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ABSTRACT
Many optimization problems in AI are solved by transforming
the input into a graph and then finding a clique maximizing an
objective function. Not only are cliques often too rigid a structure,
but the standard method for solving this problem, enumerating
all maximal cliques and returning one maximizing the objec-
tive function, is either too slow or (in dense graphs) infeasible.
We show that partial enumeration of 𝑘-plexes, via light modi-
fications to clique local search algorithms, is sufficient to find
high-quality solutions in both sparse and dense graphs in two
example applications.
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1 INTRODUCTION
Cliques—subgraphs in which all vertices are pairwise adjacent—
have emerged as a critical structure for solving a variety of prob-
lems in artificial intelligence (AI), including such disparate appli-
cations as unsupervised feature selection for machine learning
(ML) [12, 15], knowledge base queries [3], and object segmenta-
tion in video [19, 20]. The problems are first transformed into
graphs, which are commonly weighted using problem-specific
knowledge. For example, in object segmentation, a clique rep-
resents a class of similar objects and disjoint cliques identify
multiple classes of dynamic objects in a collection of videos [20].

A custom objective function is often needed to evaluate the
quality of potential clique solutions in AI problems. Therefore
it is not sufficient to use “out of the box” algorithms for finding
a single maximum clique, or even a maximum weight clique;
instead, existing algorithms first enumerate all maximal cliques
and then return a clique maximizing the objective function.

There are several shortcomings of using cliques (and maximal
clique enumeration) to compute solutions to these problems.
Firstly, many applications have dense graphs [15, 20], which can
contain up toΘ(3𝑛/3)maximal cliques [11] where𝑛 is the number
of vertices in the graph. In dense graphs (such as those that have
50% of the possible edges), the number of cliques renders clique
enumeration infeasible in practice for graphs with even hundreds
of vertices, independent of the method. The graphs are often
small enough and dense enough that the algorithm by Tomita et
al. [18], which has worst-case optimal running time 𝑂 (3𝑛/3), is
the best choice in practice. However, we emphasize that even this
method is slow for such dense graphs. While it is tempting to use
other clique enumeration algorithms from the literature, whether
based on the Bron-Kerbosch algorithm [7], or algorithms with
bounded delay based on reverse search [2, 5, 10], these are all

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the 
Joint ALIO/EURO International Conference 2021-2022 on Applied Combinatorial 
Optimization, April 11-13, 2022, ISBN 978-3-89318-089-9 on OpenProceedings.org. 
Distribution of this paper is permitted under the terms of the Creative Commons 
license CC-by-nc-nd 4.0.

slower in practice than Tomita et al. [18] and assume the input
graph is sparse. Secondly, a clique is often too rigid a structure to
give the best solution for all instances of a problem. Requiring
all edges to be present misses out on potential solutions when
graphs are incomplete (due to omissions in data collection) or
have errors from flaws in problem formulation.

Instead it would be valuable to consider graph structures that
are similar to cliques, but allow for missing edges. In the context
of communities, Seidman and Foster [16] introduced one such
generalization, called the 𝑘-plex, which allows each vertex to
have up to 𝑘 − 1 non-neighbors in the subgraph. However, 𝑘-
plex enumeration is even slower than clique enumeration, with
the most recent algorithm, called FaPlexen, having running time
𝑂 (𝑛2𝑐𝑛) for 𝑐 < 2 [21]. However, local search may be helpful
here. Two algorithms, iterated local search (ILS) [9] and phased
local search (PLS) [13, 14] are able to quickly find near-optimal
solutions to the maximum clique and maximum weight indepen-
dent set problems, by making small “local” changes to a current
solution that is updated as improved solutions are found. These
can easily be modified to keep a list of subgraphs considered.

Our Results. As a proof of concept, we investigate partial enu-
meration of 𝑘-plexes as a substitute for full enumeration of max-
imal cliques. We empirically observe that enumerating a small
subset of 𝑘-plexes of a graph using local search can solve in-
stances much faster and even enables finding higher-quality solu-
tions than clique enumeration on some instances. Our prototype
algorithm is a light modification of the successful ILS and PLS
local search algorithms for cliques. Partial enumeration is able to
find solutions in very dense graphs with thousands of nodes that
cannot be solved in under 200 hours by clique enumeration. In
sparse graphs with thousands of nodes, partial enumeration can
even find higher quality solutions than full clique enumeration.
Our experiments show that this technique enables feature filter-
ing on graphs of up to 4 280 vertices 79% faster than the method
of Schroeder et al. [15] and replaces days of manual work in a
novel application in the geosciences.

