
Integer Programming Models for the Geodesic Classification
Problem on Graphs

Paulo H. M. Araújo
Federal University of Ceará

Quixadá, Brazil
phmacedoaraujo@ufc.br

Manoel Campêlo
Federal University of Ceará

Fortaleza, Brazil

Ricardo C. Corrêa
Federal Rural University of Rio de Janeiro

Rio de Janeiro, Brazil

Martine Labbé
Free University of Brussels

Brussels, Belgium

ABSTRACT
We study a discrete version of the classical classification problem,
to be called geodesic classification problem. It is defined on a
graph, where some vertices are initially assigned a class, and
the remaining ones must be classified. This vertex partition is
grounded on the concept of geodesic convexity on graphs, as a
replacement for the Euclidean convexity in the multidimensional
space. We propose two integer programming models along with
branch-and-cut algorithms to solve them. We also carry out a
polyhedral study and run computational experiments to evaluate
the proposed approaches.
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1 INTRODUCTION
Supervised learning stands for an automatic prediction tool widely
used in many situations in nowadays information society. In gen-
eral terms, it denotes a collection of methods that act on partial
information in order to infer the structure of the entire universe
with respect to a specific target property. Most frequently, the
partial information provided consists of a set of samples whose
target property assignments are known, as well as some rela-
tionship between these samples. In this context, the automatic
prediction is performed through the following two-phase pro-
cedure: in the initial phase, or training phase, a given sample
set is analyzed. Each sample consists of an array of encoded at-
tributes that characterize an object of a certain type together with
a label that associates a class to the corresponding object. Most
commonly, the target property is the partition of the universe
of possible objects in two classes. A tacit assumption made at
this phase is that there is an underlying pattern associated with
the samples of each class that sets them apart from the samples
of the other classes. Thus, the purpose of the training phase is
to determine a mapping from all possible objects of the consid-
ered type into the set of possible classes as an extension of an
underlying pattern of the samples. Then, in the second phase,
the mapping determined in the training phase is used to respond
to queries about the class of objects that do not belong to the
sample set.

An optimization problem is usually associated with the train-
ing phase. Referred to as classification problem, it consists in
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grouping similar samples to get clusters as internally homoge-
neous as possible. A wide range of solution methods is available,
each depending on the coding of the samples and the criterion
adopted to express homogeneity. A prevalent approach, which we
call Euclidean classification, is to encode the samples as vectors of
numerical features in a multidimensional Euclidean space and to
assume that the class patterns can be appropriately characterized
by convex sets. More precisely, consider that the samples are
colored points in R𝑑 , for some 𝑑 ≥ 1, the color representing the
class of the sample. The goal is to assign a class (color) to every
point in R𝑑 based on the classification of the samples so that the
convex hulls of the colors do not intersect (possibly disregarding
some samples as discussed below). In this vein, continuous opti-
mization methods, including linear and quadratic programming,
have been developed in the last 40 years. See e.g. [9, 16]. More
recently, integer linear programming tools started to be used in
conjunction with continuous methods, as we can see in [5, 19].

In [1], a new variant of the classification problem was de-
fined. For this purpose, a correspondence between the convexity
concepts in discrete and continuous mathematics can be estab-
lished if we consider the vertex set of a connected graph and
the distance between vertices as metric space. Thus, the geodesic
classification problem is stated in terms of notions of convexity
in graphs and assumes the following hypotheses: (i) the universe
of objects is a discrete set (which are not necessarily numerical)
represented by a similarity graph𝐺 = (𝑉 , 𝐸), connected, where𝑉
is the set of all objects, and 𝐸 gives the pairs of similar objects; (ii)
there exists an underlying classes pattern that can be expressed,
or at least approximated, by the notion of geodesic convexity in
graphs [17]; (iii) the sample set may contain an arbitrary number
of misclassified objects, called outliers, which result from pos-
sible sampling errors or due to inherent characteristics of the
phenomenon being modeled.

From the mathematical point of view, an outlier is a classified
object that leads the underlying pattern of the samples in its class
to deviate from the convexity definition. The possible occurrence
of outliers poses an additional challenge to any method used to
solve the classification problem since they have to be detected
and disregarded so that an accurate solution may be found.

