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ABSTRACT

Given a graph 𝐺 and a query node 𝑞, the community search
problem aims to retrieve the important communities whose nodes
are closely related to 𝑞. Recently, plenty of research is conducted
to find cohesive subgraphs on geo-social networks, where each
node is associated with a location. However, the properties of
diversified communities on geo-social networks are neglected by
previous studies. To meet this gap, in this paper, we propose a
new problem, called diversified DBTruss search, which aims to
find 𝑟 cohesive subgraphs that can maximize the number of nodes
covered. The DBTruss is a subgraph of 𝐺 , which satisfies both
structure cohesiveness and spatial constraint. For the problem, we
develop two algorithms, i.e., TD Algorithm and BD Algorithm,
with approximation ratio guarantee. Finally, experiments on real-
world datasets are conducted to demonstrate the advantages of
proposed techniques.

1 INTRODUCTION

As an important tool, community search aims to retrieve the
connected subgraphs based on a query request [7]. Recently,
due to the location equipped systems [9], many research has
been conducted on the community search problem in geo-social
networks [4, 8]. Most existing works in geo-social networks are
driven by size constraint or other defined constraints. However,
the obtained subgraphs are usually highly overlapping, i.e., the
diversify property is neglected, which significantly reduces the
usefulness of information contained in results,

To fill the gap, in this paper, we propose and investigate the
diversified top-𝑟 Diameter Bound 𝑘-truss (DBTruss) problem in
geo-social networks. Specifically, given a query node 𝑞 in a geo-
social graph 𝐺 , diameter restriction 𝑑 and support constraint
𝑘 , a subgraph of 𝐺 is a DBTruss if it is 1) a 𝑘-truss containing
query node 𝑞, and 2) enclosed by a circle with diameter bound
𝑑 . Given an integer 𝑟 , the diversified DBTruss problem aims to
find 𝑟 DBTrusses that can cover the most number of nodes in
𝐺 . Figure 1 shows a geo-social network with 19 users. Given
𝑘=4 and 𝑟=2, there are 3 DBTrusses that can be recommended
to Bill, i.e., 3 colored circles. Without considering the diversity
property, the DBTrusses covered by orange and pink colors will
be returned because of larger size. However, by considering the
diversity property, the DBTrusses in purple and pink areas will
be retrieved, due to coverage of more users.
Challenges and contributions. To the best of our knowledge,
we are the first to investigate the diversified top-𝑟 DBTruss prob-
lem. The main challenges of the problem are two folds. Firstly,
due to the uncertainty of the diameter bounded circle where
𝑘-truss is located, it is time-consuming to enumerate all possible
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Figure 1: Motivation example

circles. Secondly, we show that the problem is NP-hard. In this
paper, TD Algorithm is first presented with 1−1/𝑒 approximate
guarantee to ensure the quality of results. In addition, BD Algo-
rithm is further presented with 1/4 approximate ratio guarantee
to speedup the computation. Experiments on real datasets from
various domains are conducted to evaluate the performance of
the proposed techniques.
Related work. Community or cohesive subgraph search are
widely studied [6, 7, 10]. Different cohesive subgraph model are
proposed in the literature, such as 𝑘-core, 𝑘-truss and clique [2, 3].
Liu et al. [6] study the problem of community search over large
directed graphs. [10] considers the influence of nodes when
searching the communities. However, the geo-location of users
are not considered. Recently, some works investigate the com-
munity search problem by considering the spatial information
(e.g., [5, 8, 11]). The most close work to us is [8], which investi-
gates the problem of searching RB-𝑘-core by considering both
spacial and social constraints. However, they focus on finding all
RB-𝑘-cores, but the diversified characters are ignored and each
result is treated individually. That is, it aims to identify top-𝑟
answers which are most relevant to a user query. Moreover, the
𝑘-core model may not well portray the strength of connections in
a community. Thus, the techniques in the above research cannot
support the problem in this paper.