2 PRELIMINARIES
We consider a simple undirected graph 𝐺 = (𝑉 , 𝐸), with a sets
of vertices 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} and edges 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 }.
We also use weight functions,𝑤 : 𝑉 → R+, assigning a weight to
each vertex, and𝑤𝐸 : 𝐸 → R+, assigning a weight to each edge.
Note that we abbreviate an edge {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸 by 𝑒 = 𝑣𝑖𝑣 𝑗 . A graph
𝐻 = (𝑉𝐻 , 𝐸𝐻 ) is a subgraph of𝐺 = (𝑉 , 𝐸), if𝑉𝐻 ⊆ 𝑉 and 𝐸𝐻 ⊆ 𝐸.
For brevity, we let 𝑛 = |𝑉 |, and𝑚 = |𝐸 |. The neighborhood of a
vertex 𝑣 ∈ 𝑉 , denoted 𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸} is the set
of all vertices adjacent to 𝑣 . The degree of 𝑣 ∈ 𝑉 is denoted by
deg(𝑣) = |𝑁𝐺 (𝑣) |. A complete graph is a graph𝐺 = (𝑉 , 𝐸) where
𝑢𝑣 ∈ 𝐸 for all 𝑢, 𝑣 ∈ 𝑉 , 𝑢 ≠ 𝑣 . A clique in a graph 𝐺 = (𝑉 , 𝐸) is a
subgraph 𝐾 = (𝑉𝑖 , 𝐸𝑖 ) that is complete. A 𝑘-plex is a subgraph
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𝐿 = (𝑉𝐿, 𝐸𝐿) of 𝐺 , where each vertex has at most 𝑘 − 1 non-
neighbors in 𝐿 (i.e., for 𝑣 ∈ 𝑉𝐿 , | (𝑉𝐿 \ 𝑁𝐿 (𝑣)) \ {𝑣}| ≤ 𝑘 − 1).

3 PARTIAL 𝑘-PLEX ENUMERATION
As a proof of concept, we combine Phased Local Search (PLS) and
Iterated Local Search (ILS) into a simple algorithm to partially
enumerate both cliques and non-clique 𝑘-plexes. We call this
algorithm Phased Local Iterated Search for 𝑘-plex Enumeration
(PLIS𝑘E). Our goal is simplicity: we keep the parameters and
order of the original phases of PLS [13] and leave optimizations
for future work.

Similar to other local search algorithms, PLIS𝑘E maintains a
growing set of vertices 𝐿 ⊆ 𝑉 , which in our case is a set of vertices
that induces a 𝑘-plex for a given value of 𝑘 . As this set of vertices
is updated throughout the algorithm, it is added to a growing
set of potential solutions 𝑃 , which is the partial enumeration
of solutions. Our local search first looks for cliques, which are
1-plexes, and then increases 𝑘 as the search proceeds. In order to
allow PLIS𝑘E to be applied to a variety of yet unknown problems,
we direct our search using an objective function unique to each
problem [9], denoting it 𝑓Inner (𝐿). In order to choose the best of all
solutions in 𝑃 we use an additional objective function, 𝑓Outer (𝐿).

Each iteration of PLIS𝑘E executes the three phases specified
in PLS [13]. Each of our phases consists of three steps: growing 𝐿
(which we do via a (1, 2)-swap), adding 𝐿 to our set of potential
solutions 𝑃 , and then perturbing𝐿 according to the vertex selection
method for that phase (which is the same in PLS). The three vertex
selection methods are described in more detail below, and are as
follows: uniform random selection, penalty selection, and degree-
based selection. Each phase runs for 50, 50, and 100 iterations
respectively, the same as the original implementation of PLS [13].

In the original (clique) implementation of PLS, two sets of
vertices 𝐶0 and 𝐶1 are maintained, where 𝐶𝑖 is the set of all
vertices having exactly |𝐿 | − 𝑖 neighbors in 𝐿. In each phase
of PLS, a vertex 𝑣 from 𝐶0 or 𝐶1 is forced into 𝐿, and its non-
neighbors are removed from 𝐿. This step ensures that 𝐿 stays a
clique and that its size does not decrease. We maintain no such
sets here since, as 𝑘 increases, maintaining vertices with at least
|𝐿 | −𝑘 neighbors in 𝐿 becomes increasingly expensive, especially
in the dense graphs we consider here.

Therefore, unlike PLS, we store no such sets of vertices to
force into 𝐿. Instead, we begin a phase by growing 𝐿 if possible
via a single (1, 2)-swap, a technique from Andrade et al. [1] that
removes one vertex 𝑣 from 𝐿 and replaces it with two vertices
𝑢,𝑤 ∈ 𝐶 = 𝑉 \ 𝐿 while ensuring that 𝐿 induces a 𝑘-plex for the
current value of 𝑘 . Let the running time of 𝑓Inner be denoted by
𝑇 (𝑓Inner). We perform the (1, 2)-swap in 𝑂 (𝑇 (𝑓Inner) · 𝑛3 + 𝑛5)
expected time by, for each of the𝑂 (𝑛3) combinations of 𝑣 ∈ 𝐿 and
𝑢,𝑤 ∈ 𝐶 , first checking that 𝑓Inner ((𝐿\{𝑣})∪{𝑢,𝑤}) > 𝑓Inner (𝐿),
and then confirming in 𝑂 (𝑛2) time that the subgraph is a 𝑘-plex.

After growing 𝐿 via a (1, 2)-swap, 𝐿 is added to 𝑃 , and then
we move on to the perturbation step.

The last step of each phase is to perturb the growing solution
by choosing a vertex 𝑣 ∈ 𝐶 using that phase’s unique vertex
selection criterion, then adding 𝑣 to 𝐿 and removing all vertices
in 𝐿 not adjacent to 𝑣 . Note that this does not guarantee that
the vertices in 𝐿 are all pairwise adjacent (i.e., a clique), but only
that they are adjacent to 𝑣 , ensuring that all subgraphs in 𝑃 are
dense and still 𝑘-plexes. We denote this routine in Algorithm 1
by Perturb(𝐿, Selection Method).

