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ABSTRACT
This paper introduces a new class of cooperative games whose
characteristic function is the optimal value of a conic program.
There are two main reasons motivating this new class of games.
On the one hand, this class allows to model an appealing model of
cooperation in portfolio selection but in our way to this analysis
prove that this class is a natural extension of the important class
of linear production games (see Owen (1982)[8]). In addition, we
show several applications by choosing the appropriate cones and
in particular using second order cone constraints we present new
cost sharing results on the classical portfolio selection problem
and on location, covering, packing and TSP cooperative games.
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1 INTRODUCTION
The interest in analyzing cost sharing in different models of
mathematical programming models has motivated an increasing
number of papers modeling different aspects of cooperation. The
interaction between operations research and game theory is a
fruitful research field nowadays. Classical operational research
models deal with problems in which a decision maker aims to
design a program for optimizing the operation of a complex sys-
tem. On the other side, game theory is concerned with decision
problems in which several decision makers interact. Clearly, in
order to model and solve complex systems in which several de-
cision makes interact, both the models and methodologies of
operations research and game theory are needed. In this con-
text many classes of operations research games arise like, for
instance, inventory games (see Meca et al. (2003)[7]), network
games (see Bergantiños et al. (2014)[1], Perea et al. (2009)[9],
Puerto et al. [10, 11]), and queueing games (see Timmer and
Scheinhardt (2013)[12]). Borm et al. (2001) [2] provides a survey
of this field.

This paper elaborates on this direction. Our goal is to introduce
a class of cooperative games whose characteristic function is the
optimal value of a conic program. There are two main reasons
motivating this new class of games. On the one hand, this class
allows to model an appealing model of cooperation in portfolio
selection but in our way to this analysis we have realized that this
class is a natural extension of the important class of linear pro-
duction games (see Owen (1982)[8]). In a linear production game
a set of agents pool their available resources to produce some
goods through a production procedure that can be modeled as a
linear programming problem. Using a duality argument, Owen
proved that each linear production game is totally balanced and
found a family of core allocations for this class of games. Linear
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production games have been widely studied. An introduction to
linear production games can be found in González-Díaz (2010)[6].

Our initial motivation was to consider a family of mathemati-
cal programming games in which players deal with linear pro-
duction constraints with an extra set of quadratic restrictions.
This type of problems fits within a more general class of mathe-
matical programming games where the characteristic function of
a coalition is the optimal value of a conic linear program. Players
cooperate by pooling their resources on the linear conic con-
straints. We prove that under some standard conditions this class
of games is totally balanced. Then, we show several applications
by choosing the appropriate cones and in particular using second
order cone constraints we present new cost sharing results on
the classical portfolio selection problem.

2 THE CLASS OF CONIC LINEAR
PROGRAMMING COOPERATIVE GAMES

Let 𝑁 = {1, . . . , 𝑛} be a set of agents. Each of them has a bundle
of 𝑚 commodities 𝑏 (𝑖) = (𝑏𝑘 (𝑖))𝑘∈{1,...,𝑚} and we denote by
𝑏 (𝑆) = ∑

𝑖∈𝑆 𝑏 (𝑖). Each agent 𝑖 ∈ 𝑁 is interested in optimizing
the following program:

max ⟨𝑃,𝑋 ⟩ (Conic)
s.t. ⟨𝐴𝑘 , 𝑋 ⟩ = 𝑏𝑘 (𝑖), 𝑘 = 1, . . . ,𝑚

𝑋 ∈ 𝐾.

As it is usual in conic programming𝐾 is a pointed, closed, convex
cone with non-empty interior and 𝑋 is the set of variables of
the problem and let 𝐾∗ be the dual cone of 𝐾 . Classic examples
of the above model are the standard linear programming where
𝐾 = R𝑛+, second order cone programming where 𝐾 = {𝑥 ∈ R𝑛 :
𝑥𝑛 ≥

√∑𝑛−1
𝑗=1 𝑥

2
𝑗
}, semidefinite programming where 𝐾 is the

cone of symmetric positive semidefinite matrices of order 𝑛 or
𝐾 = 𝐾1 ⊕ 𝐾2 ⊕ . . . ⊕ 𝐾𝑝 being 𝐾𝑠 , 𝑠 = 1, . . . , 𝑝 pointed, closed,
convex cones with non-empty interior. Conic programming is
a relatively novel area of mathematical programming that can
be solved efficiently and it is already implemented in modern
solvers.

