
Hierarchical Clustering for Property Graph Schema Discovery
Angela Bonifati

Lyon 1 University & LIRIS CNRS

France

angela.bonifati@univ-lyon1.fr

Stefania Dumbrava

ENSIIE & Inst. Polytech. de Paris

France

stefania.dumbrava@ensiie.fr

Nicolas Mir

ENSIIE

France

nicolas.mir@ensiie.fr

ABSTRACT
The property graph model is becoming increasingly popular

among users and is currently employed by several open-source

and commercial graph database systems. Although property

graphs are widely adopted, there is a lack of understanding of

their underlying schema structure. In particular, the schema dis-
covery problem consists of extracting the schema concepts from

a property graph. A property graph schema helps build a concise

description of the data it represents, to make it more digestible

for humans and interactive processes, as well as usable for query

optimization purposes. In this paper, we address the property

graph schema discovery problem and introduce the GMMSchema

method based on hierarchical clustering using a Gaussian Mix-

ture Model, which accounts for both label and property infor-

mation on nodes. We experimentally analyze the accuracy and

performance of GMMSchema, compared to those of its closest

competitor, and showcase its superiority on several commonly

used datasets, including real-world ones, such as the Covid19

knowledge graph, as well as the Fib25 and Mb6 NeuPrint graphs.

1 INTRODUCTION
Graphs are a natural abstraction for representing interconnected

data. These have become increasingly pervasive in a wide variety

of contexts, ranging from social networks to scientific reposito-

ries and the Semantic Web. To address the need to store, process,

and analyze graph-shaped data, a novel type of NoSQL stores,

namely graph databases, have been developed. Their most ex-

pressive underlying data model is the property graph one along

with its variants [1, 3, 16], in which lists of properties can be

attached to both the nodes and the edges of a directed, labeled,

multi-graph.

Due to this rich formalism and to the fact that graph databases

do not impose rigid schema constraints a priori, these can be

readily employed to compactly capture complex graphs, inte-

grating heterogeneous data sources. As graph datasets are large

and rapidly evolving in practice, this flexibility is desirable for

supporting scalable processing. However, the lack of a schema

also has numerous drawbacks, as it makes data integration error-

prone and hinders query optimization, meta-data management,

and the extraction of type-based graph features needed in various

machine learning applications.

To address this, we introduce a novel schema discovery method,

leveraging a hierarchical clustering algorithm, based on Gaussian
MixtureModels. To the best of our knowledge, ours is the first such
approach to take into account labeling and property information

simultaneously and, more generally, the first to perform schema

discovery for property graphs using statistical methods. Schema

inference for property graphs based on the MapReduce paradigm

has been addressed in the past [14]. However, our method differs

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

from previous work in that it is purely statistical and overcomes

previous approaches in terms of both accuracy and performance.

The paper is organized as follows. Section 2 presents the re-

lated work in the area. Section 3 introduces preliminary concepts.

Section 4 gives an overview of our method and illustrates the

underlying GMMSchema algorithm. Section 5 evaluates the qual-

ity of the discovered schema and the overall performance of our

approach, compared to those of its closest competitor.

2 RELATEDWORK
Several works [10, 12] have investigated schema discovery for

semi-structured data, to improve querying and data quality.

In the context of RDF datasets, popular methods use clustering

techniques to group similar entities into clusters corresponding

to distinct types. As such, similarity measures are defined to cap-

ture the extent to which entities share the same properties. In [5],

density-based clustering (DBSCAN) is applied to extracted struc-

tural patterns, instead of the original dataset, as in [13]. However,

as DBSCAN is parametric, the method exhibits relatively large

variance in accuracy. This is improved upon by the parameter-
free StaTIX method in [15], based on the Louvain community-

detection algorithm. While these approaches are hierarchical and
soft (i.e., support overlapping types), similarly to GMMSchema,

our approach is tailored to the more complex model of property

graphs and ultimately produces a schema graph. In the context

of JSON datasets, a MapReduce method is introduced by [2]. This

combines individual type inference (Map operation) and type re-

duction (Reduce operation) to merge types based on equivalence

relations. However, this approach is not directly applicable to

property graphs, does not explicitly support overlapping types,

and only accounts for limited type hierarchies.