The goal is to split the vertex set into classes, based on the
classification of the samples and the structure of the similarity
graph, in such a way that an error measure in a metric space is
minimized [2]. In this paper, we consider the existence of only
two classes in the graph and the number of disregarded outliers
as the error measure. The classification of the vertices follows
a specific notion of linear separability with respect to geodesic
convexity.
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From the practical point of view, this problem allows encoding
object similarities through some reflexive binary relation. This
fact benefits many practical applications in big data, specially in
two situations that can arise even when objects are modeled as
points in an Euclidean space. The first situation occurs when sim-
ilarities are expressed in terms of symmetric and non-transitive
binary relations. Such a relation define an unweighted similarity
graph 𝐺 . A standard example is to consider as similar any two
points that are close to each other in an Euclidean space. The
second situation, which arises very often when handling multiple
models of text corpora, are constituted by symmetric and transi-
tive relations, thus leading𝐺 to be a complete graph (recall that𝐺
is assumed to be connected). The particularity of this case is that
𝐺 is edge-weighted, the weight of an edge standing for a degree
of similarity between objects. Cosine similarity in text analysis
is an example (see [10] for a general tool based on two distinct
topic modeling methods). The theoretical results discussed in
this paper assume the first type of similarity relation, but they
can be extended directly to the second type if the edge weights
are considered in the definition of path length and, consequently,
of geodesic convexity. Due to its characteristics, applications
of the geodesic classification problem are easily found in the
fields of data mining and classical statistics. Text and sentiment
analyses, community detection in complex networks (such as
social networks and networks of citations of scientific articles),
historic files similarity prediction, content recommendation in
video streaming services, and spam filtering for e-mails constitute
examples thereof [11].

Geodesic and Euclidean classification are distinct problems in
the following sense. Consider a set 𝑉 of points in a multidimen-
sional Euclidean space, and the corresponding similarity graph
𝐺 = (𝑉 , 𝐸) such that 𝐸 connects points whose Euclidean distance
is smaller than a given threshold. Assuming, as mentioned above,
that the samples form a proper subset of𝑉 , the Euclidean classifi-
cation problem consists in partitioning the Euclidean space into
two convex subspaces based on the classification of the samples.
Although based on the same samples, the geodesic classification
problem aims to split set 𝑉 only. The possible patterns consid-
ered in each problem are distinct. The main reason is that the
universe in the former case is composed by selected points of
the Euclidean space only. Actually, a solution for the geodesic
problem is neither a covering nor a partitioning of 𝐺 in convex
sets in the sense studied in [3] and [8]. Instead, this problem
can be seen as the combination of a graph convexity problem
and the well-known set covering problem [12], as shown by the
mathematical model proposed in Section 2.1.

We have introduced the 2-class geodesic classification problem
(2-GC) in the conference paper [1], where preliminary results
were presented. In this work, we present two new integer for-
mulations for 2-GC along with a branch-and-cut algorithm for
each one. Besides, we run several computational experiments
with random and realistic instances to evaluate the geodesic con-
vexity approach. The first formulation has a linear number of
variables but an exponential number of constraints, whereas the
second one is an extended formulation with more variables but a
polynomial number of constraints. An interesting feature of the
first model is that it expresses the 2-GC problem as a set covering
problem. Thus, we can take advantage of well-known results
from the literature.

We also study the polytopes associated with each formulation
and show some facet-defining inequalities. Most of the derived
facet-defining inequalities can be seen as counterparts of those

presented by [6] for a polyhedron that models the Euclidean ver-
sion of the problem. On the other hand, some of them originates
from specific properties of the geodesic case. Despite the fact that
the geodesic and Euclidean classification problems are distinct,
the study of the combinatorial structure of the former may be
useful to design solution methods for the latter.

2 GEODESIC CLASSIFICATION PROBLEM
Let 𝑉 be a finite set of objects that are related through a binary
relation described by the connected undirected graph𝐺 = (𝑉 , 𝐸),
|𝑉 | = 𝑛. Two distinct objects are similar if the corresponding
vertices are adjacent in𝐺 (analogously, two vertices 𝑣,𝑤 ∈ 𝑉 , 𝑣 ≠
𝑤 , are called similar if 𝑣𝑤 ∈ 𝐸). We also refer to𝐺 as classification
graph, and we adopt the standard terminology used in Bondy
and Murty’s book [7]. In particular, a path between 𝑣,𝑤 ∈ 𝑉

is the sequence ⟨𝑣⟩, if 𝑣 = 𝑤 , or a sequence of distinct vertices
𝑃 = ⟨𝑣 = 𝑣1, 𝑣2, . . . , 𝑣ℓ = 𝑤⟩ such that 𝑣𝑖𝑣𝑖+1 ∈ 𝐸 for 𝑖 = 1, . . . , ℓ−1.
The length of a path is given by its number of edges, i.e. the length
of ⟨𝑣⟩ is zero and that of 𝑃 is ℓ − 1.