2 PRELIMINARY

We consider a geo-social network𝐺 = (𝑉 , 𝐸) as undirected graph,
where 𝑉 (|𝑉 | = 𝑛) and 𝐸 (|𝐸 | = 𝑚) denote the set of nodes and
edges in 𝐺 , respectively. For each node 𝑢 ∈ 𝑉 , it associates a
location 𝑙𝑜𝑐 (𝑢) = (𝑥𝑢 , 𝑦𝑢 ), which represents its position in 2-
dimensional space. In this paper, we use Euclidean distance to
measure the distance between two nodes, 𝑢 and 𝑣 , denoted by
𝑑 (𝑢, 𝑣). We use 𝑆 = (𝑉𝑆 , 𝐸𝑆 ) to denote a subgraph of 𝐺 , where
𝑉𝑆 ⊆ 𝑉 and 𝐸𝑆 ⊆ 𝐸. A triangle is a cycle with 3 edges. Given a
subgraph 𝑆 , we use 𝑠𝑢𝑝 (𝑒, 𝑆) to denote the support of edge 𝑒 in
𝑆 , i.e., the number of triangles that contain 𝑒 in 𝑆 . For simplicity,
we omit 𝑆 in the notations if the context is self-evident.

Definition 1 (𝑘-truss). Given a graph 𝐺 , a subgraph 𝑆 is

the 𝑘-truss of 𝐺 , denoted as 𝑇𝑘 , if it satisfies: 1) for each 𝑒 ∈ 𝐸𝑆 ,
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𝑠𝑢𝑝 (𝑒, 𝑆) ≥ 𝑘 − 2; 2) no isolated node in 𝑆 ; 3) any supergraph 𝑆 ′

of 𝑆 cannot meet the previous constraints.

In this paper, we leverage the concept of 𝑘-truss to measure
the cohesiveness of a subgraph. Compared with the 𝑘-core model,
𝑘-truss emphasizes not only the engagement of each node but
also the strength of nodes connection. Considering the distance
constraint, we introduce the concept of minimum covering circle,
which is defined as follows.

Definition 2 (minimum covering circle (MCC)). Given a

node set 𝑃 in 2-dimensional space, the MCC of 𝑃 is a circle, which

can cover all nodes in 𝑃 with the smallest diameter.

We use𝑂 (𝑐, 𝑑) to denote a circle, where 𝑐 and 𝑑 denote the cen-
ter and diameter of the circle, respectively. As discussed, in geo-
social networks, a community is more preferred if it is densely-
connected and spatially close. Based on the concepts of 𝑘-truss
and MCC, we define the diameter-bound 𝑘-truss model as follows.

Definition 3 (diameter-bound 𝑘-truss (DBTruss)). Given
a geo-social network 𝐺 = (𝑉 , 𝐸), a support constraint 𝑘 and a di-

ameter bound 𝑑 , a subgraph 𝑆 is a diameter-bound 𝑘-truss, denoted

as 𝑇𝑑
𝑘
, if it satisfies the following constraints: (1) Support: For each

𝑒 ∈ 𝐸𝑆 , 𝑠𝑢𝑝 (𝑒, 𝑆) ≥ 𝑘 − 2; (2) Spatial closeness: The MCC diameter

of 𝑉𝑆 is no larger than 𝑑 ; (3) Connectivity: The subgraph 𝑆 is con-

nected; (4) Maximal: Any supergraph of 𝑆 does not satisfy the first

three constraints.

Given a query node 𝑞, we use T𝑑
𝑘
(𝑞) to denote the set of all

DBTrusses that contain𝑞. For a subset𝐷 ⊆ T𝑑
𝑘
(𝑞), we use 𝑐𝑜𝑣 (𝐷)

to denote the set of nodes covered by 𝐷 , i.e., 𝑐𝑜𝑣 (𝐷) = ⋃{𝑉𝑆 |𝑆 ∈
𝐷}. In real applications, the cardinality of T𝑑

𝑘
(𝑞) could be very

large, and it may not be easy for users to explore the results.
An intuitive idea is to retrieve the top-𝑟 DBTrusses with the
largest size. However, as discussed, these results may be highly
overlapped and fail to reveal the properties of T𝑑

