, the
term independence assumption leads to underestimations. Simi-
larly, RDF-3X [35] does not consider correlation between pred-
icates. Vidal et al. [47] suggest that basic graph patterns can
be partitioned into star-shaped groups for which they estimate
the cardinality using sampling and a cost model. Characteristic
sets [34] is a synopsis for star queries, later extended for join
ordering [11]. Using extended characteristic sets (ECS), Meimaris
et al. [32] propose an index that allows fast processing of con-
junctive queries. However, the focus is solely on improved query
processing and join ordering (after an initial filtering phase us-
ing the ECS index)—the authors do not provide a method for
cardinality estimation. Jachiet et al. [19] use statistics, mainly fo-
cused on the predicates. Huang and Liu [18] propose combining
Bayesian networks—capturing the joint probability distribution
over correlated properties for star patterns—and a histogram for
chain patterns. Presto [48] stores statistics of common subgraphs.
Stefanoni et al. [42] summarize RDF graphs and use the sum-
maries for estimation. G-Care [38], a benchmarking framework,

the LMKG code, together with the example datasets, is accessible through the
authors’ websites
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compares existing approaches for knowledge graphs and adapts
estimators used in relational databases for graphs.

Learned Approaches for Cardinality Estimation in Rela-
tional DBMS: An early work, Leo [43] adjusts the cardinality
estimates later used during query optimization, by monitoring
previous queries. Liu et al. [27] provide an effective selectivity
estimation technique for relational operators using neural net-
works. Similarly, MSCN [21], a multi-set convolutional network,
represents relational query plans with set semantics, to capture
query features. Dutt et al. [8] use neural networks and tree-based
ensembles for selectivity estimation of multi-dimensional range
predicates. To overcome misestimation, Woltmann et al. [50] sug-
gest a local-oriented approach. Hayek and Shmueli [15] propose
the usage of estimated containment rates. Others, explore sim-
ple deep learning models [37] and pure data-driven models [16].
Differently, Naru [52] is an unsupervised data-driven synopsis
that achieves highly accurate estimates in relational databases
with deep autoregressive models and a Monte Carlo integration
technique called progressive sampling. The recently proposed
NeuroCard [51], extends the idea of autoregressive models for
join cardinality estimation in relational databases. As it can also
be applied to knowledge graphs, we apply NeuroCard for self-
joins, as a main competitor in the experiments. Hasan et al. [14],
suggest both autoregressive models and supervised learning mod-
els as cardinality estimators. Others [23, 30, 31, 36], shift the focus
to optimal plan generation by applying reinforcement learning.
Learning in Graphs: Although not for cardinality estimation
over knowledge graphs, deep learning for KGs has been widely
researched [20]. Since we need to represent subgraphs efficiently,
related work on KG embeddings is relevant, too. For instance,
Hamilton et al. [13], Bordes et al. [3], and Wang et al. [49] pro-
pose different node embeddings. However, generating node em-
beddings in presence of unbound terms has not been discussed.
Additionally, their main focus is on term or triple and not on a
subgraph representation. In more related research, GraphAF [40]
and MolecularRNN [39] focus on generating molecular graphs
using deep learning. This work does not allow the estimation
of the individual term densities. For our encoding, we build on
their idea for subgraph representation. Cardinality estimation
in graphs can be realized as subgraph isomorphism counting,
i.e., determining the number of different subgraph isomorphisms
between a given graph and a query pattern graph. Liu et al. [28]
model subgraph isomorphism counting as a learning problem
by exploring different representations and proposing a dynamic
intermedium attention memory network. Chen et. al [6] inves-
tigate models for substructure counting, and propose the Local
Relational Pooling model. However both previous approaches are
trained on synthetic datasets and are computationally costly for
larger graphs. Tahmasebi and Jegelka [46] study the theoretical
possibility of counting substructures by a graph representation
network. Other work also considers subgraph representation
improving and learning for different classification and regres-
sion tasks [4, 53]. Although related to LMKG-S, all previous ap-
proaches focus on smaller graphs or query patterns. Zhao et.
al [56] propose a supervised learning model for estimating sub-
graph counts. They decompose a query into smaller subgraphs,
compute their representations using a GNN, and concatenate
them as a query-level representation, sent through a MLP for
estimation. Although they incorporate all subgraphs from the
query for a final prediction, they still create the encodings for
smaller query subgraphs, which can introduce misestimates due
to the initial query decomposition.



3 PROBLEM STATEMENT

A knowledge graph KG is a finite set of RDF triples. Each triple
t; € KG is constructed out of three terms (s;, p;, 0;), correspond-
ing to a subject s; € S, a predicate p; € P, and an object 0; € O.
Every term is uniquely identified by a URI where objects can be
literals (e.g., strings or integers). More specifically, the subject is
a resource or a node in the graph, via which a predicate forms a
relationship to another node or a literal value, called an object.
SPARQL? is the de-facto standard query language for RDF
stores. It is based on matching graph patterns. To execute the
matching of graph patterns, the SPARQL query engine has to
perform multiple joins to retrieve data from the database, de-
pending on the length of the given query. A SPARQL query can
have variables that are not bound to a specific term, referred
to as unbound terms. A SPARQL query gp consists of triples
forming a graph pattern {#1, ..., t;, ..., t }, where t; € KG and
every triple t; can have an arbitrary number of variables (e.g.,
?x). Queries are distinguished according to their shapes: chain,
star, tree, snowflake, cycle, clique, petal, flower, and graph. Star
queries consist of triples [(s1, p1,01), . - ., (51, k> 0k )] such that all
triples are centered around the same entity, in this case, subject
s1. Chain queries join triples such that the object of the preced-
ing triple is the subject of the next one. Formally, a chain query
consists of k triples [(s1, p1,01), (52, P2, 02), - - -, (Sk» Pk» 0k )], such
that s; = 0j—1, where i € [2, k]. Although LMKG is mainly pro-
posed for handling the most common queries (star and chain
queries [2]), we also provide algorithms for handling complex
queries (Section 6). Consider the following SPARQL queries:

(1) SELECT ?x WHERE

{ 7?x :hasAuthor :StephenKing;
:genre :Horror. }
(2) SELECT ?x, ?y WHERE
{ 7?x :hasAuthor ?y.
?y  :bornIn :USA. }

The first query is star-shaped and asks for all subjects (i.e.,
books) that are of genre Horror and have as author StephenKing.
In this example, the triples are centered around a single entity, i.e.,
the same subject. For the second query, we see that the two triples
share a common unbound term ?y, which denotes the object in
the first triple and the subject in the second triple, hence, forming
a chain query. The query result consists of all authors that have
written a piece and are born in the USA.

The cardinality card(gp) represents the number of graph pat-
terns from the knowledge graph KG that match the query graph
pattern gp. In this work, we propose supervised (LMKG-S) and
unsupervised (LMKG-U) models that produce accurate estimates
est(gp) of the actual cardinality card(gp).