A geodesic between two vertices ℎ and 𝑗 in𝐺 is a shortest path
between ℎ and 𝑗 in the graph and its length is denoted by 𝛿 (ℎ, 𝑗).
The closed interval 𝐷 [ℎ, 𝑗] is the set of all vertices lying on a
geodesic between ℎ and 𝑗 . Given 𝑆 ⊆ 𝑉 , 𝐷 [𝑆] = ⋃

𝑢,𝑣∈𝑆 𝐷 [𝑢, 𝑣].
In this case, if 𝐷 [𝑆] = 𝑆 , then 𝑆 is a convex set. The convex hull of
𝑆 , denoted by 𝐻 [𝑆], is the smallest convex set containing 𝑆 . We
also denote 𝐷ℎ𝑗 = 𝐷 [ℎ, 𝑗] \ {ℎ, 𝑗}.

For the definition of the 2-class classification problem consid-
ered in this work, we are given two nonempty subsets𝑉𝐵,𝑉𝑅 ⊆ 𝑉 ,
𝑉𝐵∩𝑉𝑅 = ∅, so that𝑉𝐵𝑅 = 𝑉𝐵∪𝑉𝑅 represents the sample set. The
sets 𝑉𝐵 and 𝑉𝑅 define the blue class and red class vertices, respec-
tively. The remaining vertices𝑉𝑁 = 𝑉 \𝑉𝐵𝑅 are called unclassified
vertices.

Figure 1: A linearly inseparable classification graph with
blue (as solid circles) and red classes (as solid squares) ver-
tices.

In analogy to the Euclidean version of the classification prob-
lem, we introduce the following definition of linear separability
considering the geodesic convexity.

Definition 2.1. A triple (𝐴𝐵 ⊆ 𝑉𝐵, 𝐴𝑅 ⊆ 𝑉𝑅, 𝐴𝑁 ⊆ 𝑉𝑁 ) is
linearly separable (with respect to 𝐺) if
(C1) 𝐻 [𝐴𝐵] ∩𝐴𝑅 = ∅,
(C2) 𝐻 [𝐴𝑅] ∩𝐴𝐵 = ∅, and
(C3) 𝐻 [𝐴𝐵] ∩ 𝐻 [𝐴𝑅] ∩𝐴𝑁 = ∅

and linearly inseparable otherwise (Figure. 1 shows an example
of linearly inseparability since vertex 𝑣 ∈ 𝐻 [𝑉𝐵] ∩ 𝐻 [𝑉𝐵] ∩𝑉𝑁 .
If 𝑣1, 𝑣2, 𝑣3 or 𝑣4 is set as an outlier, then it becomes linearly
separable).
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Subsets𝐴𝐵 and𝐴𝑅 are called a basis of the blue and red classes,
respectively, whereas 𝑉𝐵𝑅 \ (𝐴𝐵 ∪𝐴𝑅) are the outliers (in these
bases). Each basis consists of non-outlier vertices that span on
the graph through an operator that expresses the pattern of the
corresponding class. In this case, the operator is given by the
convex hull. It is worth remarking that considering a vertex
𝑤 ∈ 𝑉𝐵𝑅 as an outlier does not mean removing it from the
graph. It only means that 𝑤 is considered neither red nor blue
when calculating the convex hull of the red basis vertices or blue
basis vertices. The Geodesic Classification problem for 2 classes
becomes:
Problem 1. 2-class Geodesic Classification Problem (2-GC):

Given a connected graph 𝐺 = (𝑉 , 𝐸), sets of initially classi-
fied vertices 𝑉𝐵 (blue vertices) and 𝑉𝑅 (red vertices), and 𝑉𝑁 =

𝑉 \(𝑉𝐵𝑅), find subsets 𝐴𝐵 ⊆ 𝑉𝐵 , 𝐴𝑅 ⊆ 𝑉𝑅 such that (𝐴𝐵, 𝐴𝑅,𝑉𝑁 )
satisfies (C1), (C2) and (C3), and |𝑉𝐵𝑅 | − |𝐴𝐵 ∪𝐴𝑅 | is minimum.

Conditions (C1) and (C2) ensure that if an initially classified
vertex 𝑖 belongs to the convex hull of the non-outlier vertices of
its opposite class, then 𝑖 must be an outlier, i.e., 𝑖 ∉ 𝐴𝐵∪𝐴𝑅 . Since
every unclassified vertex needs to be assigned to exactly one class,
it must belong to at most one convex hull of non-outliers of the
same class. This is guaranteed by Condition (C3). Moreover, we
want to find a solution with the minimum number of outliers.