𝑘
(𝑞). Therefore,

we introduce the diversified DBTruss search problem as follows.
Problem statement. Given a geo-social graph 𝐺 , three param-
eters 𝑘 , 𝑑 , and 𝑟 , and a query node 𝑞 ∈ 𝑉 . Then, the problem of
diversified DBTruss search aims to find a set 𝐷∗ of 𝑟 DBTrusses
from T𝑑

𝑘
(𝑞), which can maximize the number of nodes covered,

i.e.,
𝐷∗ = argmax

𝐷⊆T𝑑
𝑘
(𝑞)∧|𝐷 |=𝑟

|𝑐𝑜𝑣 (𝐷) | (1)

Theorem 2.1. The diversified DBTruss search problem is NP-

hard.

Proof. To solve the problem, we have to enumerate all the
DBTrusses of 𝑞, i.e, T𝑑

𝑘
(𝑞). Then, we can reduce 𝑟 -set cover

problem [1] to the diversified DBTruss search problem by treating
each 𝑆 ∈ T𝑑

𝑘
(𝑞) as a set. The 𝑟 -set cover problem is to find

𝑟 subsets from a collection of subsets such that the union of
selected 𝑟 subsets can cover as many elements as possible. The
𝑟 -set cover problem is NP-hard. Therefore, our problem is also
NP-hard. □

Theorem 2.2. The objective function |𝑐𝑜𝑣 (𝐷) | is monotonic and

submodular.

Proof. Given two DBTruss sets𝐴1, 𝐴2 ⊆ T𝑑
𝑘
(𝑞) and𝐴1 ⊂ 𝐴2,

then we prove the theorem as follows. Monotonic. Since all
nodes in 𝑐𝑜𝑣 (𝐴1) must belong to 𝑐𝑜𝑣 (𝐴2), we have |𝑐𝑜𝑣 (𝐴1) | ≤
|𝑐𝑜𝑣 (𝐴2) |. Therefore, the function is monotonic. Submodular.

Algorithm 1: TD Algorithm
Input :𝐺 : a geo-social network, 𝑞: query node, 𝑘 : support

constraint, 𝑑 : distance constraint, 𝑟 : number constraint
Output : 𝐷 : the top-𝑟 DBTruss
𝐷 ← ∅; T𝑑