This work has been re-purposed for property graphs in [14].

This performs schema inference by considering either a label-

based or a property-based heuristic for merging nodes. The for-

mer might lead to losing property co-occurrence information

and, thus, to missing node types. The latter might result in infer-

ring spurious types. To palliate the relative drawbacks of each

approach, GMMSchema combines both label and property infor-

mation into base types with respect to which data is clustered.

3 PRELIMINARIES
Assume that L, K , D, T are pairwise disjoint sets of labels,

property names (keys), values, and data types. For a set 𝑋 , let

P(𝑋) be the set of all its finite subsets.

Definition 3.1 (Property Graph). A property graph G is a tuple

(V, E, 𝜌, 𝜆, 𝜎), whereV and E are disjoint finite sets of vertices

and edges, the incidence function 𝜌 : E → (V × V) is a total
function associating each edge with a pair of nodes, the labeling

function 𝜆 : (V ∪ E) → P(L) is a partial function1 associating
a vertex/edge with a set of labels, and 𝜎 : (V ∪E) ×K → P(N)
is a partial function associating vertex/edges with properties and,

for each property, assigning a set of values from D.

1
We denote its extension to element sets as

¯𝜆 : (P (V) ∪ P(E)) → P(L) .

Short Paper

Series ISSN: 2367-2005 449 10.48786/edbt.2022.39

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.39

Figure 1: GMMSchema Method

Let us henceforth fix a property graphG. For lack of a standard,
we base our definition of a schema for G on [4].

Definition 3.2 (Base Types). The set of base types BT consists

of element types. Each element type 𝑏 is a 4-tuple (𝐿, 𝐾,𝑂, 𝐸𝑏),
where 𝐿 ∈ L is a set of labels, 𝐾 ∈ K is a set of property names,

𝑂 ⊆ 𝐾 is a subset of optional property names, and 𝐸𝑏 ⊂ BT is

the set of element types that 𝑏 extends.

Definition 3.3 (Schema Graph). The schema graph of G is the

tuple (VT , ET , 𝜌T , 𝜆T , 𝜎T), where VT and ET are disjoint

finite sets of vertex and edge types, 𝜌T : ET → (VT ×VT) is
a total function associating each edge with a pair of nodes, 𝜆T :

(VT ∪ ET) → BT is a total function associating a vertex/edge

with a base type, and 𝜎T : (VT ∪ ET) × K → T is function

associating vertex/edges with properties and, for each property,

assigning its corresponding data type.

Example 3.4 (Social Network Forums). Consider a social net-
work graph, similar to those generated by the LDBC Social Net-

work Benchmark [9]. This models a property graph instance,

in which persons know each other and create post in various

forums. Let us take the below node instance representing a post.

{'Post': {
'creationDate': 2015-06-24T12:50:35.556+01:002,
'locationIP': 42, 'browser' : 'Chrome',
'length' : 10, 'language' : 'lat.',
'content' : 'Lorem ipsum'}}

Listing 1: Dictionary storing a node instance.

Its base type would be ({𝑃𝑜𝑠𝑡}, 𝐾, {𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡}, ∅), where
𝐾 = {𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑃, 𝑏𝑟𝑜𝑤𝑠𝑒𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ} containsmanda-

tory properties, {𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡} - its optional ones, and the

type has no parent, as in Figure 2.

Gaussian Mixture Models. Our method uses the Gaussian Mix-
ture Model (GMM) [8], implementing an Expectation Maximiza-

tion (EM) algorithm to fit a mixture of multi-variate Gaussian

distributions. Given a set of node base types 𝜒 = {𝑥1, . . . , 𝑥𝑛},
we fit 𝜒 as a GMM parametrized by 𝜃 = [𝜃1, . . . , 𝜃𝑘], where
𝜃𝑖 = (𝑤𝑖 , 𝜇𝑖 , Σ𝑖) is the 𝑖-th mixture component. This represents a

GaussianN(𝜇𝑖 , Σ𝑖), with prior probability𝑤𝑖 , such that
∑𝑘
𝑖=1

𝑤𝑖 =

1. For every label 𝐿, we consider the set𝐶 of 𝐿-labeled nodes and

run the GMM algorithm to fit a mixture of two normal distri-

butions. We use the resulting model to split 𝐶-nodes into two

clusters, depending on their similarity to the reference base type.