2.1 A Set Covering Formulation for the 2-GC
Problem

In this subsection, we formulate the 2-GC problem as a set cover-
ing problem of the form

min
{
1⊤𝒚 | 𝐴𝒚 ≥ 1,𝒚 ∈ B𝑛

}
, (1)

where 𝐴 is a 0-1 matrix and 1 is the vector of ones. For a gen-
eral binary matrix 𝐴, (1) is NP-hard [12] and results about valid
inequalities and facet-defining properties can be found in [18].
In the particular case of the 2-GC problem, we use a binary
variable 𝑦𝑖 , for each vertex 𝑖 ∈ 𝑉𝐵𝑅 , such that 𝑦𝑖 = 1 if 𝑖 is an
outlier, and 𝑦𝑖 = 0 otherwise. Then, using 𝐾 (𝑖) ∈ {𝐵, 𝑅} and
𝐾 (𝑖) ∈ {𝐵, 𝑅} \ {𝐾 (𝑖)} to respectively denote the class and the
opposite class of vertex 𝑖 ∈ 𝑉𝐵𝑅 , matrix 𝐴 corresponds to the
following constraints:∑︁

𝑗 ∈𝑆∪{𝑖 }
𝑦 𝑗 ≥ 1, 𝑖 ∈ 𝑉𝐵𝑅, 𝑆 ⊆ 𝑉�̄� (𝑖) : 𝑖 ∈ 𝐻 [𝑆], (2)∑︁

𝑗 ∈𝑆∪𝑇
𝑦 𝑗 ≥ 1, 𝑆 ⊆ 𝑉𝐵,𝑇 ⊆ 𝑉𝑅 : 𝐻 [𝑆] ∩ 𝐻 [𝑇 ] ∩𝑉𝑁 ≠ ∅.

(3)

This formulation and its corresponding polyhedron will be called
ILP1 and 𝑃1 respectively. Proposition 2.2 states that ILP1 is cor-
rect.

Proposition 2.2. Inequalities (2) and (3) define the feasible
solutions of the 2-GC problem.

It is worth noting that only the constraints of (2) and (3) re-
lated to minimal sets 𝑆 and (𝑆,𝑇 ), respectively, are necessary to
describe 𝑃1. One special case of inequalities (2) that can be sepa-
rated in polynomial time is obtained when |𝑆 | = 2 and 𝑖 ∈ 𝐻 [𝑆]
is replaced by the stronger condition 𝑖 ∈ 𝐷 [𝑆]. We refer to this
case as generalized 3-path inequality which, in general terms, is
written as

𝑦 𝑗 + 𝑦 𝑗 ′ + 𝑦𝑖 ≥ 1, 𝑖 ∈ 𝑉𝐵𝑅, { 𝑗, 𝑗 ′} ⊆ 𝑉�̄� (𝑖) where 𝑖 ∈ 𝐷 ( 𝑗, 𝑗 ′).
(4)

The following result stems from the fact that each constraint
of the integer formulation contains at least two non-null coeffi-
cients [4].

Proposition 2.3. 𝑃1 is full-dimensional.

Proposition 2.4 states that the bounding inequalities define
facets of 𝑃1.

Proposition 2.4. For every 𝑖 ∈ 𝑉𝐵𝑅 , 𝑦𝑖 ≥ 0 and 𝑦𝑖 ≤ 1 are
facet-defining for 𝑃1.

One of the most computationally useful valid inequalities that
we found are called generalized 𝐶4 inequalities and are defined
below.

Proposition 2.5 ([1]). If 𝑣, 𝑣 ′ ∈ 𝑉𝐵 and𝑤,𝑤 ′ ∈ 𝑉𝑅 are distinct
vertices such that {𝑣, 𝑣 ′} ⊆ 𝐻 [{𝑤,𝑤 ′}] and {𝑤,𝑤 ′} ⊆ 𝐻 [{𝑣, 𝑣 ′}],
then the following inequalities are facet-defining for 𝑃1:

𝑦𝑣 + 𝑦𝑣′ + 𝑦𝑤 + 𝑦𝑤′ ≥ 2. (5)