𝑘
(𝑞) ← ∅;𝑇𝑘 ← connected 𝑘-truss containing 𝑞 in𝐺 ;1

for each 𝑣 ∈ 𝑇𝑘 do2

for each 𝑢 ∈ 𝑇𝑘 and 𝑑 (𝑢, 𝑣) ≤ 𝑑 do3

if 𝑑 (𝑢, 𝑣) = 𝑑 then4

𝑂 (𝑐,𝑑) ← the MCC of node set {𝑢, 𝑣 };5

T𝑑
𝑘
← connected 𝑘-truss contains 𝑞 enclosed𝑂 (𝑐,𝑑) ;6

T𝑑
𝑘
(𝑞) ← T𝑑

𝑘
(𝑞) ∪ {𝑇𝑑

𝑘
};7

else8

for each 𝑤 ∈ 𝑇𝑘 and 𝑤 ≠ 𝑢, 𝑣 do9

𝑂 (𝑐,𝑑𝑚) ← the circle determined by three nodes10

𝑢, 𝑣 and 𝑤;
if 𝑑𝑚 ≤ 𝑑 then11

T𝑑
𝑘
← 𝑘-truss contains 𝑞 enclosed𝑂 (𝑐,𝑑𝑚) ;12

T𝑑
𝑘
(𝑞) ← T𝑑

𝑘
(𝑞) ∪ {𝑇𝑑

𝑘
};13

for 𝑖 = 1 to 𝑟 do14

𝑇 ∗ ← argmax
𝑇 ∈T𝑑

𝑘
(𝑞)\𝐷 |𝑐𝑜𝑣 (𝑇 )\𝑐𝑜𝑣 (𝐷) |;15

𝐷 ← 𝐷 ∪ {𝑇 ∗ };16

return 𝐷 ;17

Given𝑇 ∈ T𝑑
𝑘
(𝑞) \𝐴2, we say the function |𝑐𝑜𝑣 (𝐷) | is submodu-

lar if |𝑐𝑜𝑣 (𝐴1 ∪ {𝑇 }) | − |𝑐𝑜𝑣 (𝐴1) | ≥ |𝑐𝑜𝑣 (𝐴2 ∪ {𝑇 }) | − |𝑐𝑜𝑣 (𝐴2) |.
Note that, 𝑐𝑜𝑣 (𝐴1) ⊂ 𝑐𝑜𝑣 (𝐴2) according to monotonic. For sim-
plicity, let 𝑋 = |𝑐𝑜𝑣 (𝐴1 ∪ {𝑇 }) | − |𝑐𝑜𝑣 (𝐴1) | and 𝑌 = |𝑐𝑜𝑣 (𝐴2 ∪
{𝑇 }) | − |𝑐𝑜𝑣 (𝐴2) |. For the relationship between 𝑐𝑜𝑣 (𝑇 ), 𝑐𝑜𝑣 (𝐴1)
and 𝑐𝑜𝑣 (𝐴2) there are four cases. Case 1: 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴2) = ∅.
Case 2: 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴2) ≠ ∅ and 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴1) = ∅. Case
3: 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴1) ≠ ∅ and 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴1) ≠ 𝑐𝑜𝑣 (𝑇 ) ∩
𝑐𝑜𝑣 (𝐴2). Case 4: 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴1) ≠ ∅ and 𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴1) =
𝑐𝑜𝑣 (𝑇 ) ∩ 𝑐𝑜𝑣 (𝐴2). Then, we prove each case fit the submodu-
lar. For case 1, 𝑋 = 𝑌 = |𝑐𝑜𝑣 (𝑇 ) |. For case 2, 𝑋 = |𝑐𝑜𝑣 (𝑇 ) | >
|𝑐𝑜𝑣 (𝑇 ) \𝑐𝑜𝑣 (𝐴2) | = 𝑌 . For case 3, 𝑋 = |𝑐𝑜𝑣 (𝑇 )\𝑐𝑜𝑣 (𝐴1) | >
|𝑐𝑜𝑣 (𝑇 )\𝑐𝑜𝑣 (𝐴2) | = 𝑌 . For case 4, 𝑋 = 𝑌 = |𝑐𝑜𝑣 (𝑇 )\𝑐𝑜𝑣 (𝐴2) |.
Therefore, the function is submodular.

□

3 OUR SOLUTION

Naively, we can traverse all the combinations and return the opti-
mal result. However, the approach is not affordable even on small
graphs. To accelerate the processing, our framework consists of
two main steps: 1) enumerate all DBTrusses T𝑑

𝑘
(𝑞), and 2) select

𝑟 DBTrusses that can maximize the number of covered nodes in
the graph. Based on this framework, we propose the two effective
solutions, i.e., TD Algorithm and BD Algorithm, in this paper.

3.1 TD Algorithm

Note that, three nodes can determine a unique circle, if they are
on the boundary. A circle can also be determined by two nodes,
when they are the endpoints of its diameter. Based on it, we
propose the TD Algorithm. Specifically, it first enumerates all
candidate circles and obtains all MCCs. Then, it greedily selects
the best DBTruss with the largest marginal gain in each iteration.
The algorithm terminates until 𝑟 DBTrusses are found. The details
are shown in Algorithm 1.

In the algorithm, we first initialize top-𝑟 results set 𝐷 and
DBTruss set T𝑑

𝑘
(𝑞) as empty, and compute the connected 𝑘-truss
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𝑇𝑘 that contains 𝑞 in 𝐺 (Line 1). Then, for each pair of nodes
𝑢, 𝑣 ∈ 𝑇𝑘 with distance 𝑑 (𝑢, 𝑣) no lager than 𝑑 , we compute all
the DBTruss in Lines 2-13. It has two cases: 1) if 𝑑 (𝑢, 𝑣) = 𝑑 , we
obtain the MCC 𝑂 (𝑐, 𝑑) of node set {𝑢, 𝑣} and put the connected
𝑘-truss contains 𝑞 into𝑂 (𝑐, 𝑑) into T𝑑