For the supervised estimator, we investigate the use of a
deep neural network that takes as input the query pattern gp and
computes the estimated cardinality est(gp).

For the unsupervised estimator, we investigate the appli-
cation of an autoregressive model. These models decompose
the joint density into n conditional probabilities, where n is the
number of terms in the input of the model.

4 FRAMEWORK OVERVIEW

LMKG represents a compound of several models. It comprises
two phases, depicted in Figure 1. In the first phase, called creation
phase, the models that need to be created are determined. The

Zhttps://www.w3.org/TR/sparql11-overview/
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Figure 1: LMKG framework overview

next step is to generate adequate training data if there is no
sample workload available. Subsequently, the chosen models
are tuned and trained. The second phase, called execution phase,
encompasses the user-system interaction in which the cardinality
estimate is computed. Below, the two phases are presented.
Model Choice: LMKG creates models tailored to a given query
workload, where the number and type of models to be created can
be specified together with the data encoding. The following mod-
els can be created: Single model: one model that is trained over
queries of different types and sizes. Models grouped by query type:
multiple models are created where each model is specialized for
a different query type, e.g., one model that can answer chain and
another model that can answer star queries. Models grouped by
query size: multiple models are created, specialized for different
query sizes, e.g., one for queries with up to 3 joins and another
for queries from 4 until 8 joins. We discuss in detail the model
grouping strategies and their benefits and drawbacks in Section
7.2. Updates to the KG ultimately lead to increased estimation
errors. This can be detected by observing the true cardinalities
after query execution, if deployed within an RDF database, or via
periodic testing. If the deviation from the original (after training)
accuracy is not tolerable, the LMKG models require retraining.
Since the grouping strategies create several models, only a few
models may be retrained and not all of them.

Training Data Creation: Once the models that need to be
created are selected and there is no sample workload available,
the next step is to create training data. LMKG creates training data
based on the given knowledge graph (Section 7.1). For LMKG-S,
the training data contains queries and their assigned cardinalities,
where the queries include at least one unbound term. For LMKG-
U, the training data includes only patterns with bound terms
since the model can estimate their conditional probabilities and
use them for queries with unbound terms.

Training: The training step uses data that is either generated
or provided as a sample workload. During training, one gen-
eral model for different queries or several grouped models, each
tailored for answering specific types or sizes of queries, are cre-
ated. The training step involves transforming graph patterns into
features and encodings for the chosen deep learning model.
Querying: Given a user-specified query, LMKG provides an
estimate of the query result size. As depicted in Figure 1, for a
query of a specific type and size, which is already learned by
one of the models, LMKG uses the adequate model to directly
estimate the cardinality. The query is encoded according to the
model. The featurizer then forwards the input through the models
and receives a prediction for the cardinality. In this work, we
focus only on equality predicates.



To identify which models should be created in LMKG, an
expert needs to analyze the characteristics of the dataset at hand.
In particular, it is beneficial to know the distribution of the queries
in the given workload as well as the dataset distribution, while
also being aware of the available memory budget and latency
constraints at query time. Having this information, the expert can
decide on the number of models that should be created, their type,
and the potential grouping. When issuing a query, the user does
not need to know the dataset and query workload characteristics
nor which models are created. The LMKG framework will guide
the query to the appropriate model and deliver the cardinality
estimate. For instance, if the expert decided on a supervised
model, i.e., LMKG-S, with query type grouping, then two models
will be created, one for star and one for chain queries. If the user
issues a chain query, the framework will detect the query type
and send it to the supervised model trained on chain queries. It is
possible that the models receive a query for which they are not
specialized, such as a query with both star and chain patterns.
Handling of such complex queries including query decomposition
and cardinality estimation is explained in detail in Section 6.

5 LMKG MODELS

Neural networks are capable of detecting patterns in high dimen-
sional data, which is an important property considering the high
number of co-occurring terms in a knowledge graph. Follow-
ing existing work on learned cardinality estimation in relational
databases, e.g., [21, 37, 52], and to capture and analyze both fla-
vors of learning, LMKG utilizes two models, a supervised and an
unsupervised model, coined LMKG-S and LMKG-U, respectively.
In the following, we explain the design of these two models in
detail and emphasize on the employed pattern encodings. The
need for various encodings comes from the ability of the models
to train and estimate over different types of inputs. For LMKG-
S, we focus on creating a compact encoding that can represent
various subgraphs. For LMKG-U, we focus on reducing the input
and output dimensionality for handling heterogeneous KGs.

5.1 Supervised Model (LMKG-S)

Supervised deep learning models can efficiently approximate
non-linear functions. By increasing the set of learned parameters,
different levels of non-linearity and data patterns can be learned.
To benefit from their expressiveness, we first address cardinality
estimation as a supervised learning problem. We call this model
LMKG-S. LMKG-S receives as input a query and predicts its
cardinality. Next, we discuss the input encoding, first how triples
are encoded and then how the graph structure is encoded.

5.1.1 Term Encoding: To model a triple pattern, we convert
the triple terms into numerical values, where an absent term is
simply encoded with a value of 0. Each of the terms is separately
encoded, and when concatenated they constitute the triple encod-
ing. To capture correlation, we always include all subgraph terms
and focus on a more compact representation of them. LMKG
currently supports two types of encodings (and optionally an
embedding) for terms of triple patterns:

One-hot Encoding in which the bound terms involved in the
triple are set to 1. For example, if |S| = 3 then the subject with id
2 will be encoded as [010@]. A single triple encoding constructed
out of one-hot encoded terms will occupy O(|S| + |P| +|O|) space.

Binary Encoding in which the bound term is represented
with a binary digit. For a KG with 3 unique subjects, the binary
encoding of the subject with id 2 is [1@]. The space of this triple
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encoding is O(logz|S| + logz|P| + log2|O|). We prefer the binary
encoding because we need to compactly represent the knowledge
graphs that usually have a large number of unique terms.

5.1.2  Subgraph (SG)-Encoding: Existing work [21], focusing
on relational databases, tailors encodings to queries by only rep-
resenting the presence of a predicate column, not emphasizing
enough on the actual values. Although suitable for relational data
where columns often have small domains, this is not adequate for
heterogeneous knowledge graphs. Further, a suitable encoding
should be able to represent different subgraph structures, cor-
responding to the different query types. Undoubtedly, the most
popular graph representations are adjacency lists and adjacency
tensors. An adjacency list represents a graph by keeping for each
node i a list of nodes to which i points to, while an adjacency
tensor A has entries A; ; ; = 1if node i has an edge [ to node j,
and a zero entry otherwise. Regarding space consumption, ad-
jacency lists are preferred when graphs are sparse, as they do
not represent absent edges. Clearly, this advantage vanishes as
graphs get denser. Keeping in mind these basic principles, next,
we present the SG-Encoding tailored to the needs of LMKG-S.