The three vertex selection criteria are as follows:

Algorithm 1 The PLIS𝑘E algorithm.
proc PLIS𝑘E(𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 ,𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠)
1: 𝑃 = {} ⊲ All potential solutions
2: 𝐿 = {𝑣1 } ⊲ Current growing solution
3: 𝑖𝑡𝑒𝑟𝑠 = 0
4: 𝑘 = 1
5: while |𝑃 | <𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 and 𝑖𝑡𝑒𝑟𝑠 <𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 do
6: 𝑖𝑡𝑒𝑟𝑠 = 𝑖𝑡𝑒𝑟𝑠 + 1
7: ⊲ Phase 1: Uniform Random
8: for 50 iterations do
9: 𝐿 = (1,2)-swap(𝑘, 𝐿, 𝑓Inner)
10: 𝑃 = 𝑃 ∪ {𝐿}
11: 𝐿 = Perturb(𝐿,Uniform Random)
12: ⊲ Phase 2: Penalty
13: for 50 iterations do
14: 𝐿 = (1,2)-swap(𝑘, 𝐿, 𝑓Inner)
15: 𝑃 = 𝑃 ∪ {𝐿}
16: 𝐿 = Perturb(𝐿, Penalty)
17: ⊲ Phase 3: Degree-Based
18: for 100 iterations do
19: 𝐿 = (1,2)-swap(𝑘, 𝐿, 𝑓Inner)
20: 𝑃 = 𝑃 ∪ {𝐿}
21: 𝐿 = Perturb(𝐿,Degree-Based)
22: if 𝑃 is unchanged then
23: 𝑘 = 𝑘 + 2
24: return 𝑃

(1) Uniform random selection chooses a vertex from 𝐶 using
a uniform distribution, so that each vertex not yet in the
solution has an equal chance of being selected.

(2) Penalty selection acts by determining the frequency of
solutions in 𝑃 containing each vertex 𝑣 ∈ 𝐶 . A vertex
is then selected using a Gaussian distribution on those
frequencies, which maintains a random element in the
selection, but favors those vertices that have not been
present in many solutions. This can help jump out of local
maxima during the search.

(3) Degree-based selection chooses a vertex 𝑣 ∈ 𝐶 of largest
degree. That is, deg(𝑣) ≥ deg(𝑤) for all𝑤 ∈ 𝐶 .

After finishing the three phases, if no new solutions have been
added to 𝑃 , 𝑘 is increased by 2. The entire algorithm is run until
either a target count𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 of solutions is reached or a target
count 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 of iterations are completed. Instead of return-
ing the best solution found as evaluated by 𝑓Inner, all solutions
𝐿 ∈ 𝑃 are returned, so they can be evaluated by 𝑓Outer (𝐿), similar
to clique enumeration. The values𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 and𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 , and
the functions 𝑓Inner (𝐿) and 𝑓Outer (𝐿), are taken as parameters
to the algorithm, and can differ between applications.𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠
allows us to limit the execution time of the algorithm in cases
where the number of available unique solutions is less than the
target𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 . The heuristic evaluation function 𝑓Inner should
be representative of high-quality solutions, and be efficient to
compute, since it directs the algorithm to explore or abandon
entire branches of solutions, and must not throttle the computa-
tional efficiency of the search. Once the search completes, 𝑓Outer
is used to choose the optimal solution from all potential solutions,
and may be less computationally efficient. Here, it is beneficial to
have fewer potential solutions to evaluate in order to maintain
speed while not sacrificing quality. We denote running PLIS𝑘E
with𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 and𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 by PLIS𝑘E(𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 ,𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠).

The complexity of PLIS𝑘E is defined by𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 ,𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 ,
|𝑃 | and the time complexity of 𝑓Inner and 𝑓Outer. One iteration of
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PLIS𝑘E takes𝑂 (𝑇 (𝑓Inner) ·𝑛3+𝑛5) time, since performing a (1, 2)-
swap dominates the running time; thus, the partial enumeration
takes𝑂 (min{𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠,𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠} · (𝑇 (𝑓Inner) ·𝑛3 +𝑛5)) time. In
our experiments in the next section, we choose𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 ≤ 500,
and therefore the running time is 𝑂 (𝑇 (𝑓Inner) · 𝑛3 + 𝑛5).

The time complexity of finding the best solution from PLIS𝑘E’s
enumerated results is 𝑂 (𝑇 (𝑓Outer) · |𝑃 |). Note that since a sub-
graph is added to 𝑃 at most once in each phase of PLIS𝑘E, we
have |𝑃 | ≤ 𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 · (50 + 50 + 100) and therefore the running
time of this step is 𝑂 (𝑇 (𝑓Outer)). The entire algorithm therefore
takes𝑂 (𝑇 (𝑓Inner) ·𝑛3+𝑛5+𝑇 (𝑓Outer)) time. Thus, unless𝑇 (𝑓Inner)
or 𝑇 (𝑓Outer) is 𝑐𝑛 for some 𝑐 > 1, which is not the case in our
specific applications, PLIS𝑘E is faster than clique enumeration
and 𝑘-plex enumeration.