The procedure is then re-iterated to discover further sub-clusters.

At the end, we will have computed the setH of all discovered

types and also constructed a dictionary𝐶H , associating every dis-
covered type to the clusters representing its sub-types. This can

be directly used to build the schema graph, as will be illustrated.

4 HIERARCHICAL CLUSTERING
In this section, we present the GMMSchema algorithm for prop-

erty graph schema discovery. It partitions the dataset, using unsu-

pervised clustering, such that each computed cluster corresponds

to a node type, determined by an unique combination of labels

and properties. The method is outlined in Figure 1.

Algorithm 1 Schema Graph Computation

1: input : G - property graph, 𝑛 - threshold

2: output :H− node type clusters

3: function gmm_schema(G, 𝑛)
4: LG ←

⋃
𝑣∈V 𝜆(𝑣) ⊲ Set of node labels

5: H ← ∅ ⊲ Initial set of all discovered clusters

6: CH ← ∅ ⊲ Initial (base type, sub-clusters) dictionary

7: for 𝐿 ∈ LG do ⊲ Iterate through node labels

8: 𝐶 ← {𝑣 ∈ V | 𝐿 ∈ 𝜆(𝑣)}
9: H , CH ← Hierarchical_Clustering(𝐶,H , CH, 𝑛)
10: returnH , CH

First, we pre-process the graph instance G and collect statistics

regarding property key frequency, per node label. As described

in Algorithm 1, for each label 𝐿 in the set of all node labels LG ,
we compute its corresponding node types and sub-types. Hence,

we call the hierarchical inference algorithm on the set 𝐶 of all

nodes whose set of labels contain 𝐿. For each such node set 𝐶 ,

the Hierarchical_Clustering algorithm proceeds iteratively,

by first constructing a reference base type 𝑏𝑟𝑒 𝑓 . This intuitively

represents the most general type that all nodes in 𝐶 extend, i.e.,

the parent cluster for all sub-clusters in𝐶 . To build it, we consider

the the set of all cluster labels L𝐶 , as well as the 𝑛 most frequent

properties in 𝐶 . Next, we separate the nodes in 𝐶 in two clusters,

based on how similar their base type is to 𝑏𝑟𝑒 𝑓 . To this end,

for each node, we use the Dice metric to compare the set of

its labels and properties to that corresponding to all labels and

property keys in L𝐶 and 𝐾𝐶 , respectively. These similarities are

then regrouped into a feature vector 𝑑 . By fitting a GMM model

using 𝑑 and estimating its parameters with the EM algorithm, we

obtain the mixture components 𝜃1 and 𝜃2. The prediction step

allows us to classify the considered data samples and determine

whether they fit 𝑏𝑟𝑒 𝑓 . This amounts to 2-clustering and splitting

𝐶 into 𝐶1

𝐿
and 𝐶2

𝐿
. If the property keys of 𝐶1

𝐿
and 𝐶2

𝐿
overlap,

we assign the intersection set to 𝑏𝑟𝑒 𝑓 . We update the hierarchy

dictionary CH with the information that the base types of𝐶1

𝐿
and

𝐶2

𝐿
extend 𝑏𝑟𝑒 𝑓 . For each sub-cluster, we re-iterate the procedure,

recompute a reference node, and use it to discover new sub-types.