In LMKG, encodings need to represent every possible sub-
graph pattern up to a specific size. When working with neural
networks the size of the input is fixed. Thus, to represent all possi-
ble subgraphs up to a specific size, the size of the encoding needs
to be set to the maximal number of features used to represent
a dense subgraph of the knowledge graph. That means, for all
possible patterns in the KG, a suitable encoding can be in form of
an adjacency tensor A of space O(d *d * b), where d is the number
of nodes in the knowledge graph (i.e., subjects and objects) and
b is the number of predicates. However, for real-life knowledge
graphs and query workloads, such tensors would be enormous,
thus, impractical. Similarly, adjacency lists are not performing
better here, since considering the complete space of possibilities
leads to a dense graph. Therefore, we consider subgraph patterns
that represent only a subset of the complete graph, such that space
consumption can be drastically reduced. Following existing work
on molecular graphs [40], we represent a KG subgraph with n
nodes as G = (4, X), where A € {0, 1}"*™? and X € {0, 1}"*4.
Although suitable for molecular graphs where the number of
distinct edges is small, in most KGs this encoding creates a huge
sparse tensor A, due to the high number of predicates. To circum-
vent the large tensors created from the existing representations
and adapt them to knowledge subgraphs, we propose a novel
subgraph encoding, termed SG-Encoding. We define a subgraph
pattern to have n nodes and e predicates, where n < d and e < b.
A subgraph pattern is represented as SG = (A, X, E), where A
is the adjacency tensor, X is the node feature matrix and E is
the predicate feature matrix. Given an ordering of the nodes and
predicates from the subgraph pattern, we define A € {0, 1}™*7*¢,
X €{0,1}"4 and E € {0, 1}¢*?, where Ajj; = lif there exists an
edge I between the i-th and j-th node. We set X, to 1 if the i-th
node is of type m and Ej. to 1 if the [-th predicate is of type k.
Intuitively, if b is smaller than a threshold value, we can eliminate
the matrix E, as proposed in existing work [40].

Initially, each row in X and E is a one-hot encoding of size d
and b, respectively, where rows in X represent the node type and
rows in E the edge type. For a more compact representation, we
provide a modification of the matrices X and E, where instead
of a one-hot encoding, we employ a more compact encoding,
such as a binary encoding, for each of the nodes and edges in
the subgraph. More specifically, the encoding is modified such
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that X € {0, l}"*”oqz‘ﬂ and E € {0, l}b*”"gze], thus, directly
reducing the space for the subgraph representation.

To create an SG-Encoding, an ordering of nodes and edges
is required. They are sorted in ascending order according to
their integer ids. As an example, consider the star query and its
encoding shown in Figure 3. The encoding process is broken
down into three main steps: In Step 1, executed in the creation
phase (Section 4), a global mapping of the nodes and predicates to
an integer id is created. Next, an ordering of nodes and predicates
is created for the given query, where the global ids of the nodes
and predicates in the knowledge graph determines their order
in the query. Thus, for this example in Figure 3, we will have
the ordering shown in Step 2 on the right-hand side. Finally,
for a predefined n = 3 and e = 2, the parts of the encoding
are created, resulting in tensor A and matrices X and E (Step 3).
For the subpattern ?Book : hasAuthor :StephenKing., we set
Apo1 = 1, indicating that : hasAuthor is the first predicate in the
edge order, the unbound term is the first node, and : StephenKing
the second node in the respective node order. The first two bits
in E indicate that : hasAuthor has id 1.

5.1.3  Model Design: Although different approaches exist for
handling graph data in supervised deep learning, the usage of
lightweight models results in faster execution and lower mem-
ory consumption. At the same time, they do work quite effec-
tively when used for cardinality estimation in RDBMS [21, 37].
A standard way of modeling regression tasks is to use multilayer
perceptron (MLP). The neural network consists of an input layer,
an arbitrary number of hidden layers, chosen according to the
input complexity, and an output layer. During training, the neural
network optimizes itself based on the provided example queries
with precalculated cardinalities. The architecture of LMKG-S is
shown in Figure 2. The intuition behind it is combining typical
subgraph representations and the capability of simple MLP mod-
els for efficient cardinality estimation. Depending on the input
size and the need for regularization, some layers are optional. The
cardinalities typically follow a skewed distribution where only
several queries have large cardinalities. To deal with skewness,
cardinalities are log scaled. We next perform min-max scaling,
allowing usage of the numerically stable sigmoid function. The
minimum and the maximum are the lowest and largest cardinal-
ity present in the training data, assuming they are available. The
network is defined by woy,r = MLP(f(X), f(A), f(E)) where f is
either a flatten layer or another MLP, in which case the model
resembles the Deep Sets [55] architecture. f(X), f(A), and f(E)
are concatenated and propagated through one or more layers.
Every fully connected layer except the output layer uses ReLU, a
non-linear activation function defined as f(x) = max(0, x). The
output layer uses a sigmoid function f(x) = 1/(1 + e™¥), having
an output between 0 and 1, suitable for the already scaled values.
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The final output is rescaled in its original domain. As loss func-
tion, we use the mean g-error, defined as the relation between the
true cardinality and the estimate: g_error(y, ) = max(9/y, y/7).

5.2 Unsupervised Model (LMKG-U)

A deep autoregressive model is an unsupervised deep learning
model that efficiently estimates a joint distribution P(x) from
a set of samples. The autoregressive property dictates that, for
a predefined variable ordering, the output of the model con-
tains the density for each variable conditioned on the values
of all preceding variables [10]. Therefore, given as input x =
[x1, x2, ..., x4], the autoregressive model produces d condition-
als which, when multiplied, will result in the point density P(x).
Formally, for x = [x1, X2, ..., x4], the probability is calculated as
P(x)=P(x1)P(xax1)...P(xg|x1. ... xg1) = [T, P(xglx<a).

Recently, the use of deep autoregressive models has been pro-
posed as a way of estimating the query selectivities in relational
databases [14, 51, 52]. We introduce LMKG-U by adapting autore-
gressive models for cardinality estimation in knowledge graphs.
We next discuss the encodings used in LMKG-U, first, term en-
coding and subsequently a graph pattern encoding.

5.2.1 Term Encoding and Compression: Terms in LMKG-U
can be encoded with the previously explained term encodings or
an embedding capable of representing heterogeneous KGs. How-
ever, unlike the supervised model, the size of the autoregressive
models is highly impacted by the input and output dimension-
ality. More specifically, each logit from the output of the model
corresponds to a conditional probability of a term present in
the query pattern. Thus, for highly heterogeneous knowledge
graphs, the introduced encodings are ineffective since the model
size will scale linearly with the term domain values. Even apply-
ing embeddings will result in large memory overhead in the case
of highly heterogeneous knowledge graphs. To overcome this
problem, similar to the column compression of the NeuroCard
approach [51], we utilize a novel term compression.