𝑘
(𝑞) (Lines 4-7); 2) for each

node 𝑤 ∈ 𝑇𝑘 where 𝑤 ≠ 𝑢, 𝑣 , we compute the circle 𝑂 (𝑐, 𝑑𝑚)
determined by {𝑢, 𝑣,𝑤} and put the connected 𝑘-truss contains
𝑞 in 𝑂 (𝑐, 𝑑𝑚) into T𝑑

𝑘
(𝑞) (Lines 9-13). After that, we iteratively

select a 𝑘-truss in T𝑑
𝑘
(𝑞) with the largest number of nodes that

are not in the current optimal result (Lines 14-16). Finally, we
return the best result 𝐷 .

Though TD Algorithm can significantly reduce the com-
putation cost, it still has some limitations: 1) TD Algorithm
needs to verify O(𝑛3) MCC with time complexity O(𝑛3𝑚1.5 +
𝑟 ·∑

𝑇𝑑
𝑘
∈T𝑑

𝑘
(𝑞) |𝑇

𝑑
𝑘
|); 2) During the greedy procedure, redundant

computation in each iteration may be involved.

3.2 BD Algorithm

To deal with the above issues, in this section, we propose BD
Algorithm to accelerate the computation based on novel struc-
tures. Before introducing the details, we first present some related
properties as follows.

Lemma 3.1. Suppose there are circles that consist of two bound-
ary nodes 𝑢, 𝑣 with diameter 𝑑 . We can determine the number of

these circles as follows: 1) if 𝑑 (𝑢, 𝑣) = 𝑑 , we can determine there is

a unique circle; 2) if 𝑑 (𝑢, 𝑣) < 𝑑 , we can find two circles satisfying

the constraint.

The correctness of Lemma 3.1 is easy to verify, and we omit
the proof here. According to the lemma, we can obtain at most
two circles with diameter 𝑑 by a pair of nodes. We use 𝑅(𝑢, 𝐷)
to denote the set of DBTrusses that contains 𝑢, i.e., 𝑅(𝑢, 𝐷) =
{𝑇𝑖 |𝑢 ∈ 𝑇𝑖∧𝑇𝑖 ∈ 𝐷}. For simplicity, we omit𝐷 when the context is
self-evident. Intuitively, the fewer the number of common nodes
in top-𝑟 DBTrusses 𝐷 is, the number of nodes covered by 𝐷 will
be larger. Next, we introduce a new concept.

Definition 4 (Uniqe set). Given a set of DBTrusses 𝐷 and

𝑇𝑑
𝑘
∈ 𝐷 , the unique set of 𝑇𝑑

𝑘
, denoted as U(𝑇𝑑

𝑘
, 𝐷), is the set of

nodes in 𝑇𝑑
𝑘
but not in any other DBTrusses.

We call each node 𝑣 ∈ U(𝑇𝑑
𝑘
, 𝐷) as a unique node of𝑇𝑑

𝑘
. Based

on it, we define set 𝑇𝑑
𝑘
∈ 𝐷 with the least unique nodes as the

minimum cover truss of 𝐷 , denoted as 𝑇𝑚𝑖𝑛 (𝐷). For simplicity,
we omit 𝐷 when the context is self-evident.
BDAlgorithm. To improve the efficiency, we turn to themethod
by determining circles with two boundary nodes and a diameter,
i.e., using two nodes instead of three nodes. After that, we enu-
merate DBTrusses enclosed in circles. Then, the newly generated
DBTruss will join the result set 𝐷 , if the size of 𝐷 is less than 𝑟 .
Otherwise, we use it to replace the minimum cover truss of𝐷 and
update result set information. In addition, we build an effective
structure to maintain the top-𝑟 results and key information. The
details are shown in Algorithm 2.