Algorithm 2 Cluster Hierarchy Computation

1: input : 𝐶 - cluster, H - set of all discovered clusters, CH -

(base type, sub-clusters) dictionary, 𝑛 - threshold

2: output :H− updated set of discovered clusters

3: function hierarchical_clustering(𝐶,H , CH, 𝑛)
4: L𝐶 ← ¯𝜆(𝐶) ⊲ Current cluster node labels

5: 𝐾𝐶 ← set of the𝑛most frequent node properties in𝐶

6: 𝑏𝑟𝑒 𝑓 ← (L𝐶 , 𝐾𝐶 , ∅, ∅) ⊲ Reference base type for𝐶 nodes

7: for 𝑣 ∈ 𝐶 do ⊲ Iterate through cluster nodes

8: 𝑏 ← 𝜆T (𝑣) ⊲ Store element type of 𝑣

9: 𝑑 (𝑣) ← 𝐷𝑖𝑐𝑒 (𝑏,𝑏𝑟𝑒 𝑓) ⊲ Store similarity metric

10:
®𝜃 ← fit(𝑑), where ®𝜃 = [𝜃1, 𝜃2]

11: C1

𝐿
, C2

𝐿
← predict(®𝜃)

12: if ¯𝜆(C1

𝐿
) ∩ ¯𝜆(C2

𝐿
) ≠ ∅ then

13: 𝑏𝑟𝑒 𝑓 ← (LC, ¯𝜆(C1

𝐿
) ∩ ¯𝜆(C2

𝐿
), ∅, ∅)

14: if 𝑗 ∈ {1, 2} ∧ C 𝑗
𝐿
∉ H then

15: CH [𝑏𝑟𝑒 𝑓] ← CH [𝑏𝑟𝑒 𝑓] ∪ C
𝑗

𝐿

16: H ← H ∪ {C1

𝐿
, C2

𝐿
}

17: H , CH ← hierarchical_clustering(C 𝑗
𝐿
,H , CH, 𝑛)

18: returnH , CH

450

Figure 2: Ground-Truth Schema for LDBC

The runtime efficiency of our algorithm could be improved

by fitting multiple Gaussians during one iteration, instead of

just performing 2-clustering. Optimization issues regarding this

hyperparameter are left for future work.

Example 4.1 (Social Network - Schema Graph). We focus on

the discovery of the sub-types corresponding to nodes labeled

𝑃𝑜𝑠𝑡 . Hence, we run the GMM_Schema algorithm over the graph

instance, taking the value𝑛 = 2, for example
2
. The corresponding

reference node is𝑏𝑟𝑒 𝑓 = ({𝑃𝑜𝑠𝑡}, {𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑃}, ∅, ∅),
as 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑃 are common to all cluster nodes.

Using the GMM model, we classify 𝑃𝑜𝑠𝑡 nodes into 2-clusters.

Their property key intersection gives us the base type of the

parent node 𝑏 = ({𝑃𝑜𝑠𝑡}, 𝐾, ∅, ∅), where
𝐾 = {𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑃, 𝑏𝑟𝑜𝑤𝑠𝑒𝑟, 𝑙𝑒𝑛𝑔𝑡ℎ}.

Repeating the procedure in each sub-cluster does not infer new

types, as all nodes in each share the same properties. Their ref-

erence nodes are: 𝑏1 = ({𝑃𝑜𝑠𝑡}, 𝐾, {𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒, 𝑐𝑜𝑛𝑡𝑒𝑛𝑡}, {𝑏}) and
𝑏2 = ({𝑃𝑜𝑠𝑡}, 𝐾, {𝑖𝑚𝑎𝑔𝑒𝐹𝑖𝑙𝑒}, {𝑏}), each representing a new sub-

type, i.e., 𝑃𝑜𝑠𝑡1 and 𝑃𝑜𝑠𝑡2 in Figure 3. Each of these newly discov-

ered node types will then have the same connectivity character-

istics, i.e., attached in/out-going edge types, as their parent node,

𝑃𝑜𝑠𝑡 . The discovered schema graph will additionally include two

edge subtype edges from 𝑃𝑜𝑠𝑡1 and, respectively, 𝑃𝑜𝑠𝑡2 to 𝑃𝑜𝑠𝑡 .

Note that, for ease of exposition, nodes in the running example

have single labels only. Our approach, however, covers multiple

labels, thus supporting the full expressiveness of the property

graph model.