4 APPLICATIONS OF PARTIAL 𝑘-PLEX
ENUMERATION

To show the feasibility of partial 𝑘-plex enumeration, we run
PLIS𝑘E on two applications that use graph frameworks. We be-
gin with feature filtering from machine learning, using the same
datasets as Schroeder et al. [15], which we then extend to graph
instances of varying sizes and densities. We then show the effi-
cacy of PLIS𝑘E on a novel application in the geosciences.

4.1 Feature Filters for Machine Learning
ML-based classification models are often trained using large,
feature-rich datasets that may contain redundant or irrelevant
features. These features often cause over-fitting, affect computa-
tional performance at training time, and lower the precision of
the trained model [17]. These issues can be mitigated by selecting
a subset of the available features. Schroeder et al. [15] introduced
a framework to model features from a dataset and their relation-
ships with one another as an undirected graph with vertex and
edge weights. The edge weights are given by the absolute value of
the Pearson Correlation (𝑤𝐸 (𝑣𝑖𝑣 𝑗 ) = 𝑝𝑣𝑖 𝑣𝑗 ∈ [0, 1]) for the data
of the two features, and each vertex 𝑣 is weighted by the distance
from the Kolmogorov-Smirnov distribution (𝑤 (𝑣) = 𝑘𝑣 ∈ [0, 1]).
A high edge weight indicates redundant features, and a low
vertex weight indicates irrelevant features. The worst 10% of
edges are removed, and all vertices with 𝑘 ≤ 0.1 are removed.
They then enumerate all maximal cliques using a custom im-
plementation of the worst-case optimal algorithm by Tomita et
al. [18] and return a maximum clique 𝐾 = (𝑉 ′, 𝐸 ′) that maxi-

mizes 𝑓𝐹𝐹 (𝐾) = 1 − ∑
𝑣𝑖 𝑣𝑗 ∈𝐸′

𝑤𝐸 (𝑣𝑖𝑣 𝑗 )
|𝐸 ′ | + ∑

𝑣∈𝑉 ′
𝑤 (𝑣)
|𝑉 ′ | . Due to

computational constraints imposed by the original implementa-
tion by Schroeder et al. [15] only the 19 highest scoring vertices
remain in the created graph. After correcting the implementation
we were able to remove the 19 vertex constraint. Performance
was evaluated by two criteria: feature count in the chosen subset
(size), and fraction of points correctly classified by aML algorithm
(accuracy). We apply PLIS𝑘E using 𝑓Inner = 𝑓Outer = 𝑓𝐹𝐹 . All ex-
periments were run on Intel(R) Xeon(R) E5-2620 v4 @ 2.10GHz
16 core CPU, and 1.5 TB of RAM, using Java 14.0.1.

Schroeder et al. [15] evaluate their method on 16 dataset/ML
algorithm combinations formed by matching the Glass, Wine,
Shuttle, and Ionosphere datasets from UCI [6], with machine
learningmodels for Naive Bayes (NB),𝑘-nearest neighbors (KNN),
support vector machine (SVM), and Logistic Regression (LR)
using theWeka library [8]. We introduce 4 more combinations by

lifting the 19-vertex limit on Ionosphere (denoted Ionosphere+)—
the only dataset with greater than 19 features.

We first ran experiments to find a suitable combination of hy-
perparameters, by varying𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 and𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 on a subset
of the dataset/ML combinations. We chose𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 to be a func-
tion of 𝑛, to allow the number of solutions to scale with instance
size. We considered both a linear and a quadratic number of can-
didate solutions, due to their computational feasibility. We did
not move to cubic due to the increase in computational expense
and promising results from the quadratic measurements. Values
for𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑠 ‘safeguard’ against instances where𝑚𝑎𝑥𝑆𝑜𝑙𝑛𝑠 can-
didate solutions cannot be found. As such these values must be
large enough to allow most instances to find enough solutions,
while not allowing very hard instances to take too much time. We
felt that 100 and 500 were both reasonable for this task. The best
results are achievedwith PLIS𝑘E(100, 0.5𝑛2), which achieves a bal-
ance of solution size, accuracy, and low runtime, and PLIS𝑘E(500,
2𝑛2), which achieves a similar balance, but with slightly higher
accuracy and runtime. We compare these two variants of PLIS𝑘E,
and 2-plex and 3-plex enumeration against the original clique
enumeration technique on all 20 dataset/ML combinations. The
full results are omitted for brevity, so we include summary plots
here. We ran PLIS𝑘E with 10 random seeds for each test, and
present average values over these 10 runs.

The average relative differences of accuracy, size, and time be-
tween the original clique method and the four other methods are
given in Table 1. Relative differences are used to provide a clear
comparison between all methods within a metric, and between
the various metrics. By removing units such as seconds and sub-
graph size we are able to more clearly see where improvements
in one metric outweigh worse performance in another. All new
methods have lower average accuracy than the clique enumer-
ation method by less than 1%. However, both PLIS𝑘E methods
find solutions that are at least 13% smaller.

Figures 1a-1c and Figures 1e–1g give performance plots, which
summarize the performance of each method compared to the
performance of the best method on each instance for a given
metric. The 𝑥- and 𝑦-axes of each plot are ratios between 0 and
1. For each method, a point (𝑥,𝑦) on the plot indicates that the
ratio 𝑦 of its solutions are within the factor 𝑥 of the best solution
computed by any method, according to the metric. The 𝑥 value
at which a curve hits 𝑦 = 1 is the largest factor of any solution
from the best solution, while the 𝑦 value at 𝑥 = 1 indicates the
ratio of best solutions that are found by a method. For these plots,
faster growing curves (and those reaching 𝑦 = 1 at the leftmost 𝑥
value) indicate that a high ratio of solutions are close to the best
solution.