In Algorithm 2, we first initialize 𝐷 as empty and compute
the connected 𝑘-truss 𝑇𝑘 that contains 𝑞 in 𝐺 as candidate set
(Line 1). Then, we obtain the circles and DBTrusses based on
two boundary nodes and a diameter in Lines 2-8. In detail, for
each pair of nodes 𝑢, 𝑣 ∈ 𝑇𝑘 with 𝑑 (𝑢, 𝑣) ≤ 𝑑 , we enumerate all
candidate circles with diameter 𝑑 and preserve them in 𝐶𝑑 (𝑢, 𝑣)
(Lines 2-5). After that, for each circle𝑂 (𝑐, 𝑑) in𝐶𝑑 (𝑢, 𝑣), we com-
pute the connected 𝑘-truss for nodes enclosed in 𝑂 (𝑐, 𝑑) and

Algorithm 2: BD Algorithm
Input :𝐺 : a geo-social network, 𝑞: query node, 𝑘 : support

constraint, 𝑑 : distance constraint, 𝑟 : number constraint
Output : 𝐷 : the top-𝑟 DBTrusses
𝐷 ← ∅;𝑇𝑘 ← connected 𝑘-truss containing 𝑞 in𝐺 ;1

for each 𝑣 ∈ 𝑇𝑘 do2

for each 𝑢 ∈ 𝑇𝑘 do3

if 𝑢 ≠ 𝑣 and 𝑑 (𝑢, 𝑣) ≤ 𝑑 then4

𝐶𝑑 (𝑢, 𝑣) ← all circles with diameter 𝑑 and bounded5

by 𝑢, 𝑣;
for each𝑂 (𝑐,𝑑) ∈ 𝐶𝑑 (𝑢, 𝑣) do6

𝑇𝑑
𝑘
← connected 𝑘-truss contains 𝑞 enclosed7

𝑂 (𝑐,𝑑) ;
Maintain(𝑇𝑑

𝑘
, 𝐷) ;8

return 𝐷 ;9

procedureMaintain(𝑇𝑑
𝑘
, 𝐷)10

if |𝐷 | < 𝑟 then11

Change(∅,𝑇𝑑
𝑘
, 𝐷);12

return;13

𝑋 ← {𝑣 ∈ 𝑇𝑑
𝑘
| |𝑅 (𝑣) | = 0 or |𝑅 (𝑣) | = 1 ∧ 𝑣 ∈ 𝑇𝑚𝑖𝑛 };14

if |𝑋 | > |U (𝑇𝑚𝑖𝑛, 𝐷) | + |𝑐𝑜𝑣 (𝐷 ) ||𝐷 | then15

Change(𝑇𝑚𝑖𝑛,𝑇
𝑑
𝑘
, 𝐷);16

use Maintain Procedure to determine if 𝑇𝑑
𝑘
can be added into

diversified top-𝑟 results 𝐷 (Lines 6-8). For the Maintain Pro-
cedure, it has two cases. For each newly enumerated DBTruss
𝑇𝑑
𝑘
, if the size of top-𝑟 DBTrusses set is less than 𝑟 , it invokes

Change Procedure to directly push 𝑇𝑑
𝑘
into 𝐷 and update the

index (Lines 11-13). Otherwise, we use 𝑇𝑑
𝑘
to replace the min-

imum cover truss of the current top-𝑟 result when it satisfies
the inequation in Lines 14-16. The procedure first computes the
value of unique set U(𝑇𝑑

𝑘
, 𝐷 ′) for updated 𝐷 ′, i.e., the size of

𝑋 in Line 14. Then, if |𝑋 | > |U(𝑇𝑚𝑖𝑛, 𝐷) | + |𝑐𝑜𝑣 (𝐷) ||𝐷 | , it invokes
Change Procedure to remove𝑇𝑚𝑖𝑛 from 𝐷 , push𝑇𝑑