5 EXPERIMENTAL EVALUATION
Our schema inference method is implemented in Python 3 and is

compatible with Neo4j 4.3.4. The code base is readily available

online
3
. All experiments were performed on an Openstack Vir-

tual Machine with 12 2GHz 64-bits Intel Xeon CPUs, 62 GB of

memory, and a 1.5 TB hard drive.

2
Note that the value of 𝑛 does not impact the overall precision, but only the con-

vergence rate of the method.

3
https://github.com/naussicaa/pg-schemainference

Figure 3: GMMSchema for LDBC
Dataset Nodes Edges Node Edge Unlabeled

Labels Labels Nodes
LDBC 1,577,397 8,179,418 7 14 0

Mb6 486,267 961,571 10 3 0

Fib25 802,473 1,625,428 10 3 0

Covid19 36,025,729 59,768,373 121 168 474

Figure 4: Dataset characteristics prior to schema discovery.

5.1 Datasets and Metrics
Datasets. We experimentally analyze our approach on several

datasets (see Figure 4), described as follows. The LDBC Social Net-

work Benchmark (LDBC) [9] is a synthetic graph, corresponding
to the topology of a realistic social network and comes together

with a ground-truth schema, capturing single-labeled nodes and

type hierarchies. TheMb6 [19] and Fib25 [18] datasets model Ne-

uPrint connectome data and correspond to the mushroom body

and, respectively, medulla neural networks in the fruit fly brain.

Both these datasets also contain ground-truth schema with di-

verse properties, as well as multi-labeled nodes. Finally, Covid19
corresponds to the Covid-19 Knowledge Graph [7], which in-

tegrates data from the Genotype Tissue Expression (GTEx) the

Covid-19 Disease Map (Cord-19), and the bibliographical ArXiv,

BioRxiv, MedRxiv, PubMed, and PubMed Central repositories.

The graph has no ground-truth schema and is continuously evolv-

ing. Hence, the reported results consider the August 2021 version.

Metrics. To assess the quality of the discovered schema, we

employ several metrics, as follows. The Adjusted Random Index

(Rand Index) measures the similarity between two clusterings,

considering all sample pairs and counting those assigned in the

same/different clusters in the predicted and true clusterings. The

Adjusted Mutual Index (AMI) also measures the similarity be-

tween two clusterings, but accounts for potentially unbalanced

clusters in the ground truth clustering. Precision captures the

proportion of identified types part of the ground truth, while

recall measures the performance of binary classification. The

F1-score provides an average of precision and sensitivity.

5.2 Evaluation and Discussion
We now present and discuss the results of evaluating GMM-

Schema on the LDBC,Mb6, Fib25, and Covid19 datasets.

SchemaQuality. As a first indicator of the quality of our schema

discovery method, we first analyze the changes in dataset char-

acteristics it generates. Looking at Figure 4 and 5, we notice that,

451

Dataset Node Types Edge Types Subtype Edges Hierarchy Depth
LDBC 17 36 9 2

Mb6 19 27 14 4

Fib25 26 106 21 6

Figure 5: Dataset characteristics with GMMSchema discovery.

on average, 2-3 types are discovered per node label, while in

the case of edge labels, GMMSchema leads to up to 3 orders of

magnitude more edge types (for the fib25 dataset). This is due

to the high hierarchy depth of the dataset, which leads to the

creation of ≈ 20 new subtype edges. Comparing these numbers to

those corresponding to the property-oriented schema inference

method in [14] (Figure 6), we observe that, the baseline can infer

up to 3 times more node types, up to 3 orders of magnitude more

edge types, up to 7 orders of magnitude more subtype edges (for

themb6 dataset), and leads to a hierarchies that can be double

the depth of those discovered by GMMSchema. However, looking

at the perfect accuracy of our schema discovery method, as given

by the precision, recall, and F1-score in Figure 8, we can conclude

that many of the inferred nodes are actually redundant and that

GMMSchema helps address this by also leveraging the informa-

tion in node labels. Also, comparing with the numbers reported

by the label-oriented heuristic in [14] (Figure 7), we can observe

GMMSchema also addresses the missing types due to only con-

sidering node label information, by also taking into account their

corresponding properties. Hence, our schema discovery method

achieves a good balance between these two approaches.