The intuition behind the compression is to encode the input
and output in fewer dimensions by representing the term ids
through several smaller subterm ids. The number of subterm
ids is determined based on the number of term ids such that it
can lead to a smaller input dimensionality. For example, if there
are 10000 terms, two subterms can already efficiently compress
the original term ids, whereas, for 10 million terms, three or
more subterms would be needed to enable the training of the
model. Our compression is based on the observation that we
can reduce the input dimensionality by dividing the term ids
with a specific divisor. We start by first recognizing the number
of subterms ns that a term should be split into. Then, we set
as a divisor sty to be the nsth root of the number of distinct
terms, i.e., sty = ["W]. A term with id x is compressed by
determining the quotient st and reminder st, when dividing the
term x with st;. When ns > 2, the same procedure is repeated for
x = stq and max_tid = max_stq, at the end creating ns subterms.

As an example, consider that the number of distinct predicates
max_tid is 60000 and we want to split the terms into two sub-
terms ns = 2. For this setting, the divisor is st; = 245. We want
to compress the predicate x with id 5144. Thus, term x will be
compressed in stg =20 and st, = 244. In this case, all predicates
will be split into two subterms having maximal ids st; and stz — 1.
Consequently, with this compression, we reduce the number of
dimensions for the input and output from 60000 to 489.
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Figure 3: Encoding example

It is observable that the proposed input compression affects
not only the model size but also the cardinality estimation accu-
racy. This is a direct consequence of the setting for parameter
ns. Although a larger ns would lead to fewer dimensions for
encoding, the number of input terms will be increased. Thus,
the accuracy of the cardinality estimates will be negatively af-
fected since the model would need to learn across multiple input
parameters with increased interconnection. Hence, we set the
parameter ns to achieve an acceptable balance between the model
size and the model accuracy. Although introduced for LMKG-U,
the term compression can also be used for LMKG-S.

5.2.2  Pattern-bound Encoding: This encoding works only for
a model tailored to a certain type of query. For subject-oriented
star patterns, the encoding requires ordering of the predicate-
object pairs connected to the subject. More specifically, if we have
a triple set of size k that is centered around a single unbound
subject, the pattern-bound star encoding is a concatenation of all
of the k pair encodings and the subject encoding. To demonstrate
this encoding, we will make use of the example star-shaped query
depicted in Figure 3. The pattern-bound encoding for this query
is shown on the left-hand side of Figure 3. In the beginning, a
mapping of the nodes and predicates to an integer id is created
(Step 1). Then, every term of the query is encoded using either
one-hot (Step 2.1) or binary encoding (Step 2.2).

In chain queries, the ordering of the nodes and edges is evident.
Intuitively, a predicate connected to a subject is its descendant
and its position in the order will follow the one of the subject.
The same holds for the object which has as an antecedent the
predicate. Given an ordering of the nodes and edges, we can
encode the chain query as a concatenation of the term encodings.

Evidently, a serialization of an adjacency list resembles the
pattern-bound encoding. In particular, a star pattern represented
with a flattened adjacency list will directly correspond to the
pattern-bound star encoding. However, for a chain query, an
adjacency list will be larger than the pattern-bound encoding.
This is because by knowing that an object in a triple will be the
subject in the next one, in the pattern-bound encoding, redundant
nodes can be eliminated, resulting in reduced encoding size.

When we consider the definition of the SG-Encoding, it is evi-
dent that by using only the matrices E and X without the tensor
A we achieve the pattern-bound encoding. However, without
tensor A the different types of queries or combinations of them
cannot be represented in a single model. This is direct evidence
of the importance of tensor A. Although we advocate the usage
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of two different encoding types, for heterogeneous knowledge
graphs, because of the high number of unique terms, the SG-
Encoding can contribute to increased complexity of the input.
This increased input complexity, although minor, will have a
negative effect on the estimation accuracy. Hence, the preferred
encoding when using LMKG-U is the pattern-bound encoding.

5.2.3 Model Design: Inrecent years, several autoregressive ar-
chitectures have been proposed [7, 9]. As one of them, MADE [9]
maintains the autoregressive property by adequately masking
particular weights in the layers. In our work, we use ResMADE [7],
an extension of MADE with residual connections. In autoregres-
sive models, the cardinality for a query is estimated using the
conditional probabilities of the terms in the query. For a query
with k triples gpy = n1, p1, ..., Pk, Nk +1, the density is estimated
as P(qpy) = P(n1)P(p1|n1)...P(ng41|n1, p1, ... g, pi ). For a chain
query, n; is an object in the triple t;_1 and a subject in the triple
t; where i € [2, k]. For a star query, n; where i € [2,k + 1], are
objects connected to the subject ny, with p; for j € [1,k].

The autoregressive model learns the correlation between the
present terms. For answering queries involving variables, we
employ wildcard skipping [51, 52]. During training, a randomly
chosen subset of columns has their values masked, i.e., replaced
with special tokens representing a variable. During prediction,
the input will constitute all values of the bound terms and the
special tokens for the variables. The cardinality is estimated in a
single forward pass of the input through the model. For instance,
a forward pass for the triple query ?x :1 :2., will result in three
conditionals p(s = ?x)p(p =:1|s = ?x) and p(o =:2|s = ?x,p =:1),
which when multiplied, result in the probability for the given
pattern. This probability is then multiplied with the size of the
dataset (number of triples), resulting in cardinality. For star and
chain queries, the point probability is multiplied by the join size.

6 HANDLING COMPLEX QUERIES

Although query optimizers often for simplicity put focus on the
most typical queries for query optimization, cardinality estima-
tion of complex queries is a significant problem. A complex query
involves an arbitrary number of triples resulting in multiple in-
terconnected star and chain patterns, e.g., snowflake queries or
tree queries, which are arbitrary queries without cycles.

6.1 LMKG-S

For representing complex queries, LMKG-S uses the SG-Encoding
explained in Section 5.1.2. More specifically, the nodes and the



variables are retrieved from the complex query. For each unique
node and variable, LMKG-S assigns a different id. The same pro-
cedure is performed for the predicates. The mapping between
nodes and predicates and their ids is stored in X and E, respec-
tively. The connection between the nodes through the predicates
is stored in A, using the newly computed ids. Unlike LMKG-U,
which works on the actual data, LMKG-S requires a workload of
queries. Thus, for an example workload of complex queries, we
show the performance of LMKG-S in the experimental evaluation.