One can now consider the conic dual of (Conic) which is given
by:

min
𝑚∑
𝑘=1

𝑦𝑘𝑏𝑘 (𝑖) (Conic Dual)

s.t.
𝑚∑
𝑘=1

𝑦𝑘𝐴𝑘 − 𝐻 = 𝑃,

𝐻 ∈ 𝐾∗ .

It is well-known that if one of F := {𝑋 ∈ 𝐾 : ⟨𝐴𝑘 , 𝑋 ⟩ =

𝑏𝑘 (𝑖), 𝑘 = 1, . . . ,𝑚} or F ∗ = {(𝑦, 𝐻 ) : ∑𝑚
𝑘=1 𝑦𝑘𝐴𝑘 − 𝐻 = 𝑃, 𝐻 ∈

𝐾∗} has non-empty interior then the optimal values of both
problem coincide (zero duality gap).
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If the agent of a set 𝑆 ⊆ 𝑁 cooperate then they can pool their
resources being 𝑏 (𝑆) = ∑

𝑖∈𝑆 𝑏 (𝑖) and the problem and its dual
to be considered by the coalition are

𝑣 (𝑆) = max ⟨𝑃,𝑋 ⟩ (Conic-S)
s.t. ⟨𝐴𝑘 , 𝑋 ⟩ = 𝑏𝑘 (𝑆), 𝑘 = 1, . . . ,𝑚

𝑋 ∈ 𝐾.

𝑑 (𝑆) = min
𝑚∑
𝑘=1

𝑦𝑘𝑏𝑘 (𝑆) (Dual-S)

s.t.
𝑚∑
𝑘=1

𝑦𝑘𝐴𝑘 − 𝐻 = 𝑃,

𝐻 ∈ 𝐾∗ .

The natural questions arise. Under which conditions the agents
in 𝑁 are willing to cooperate and how to allocate the surplus of
this cooperation among them.

Next, we define the game (𝑁, 𝑣) with set of players 𝑁 and
characteristic function 𝑣 (𝑆) given as the optimal value of problem
(Conic-S). One can prove that the game (𝑁, 𝑣) is balanced so that
cooperation in this situation is naturally enforced. Recall that the
core of a game (𝑁, 𝑣) consists of those allocations which divide
the benefit of the grand coalition, 𝑣 (𝑁 ), in such a way that any
other coalition receives at least its value by the characteristic
function. Formally,
𝐶𝑜𝑟𝑒 (𝑁, 𝑣) =

{
𝑥 ∈ R𝑛 /𝑥 (𝑁 ) = 𝑣 (𝑁 ) and 𝑥 (𝑆) ≥ 𝑣 (𝑆) for all 𝑆 ⊂ 𝑁

}
.

Theorem 2.1. Let𝐻 (𝑁 ) ∈
◦
𝐾∗ and 𝑦 (𝑁 ) be an optimal solution

of the dual problem for the grand coalition 𝑁 . The allocation 𝑥𝑖 =∑𝑚
𝑘=1 𝑦𝑘 (𝑁 )𝑏𝑘 (𝑖), for all 𝑖 = 1, . . . , 𝑛 belongs to the core of (𝑁, 𝑣).

3 THE PORTFOLIO SELECTION GAME
One of the most interesting problems in finance and modern
Operations Research is the classical Markowitz portfolio model
and its many variants. In this situation an agent 𝑖 owns a capital
amount 𝑐𝑖 that is willing to invest on a number of assets 𝑗 =

1, . . . ,𝑚 with an expected return 𝜇 𝑗 and covariance matrix 𝑄 ∈
R𝑚×𝑚 positive definite. The goal of the investors (agents) is to
determine the amount 𝑥 𝑗 to invest in asset 𝑗 for all 𝑗 = 1, . . . ,𝑚
in order to maximize his expected return while limiting the risk
by a threshold 𝜎2 (𝑖). Therefore, agent 𝑖 looks to optimize the
following problem.

max
𝑚∑
𝑗=1

𝜇 𝑗𝑥 𝑗 (Portfolio)

s.t.
𝑚∑
𝑗=1

𝑥 𝑗 = 𝑐𝑖 ,

𝑥𝑡𝑄𝑥 ≤ 𝜎2 (𝑖),
𝑥 ≥ 0.

Although at a first glance the reader may think that this problem
does not fit the previous framework it is not the case.