𝑘
into 𝐷 and

update the information (Lines 15-16). The inequation in Line 15
is proved with 1/4 approximate ratio. The algorithm terminates
until all nodes in 𝑇𝑘 are visited and finally return 𝐷 .
Change Procedure. To reduce time consumption, we use an
index to maintain the information within Change Procedure,
including the size of coverage, i.e., |𝑐𝑜𝑣 (𝐷) |, the number of DB-
Truss containing 𝑣 for each 𝑣 ∈ 𝑐𝑜𝑣 (𝐷), i.e., |𝑅(𝑣, 𝐷) |, and the
unique set for each 𝑇 ∈ 𝐷 , i.e.,U(𝑇, 𝐷). For simplicity, we use
|𝑅(𝑣) | andU(𝑇 ) instead. For Change Procedure, we first up-
date 𝐷 by removing the minimum cover truss𝑇𝑚𝑖𝑛 and inserting
𝑇𝑑
𝑘
. Then, we update information for nodes in 𝑇𝑑

𝑘
∪ 𝑇𝑚𝑖𝑛 . We

first update the value of |𝑅(𝑣) |. Note that, the index needs to be
considered only when the last or current value of |𝑅(𝑣) | equals 1,
since unique nodes will only be changed in this circumstance. In
detail, there are four cases as follows:
• If |𝑅(𝑣) | decreases from 1 to 0, it implies 𝑣 will be removed
from 𝐷 because it is the unique node of 𝑇𝑚𝑖𝑛 , i.e., 𝑣 ∉

𝑐𝑜𝑣 (𝐷\{𝑇𝑚𝑖𝑛} ∪ {𝑇𝑑
𝑘
}). Thus, |𝑐𝑜𝑣 (𝐷) | decreases by 1.

• If |𝑅(𝑣) | increases from 0 to 1, it indicates 𝑣 will join 𝐷

because it is the unique node of 𝑇𝑑
𝑘
, i.e., 𝑣 ∉ 𝑐𝑜𝑣 (𝐷\{𝑇𝑑

𝑘
}).

Thus, |U(𝑇𝑑
𝑘
) | and |𝑐𝑜𝑣 (𝐷) | both increase by 1.

• If |𝑅(𝑣) | decreases from 2 to 1, it implies 𝑣 becomes the
unique node of 𝑇 ′, where 𝑇 ′ is the only one that contains
𝑣 by 𝑇𝑚𝑖𝑛 elimination. Thus, |U(𝑇 ′) | increases by 1.

447



A

B
E

F

H

J

I

TminTmin

TT

Figure 2: Illustration of Theorem 3.2

• If |𝑅(𝑣) | increases from 1 to 2, it indicates 𝑣 is not a unique
node of𝑇 ′ anymore, where𝑇 ′ is the only one that contains
𝑣 before inserting 𝑇𝑑

𝑘
. Thus, |U(𝑇 ′) | decreases by 1.

The space complexity is linear to 𝐷 , i.e., O(∑
𝑇𝑑
𝑘
∈𝐷 |𝑇

𝑑
𝑘
|). Each

step of Maintain Procedure and Change Procedure takes
O(|𝑇𝑑

𝑘
|) time while the enumeration phase takes O(𝑛2𝑚1.5). The

total time complexity of BD Algorithm is O(𝑛2𝑚1.5+ |𝑇𝑑
𝑘
|) with

1/4 approximate ratio as shown in Theorem 3.2.

Theorem 3.2. Let𝐷∗ be the optimized solution and𝐷 be the an-

swer of BD Algorithm for the diversified DBTruss search problem,

we have |𝑐𝑜𝑣 (𝐷) | ≥ 1/4 · |𝑐𝑜𝑣 (𝐷∗) |.

