
Mixed integer programming formulations for a
non-preemptive parallel machine scheduling problem
Sandra Gutiérrez

Departamento de Matemática
Escuela Politécnica Nacional

Quito, Ecuador
sandra.gutierrez@epn.edu.ec

Fernanda Salazar
Departamento de Matemática
Escuela Politécnica Nacional

Quito, Ecuador
fernanda.salazar@epn.edu.ec

Luis M. Torres
Centro de Modelización
Matemática (MODEMAT)

Escuela Politécnica Nacional
Quito, Ecuador

luis.torres@epn.edu.ec

Ramiro Torres
Departamento de Matemática
Escuela Politécnica Nacional

Quito, Ecuador
ramiro.torres@epn.edu.ec

Fernando Jiménez
Centro de Modelización
Matemática (MODEMAT)

Escuela Politécnica Nacional
Quito, Ecuador

fernando.jimenez@epn.edu.ec

Emilio Pérez
Facultad de Ciencias

Escuela Politécnica Nacional
Quito, Ecuador

jorge.perez@epn.edu.ec

ABSTRACT
The problem studied in this paper is motivated by the operations
at the Internal Revenue Service of Ecuador. In this system, offi-
cials in charge must decide how many service counters must be
active at any time to serve the incoming flow of customers and
minimize the total number of man-hours that are necessary to
serve such counters. This problem can be modeled as a multi-
period non-preemptive parallel machine scheduling problem. In
this research, two different integer programming formulations
are proposed, where some lower bounds and valid inequalities
are provided for both formulations. Moreover, computational re-
sults on real-world instances are reported.

KEYWORDS
Integer Programming, parallel machine scheduling, network flows,
real-world instances

1 INTRODUCTION
The Internal Revenue Service of Ecuador (Servicio de Rentas In-
ternas, SRI) has adopted the strategic goal of improving the qual-
ity of customer service in its agencies. One fundamental aspect
in this regard is the minimization of the waiting and transac-
tion times that citizens have to spend when carrying out their
tax declaration procedures and other fiscal duties. At the same
time, SRI is interested in making an optimal use of the human
resources, as employees are qualified for performing customer
service tasks alongside other internal duties during a day. Ser-
vice counters at an agency can dynamically open or close along
a work-day to properly address the influx of customers. To keep
the planning simple, management officials have decided to split
the work-day in one-hour time periods. Each counter can either
be open or closed during a specific time period. Thus, manage-
ment officials at the agencies are confronted every day with the
online optimization problem of determining how many coun-
ters must be kept open at each period to serve the incoming
customers. The objective is to minimize the total counter-hours
required (i.e., the sum of the number of open counters over all

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
Joint ALIO/EURO International Conference 2021-2022 on Applied Combinatorial
Optimization, April 11-13, 2022, ISBN 978-3-89318-089-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

periods), while keeping a prescribed limit on themaximumwait-
ing time allowed for a customer.

In this work, an offline version of this problem is considered,
which can be modeled as a machine scheduling problem. We are
given a set of customers (jobs) and a set of service counters (ma-
chines) that must process the customerswithin a given time hori-
zon, which is split into time periods. Each job is characterized by
an arrival time, a latest processing start time, and a processing
time. All machines are identical and each machine can either be
active or idle at each period. The goal is to decide which ma-
chines must be active at which periods and to schedule all jobs
to available active machines, such that the number of machine-
periods (i.e., the sum of the number of active periods over all
machines) is minimized, while the processing of each job starts
within its deadline. Once started, the processing of a job must
not be interrupted.

Scheduling problems have been studied intensively for more
than 50 years by researchers in management, industrial engi-
neering, operations research and computer science. As stated in
[4], these problems are concerned with the allocation of scarce
resources to activities with the objective of optimizing one ore
more performancemeasures. The application areas rangewidely,
from Nurse Rostering Problems, to University Timetabling Prob-
lems, to Scheduling Problems in the Airline Industry, among oth-
ers. In [2] the authors consider the problem of non-preemptively
Scheduling jobs with Release dates and Deadlines on a Mini-
mum number of (identical) machines (SRDM). When all jobs
have equal release times and equal deadlines, the problem is
solved as a classic bin packing problem, whereas when the jobs
are allowed to have slacks at most one, the problem can be solved
efficiently via a network flow formulation. The slack of a job is
defined as the difference between its release time and the lat-
est possible time it may be started while still meeting its dead-
line. Several variants of ('�" , have been described in the lit-
erature. For instance, in [7] a 2-approximation algorithm and a
6-approximation algorithm are proposed for the specific cases
when all jobs have a common release time and when all jobs
require the same processing time, respectively. A different vari-
ant consists in considering limitedworkload capacity for the ma-
chines [6]. The authors propose several heuristics adapted from
classic bin packing heuristics and an exact method based on a