Indeed, the covariance matrix 𝑄 admits a Cholewsky factor-
ization 𝑄 = 𝑅𝑡𝑅 where 𝑅 is triangular matrix. Thus, 𝑥𝑡𝑄𝑥 = 𝑦𝑡𝑦

with 𝑦 = 𝑅𝑥 and problem (Portfolio) becomes

max
𝑚∑
𝑗=1

𝜇 𝑗𝑥 𝑗

s.t.
𝑚∑
𝑗=1

𝑥 𝑗 = 𝑐𝑖 ,

𝑚∑
𝑗=1

𝑟𝑘 𝑗𝑥 𝑗 − 𝑦𝑘 = 0, 𝑘 = 1, . . . ,𝑚

𝑠1 ≤ 𝜎2 (𝑖)
𝑚∑
𝑗=1

𝑦2𝑗 ≤ 𝑠1

𝑠1 ≥ 0, 𝑥 ≥ 0, 𝑦 free.

Finally, this problem can be written as:

max
𝑚∑
𝑗=1

𝜇 𝑗𝑥 𝑗 (SOC-Portfolio)

s.t.
𝑚∑
𝑗=1

𝑥 𝑗 = 𝑐𝑖 , (1)

𝑚∑
𝑗=1

𝑟𝑘 𝑗𝑥 𝑗 − 𝑦𝑘 = 0, 𝑘 = 1, . . . ,𝑚 (2)

𝑠1 ≤ 𝜎2 (𝑖) (3)

(𝑦, 𝑠1) ∈ 𝑆𝑂𝐶𝑚+1 := {(𝑦, 𝑠) ∈ R𝑚×1 :

√√√ 𝑚∑
𝑗=1

𝑦2
𝑗
≤ 𝑠1}, 𝑥 ∈ R𝑚+ .

Introducing dual variables 𝑢0 and 𝑢𝑚+1 for constraints (1) and
(2); and 𝑢𝑘 𝑘 = 1, . . . ,𝑚 for constraints (3) the conic dual of this
problem reads as:

min 𝑢0𝑐𝑖 + 𝑢𝑚+1𝜎2 (𝑖)

s.t. 𝑢0 +
𝑚∑
𝑘=1

𝑢𝑘𝑟𝑘 𝑗 ≥ 𝜇 𝑗 , 𝑗 = 1, . . . ,𝑚

− 𝑢𝑘 + ℎ𝑘 = 0, 𝑘 = 1, . . . ,𝑚,
𝑢𝑚+1 − ℎ𝑚+1 = 0,
(ℎ1, . . . , ℎ𝑚, ℎ𝑚+1) ∈ 𝑆𝑂𝐶𝑚+1
𝑢0, 𝑢𝑘 , 𝑘 = 1, . . . ,𝑚 free , 𝑢𝑚+1 ≥ 0.

The above problem is equivalent to the following:

min 𝑢0𝑐𝑖 + 𝑢𝑚+1𝜎2 (𝑖)

s.t. 𝑢0 +
𝑚∑
𝑘=1

𝑢𝑘𝑟𝑘 𝑗 ≥ 𝜇 𝑗 , 𝑗 = 1, . . . ,𝑚

𝑚∑
𝑗=1

𝑢2𝑗 ≤ 𝑢𝑚+1

𝑢𝑘 , 𝑘 = 0, . . . ,𝑚 free.

We observe that if a set of agents 𝑆 decides to cooperate they
put together their cash 𝑐 (𝑆) = ∑

𝑖∈𝑆 𝑐𝑖 and assume a level of risk
given by the function 𝜎2 (𝑆) and the corresponding primal and
dual problems for the coalition 𝑆 are:

max
𝑚∑
𝑗=1

𝜇 𝑗𝑥 𝑗 (SOC-Portfolio-S)

s.t.
𝑚∑
𝑗=1

𝑥 𝑗 = 𝑐 (𝑆), (4)
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𝑚∑
𝑗=1

𝑟𝑘 𝑗𝑥 𝑗 − 𝑦𝑘 = 0, 1 ≤ 𝑘 ≤ 𝑚 (5)

𝑠1 ≤ 𝜎2 (𝑆) (6)
(𝑦, 𝑠1) ∈ 𝑆𝑂𝐶𝑚+1, 𝑥 ∈ R𝑚+ .

min 𝑢0𝑐𝑖 + 𝑢𝑚+1𝜎2 (𝑆)

s.t. 𝑢0 +
𝑚∑
𝑘=1

𝑢𝑘𝑟𝑘 𝑗 ≥ 𝜇 𝑗 , 𝑗 = 1, . . . ,𝑚

𝑚∑
𝑗=1

𝑢2𝑗 ≤ 𝑢𝑚+1

(𝑢0, 𝑢1, . . . , , 𝑢𝑚, 𝑢𝑚+1) ∈ 𝑆𝑂𝐶𝑚+1

The reader may note that the feasible region F ∗ (𝑆) of the dual
problems for all the coalitions 𝑆 ⊆ 𝑁 are the same.