2.2 A Compact Formulation for the 2-GC
Problem

The second integer linear formulation is obtained by including
additional variables so as to reduce the number of constraints to a
polynomial order. The new binary variables, 𝑧, are used to deter-
mine if a vertex belongs to the convex hull of the non-outliers of a
given class. More precisely, in a 2-GC feasible solution (𝐴𝐵, 𝐴𝑅),
for each 𝐾 ∈ {𝐵, 𝑅} and 𝑖 ∈ 𝑉 , we set 𝑧𝐾,𝑖 = 1, if 𝑖 ∈ 𝐻 [𝐴𝐾 ], and
𝑧𝐾,𝑖 = 0, otherwise. Thus, the feasible solutions of the new for-
mulation are defined by the binary vectors 𝒚 ∈ B𝑛 and 𝒛 ∈ B2 |𝑉 |

such that
𝑦𝑖 ≥ 𝑧�̄�,𝑖 , 𝑖 ∈ 𝑉𝐾 , 𝐾 ∈ {𝐵, 𝑅} (6)
𝑦𝑖 + 𝑧𝐾,𝑖 ≥ 1, 𝑖 ∈ 𝑉𝐾 , 𝐾 ∈ {𝐵, 𝑅} (7)
𝑧𝐵,𝑖 + 𝑧𝑅,𝑖 ≤ 1, 𝑖 ∈ 𝑉𝑁 (8)
𝑧𝐾,ℎ + 𝑧𝐾,𝑗 − 𝑧𝐾,𝑖 ≤ 1, 𝐾 ∈ {𝐵, 𝑅}, ℎ, 𝑖, 𝑗 ∈ 𝑉 : 𝑖 ∈ 𝐷 (ℎ, 𝑗) (9)

This formulation is denoted ILP2. A big advantage of ILP2 in
relation to ILP1 and the formulation in [1] is that we have access
to the convex hull of the classes, described by variables 𝑧. We
could add such variables to the objective function so as to obtain
better accuracy results if their corresponding coefficients are set
properly.

Next, we show how (2)–(3) and (6)–(9) are related.

Proposition 2.6. Let 𝐹1 = {𝒚 ∈ B𝑛 | (2), (3)} and 𝐹2 = {𝒚 ∈
B𝑛, 𝒛 ∈ B2 |𝑉 | | (6)–(9)}. Then, 𝐹1 = proj𝒚 (𝐹2).

Wedenote by 𝑃2 the polyhedron associated to ILP2. By Proposi-
tion 2.6, any valid inequality for 𝑃1 are also valid for 𝑃2. However,
the facetness conditions for 𝑃1 are not directly transferred to 𝑃2,
even for the bounding constraints. Note that inequalities (5) are
also valid for 𝑃2 and remains extremely efficient, but we could
only prove its facet-inducing property for 𝑃2 when the 𝐶4 is an
induced subgraph.

It is easy to show that 𝑃2 is also full-dimensional. Proposi-
tion 2.7 shows the inequalities of ILP2 that define facets.

Proposition 2.7. The following inequalities are facet-defining
for 𝑃2:

(1) 𝑦𝑖 ≤ 1, for all 𝑖 ∈ 𝑉𝐵𝑅 ;
(2) 𝑧𝐾,𝑖 ≥ 0, for all 𝐾 ∈ {𝐵, 𝑅} and 𝑖 ∈ 𝑉𝑁 ∪𝑉�̄� ;
(3) 𝑧𝐾,𝑖 ≤ 1, for all 𝐾 ∈ {𝐵, 𝑅} and 𝑖 ∈ 𝑉𝐾 ;
(4) 𝑧𝐵,𝑖 + 𝑧𝑅,𝑖 ≤ 1, for all 𝑖 ∈ 𝑉𝑁 ;
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(5) 𝑦𝑖 ≥ 𝑧�̄�,𝑖 and 𝑦𝑖 + 𝑧𝐾,𝑖 ≥ 1, for all 𝑖 ∈ 𝑉𝐾 and 𝐾 ∈ {𝐵, 𝑅}.

Next, we indicate bounding inequalities that do not define
facets of 𝑃2.

Proposition 2.8. For all 𝐾 ∈ {𝐵, 𝑅}, the constraints below do
not define facets of 𝑃2:

(1) 𝑦𝑖 ≥ 0, 𝑧�̄�,𝑖 ≤ 1, and 𝑧𝐾,𝑖 ≥ 0, for all 𝑖 ∈ 𝑉𝐾 , and
(2) 𝑧𝐾,𝑖 ≤ 1, for all 𝑖 ∈ 𝑉𝑁 .

An incomplete shortest path in 𝐺 is a subsequence ⟨𝑢, . . . , 𝑣⟩
of (not necessarily consecutive) vertices of a shortest path be-
tween 𝑢 and 𝑣 in 𝐺 . In [14], a generalization of the convexity
constraints (9) was presented for the Path Convex Recoloring
problem. Its application to 2-GC is shown below.