6.2 LMKG-U

LMKG-U uses pattern-bound encoding, which theoretically can
also be used to represent any complex pattern since it resembles a
flattened adjacency list. However, unlike LMKG-S, a single model
of LMKG-U can only represent a single type of query. For instance,
for a tree query of a specific size, where the triples are always
joined across the same terms, one model can be used. Since there
are many variants of complex queries, and the terms for joining
can be arbitrary, this will lead to many models all specialized for
a specific query type, size, and with prespecified join conditions.
Moreover, to find a representative training set, sampling across
joins needs to be performed, which is still a challenging task for a
large number of arbitrary joins. In addition, large complex queries
may lead to many terms and thus, a large model. Therefore, for
handling complex queries in LMKG-U, we suggest the re-usage
of existing models for star and chain patterns.

The first step when dealing with complex queries is to de-
compose them into star and chain patterns. Intuitively, the de-
composition may lead to different subqueries, and thus, different
estimates. For LMKG-U, it is essential to decompose the query
to as many possible subqueries for which a model exists. The
decomposition starts in a greedy manner with a random star or
chain pattern. Next, the triples from the pattern are removed from
the query. This process is repeated until no triples are present. As
a guideline, one should always choose the pattern whose model
has the lowest error, preferably prioritizing larger patterns. In
the experiments, we always decompose the queries such that
all subqueries can be estimated by the existing models. Once
the query is decomposed, we need to combine the individual
estimates for a final cardinality estimate of the complex query.

A natural way to handle different query types is to use the
existing models and estimate the cardinality through indepen-
dence assumption. However, as already investigated by previous
work [34], this can lead to large misestimates. To solve this prob-
lem, we suggest an approach that leverages the power of LMKG-U
for purposes beyond the estimation of point densities. An autore-
gressive model can generate samples and infer values for specific
terms conditioned on previously specified terms. Knowing this,
we suggest an approach for cardinality estimation of complex
queries that uses the capability of LMKG-U to create samples
for specific terms. Consider a given query g decomposed into
subqueries sqi, ..., sqn. The algorithm starts with the first sub-
query sq; and produces the cardinality estimate est(sq;) using
the appropriate, existing model. As next, the algorithm samples
a prespecified number of values for the term(s) that needs to
be joined with the following subquery. We next continue with
the subquery sqz where its join term with sqp is fixed to the
generated samples. This iteration continues for the remaining
subqueries, in the end, having several different paths and path
probabilities. The idea of creating different paths for a query
through sampling follows the WanderJoin algorithm [26]. To
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compute the path probability, as in WanderJoin, we use the unbi-
ased Horvitz-Thompson estimator [17] with inverse probability
weighting. The estimate of a path probability incorporates the
subquery estimates est(sq;) computed by the individual models.
The final estimate for the complex query is an average over the
independent paths.

To avoid generating nonrelevant samples for the query terms
when using rejection sampling, we employ likelihood-weighted
forward sampling [22, 52]. Similar to Bayesian Networks, terms
are sampled in a predefined order and are impacted by the previ-
ously created terms, in the end constructing a weighted particle.
Weights incorporate the likelihood of already generated terms
accumulated throughout the sampling. Thus, the new term value
is impacted by the probability of already generated term values.

Consider a complex query formed from two subqueries, sqs;qr
and sq.pqin, joining on the object and subject, respectively. First,
the cardinality of sqs;q, is estimated and samples for the ob-
ject are generated. Each sample will result in a different path.
Therefore, for each value in the sample, we fix the subject in the
Sqchain query and use the respective model for estimating the
cardinality.

For star and chain queries, LMKG-U already learns over the
joins and it can directly estimate their cardinality. However, Wan-
derJoin, even for the subqueries, samples over the join predicates,
and its estimate depends on the sample quality. Therefore, when
considering complex queries, LMKG-U produces better subquery
cardinality estimates than WanderJoin. However, the samples for
the joining terms will be at most as good as WanderJoin. Still, the
worse sample quality is not unexpected since the model can pro-
duce wrong estimates, whereas WanderJoin always uses correct
values drawn from the graph. When the sampling in LMKG-U
produces invalid samples, the respective paths have a probability
of 0. Therefore, if LMKG-U cannot find representative samples,
it falls back to the independence assumption.

7 TRAINING AND MODELS OVERVIEW

7.1 Training Data Creation

The virtually endless combinations of queries emerging from a
KG directly impact the training data creation and the accuracy of
the model. For smaller queries and homogeneous KGs, the com-
plete set of patterns for a specific size can be created. However,
as the size increases, the creation of all possible patterns of size
k creates an intractable problem. Therefore, to generate training
data, proper sampling has to be conducted. This sampling has to
satisfy the scaled-down property of the knowledge graph. This
means that the samples that are generated should exhibit similar
properties as the original knowledge graph [25]. As Leskovec
and Faloutsos [25] show, this can be achieved by random walk
(RW) sampling. We simulate RW sampling by generating differ-
ent subgraphs matching the query types (avoiding cycles). For
star patterns of size k, we randomly pick a node and then simulate
a random step k times from the starting node. For chain patterns,
we start a random walk from a randomly selected node and stop
once the required size is reached. In the end, this results in a
large sample representing the incomplete join of the triples. For
LMKG-S, we randomly replace bound terms with variables from
the created samples. Although we use RW sampling for generat-
ing training data, efficient sampling in KGs is a challenging task
and, as further shown, the main cause of inaccurate estimates is
the quality of the samples, especially visible in KGs with many
unique terms.



7.2 Grouping of Models and Analysis

LMKG can create compounds of models grouped by different cri-
teria. The grouping mainly affects the accuracy and the creation
time of the models. LMKG allows the choice between:

A Single Learned Model that can be used for the complete
knowledge graph and all types of queries, including star-shaped
and chain-shaped queries with up to k number of joins. This
grouping is suitable for small memory budgets and homogeneous
and smaller KGs. It requires less tuning and maintenance during
the run-time phase. However, it may produce lower accuracy for
heterogeneous KGs due to the high number of patterns that affect
the quality of the samples. For this grouping, the user query is
directly forwarded to the model.

Query Type Grouping that creates separate models, each
specialized for different query types. This grouping can use both
subgraph encodings. It enables parallel creation of training data
and models, leading to a drastic time reduction. However, having
multiple models may lead to increased memory consumption.
Additionally, during the execution phase, the query needs to be
routed to the appropriate model responsible for the query type.

Query Size Grouping that creates a single model for a range
of queries, grouped by their size, e.g., one model can be created for
patterns up to size 4 and another for larger ones. This grouping
has the same benefits and downsides as the query type grouping.

Besides the different groupings, LMKG offers the creation
of different estimators characterized by the specific encoding
and the type of learning. We next delineate the benefits and the
downsides of the models along these dimensions and how they
address the challenges in cardinality estimation in KGs.

Encodings: Both SG-Encoding and pattern-bound encoding
can address two of the challenges. They capture term intercorre-
lations for a specific query by not leaving out any terms in the
encoding and both can express many self-joins, assuming that
one-hot term encoding is not used.