In order to assess the quality of our underlying hierarchi-

cal clustering method based on Gaussian Mixture models, we

compute its corresponding Rand Index and Adjusted Mutual
Information (AMI) scores. To this end, we consider the HDB-

SCAN [6] clustering algorithm as our baseline, since it is the

closest to our approach. As shown in Figure 8, we notice that the

two methods agree the most on the largest datasets (Covid19
and LDBC) under both metrics. Also, note that the AMI score
is better suited for hard clustering (i.e., assigning a given node

to a single cluster), whereas both GMMSchema and HDBSCAN

perform soft clustering. Moreover, in the LDBC and Covid19

datasets, it is easier to determine the specific cluster correspond-

ing to a node, as the hierarchy is very shallow and there is little

overlap in the labels/properties representing type. Conversely,

for Mb6 and Fib25, as there are many such overlaps and as the

datasets are smaller, being forced to choose a single "right" cluster

for a node is harder and more penalizing.

Scalability. Figure 9a captures the overall runtime performance

of our GMMSchema method, compared to that of the baseline

in [14]. When benchmarking its performance for graphs of up

to 2M nodes and edges, GMMSchema exhibits better scalability.

For Mb6, GMMSchema is up to 5 times more efficient, while

for LDBC and Fib25, it is up to 8 times faster. One explanation

for this is that, unlike in our approach, the pre-processing stage

of the baseline method requires writing all nodes and edges in

a JSON file. Given that Covid19 is rapidly evolving and that

the version we considered in our experiments does not match

that used by the baseline method, we plotted the total average

runtime performance of GMMSchema on this dataset separately

(Figure 9b). As can be seen, despite the high heterogeneity of the

dataset (121 node labels and 168 edge labels), the performance

of GMMSchema is up to twice faster than that displayed by the

baseline on the much smaller and less diverse LDBC dataset.

Dataset Node Types Edge Types Subtype Edges Hierarchy Depth
LDBC 17 72 51 5

Mb6 68 795 786 9

Fib25 47 427 418 8

Figure 6: Dataset characteristics (property-based inference).

Dataset Node Types Edge Types Subtype Edges Hierarchy Depth
LDBC 7 21 0 0

Mb6 5 10 1 1

Fib25 5 10 1 1

Figure 7: Dataset characteristics (label-based inference).

Dataset Rand Index AMI Precision Recall F1-score
LDBC 0,96 0,91 1,0 1,0 1,0

Mb6 0,79 0,49 1,0 1,0 1,0

Fib25 0,75 0,41 1,0 1,0 1,0

Covid19 0,94 0,71 NaN NaN NaN

Figure 8: GMMSchema clustering quality estimates.

(a) LDBC, Fib25, Mb6 (b) Covid19

Figure 9: GMMSchema vs. Baseline total avg. runtimes.

Dataset Pre-processing Sampling Clustering Total Baseline
LDBC 22,15 3,27 22,02 47,44 830

Mb6 1,03 0,55 2,95 4,53 48

Fib25 5,33 1,03 5,83 12,19 76

Covid19 44,12 132 204 380,12 266

Figure 10: Component-wise and total runtimes (s) for GMM-
Schema and the baseline on LDBC, Mb6, Fib25, Covid19.

Looking at the performance breakdown for the pre-processing,

sampling, and clustering components of GMMSchema (Figure 10),

we notice that the most expensive step is generally the clustering

one. This is to be expected, as the coreHierarchical_Clustering

function can call itself recursively. Each such time, a Gaussian

Mixture Model has to be retrained, in order to split the consid-

ered dataset portion into two clusters, by deciding, for each node,

whether its base type matches that of the reference base type.

6 CONCLUSION AND FUTUREWORK
This paper introduces the novel GMMSchema algorithm for

schema discovery in the property graph setting. To the best of our

knowledge, this is the first approach that targets property graphs

and that simultaneously takes into account both the label and

property information on nodes. This addresses the limitations

with respect to incomplete/spurious node inference of its clos-

est competitor, whose method is based on MapReduce inference.

Preliminary experiments show the superiority of our approach,

in terms of accuracy and performance, and highlight the promise

of employing statistical methods for schema discovery.