Table 1 shows that both PLIS𝑘E(100, 0.5𝑛2) and PLIS𝑘E(500,
2𝑛2) find smaller (better) solutions than clique enumeration, by
23% and 13% on average respectively, while 2- and 3-plex enumer-
ation both find larger (worse) solutions. As Figure 1a illustrates,
PLIS𝑘E(100, 0.5𝑛2) has theminimum solution size on all instances,
and no other method finds a solution of minimum size. On all
instances, the minimum solution size is at least a factor of 0.87 of
PLIS𝑘E(500, 2𝑛2)’s solution. In other words, PLIS𝑘E(500, 2𝑛2) is at
most a factor of 1/0.87 = 1.14 (14%) above the minimum solution
size. The remaining methods have consistently larger solution
sizes. The PLIS𝑘E(100, 0.5𝑛2) variation also finds solutions fastest
on average, which is shown in Table 1 and indicated in Figure 1b.
Figure 1c shows that all methods have very similar accuracy,
with the worst of all the runs being only 7% worse than the best.
Additionally, both PLIS𝑘E variants have better worst cases than
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Figure 1: Results for feature filtering using clique and 𝑘-plex enumeration, and PLIS𝑘E variants, including performance
plots for (a) solution size, (b) time, and (c) accuracy. (d) shows relative accuracy versus actual time for all methods. (a)-
(d) are for glass, wine, shuttle, and ionosphere graphs. (e)-(h) are the same plots for all graphs created using the Dexter
dataset. Note that 𝑘-plex enumeration was executed in C++, while clique enumeration and PLIS𝑘E were executed in Java.
Time values plotted at 10 000s were terminated after 200 hours with no solution found.

the 𝑘-plex enumeration methods, with PLIS𝑘E(500, 2𝑛2) perform-
ing best after the clique method. The implementation of the full
𝑘-plex enumeration algorithm (not PLIS𝑘E) was in C++, which
is why those are faster than the clique enumeration (which is
1-plex enumeration). PLIS𝑘E(500, 2𝑛2) reports the worst relative
difference in time in Table 1. Figure 1d displays relative accuracy
versus time for all instances, and demonstrates the time advan-
tage given by using PLIS𝑘E(100, 0.5𝑛2) by the grouping of points
in the top left corner of the plot, which is the optimal position.
This plot also shows that the best solution is most often found
by clique enumeration, and occasionally by other methods.

The improvements in size by PLIS𝑘E are far greater than the
losses in accuracy, and indicate the feasibility of using partial
enumeration to solve problems with graph formulations. These
results indicate that on these very small, contrived instances the
clique is often the best solution in terms of the accuracy metric,

Table 1: Average relative difference (R.D.) 2(𝑥−𝑦)
(𝑥+𝑦) over the glass,

wine, shuttle, ionosphere, and ionosphere+ datasets between the
results from the original clique method, 2- and 3-plex enumera-
tion, andPLIS𝑘E averaged over 10 runswith randomseeds. Values
where the clique method is outperformed are in bold.

Method R.D. Acc R.D. Size R.D. Time

PLIS𝑘E(100, 0.5𝑛2) −0.009 −0.234 −0.449
PLIS𝑘E(500, 2𝑛2) −0.006 −0.133 0.713
2-plexes −0.009 0.093 −0.402
3-plexes −0.008 0.253 −0.188

which is a critical metric in ML applications such as this. How-
ever, we also clearly see an indication that the 𝑘-plex, and the
various enumerationmethods, are promising in terms of accuracy.
Specifically in Figure 1c, PLIS𝑘E(500, 2𝑛2) reaches 𝑦 = 1 at the
same point as the clique enumeration method, and PLIS𝑘E(100,
0.5𝑛2) is close behind. PLIS𝑘E also outperforms all three full
enumeration methods in several instances. PLIS𝑘E(100, 0.5𝑛2) is
best in terms of time, and of both PLIS𝑘E methods are best in
terms of size. Thus the potential of the 𝑘-plex structure along-
side the local search methods can not be overlooked. We now
continue to explore the efficacy of these methods by observing
their performance on problem instances with larger graphs.

4.2 Scaling to Larger Instances
In order to demonstrate the effectiveness of PLIS𝑘E on a vari-
ety of larger graphs with varying densities we chose the Dexter
dataset from the UCI repository that contains 2 600 entries each
with 20 000 features [6]. We altered the graph creation frame-
work by changing the threshold values for removing vertices
and edges. We used the original edge threshold of removing the
worst 10%, and added thresholds of avg({𝑤𝐸 (𝑒) | 𝑒 ∈ 𝐸})/𝑥 , for
𝑥 ∈ {2, 4, 8}, creating more sparse graphs. We removed 𝑣 ∈ 𝑉
where𝑤 (𝑣) < {0.005, 0.05, 0.1}, creating larger graphs. All pos-
sible combinations of these thresholds yielded 12 graphs with
varying sizes and densities. Those graphs were sized as follows,
given as (𝑛,𝑚): (4 280, 8 241 354), (4 280, 2 792 156), (4 280, 67 670),
(4 280, 24 766), (165, 12 177), (165, 3 843), (165, 1 847), (165, 966),
(52, 1 193), (52, 271), (52, 130), and (52, 70). We then compared
PLIS𝑘E to clique and 2- and 3-plex enumeration.
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Table 2: Average relative difference (R.D.) 2(𝑥−𝑦)
(𝑥+𝑦) on the graphs

created from theDexter dataset between the results from the orig-
inal clique method, 2- and 3-plex enumeration, and PLIS𝑘E aver-
aged over 10 runs with random seeds. Values where the clique
method is outperformed are in bold.