Pattern-bound Encoding: It is simple to implement and has a
small dimensionality since it is tuned to a specific query. How-
ever, when the patterns contain reoccurring nodes or predicates,
they may be repeated in the encoding, leading to higher dimen-
sionality. The encoding is not generalizable to different query
types, thus, it requires the creation of multiple models and needs
higher maintenance.

SG-Encoding: Unlike the pattern-bound encoding, it addresses
the third challenge since it can simultaneously represent differ-
ent query types. However, it can have a larger dimensionality,
especially noticeable when all the terms in the query are unique.

Supervision: Both models capture term correlations but are
highly impacted by the training sample quality. LMKG-S needs to
capture enough representative queries which describe the work-
load. The samples for LMKG-U need to have the same ratio as
the original data which can be challenging for larger dimensions.

LMKG-S has a faster training and prediction time, as well as a
smaller memory footprint. However, the training data creation
is more time consuming since variables need to be included.
Additionally, generalizing to queries that are far from the training
data is challenging and somewhat impacted by the slight overfit
for better results, also leading to worse estimates for outliers.

LMKG-U can create training data faster since the model learns
only from bound terms. It also captures the term intercorrela-
tions better than LMKG-S, producing highly accurate cardinality
estimates especially suitable for skewed datasets. However, it has
a larger memory footprint and higher training and prediction
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Table 1: Experiment (left) and dataset details (right)

Dataset | SWDF, LUBM20, YAGO Dataset | SWDF | LUBM20 | YAGO
Topology Chain, Star Triples 250K 2.7M 15M
Result Size [5%,5'],[5%, 52], ... Entities 76K 663K 1.7M
Query Size 2,3,5,8 Predicates 171 19 91

-

Max g-error

T 2 5 10 %0 50 100 200
# Epochs # Epochs

(a) LMKG-U (sample from LUBM)  (b) LMKG-S (sample from LUBM)
Figure 4: Training time vs. accuracy - bars show max -
error; dots show avg. q-error

time than LMKG-S. This is especially apparent when handling
heterogeneous datasets that have a high number of unique terms.

Guidelines for Combining Models: Although the group-
ings allow the creation of different models, we briefly mention
potential guidelines based on our analysis. Combining models
depends on the overall model creation budget as well as the
dataset characteristics. When there is a memory constraint, a
single LMKG-S model is preferred or two query-type—-grouped
LMKG-U models in combination with term compression. In cases
where a smaller model creation time is needed, LMKG-S is pre-
ferred over LMKG-U. If the training data is smaller, LMKG-U can
still be considered, even in combination with LMKG-S. If there
are no training time constraints, then data characteristics should
be examined. For instance, for star queries over datasets having
only several nodes with a huge in- or out-degree, i.e., outliers,
LMKG-U is preferred. However, when many rare terms appear
and we are working with chain queries, training data sampling
may be worse for LMKG-U. Thus, in a situation where these two
cases appear, a combination of both may be beneficial.

8 EXPERIMENTS

Setup: The experiments for the learned models, implemented in
TensorFlow and PyTorch, are carried out on an NVidia GeForce
RTX 2080 Ti GPU. The competing approaches are evaluated on
a server with an Intel Xeon E7-4830 v3 CPU @ 2.10GHz, 1 TB
RAM. For LMKG-U, we adapt and extend the publicly available
autoregressive model from Naru [52]. In Table 1 (left), we show
the specifications for the experiments. For generating test queries,
we group them into buckets depending on the query result size,
with boundaries defined by log with base 5. For examining dif-
ferent complexities, we chose a query size of 2,3, 5, and 8 triples,
with at least 1 unbound term. For a specific query size and shape,
we select 600 test queries where each query is drawn from a
bucket for a specific result size. We limit the graph patterns to
include only bound predicates due to the competitors’ limitations
to answer queries with unbound ones. We generate training sub-
graph patterns of sizes 2, 3, 5, and 8 for all considered datasets
according to the explanation in Section 7.1, where the sample
size depends on the dataset characteristics.

Datasets: We use one synthetic and two real-world datasets
whose characteristics are shown on the right-hand side of Ta-
ble 1. The SWDF [33] dataset contains fewer triples, but has a
high number of interconnections between the terms. We use
LUBM [12], a widely used RDF benchmark, with a scaling fac-
tor 20 and YAGO 1 [45], as a larger knowledge base, chosen for
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its large number of distinct term values. The cardinality of the
queries follows a skewed distribution and the vast amount of
queries have a small cardinality. Moreover, there are extremely
large cardinalities, i.e., outliers, which highly impact the models’
accuracy.

Competitors: We investigated several approaches that can be ap-
plied to our problem, ranging from summary-based or sampling-
based methods to recent deep learning approaches. As competi-
tors, we use the approaches in the recently developed benchmark-
ing framework G-CARE [38], the relational learned estimators
MSCN [21] and the very recently proposed NeuroCard [51].
From the family of summary-based approaches: Characteristic
sets (CSET) [34]: summarizes entities based on their emitting

edges and it is specifically tailored for star queries. SUMRDF [42]:

estimates the cardinality by relying on the possible world se-
mantics. From the family of sampling-based approaches: Wander-
Join [26]: performs random walks by considering each triple
as a vertex and a join as an edge. Impr [5]: uses random walks
for estimating graphlet counts. JSUB [57]: performs random
walk sampling over joins, adapted for producing upper bound
estimates of the cardinality. From the family of learning-based
approaches: MSCN-n [21]: a multi-set convolutional network
using query features as sets and n materialized samples. To train
on the same queries as LMKG-S, MSCN learns self-joins over
single tables. We use MSCN-0 and MSCN-1k with 0 and 1000
samples, respectively. NeuroCard [51]: an autoregressive join
cardinality estimator used to perform self-joins over single tables.

For all competitors except for CSET, we use the publicly avail-
able implementations [21, 38, 51]. Due to observed drastic over-
estimates produced by the CSET implementation in G-CARE,
following the reference paper, we reimplemented the algorithm.
Some approaches in G-CARE are native to knowledge graphs
and others are adapted from RDBMS. Like in G-CARE, sampling
approaches are executed 30 times. The results are an average
over the 30 samples.

8.1 Analysis of LMKG

8.1.1 Hyperparameter Tuning: We conducted experiments
varying hyperparameters such as epochs, hidden units, and layers.
Figure 4 shows how two accuracy metrics change through the
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training process. For our experiments, we choose either 100 or
200 epochs for LMKS-S and 5 or 10 epochs for LMKG-U. For
LMKG-S, for SWDF, LUBM, and YAGO, on average, an epoch
takes 13, 16, and 48 seconds, respectively. The training time is
directly affected by the sample size. Due to higher complexity
in the presence of numerous terms, LMKG-U requires a longer
training time. For the sample size considered, for SWDF, LUBM,
and YAGO on average, an epoch takes 10, 4, and 20 minutes,
respectively. For a larger sample size and many unique terms, an
epoch can take up to 36 and 13 minutes, for SWDF and LUBM,
respectively. Note that this is a substantial improvement over
LMKG-U without compression, where an epoch can take up to
50 minutes for the considered datasets. We varied the number of
hidden units (256, 512, 1024) and hidden layers (2—-4) depending
on the dataset characteristics. We found that 2 or 3 layers of
512 neurons are a good choice for both models.