Future extensions consists of further optimizing the approach,

inferring cardinality information, and supporting incremental

maintenance to preserve schema validity under updates. Also,

integrating topological information through graph embeddings

could benefit scalability. Finally, investigating how data analysis

methods, such as formal concept analysis [17], or recent gram-

matical inference methods [11] can be applied to property graphs

and comparing them to our work opens interesting perspectives.

452

REFERENCES
[1] Renzo Angles. 2018. The Property Graph Database Model. In AMW (CEUR

Workshop Proceedings), Vol. 2100. CEUR-WS.org.

[2] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.

2019. Parametric Schema Inference for Massive JSON Datasets. VLDB J. 28, 4
(2019), 497–521.

[3] Angela Bonifati, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets.

2018. Querying Graphs. Morgan & Claypool Publishers.

[4] Angela Bonifati, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko,

andHannes Voigt. 2019. Schema Validation and Evolution for GraphDatabases.

In ER (Lecture Notes in Computer Science), Vol. 11788. Springer, 448–456.
[5] Redouane Bouhamoum, Kenza Kellou-Menouer, Stéphane Lopes, and Zoubida

Kedad. 2018. Scaling Up Schema Discovery for RDF Datasets. In ICDE Work-
shops. IEEE Computer Society, 84–89.

[6] Ricardo J. G. B. Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-

Based Clustering Based on Hierarchical Density Estimates. In PAKDD (2)
(Lecture Notes in Computer Science), Vol. 7819. Springer, 160–172.

[7] CovidGraph. 2021. COVID-19 Knowledge Graph. https://covidgraph.org/.

[8] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum

Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal
Statistical Society: Series B (Methodological) 39, 1 (1977), 1–22.

[9] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The

LDBC Social Network Benchmark: Interactive Workload. In SIGMOD Confer-
ence. ACM, 619–630.

[10] Silvio Normey Gómez, Lorena Etcheverry, Adriana Marotta, and Mariano P.

Consens. 2018. Findings from Two Decades of Research on Schema Discovery

using a Systematic Literature Review. In AMW (CEUR Workshop Proceedings),
Vol. 2100. CEUR-WS.org.

[11] Benoît Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. 2022.

Inference of Shape Graphs for Graph Databases. In ICDT (LIPIcs). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:20.

[12] Kenza Kellou-Menouer, Nikolaos Kardoulakis, Georgia Troullinou, Zoubida

Kedad, Dimitris Plexousakis, and Haridimos Kondylakis. 2021. A Survey on

Semantic Schema Discovery. VLDB J. (2021).
[13] Kenza Kellou-Menouer and Zoubida Kedad. 2015. Schema Discovery in RDF

Data Sources. In ER (Lecture Notes in Computer Science), Vol. 9381. Springer,
481–495.

[14] Hanâ Lbath, Angela Bonifati, and Russ Harmer. 2021. Schema Inference for

Property Graphs. In EDBT. OpenProceedings.org, 499–504.
[15] Artem Lutov, Soheil Roshankish, Mourad Khayati, and Philippe Cudré-

Mauroux. 2018. StaTIX - Statistical Type Inference on Linked Data. In IEEE
BigData. IEEE, 2253–2262.

[16] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Am-

mar, Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A.

Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf

Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana

Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric

Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu,

Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor

Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia

Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki.

2021. The Future is Big Graphs: a Community View on Graph Processing

Systems. Commun. ACM 64, 9 (2021), 62–71.

[17] Rudolf Wille. 2005. Formal Concept Analysis as Mathematical Theory of

Concepts and Concept Hierarchies. In Formal Concept Analysis (Lecture Notes
in Computer Science), Vol. 3626. Springer, 1–33.

[18] Shin ya Takemura and et al. 2015. Synaptic circuits and their variations

within different columns in the visual system of Drosophila. Proceedings of
the National Academy of Sciences 112 (2015), 13711 – 13716.

[19] Shin ya Takemura and et al. 2017. A Connectome of a Learning and Memory

Center in the Adult Drosophila Brain. eLife 6 (2017).

453