Method R.D. Acc R.D. Size R.D. Time

PLIS𝑘E(100, 0.5𝑛2) −0.006 −0.360 −0.384
PLIS𝑘E(500, 2𝑛2) 0.053 −0.291 −0.065
2-plexes 0.082 −0.118 0.579
3-plexes 0.101 0.063 0.549

Table 2 compares the results of clique, 2- and 3-plex enumera-
tion on these larger graphs with the results of PLIS𝑘E. Figures 1e–
1g are performance plots analogous to those in Figures 1a–1c
and display that data for the solutions of the Dexter graphs. Both
PLIS𝑘E variants and 2-plex enumeration show improvement in
solution size on average over clique enumeration. PLIS𝑘E(100,
0.5𝑛2) finds the largest improvement, with a decrease in size of
36%, while PLIS𝑘E(500, 2𝑛2) and 2-plex enumeration are better by
29% and 11% on average. Both PLIS𝑘E(100, 0.5𝑛2) and PLIS𝑘E(500,
2𝑛2) have shorter runtimes on average than clique enumeration
by 38% and 6.5%, respectively. 2- and 3-plex enumeration ran
slower, both with an average increase in runtime of over 50%.
This is especially significant considering that clique enumera-
tion was implemented in Java, while 𝑘-plexes were enumerated
in compiled C++, before running 𝑓Outer in Java. Figure 1e also
demonstrates the strength of using 𝑘-plexes as solutions. The
solutions found by any of the full enumeration methods were
similar in size, with the 2-plexes being the best of the three in the
worst case. However, the solutions by PLIS𝑘E(100, 0.5𝑛2) were
generally the smallest (best), and the solutions with the worst
relative size from PLIS𝑘E(500, 2𝑛2) were closer to the best than
the worst found by each of the enumeration methods. Figure 1g
demonstrates that as datasets grow in size the solutions are more
likely to be 𝑘-plexes with 𝑘 > 1. This also shows that a poor
problem formulation can be overcome by 𝑘-plexes with 𝑘 > 1.

In Table 2 we see that all methods except PLIS𝑘E(100, 0.5𝑛2)
find greater accuracy on average than clique enumeration. 3-
plex enumeration has the greatest improvement over clique enu-
meration, by 10%, followed by 2-plex enumeration at 8% and
PLIS𝑘E(500, 2𝑛2) at 5%. PLIS𝑘E(100, 0.5𝑛2) only shows a 0.5%
decrease in accuracy on average. Figure 1h compares the relative
accuracy of each solution to the true time spent finding it, with
the upper left corner being optimal. The 3 points in the lower
right corner represent 3 graphs that the enumeration methods
could not fully enumerate in under 200 hours, even when running
a worst-case optimal clique enumeration method from Tomita
et al. [18]. The cluster of points on the top left of the plot has a
group of points from PLIS𝑘E(100, 0.5𝑛2) on the left, indicating
the faster speed with still-promising accuracy. The points from
PLIS𝑘E(500, 2𝑛2) are also clustered more tightly to the top left
of the plot, showing that they are on average better than the
enumeration methods. The other points on the right side of the
plot are from the more challenging instances, and show the speed
advantage and comparable accuracy of the PLIS𝑘E variants rel-
ative to enumeration. These results show that using full 𝑘-plex
enumeration gives a large number of potential solutions, which
significantly increases the runtime of the algorithm.

The results obtained with 𝑘-plex enumeration on these larger
graphs indicate the strength of using 𝑘-plexes when the graph
formulation or data is flawed or the graph created is large and
sparse. Further, the significant decrease in runtime when using
PLIS𝑘E, combined with the comparable or better solutions in
terms of size and accuracy, indicates that PLIS𝑘E strikes a benefi-
cial balance between the metrics observed over either clique or
𝑘-plex enumeration. The only method that on average outper-
forms the clique enumeration in terms of accuracy, solution size,
and speed is PLIS𝑘E(500, 2𝑛2). This further supports using both
the 𝑘-plex structure and partial enumeration.

4.3 Further Applications of PLIS𝑘E
We used the Java implementation of PLIS𝑘E for a new application
in the geosciences based on work by Conrey et al. [4]. This ap-
plication is used to further illustrate the value of using 𝑘-plexes
and partial enumeration.

Determining the elemental composition of geological samples
is either expensive or reliant on machines with low precision.
Conrey et al. [4] propose a method to improve accuracy of inex-
pensive methods by leveraging correlations between elements to
manually choose elements that are the best indicators of the pres-
ence of other elements. However, the time needed by an expert
to manually choose these sets of elements is over eight hours per
dataset, even when using specially-designed software [4].