8.1.2  Impact of Encoding and Compression: In Figure 5, we
show the dimensionality of the encodings for the SWDF dataset
when varying the join size of star patterns. For LMKG-U, the out-
put has to be either an embedding or a one-hot encoding since the
autoregressive model has to output a single conditional probabil-
ity per term. However, having heterogeneous datasets with many
distinct values per term will create huge embedding matrices and
large one-hot encoding vectors (Figure 5), rendering LMKG-U not
executable. Therefore, the only option that enables the execution
of LMKG-U is term compression. As shown, for ns = 2 the com-
pression produces a satisfiable reduction in the dimensionality,
and with that, the memory consumption of LMKG-U.

Differently, as an input of LMKG-S, the terms can use any of
the previously discussed encodings, even an embedding. Since
one of the benefits of a learned estimator is the reduction in
memory consumption, we aim at choosing the encoding which
produces the smallest model with a marginal accuracy decrease.
Thus, we choose the smallest encoding, i.e., binary encoding.

8.1.3 Impact of Outliers: Upon measuring the models’ accu-
racy, it is evident that unlike LMKG-U, whose accuracy is im-
pacted by the domain values of the terms, LMKG-S is extremely
affected by outliers. Therefore, in Figure 6 we measure the in-
fluence of outliers in star queries, where the impact of outlier
removal is most evident. We can see that even if we remove the
top-10 outliers from the query data, we achieve a higher accu-
racy of the model. This trend continues when a larger fraction of
the outliers is removed. Although we apply normalization and
scaling of the data, the impact of the skewness is still evident.
Therefore, given a larger space budget, a possible improvement
can be to store the cardinalities of the outliers on the side. For a
fair comparison, we proceed without this improvement.

8.1.4 Impact of Grouping: In Figure 7, we show the accuracy
of the following LMKG-S models: specialized model for queries
of specific type and size, model grouped by size, model grouped
by type, and model for every query type and size (SingleModel).
We stop after 50 epochs, where every model has two layers and
the same configuration. For almost every case, the specialized
model overfits the queries and produces the best estimates. The
single model, as expected, has the lowest estimation accuracy.
Knowing that it trains on a much larger dataset, this accuracy
can be acceptable, especially when having a small memory bud-
get. Models grouped by size and type produce good estimates
although worse than the specialized model. Based on the accu-
racy comparison and since the number of specialized models
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needed for the various combinations is significantly higher than
for the grouped ones, for the experimental analysis, we chose the
query size grouping.

8.2 Comparison with Competitors

For the comparison with the competitors, for LMKG-S, we used

SG-Encoding and query size grouping (Section 7.2). For LMKG-
U, we used pattern-bound encoding with binary input en-
coding and term compression (Section 5.2). We report the

accuracy for different query types, query sizes, and query result

sizes. For both LMKG models and the learned competitors we

tune the architecture and vary the hyperparameters according

to the dataset. All models are trained until convergence and the

best models are shown.

8.2.1 Accuracy Varying Query Size: Figure 8 depicts the ac-
curacy of the individual approaches when varying the number
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of joins present in queries. The accuracy is represented through
the average q-error. Unlike the others, whose accuracy declines
for a larger number of joins, LMKG-S is not impacted by this
factor. As depicted, LMKG-U with compression shows a constant
performance. However, if the compression was not present, the
accuracy of LMKG-U would have been drastically impacted by
the large number of terms present in larger queries. The accuracy
is also slightly impacted by the quality of the sample for training,
which for some datasets is still a challenging task. When com-
pared to NeuroCard (estimates not shown for size 8 due to an
out-of-memory error), LMKG-U performs better. This is a result
of the sample quality, which is specifically tailored for self joins
over knowledge graphs and not RDBMS. When considering the
different query sizes, both LMKG-S and LMKG-U perform better
than the competitors. As previously explained, when there is no
query workload present, we need to generate a large set of rep-
resentative queries directly from the knowledge graph. Because



Table 2: Memory consumption of different approaches

Dataset LMKG-U LMKG-S SUMRDF CSET MSCN NeuroCard
k=2 k=3]k=5|k=2[k=3]k=5]| Complete | Complete | 0/1K k=2 k=3]k=5
SWDF 7.5MB | 9MB | 12MB | 4MB | 4MB | 8MB 1.2MB 816.7 KB 5/8MB | 28MB | 4MB | 33MB
LUBM 13MB | 17MB | 26MB | 4MB | 4MB | 5MB 8.8MB 8.6 KB 5/8MB | 28MB | 16MB | 40MB
YAGO 37MB | 50MB — 4MB | 7MB | 7MB 342MB 5MB 5/8MB | 4MB | 10MB —
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Figure 11: Estimation time when varying query size (SWDF, LUBM and YAGO)

Table 3: Memory consumption of LMKG-U

Dataset with comp. without comp.
k=2 k=3]k= k=2]k=3]k=5
SWDF 7.5MB | 9MB | 12MB | 19MB | 43MB | 46MB
LUBM 13 MB | 17MB | 26MB | 80 MB | 78MB | 27MB
YAGO 37MB | 50MB — — — —

of term interconnections in YAGO, it was impossible to create an
acceptable amount of representative subgraph patterns from all
cardinality ranges of size five and above.

8.2.2 Accuracy Varying Query Result Size: Figure 9 shows the
accuracy for different query result sizes. Each range contains the
same number of queries except for the last ones, where the pat-
terns are sparse. The last buckets are grouped for larger ranges
involving the outliers. When varying the query result size, we
can most clearly see where the LMKG-S approach fails. LMKG-S
is highly prone to outliers, visible for the higher ranges. This is
especially visible in YAGO, where the term and dataset size is
larger, having larger cardinalities, and thus, a higher possibility
for error. Hence, LMKG-S is mainly impacted by the skewness.
LMKG-U produces more constant results throughout the ranges.
However, for larger datasets, due to sampling reasons, LMKG-U
fails to capture the interdependencies between the rarely occur-
ring terms. This is more evident in the smaller ranges, especially
visible for YAGO. MSCN represents the predicate values with
a single feature which is suitable for relational data. However,
this is not adequate for large domain values, especially for larger
ranges. MSCN-1K performs better, however, a small sample is still
not able to capture the KG’s query diversity. On the contrary, our
approaches give emphasis on the term values and patterns and
provide better estimates. As pointed out, the sampling is a direct
reason for the worse accuracy estimates of NeuroCard. When
comparing with the existing KG approaches, overall, LMKG-S
is always better for smaller ranges, followed by LMKG-U, WJ,
and MSCN-1k. CSET and W] perform better for larger result
sizes, however, they are inferior for smaller ranges. Regarding
the overall performance, LMKG produces the best accuracy.
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8.2.3  Accuracy Varying Query Topology: Figure 10 reports the
accuracy that is measured for star and chain queries of different
sizes. LMKG-S and LMKG-U almost always perform best for both
query types. WJ and MSCN-1k perform well and in some cases
even outperform LMKG-U. As depicted, both LMKG models are
not majorly impacted by the query type, as in the case of some
of the other approaches. However, as shown, the LMKG models
are impacted by the number of unique terms in the datasets.