In the following, we will assume some condition on the func-
tion 𝜎2 (·). Actually, it is natural to suppose that the larger the
coalition the higher the risk that it is willing to accept. A natural
condition of this kind is the following:

𝜎2 (𝑅)
|𝑅 | ≤ 𝜎2 (𝑆)

|𝑆 | , ∀𝑅, 𝑆 ⊆ 𝑁, such that |𝑅 | ≤ |𝑆 |. (7)

Proposition 3.1. Superadditivity under the condition (7).

Theorem 3.2. Assume that the dual problems for the grand
coalition satisfies to be strictly feasible and the risk function 𝜎2

satisfies condition (7), then cooperative portfolio selection game is
balanced.

4 THE BINARY AND CONTINUOUS
NON-CONVEX QUADRATIC
MINIMIZATION GAME

Now, we consider allocation problems built on one the most
challenging problems in mathematical programming, namely
the binary and continuous non-convex quadratic minimization
problem. Let us assume that we are given general symmetric
𝑚 ×𝑚 matrix 𝑄 a ℓ ×𝑚 matrix 𝐴 and ℓ-vectors 𝑏𝑟 for all 𝑟 ∈ 𝑁 .
As usual, we denote by 𝑏 (𝑅) = ∑

𝑟 ∈𝑅 𝑏𝑟 .
We consider the cooperative game (𝑁, 𝑐) with characteristic

function 𝑐 (𝑅) for any coalition 𝑅 ⊆ 𝑁 . defined as the optimal
value of the following problem:

𝑐 (𝑅) = min 𝑥𝑡𝑄𝑥 + 1/2𝑐𝑡𝑥
s.t. 𝐴𝑥𝑡 = 𝑏 (𝑅)

𝑥 ≥ 0, 𝑥 𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝐵

Recall that 𝐴 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑛×𝑛 is a completely positive matrix
if it can be factorized as 𝐴 = 𝐵𝑡𝐵 where 𝐵 (non-necessarily
squared) has all its entries non-negative. and C∗

1+ℓ denotes the
cone of completely positive matrices of order 1 + ℓ . We introduce
the completely positive relaxation 𝑐 (𝑅) of 𝑐 (𝑅) which always
provides a lower bound on its optimal value (see [3] for further
details on this relaxation and its construction). For this purpose,
we write the constraints 𝑎𝑡

𝑖
𝑋𝑎𝑖 = 𝑏

2
𝑖
(𝑅) in its equivalent matrix

form ⟨𝐵𝑖 , 𝑋 ⟩ = 𝑏2𝑖 (𝑅) and 𝐷𝑖𝑎𝑔(𝑒𝑖 ) is a ℓ × ℓ diagonal matrix with
1 in the 𝑖-th position of the diagonal and zero everywhere else.
Then, the relaxation is:

𝑐 (𝑅) = min 1/2𝑐𝑡𝑥 + ⟨𝑄,𝑋 ⟩
s.t. 𝐴𝑥𝑡 = 𝑏 (𝑅)

⟨𝐵𝑖𝑋 ⟩ = 𝑏2𝑖 (𝑅), 𝑖 = 1, . . . , ℓ

𝑥𝑖 − 𝐷𝑖𝑎𝑔(𝑒𝑖 )𝑋 = 0, 𝑖 = 1, . . . , ℓ(
1 𝑥𝑡

𝑥 𝑋

)
∈ C∗

1+ℓ .

The following result proves that under mild assumptions 𝑐 (𝑅)
is exact and provides the optimal value of 𝑐 (𝑅).

Theorem 4.1. Assume that the linear portion of 𝑐 (𝑅), 𝐿(𝑅) =
{𝑥 ≥ 0 : 𝐴𝑥 = 𝑏 (𝑅)} satisfies 𝑥 ∈ 𝐿(𝑅) ⇒ 0 ≤ 𝑥 ≤ 1, ∀𝑗 ∈ 𝐵.
Then, 𝑐 (𝑅) is equivalent to 𝑐 (𝑅):

(1) 𝑐 (𝑅) = 𝑐 (𝑅),
(2) If (𝑥∗, 𝑋 ∗) is an optimal solution for 𝑐 (𝑅) then 𝑥∗ is in the

convex hull of optimal solutions of 𝑐 (𝑆).