We introduce a novel graph formulation to compute these
element sets with PLIS𝑘E. The vertices in the graph𝐺 = (𝑉 , 𝐸)
represent the elements, and the edges represent the correlations
between the elements. Weights are assigned to the edges by
𝑤𝐸 (𝑣𝑠𝑣𝑡 ) = 𝑐𝑜𝑟𝑟 (𝑠, 𝑡), where 𝑐𝑜𝑟𝑟 (𝑠, 𝑡) is the correlation between
the two elements 𝑠 and 𝑡 at the vertices 𝑣𝑠 , 𝑣𝑡 ∈ 𝑉 , respectively.
Edges are removed from 𝐸 if their weight falls below a thresh-
old calculated by taking the average of the values at the 80th
percentile of {𝑐𝑜𝑟𝑟 (𝑠, 𝑡) | for any elements 𝑠, 𝑡}. For each target
element 𝑡 we then create a unique graph, 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ), where
𝑉𝑡 = 𝑉 \ {𝑣𝑡 } and𝑤 (𝑣𝑠 ) = 𝑐𝑜𝑟𝑟 (𝑠, 𝑡) for 𝑣𝑠 ∈ 𝑉𝑡 .

According to Rick Conrey, a domain expert, the most impor-
tant features of an ideal element set and the final correlation
equation are, in this order, larger size of the element set, higher 𝑟2
correlation, and a𝑦-intercept close to 0. For a given subgraph𝐾 =

(𝑉𝐾 , 𝐸𝐾 ), we choose 𝑓Inner (𝐾) = 1
log( |𝑉𝐾 |)

∑
𝑣∈𝑉𝐾 𝑤 (𝑣), for its

low computational cost and since it favors larger solutions, even
if the average vertex weight is slightly lower. For the target ele-
ment 𝑡 we define 𝑓Outer (𝐾) = (𝑟2 (𝑡,𝑉𝐾 ) − 0.005𝑥1 (𝑡,𝑉𝐾 ))1.5 |𝑉𝐾 | ,
where 𝑟2 (𝑡,𝑉𝐾 ) denotes the 𝑟2 value of the correlation and 𝑥1 is
the 𝑦-intercept for the model for 𝑡 , calculated using the elements
in 𝑉𝐾 . To evaluate the solution quality, we consider size and 𝑟2.

We ran our experiments on a dataset of 54 elements that we
call GT1. GT1 contains reference values for 41 elements selected
manually by Conrey, and is the outcome of a standard attempt to
solve the entire dataset, parts of which are too difficult to solve
manually (the 13 remaining elements are unsolved). We compare
PLIS𝑘E and maximal clique enumeration using Tomita et al. [18].
All experiments were run on macOS 10.15.6, Intel(R) Core(TM)
i9-9980HK CPU @ 2.40GHz 8 core CPU, and 32 GB RAM, using
Java 14.0.1. The results of parameter tuning on six of the GT1
instances are omitted for brevity. As a result, we consider two
variants, PLIS𝑘E(100, 0.5𝑛2), which achieves a balance of solution
size, 𝑟2, and low runtime, and PLIS𝑘E(500, 4𝑛2), which achieves
the largest size and high 𝑟2 values at the cost of greater runtime.
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Figure 2: Comparing clique enumeration,manual solving (no time value reported), and PLIS𝑘E variants for the geosciences
application on the GT1 dataset. Performance plots for (a) 𝑟2, (b) time, and (c) solution size. (d) Relative 𝑟2 versus actual time
for all methods.

Figure 2 compares the results of manually solving, clique enu-
meration, PLIS𝑘E(100, 0.5𝑛2), and PLIS𝑘E(500, 4𝑛2). Figure 2a
shows that the clique method finds the worst relative 𝑟2 on sev-
eral instances. Figure 2c shows that both PLIS𝑘E variants find
solutions with size closer to the best than the manual or clique
methods in the worst case for all methods. Figure 2b shows that
PLIS𝑘E(100, 0.5𝑛2) is faster than the other methods in most cases,
and in the worst case. Additionally, PLIS𝑘E(500, 4𝑛2) is closer
to the best case for runtime than clique enumeration on almost
50% of instances. Figure 2d also demonstrates that the worst
case runtime for clique enumeration is much greater than for ei-
ther PLIS𝑘E variation. It also shows that most PLIS𝑘E(100, 0.5𝑛2)
runs are between 80ms and 400ms, while the clique instances
range from under 30ms to 4000ms. Most solutions have relative
𝑟2 > 0.9, with the worst cases for clique, PLIS𝑘E(500, 4𝑛2), and
PLIS𝑘E(100, 0.5𝑛2) at 35%, 40%, and 70%, respectively. By con-
sidering the solutions that were not solved manually in GT1 we
see that PLIS𝑘E provides overall better results on hard instances
for this application. Whereas manually selecting element sets for
these 54 instances requires more than 8 hours of manual work for
a domain expert, both PLIS𝑘E variants finish in under a minute.

Overall, these results further indicate the efficacy of the 𝑘-
plex structure as a solution in imperfect graph formulations,
especially when paired with a heuristic-directed local search that
lends advantages in both runtime and solution quality.

5 CONCLUSION
We proposed a technique to partially enumerate 𝑘-plexes us-
ing local search. Our proof-of-concept algorithm, PLIS𝑘E, finds
solutions of higher quality than with clique enumeration, and
more quickly than with 𝑘-plex enumeration, in experiments with
feature filtering and an application in the geosciences. Impor-
tant future work includes optimizing the implementation, tuning
parameters, and exploring different local search strategies.