8.2.4 Memory Consumption: We compare LMKG with the
two summary approaches, MSCN and NeuroCard (Table 2). We
measure the size of the complete model for LMKG-U and LMKG-S.
Although for LMKG-U and LMKG-S a model for size k can answer
smaller queries we make the following table for completeness.
Intuitively, the sampling approaches have an advantage since
they directly use the KG and the respective indices. However,
this causes a problem in cases where the KG is not available.

LMKG-S has smaller memory than LMKG-U and some of the
competitors. MSCN-0 has a smaller footprint due to the much
smaller input, at the cost of worse accuracy. CSET is better for
SWDF and LUBM, however, for YAGO it has a larger size. The
memory of LMKG-U increases with the number of involved terms.
Compared to NeuroCard, LMKG-U requires more memory. This
is not a result of a superior term compression but due to different
encodings used. NeuroCard uses embedding on top of the input,
whereas LMKG-U uses only binary encoding.

In Table 3, we show the memory of LMKG-U with and with-
out compression, where LMKG-U without compression has an
embedding layer that further reduces the model size. It is evident
that the term compression has a great impact on the memory
and in some cases, the memory consumption is reduced by more
than 3 times. Furthermore, LMKG-U cannot even train on YAGO
without compression due to the large number of unique terms.

8.2.5 Estimation Time: In Figure 11, we show the estimation
time for different types of queries, depending on their size. For
the sampling approaches in G-CARE, we measure the time of
generating 30 samples required for producing an accurate es-
timate. A smaller sample size led to much worse accuracy, but
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intuitively, a faster approach. MSCN has a similar prediction
time as LMKG-S. LMKG-S performs better than all approaches,
except for CSET. LMKG-U outperforms both NeuroCard and the
sampling approaches since it requires only a single forward pass
and not generation of samples.

8.2.6 Handling Complex Queries: As complex queries, we
consider all query types that do not contain cycles, i.e., queries
created by joining star and chain queries such as snowflake and
tree queries. The complex queries were created from the existing
chain and star queries for the SWDF dataset by performing joins
on either the subjects, subject-object pairs, or objects. By perform-
ing a different number of joins and joining on different terms, we
created queries of various types. The queries consist of between
3 and 10 triples. In Figure 12, we present the average accuracy for
all the considered complex query types by grouping the results
for different query result sizes. We do not compare against MSCN
and NeuroCard. MSCN cannot be efficiently trained because we
cannot create samples from different tables that satisfy multiple
join conditions. For NeuroCard, we need to create an endless com-
bination of models depending on the join partners. For LMKG-U,
the results are obtained by using the same models as for the
other experiments and for LMKG-S we train a model for the new
query workload. The cardinalities are estimated according to the
explained approaches in Section 6. For LMKG-U, we also evaluate
the accuracy when using independence assumption labeled as
ind_LMKG-U in Figure 12.

The results in Figure 12 show that the LMKG models produce
distinctively accurate cardinality estimates even when handling
complex queries. LMKG-S outperforms all the competitors and
delivers the best cardinality estimates for every range for the con-
sidered query types. Additionally, the importance of our proposed
estimation approach for LMKG-U is visible when comparing the
results to estimates created from following the independence
assumption (ind_LMKG-U). Thus, with the suggested approach
for complex queries, LMKG-U produces estimates that are com-
parable to the best competitor W] throughout the query ranges.
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8.2.7 Scalability: We evaluated the ability of our approaches
to handle scalability in terms of schema diversity and compared
the results to the best competitor, i.e., W]. To perform this exper-
iment, we used the WatDiv Benchmark [1], which is developed
for testing RDF data management systems for diverse queries
and varied workloads. We varied the scale factor to 1, 10, and 20,
where for every dataset, we generated 600 test queries from the
same query sizes as the other experiments and grouped them into
buckets depending on their result size. In Figure 13, we show the
accuracy of the approaches by grouping the results on the query
result size for the different scaling factors. The results further
underpin the suitability of our cardinality estimation approaches.
LMKG-S constantly has the best performance and always pro-
duces the most accurate cardinality estimates, except for the
outliers present in the higher ranges. Still, even for these ranges,
LMKG-S results in comparable accuracy to the best competitor.
LMKG-U, as already pointed out, is not affected by the outliers
and thus, always has better or comparable results to WJ. It is
noticeable that the LMKG models drastically outperform W] for
smaller ranges resulting in a more consistent performance.

8.3 Lessons Learned

The major performance degradation in LMKG-S is not a result of
the query complexity but of large outliers. To improve the accu-
racy for outliers, we suggest the usage of a buffer list. Although
LMKG-U has a more constant performance, when having many
unique term values, causing numerous correlations, the current
sampling has not always proved efficient. Future work involves
exploring different sampling for LMKG-U.

Evidently, LMKG requires a higher training time than creating
the other approaches. Considering all aspects of query cardinality
estimation in KGs, LMKG is well-suited for scenarios where a
workload is given or a cardinality for a specified range of queries
(e.g., up to k joins) is needed. Additionally, LMKG is practically
useful when considering query optimization, where a reordering
of different patterns of smaller sizes is required. LMKG is also
useful for cardinality estimation of complex queries however the
scaling depends on the training data. Thus, a combination of a
sampling and a learned approach may be more efficient.

9 CONCLUSION

We addressed the problem of applying deep learning methods
for cardinality estimation in knowledge graphs by utilizing both
supervised and unsupervised deep learning models. To efficiently
feed knowledge subgraphs to our models, we investigated various
encodings, utilized a novel term compression, highly beneficial
for LMKG-U, and an encoding that is especially useful for LMKG-
S. By focusing on the subgraph patterns that constitute the KG,
our encodings drastically reduce the input size and enable us to
train the models on more than one query type. We analyzed the
suitability of our models in different scenarios and explained pos-
sible improvements to our framework. Through the experimental
evaluation, we showed that LMKG exceeds the state-of-the-art
approaches in terms of accuracy while keeping a small memory
footprint and requiring less time for generating the estimates.
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