Proposition 2.9. Let ⟨𝑢1, 𝑣1, . . . , 𝑢𝑡 , 𝑣𝑡 , 𝑢𝑡+1⟩ be an incomplete
shortest path in𝐺 and𝐾 ∈ {𝐵, 𝑅}. Then, the generalized convexity
inequality

𝑡+1∑︁
ℓ=1

𝑧𝐾,𝑢ℓ −
𝑡∑︁
ℓ=1

𝑧𝐾,𝑣ℓ ≤ 1 (10)

is valid for 𝑃2.

As a counterpart of the generalized 𝐶4 inequalities (5) given
for 𝑃1, we now present valid inequalities for 𝑃2 that also involve
variables 𝑧 for vertices in 𝑉𝑁 .

Proposition 2.10. Let 𝑆 ⊆ 𝑉𝐵 ∪𝑉𝑁 , |𝑆 | = 2, and𝑇 ⊆ 𝑉𝑅 ∪𝑉𝑁 ,
|𝑇 | = 2. If 𝑆 ⊆ 𝐻 [𝑇 ] and 𝑇 ⊆ 𝐻 [𝑆], then the following inequality
is valid for 𝑃2:∑︁
𝑖∈𝑆∩𝑉𝑁

(1 − 𝑧𝐵,𝑖 ) +
∑︁

𝑖∈𝑆∩𝑉𝐵
𝑦𝑖 +

∑︁
𝑗 ∈𝑇∩𝑉𝑁

(1 − 𝑧𝑅,𝑗 ) +
∑︁

𝑖∈𝑇∩𝑉𝑅
𝑦𝑖 ≥ 2.

(11)

3 GEODESIC CLASSIFICATION
ALGORITHMS

We developed a branch-and-cut algorithm for each formulation.
They solve a linear relaxation of the root node, which includes
some valid inequalities (cuts) found by separation algorithms,
and a lazy constraint approach to find feasible integer solutions.
For formulation ILP1, the main steps of our solution method are
described in Algorithm 1. Similarly, the main steps of the solution
method for formulation ILP2 are described in Algorithm 2.

4 COMPUTATIONAL EXPERIMENTS
In our computational experiments, we aim at analyzing two main
aspects: the efficiency of the formulations with/without the de-
rived facet-defining inequalities as well as the accuracy of the
provided solution of the classification problem. We used random
and realistic instances.

For the analysis of the effects of the valid inequalities used in
each algorithm, we tested two other versions of each algorithm,
each version obtained by the elimination of Step 3 or Step 4,
respectively. The observed results are summarized in Tables 1
and 2. They show the performance of the three tested versions
with respect to a standard implementation where both steps 3
and 4 were not applied.

From the results, we could note that the cuts, and specially the
inclusion of inequalities (5), were extremely effective, reducing
the number of lazy constraints to be added and the running time
overall. Also, the lazy constraints approach was very important
since it was impracticable to solve the instances without it.

Algorithm 1: ILP1 solving algorithm

1 Computation of all 𝐷 (ℎ, 𝑗) sets.
2 Initial cutoff: Since a trivial solution is obtained by taking

all vertices of a class as outliers, min{|𝑉𝐵 |, |𝑉𝑅 |} is
provided as a cutoff.

3 Initial model configuration: All generalized 𝐶4
inequalities (5) (with 𝐷 (ℎ, 𝑗) requirement instead of
𝐻 [{ℎ, 𝑗}]) are included in the initial model by
exhaustive enumeration of all pairs of 2-sized subsets.
None of the constraints (2)-(3) are used initially.

4 Partial linear relaxation resolution: At the root node of
the branch-and-cut tree, we solve the linear relaxation of
the initial model together with the generalized 3-path
constraints (4) separated as cuts by enumeration.

5 Exact model resolution: Starting from the model obtained
after Step 4, we add the integrality constraints and solve
the integer formulation by adding minimal (𝑆,𝑇 )
constraints (2)-(3) as lazy constraints.

Algorithm 2: ILP2 solving algorithm

1 Computation of all 𝐷 (ℎ, 𝑗) sets and inclusion of all
constraints (6)-(8) in the initial model.

2 Initial cutoff: Since a trivial solution is obtained by taking
all vertices of a class as outliers, min{|𝑉𝐵 |, |𝑉𝑅 |} is
provided as a cutoff.

3 Initial model configuration: All generalized 𝐶4
inequalities (5) (with 𝐷 (ℎ, 𝑗) requirement instead of
𝐻 [{ℎ, 𝑗}]) are included in the initial model by
exhaustive enumeration of all pairs of 2-sized subsets.
None of the constraints (9) are included initially.

4 Partial linear relaxation resolution: At the root node of
the branch-and-cut tree, we solve the linear relaxation of
the initial model together with inequalities (10) and (11)
(with 𝐷 (ℎ, 𝑗) requirement instead of 𝐻 [{ℎ, 𝑗}])
separated as cuts.