Proof. We prove the theorem based on the theoretical result
in [1]. Given a set 𝐷 = {𝑇1,𝑇2, . . . } and an integer 𝑟 , we set
𝐷𝑖 = {𝑇1,𝑇2, . . . ,𝑇𝑠 } with 1 ≤ 𝑠 ≤ 𝑟 . For any 𝑠 > 𝑟 , we construct
𝐷𝑠 from 𝐷𝑠−1 as follows. Suppose 𝐷 ′𝑠 = 𝐷𝑠−1 \ {𝑇𝑚𝑖𝑛 (𝐷𝑠−1)} ∪
{𝑇𝑠 }, if |𝑐𝑜𝑣 (𝐷 ′𝑠 ) | > (1 + 1/𝑟 ) |𝑐𝑜𝑣 (𝐷𝑠−1) |, we have 𝐷𝑠 = 𝐷 ′𝑠 .
Otherwise, 𝐷𝑠 = 𝐷𝑠−1. It can be guaranteed that 𝐷𝑠 is a 1/4-
approximation solution of the max 𝑟 -cover problem onH𝑠 . Our
problem has the same setting as the above problem. Therefore,
we only need to prove |U(𝑇, 𝐷 ′) | > |U(𝑇𝑚𝑖𝑛 (𝐷), 𝐷) | equals
|𝑐𝑜𝑣 (𝐷 ′𝑠 ) | > (1 + 1/𝑟 ) |𝑐𝑜𝑣 (𝐷𝑠−1) | when a new 𝑇 join. As shown
in Figure 2, the relationship of𝐷,𝐷 ′,𝑇 ,𝑇𝑚𝑖𝑛 is illustrated by using
7 subsets, i.e., 𝐴, 𝐵, 𝐸, 𝐹, 𝐽 , 𝐻, 𝐼 . We can observe that |𝑐𝑜𝑣 (𝐷 ′𝑠 ) | >
(1 + 1/𝑟 ) |𝑐𝑜𝑣 (𝐷𝑠−1) | is equivalent to |𝐴| + |𝐵 | + |𝐸 | + |𝐹 | + |𝐻 | +
|𝐼 | > (1 + 1/𝑟 ) ( |𝐴| + |𝐵 | + |𝐸 | + |𝐹 | + |𝐻 | + |𝐽 |) i.e., |𝐻 | + |𝐼 | >
|𝐻 | + |𝐽 | + 1/𝑟 · |𝑐𝑜𝑣 (𝐷) |. Since |𝐷 | = 𝑟 , we have |U(𝑇, 𝐷 ′) | >
|U(𝑇𝑚𝑖𝑛 (𝐷), 𝐷) |+|𝑐𝑜𝑣 (𝐷) |/|𝐷 |. The theorem holds. □

4 EXPERIMENTS

Algorithms. To best of our knowledge, there is no existing work
for the diversified DBTruss search problem. In the experiments,
we implement and evaluate the proposed two algorithms, i.e., TD
algorithm and BD algorithm.
Datasets. We employ two real-world geo-social networks, i.e.,
Brightkite (197K) and Gowalla (456K) where the number after
each dataset represents the corresponding number of edges. The
details are public available on SNAP1. We vary 𝑑 from 1.0 to 3.0
and 𝑘 from 4 to 8. We set 𝑟 = 5, 𝑑 = 2.0 and 𝑘 = 6 as the default
value. All algorithms are implemented in standard C++.
Efficiency evaluation. To evaluate the efficiency, we report the
response time of TD and BD by varying 𝑘 and 𝑑 . The results are
shown in Figure 3. In Figures 3(a) and 3(d), we can see BD signif-
icantly outperforms TD by a wide margin, which achieves up to
2 orders of magnitude speedup. Also, both of them decrease with
increasing 𝑘 , because the size of communities becomes smaller
with tighter support constraint. By varying 𝑑 in Figures 3(b)

1http://snap.stanford.edu/
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Figure 3: Experiment results

and 3(e), we find that the response time of two methods both
increase. This is because the size of result increases.
Effectiveness evaluation. Figures 3(c) and 3(f) show the num-
ber of nodes for two algorithms when varying 𝑑 . As observed, the
number of nodes covered increases when 𝑑 increasing because
the size of community becomes larger for larger 𝑑 . Moreover,
TD significantly outperforms BD due to better approximate ratio
guarantee. Obviously, though TD can achieve better effectiveness,
its time complexity is larger. Thus, users can make a trade-off
between efficiency and effectiveness when selecting algorithms.

5 CONCLUSION

In this paper, we conduct the first attempt to study the diversified
DBTruss search problem in geo-social networks. Due to the NP-
hardness of the problem, two algorithms with approximation
ratio guarantee are developed to strive for the trade-off between
efficiency and effectiveness. Finally, experiments are conducted
on real geo-social networks to demonstrate the effectiveness and
efficiency of proposed model and strategies.
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