The reader should observe that, as pointed out in [3], the
condition in Therorem 4.1 is not restrictive since if 𝐵 ≠ ∅ and it
is not already implied, then one can achieve it without loss of
generality augmenting one constraint 𝑥 𝑗 + 𝑠 𝑗 = 1 where 𝑠 𝑗 ≥ 0
is a slack variable for all 𝑗 ∈ 𝐵.

Now,we consider the conic dual𝑑 (𝑅) of 𝑐 (𝑅). For this construc-
tion, as it is usual, one has to associate variables 𝑢𝑖 , 𝑖 = 1, . . . , ℓ ,
to the first block of constraints, variables 𝑣𝑖 , 𝑖 = 1, . . . , ℓ , to the
second block of constraints, variables 𝑤𝑖 , 𝑖 = 1, . . . , ℓ to third
block. Then, the dual problem becomes:

𝑑 (𝑅) = max
ℓ∑

𝑖=1
𝑢𝑖𝑏𝑖 (𝑅) +

ℓ∑
𝑖=1

𝑣𝑖𝑏
2
𝑖 (𝑅)

s.t. 𝑢𝑡𝐴 +
ℓ∑

𝑖=1
𝑤𝑖 ≤ 1/2𝑐𝑡

ℓ∑
𝑖=1

𝑣𝑖𝐵𝑖 −
ℓ∑

𝑖=1
𝑤𝑖𝐷𝑖𝑎𝑔(𝑒𝑖 ) + 𝑆 = 𝑄

𝑢, 𝑣,𝑤 free , 𝑆 ∈ CPℓ .

Under the condition that the feasible region of the dual 𝑑 (𝑅)
has non-empty interior the dual has optimal solution and 𝑐 (𝑅) =
𝑑 (𝑅). Since the feasible region of the dual problems for the dif-
ferent coalitions 𝑑 (𝑅′) is always the same, the same conclusion
also applies to all of them and thus, 𝑐 (𝑁 ) = 𝑑 (𝑁 ) as well.

Following the same construction as in the previous section, let
us denote by 𝑢∗, 𝑣∗,𝑤∗ and 𝑆∗ an optimal solution of 𝑑 (𝑁 ). We
define the following allocation of the cost of the grand coalition
𝑐 (𝑁 ):

𝑥𝑟 = (𝑢∗)𝑡𝑏𝑟 + (𝑣∗)𝑡𝑏2𝑟 , ∀𝑟 ∈ 𝑁 . (8)
It is clear, by the form of the objective function of 𝑑 (𝑁 ) that

under the hypothesis that we are assuming

𝑐 (𝑁 ) =
∑
𝑟 ∈𝑁

𝑥𝑟

=

ℓ∑
𝑖=1

𝑢∗𝑖 (
∑
𝑟 ∈𝑁

𝑏𝑟𝑖 ) +
ℓ∑

𝑖=1
𝑣∗𝑖 (

∑
𝑟 ∈𝑁

𝑏2𝑟𝑖 )

Then, we are in position to state the result that proves the
stability of allocation (8).

Theorem 4.2. The allocation (𝑥𝑟 )𝑟 ∈𝑁 defined in (8) satisfies∑
𝑟 ∈𝑅 𝑥𝑟 ≤ 𝑐 (𝑅) for all 𝑅 ⊂ 𝑁 .

This result has interesting structural implications since it in-
forms on the structure of core allocations based on dual prices
of conic programs. Nevertheless, although it is constructive it
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requires solving conic problem on the cone of copositive matri-
ces. The cones of copositive and completely positive matrices do
allow self-concordant barrier functions, but these functions can
not be evaluated in polynomial time. Thus, the classical interior
point methodology does not work. Optimizing over these cones
is thus NP-hard, and restating a problem as an optimization prob-
lem over one of these cones does not resolve the difficulty of that
problem ([4]). Thus, resulting in NP-hard problems. In any case,
even though it may be difficult solving 𝑑 (𝑁 ) for finding the dual
multipliers we have proven that dual based core allocations are
also possible beyond the class of linear production games and its
relatives. It also explains similar results already known for some
other classes of games as: location packing and covering or TSP.
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