5 Exact model resolution: Starting from the model obtained
after Step 4, we add the integrality constraints and solve
the integer formulation by adding (9) as lazy constraints.

Algorithm 1 N. of constraints (4) N. of inequalities (5) Lazy Const. Reduction Time Reduction
Step 3 only 0 2.6|𝑉 | 30% 82%
Step 4 only 14|𝑉 | 0 92% 73%

Step 3 and Step 4 2.9|𝑉 | 2.6|𝑉 | 88% 85%

Table 1: Effect of the valid inequalities for ILP1.

Algorithm 2 N. of inequalities (10) N. of inequalities (5), (11) Lazy Const. Reduction Time Reduction
Step 3 only 0 12|𝑉 | 20% 83%

Step 4 only, with (10) 8|𝑉 | 0 85% 11%
Step 3 and Step 4 5|𝑉 | 17|𝑉 | 79% 87%

Table 2: Effect of the valid inequalities for ILP2.

4.1 Random Instances
The random instances used in our experiments were categorized
by number of vertices 𝑣 ∈ {50, 100, 150, 200, 250}, graph den-
sity percentage 𝑑 ∈ {5, 10, 20, 30, 50, 70} and initially classified
vertices percentage 𝑝 ∈ {60, 80}. The initially classified vertices
were equally distributed between the blue and the red classes. For
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each combination 𝑣 , 𝑑 and 𝑝 , we generated 10 random instances,
adding up to 600 random instances overall.

For a large part of the random instances, Algorithm 1 had
beaten Algorithm 2 in running time. Besides, both algorithms
were efficient for small and medium-sized instances, with advan-
tage for Algorithm 1.

Figure 2 – Running time versus density, 𝑝 = 80.

(a) Algorithm 1.

(b) Algorithm 2.

Figure 2 shows the running times of Algorithm 1 and Algo-
rithm 2 for 𝑝 = 80% as a function of the graph density. Overall, the
instances with 𝑝 = 80% or density between 5% and 20% showed
to be the hardest to solve.

4.2 Realistic Instances
To test the developed algorithms for realistic applications, we
performed experiments using instances derived from two realistic
datasets, namely Parkinson’s disease ([15]) and cardiac Single
Proton Emission Computed Tomography (SPECT) images ([13]),
both available at https://archive.ics.uci.edu/ml/index.php. These
datasets are used to generate instances of the Euclidean version
of the classification problem, where each point represents the
information of a patient to be used to predict new diagnostics.

From each dataset, we derived two groups of 10 instances each
for the Euclidean classification problem. An instance in the first
(resp. second) group is obtained by randomly choosing 20% (resp.
30%) of the points to form the validation set (points used to check
the accuracy of a classification algorithm). Then, each instance
is transformed into a classification graph (instance of 2-GC) by
using the transformation suggested by [20], where each point
becomes a vertex. In particular, the validation points correspond
to the initially unclassified vertices. As a way to evaluate the
class prediction accuracy of our algorithms, we run the well-
known SVM and MLP Euclidean classification algorithms on the

Table 3: Properties of each set of instances.

Instance n m density diam minDg maxDg
parkinsons 195 1097 5 10 1 18

spectf 267 1826 5 8 1 36

Table 4: Algorithm of [1], Algorithm 1, Algorithm 2, SVM,
and MLP comparison for Parkinson’s instances with 𝑝 =

70%.

Instance 𝑇𝐼𝐿𝑃𝑎 (𝑠) 𝑇𝐼𝐿𝑃2 (𝑠) 𝑇𝐼𝐿𝑃1 (𝑠) 𝐴𝑐𝑢𝐺𝐶 (%) 𝐴𝑐𝑢𝑆𝑉𝑀 (%) 𝐴𝑐𝑢𝑀𝐿𝑃 (%)
parkinsons-p70-1 695.23 23.44 1152.90 86.21 63.79 86.21
parkinsons-p70-2 14.72 1.98 244.76 68.97 68.97 74.14
parkinsons-p70-3 123.60 18.65 - 77.59 77.59 81.03
parkinsons-p70-4 50.88 1.78 53.83 70.69 70.69 70.69
parkinsons-p70-5 31.96 12.64 35.28 74.14 25.86 72.41
parkinsons-p70-6 324.11 88.87 - 75.86 75.86 72.41
parkinsons-p70-7 34.30 20.96 392.59 79.31 77.59 77.59
parkinsons-p70-8 83.09 19.83 - 75.86 24.14 75.86
parkinsons-p70-9 373.53 28.23 - 82.76 84.48 81.03
parkinsons-p70-10 67.56 17.32 320.20 75.86 82.76 75.86

AVERAGE 179.89 23.37 - 76.72 65.17 76.72

Euclidean instances as well as Algorithm 1, Algorithm 2, and the
algorithm of [1] on the corresponding 2-GC instances.