REFERENCES
[1] Diogo V Andrade, Mauricio G C Resende, and Renato F Werneck. 2012. Fast

local search for the maximum independent set problem. J. Heuristics 18 (2012),
525–547. https://doi.org/10.1007/s10732-012-9196-4

[2] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and subgraph listing
algorithms. SIAM J. Comput. 14, 1 (1985), 210–223. https://doi.org/10.1137/
0214017

[3] F. A. Rezaur Rahman Chowdhury, Chao Ma, Md Rakibul Islam, Moham-
mad Hossein Namaki, Mohammad Omar Faruk, and Janardhan Rao Doppa.
2017. Select-and-evaluate: A learning framework for large-scale knowl-
edge graph search. In Proc. the Ninth ACML, Vol. 77. PMLR, 129–144. http:
//proceedings.mlr.press/v77/chowdhury17a/chowdhury17a.pdf

[4] Richard M. Conrey, David G. Bailey, Jared W. Singer, Laureen Wagoner, Ben-
jamin Parfitt, John Hay, and Oliver Keh. 2019. Optimization of internal stan-
dards in LA-ICPMS analysis of geologic samples using lithium borate fused
glass. Geological Society of America Abstracts with Programs 54, 1 (2019).
https://doi.org/10.1130/abs/2019NE-328672

[5] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2020.
Sublinear-space and bounded-delay algorithms for maximal clique enumera-
tion in graphs. Algorithmica 82, 6 (2020), 1547–1573. https://doi.org/10.1007/
s00453-019-00656-8

[6] Dheeru Dua and Casey Graff. 2017. UCI machine learning repository. http:
//archive.ics.uci.edu/ml

[7] David Eppstein, Maarten Löffler, and Darren Strash. 2013. Listing all maximal
cliques in large sparse real-world graphs in near-optimal time. ACM J. Exp.
Algorithmics 18, Article 3.1 (2013), 21 pages. https://doi.org/10.1145/2543629

[8] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. 2009. The WEKA data mining software. ACM
SIGKDD Explorations Newsletter 11, 1 (2009), 10–18. https://doi.org/10.1145/
1656274.1656278

[9] Helena R Lourenço, Olivier C Martin, and Thomas Stützle. 2003. Iterated local
search. In Handbook of Metaheuristics. Springer, 320–353. https://doi.org/10.
1007/0-306-48056-5_11

[10] Kazuhisa Makino and Takeaki Uno. 2004. New algorithms for enumerating
all maximal cliques. In Proc. SWAT 2004 (LNCS, Vol. 3111), Torben Hagerup
and Jyrki Katajainen (Eds.). Springer, 260–272. https://doi.org/10.1007/
978-3-540-27810-8_23

[11] J W Moon and L Moser. 1965. On cliques in graphs. Israel J. Mathematics 3, 1
(1965), 23–28. https://doi.org/10.1007/BF02760024

[12] Feiping Nie, Wei Zhu, and Xuelong Li. 2016. Unsupervised feature selection
with structured graph optimization. In Proc. the 30th AAAI. AAAI, 1302–1308.
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12180

[13] Wayne Pullan. 2006. Phased local search for the maximum clique problem.
J. Combinatorial Optimization 12, 3 (2006), 303–323. https://doi.org/10.1007/
s10878-006-9635-y

[14] Wayne Pullan. 2009. Optimisation of unweighted/weighted maximum inde-
pendent sets and minimum vertex covers. Discrete Optimization 6, 2 (2009),
214–219. https://doi.org/10.1016/j.disopt.2008.12.001

[15] Daniel Thilo Schroeder, Kevin Styp-Rekowski, Florian Schmidt, Alexander
Acker, and Odej Kao. 2019. Graph-based Feature Selection Filter Utilizing
Maximal Cliques. In Proc. SNAMS 2019. IEEE, 297–302. https://doi.org/10.
1109/SNAMS.2019.8931841

[16] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization
of the clique concept. J. Mathematical Sociology 6, 1 (1978), 139–154. https:
//doi.org/10.1080/0022250X.1978.9989883

[17] Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selection for
classification: A review. In Data Classification. CRC Press, 37–64. https:
//doi.org/10.1201/b17320

[18] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-
case time complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science 363, 1 (2006), 28–42. https://doi.
org/10.1016/j.tcs.2006.06.015

[19] Chenliang Xu, Caiming Xiong, and Jason J. Corso. 2012. Streaming hierarchical
video segmentation. In Proc. the 12th ECCV, Part VI, A. Fitzgibbon, S. Lazebnik,
P. Perona, Y. Sato, and C. Schmid (Eds.). Vol. 7577 LNCS. Springer, 626–639.
https://doi.org/10.1007/978-3-642-33783-3_45

[20] Dong Zhang, Omar Javed, and Mubarak Shah. 2014. Video object co-
segmentation by regulated maximum weight cliques. In Proc. the 13th
ECCV, Part VII. Vol. 8695 LN. Springer, 551–566. https://doi.org/10.1007/
978-3-319-10584-0_36

[21] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerat-
ing maximal 𝑘-plexes with worst-case time guarantee. In Proc. the 34th AAAI.
2442–2449. https://doi.org/10.1609/aaai.v34i03.5625

76