The properties of each set of instances is shown in Table 3.
The columns are: number of vertices in the classification graph 𝑛;
number of edges in the classification graph𝑚; density of the clas-
sification graph dens; diameter of the classification graph diam;
minimum degree of the classification graph minDg; maximum
degree of the classification graph maxDg.

Tables 4 and 5 show the results for Parkinson and SPECTF
instances with 𝑝 = 70% (𝑝 = 80% is omitted). The columns
are: running time of the algorithm of [1] 𝑇𝐼𝐿𝑃𝑎 (𝑠); running time
of Algorithm 1 𝑇𝐼𝐿𝑃1 (𝑠); running time of Algorithm 2 𝑇𝐼𝐿𝑃2 (𝑠);
accuracy of the geodesic method 𝐴𝑐𝑢𝐺𝐶 (%) (the best among
our three methods); accuracy of the SVM method 𝐴𝑐𝑢𝑆𝑉𝑀 (%);
accuracy of the MLP method 𝐴𝑐𝑢𝑀𝐿𝑃 (%).

Regarding the 20 Parkinson’s disease instances, our approach
obtained the best accuracy in 10 of them, while 9 and 11 were the
scores for SVM andMLP, respectively. For the 20 SPECT instances,
the 2-GC approach presented the best accuracy in 18 instances,
while SVM and MLP did it in 2 and 14 instances, respectively. On
average, 2-GC also got the best accuracy, slightly better than the
one by MLP. Overall, the results show that the accuracy of the
2-GC approach was the best for 28 instances, while SVM was the
best for only 11 and MLP for 25, out of 40 instances.

Comparing the running time of the three algorithms for the
geodesic classification in the realistic instances, we note that
Algorithm 2 greatly surpasses the other two algorithms for the
Parkinson’s instances. On the other hand, for the SPECTF in-
stances, the Algorithm of [1] and Algorithm 1, which on average
have equivalent results, outperform Algorithm 2.

5 CONCLUDING REMARKS
In this work, we studied and related the polyhedra associated
with two new integer formulations that we proposed, giving
some important valid inequalities and facet-defining conditions.
From the computational experiments, it was clear that the family
of facet-defining inequalities called generalized 𝐶4 inequalities
was extremely efficient. They are related to a linearly insepa-
rable structure that is not possible to appear in the Euclidean
space. The results also show that the proposed solution methods
are very promising since the proposed algorithms proved to be

81



Table 5: Algorithm of [1], Algorithm 1, Algorithm 2, SVM,
andMLP comparison for SPECT instances with 𝑝 = 70%.

Instance 𝑇𝐼𝐿𝑃𝑎 (𝑠) 𝑇𝐼𝐿𝑃2 (𝑠) 𝑇𝐼𝐿𝑃1 (𝑠) 𝐴𝑐𝑢𝐺𝐶 (%) 𝐴𝑐𝑢𝑆𝑉𝑀 (%) 𝐴𝑐𝑢𝑀𝐿𝑃 (%)
spectf-p70-1 0.17 2.05 0.25 83.75 72.50 83.75
spectf-p70-2 0.32 0.79 0.26 78.75 73.75 78.75
spectf-p70-3 0.15 1.50 0.16 80.00 75.00 80.00
spectf-p70-4 0.15 1.65 0.13 76.25 67.50 75.00
spectf-p70-5 0.18 0.06 0.20 81.25 41.25 81.25
spectf-p70-6 0.08 0.06 0.13 80.00 62.50 80.00
spectf-p70-7 0.20 1.78 0.19 78.75 51.25 78.75
spectf-p70-8 0.21 2.60 0.23 83.75 60.00 83.75
spectf-p70-9 0.59 0.75 0.79 88.75 87.50 86.25
spectf-p70-10 0.12 0.06 0.14 78.75 76.25 72.50
AVERAGE 0.22 1.13 0.25 81.00 66.75 80.00

very efficient in running time and accuracy, even for medium-
sized instances. The prediction accuracy of the geodesic approach
showed to be stable and as good as such classic linear separation
algorithms for the multidimensional space. Therefore, it seems
that the analogy performed to transform the Euclidean convex-
ity method into a geodesic convexity method on graphs was
successful.

As future works, we intend to carry on a deeper polyhedral
study and try new objective functions to improve accuracy.
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