Short Paper

50 10.48786/alioeuro.2022.10

https://OpenProceedings.org/
http://dx.doi.org/10.48786/alioeuro.2022.10

branch-and-price approach. They also classify the correspond-
ing scheduling problem with interval constraints into two sub-
classes: (i) a discrete version in which sets of possible processing
intervals for the jobs are given explicitly, and (ii) a continuous
version in which each job must be processed within a time win-
dow defined by its deadline and its release date. In [1], a com-
pilation of mathematical programming formulations for a large
number of scheduling problems is provided. It is shown how a
network flow formulation approach can be employed for the uni-
form and unrelated machine makespan scheduling problem and
for the scheduling problem with preemption, release times, and
due dates. A recent study [5] deals with a customer service sched-
uling problem, where stochastic customer arrival times and ser-
vice durations are included into an integer programming prob-
lem that minimizes an objective consisting of two components:
(i) a penalty for customer waiting times and (ii) the cost of pro-
viding service representatives. To solve this problem efficiently,
an adapted water wave optimization algorithm is used.

The problem addressed in this work can be considered as a
multi-period version of SRDM. As stated above, a set of jobs is
given, each of them characterized by a release time, a process-
ing time, and a deadline. As in SRDM, all jobs must be processed
non-preemptively in parallel identical machines. Additionally,
the time horizon is divided into time periods and a machine can
be configured to be either active or inactive at a time period. Jobs
may only be scheduled to active machines. The goal is to deter-
mine the minimum number of total machine-periods (i.e., the
sum of the number of active periods over all machines) required
to process all jobs.

This paper is organized as follows. In the next section, two
integer programming formulations are provided for the non-pre-
emptivemulti-period scheduling problemwith parallelmachines
described above. The first one is a continuous version in which
processing of a job is allowed to start within a time interval,
whereas the latter corresponds to a network flow formulation
considering a discretization of the aforementioned interval. Some
lower bounds and valid inequalities are presented for both for-
mulations. In Section 3 results of computational experiments
on real-world instances are discussed for both formulations, re-
vealing that the discretized formulation leads to a better perfor-
mance.

2 NOTATION AND INTEGER
PROGRAMMING FORMULATIONS

Let � = {1, . . . , =} be a set of jobs and " be a set of machines.
Each job 8 ∈ � is associated with an arrival time 08 ∈ R+ and
a processing time C8 > 0. Processing of each job must start at
most W ∈ Z+ time units after its arrival. The latest time when
processing of job 8 is allowed to start is denoted by 18 := 08 + W .
The time horizon is divided into a (finite) set % of time periods
of equal length !. A machine is allowed to be either active or
idle at each period and may process a job only while it is active.
Moreover, an active machine can process at most one job at the
same time, and there is no limit on the number of jobs that a
machine can process.

The problem consists in deciding which machines must be ac-
tive at each period and scheduling all jobs on active machines,
such that processing of jobs takes place within the correspond-
ing deadlines. The objective is to minimize the total amount of
machine-periods, i.e., the sum of the number of active machines
over all time periods.

In the following, two mixed integer programming models are
proposed for this problem. The first one is a continuous version
where processing of job 8 ∈ � must start within time interval
[08 ;18], while the second one uses a discretization of this inter-
val.

2.1 First formulation
To describe the first scheduling model, a directed graph � =

(+ ,�) is defined. The set of nodes+ := �∪{0} contains one node
for each job and an additional node 0. An ordered pair of jobs
(8, 9) ∈ � × � , is said to be compatible if job 9 can be performed
after job 8 on the same machine, i.e., if 08 + C8 ≤ 1 9 holds. Let
� ⊂ � × � denote the set of compatible jobs. The set of arcs of �
is given by � := � ∪ ({0} × �) ∪ (� × {0}). Each directed circuit
in � containing the node 0 will represent the sequence of jobs
processed by a machine.

This formulation considers binary, integer and continuous vari-
ables. Let G8 9 be a binary variable taking the value of one if the
arc (8, 9) ∈ � is used in the solution, and zero otherwise. For
every node 8 ∈ � , a continuous variable)8 ∈ R+ indicates its
processing start time, while an integer variable ~18 ∈ % repre-
sents the time period towhich)8 belongs, and an integer variable
~28 ∈ % denotes the time period containing the processing finish
time)8 + C8 . Finally, for every pair of compatible jobs (8, 9) ∈ � ,
the binary variable I8 9 is equal to one if the following condi-
tions are satisfied: job 9 is processed immediately after job 8 on
the same machine, job 8 finishes at period @ and job 9 starts at
period A > @. Otherwise, I8 9 is equal to zero.

The continuous schedulingmodel (CSM) is stated as follows:

min
∑

8 ∈�

G08 +
∑

8 ∈�

(~28 − ~
1
8) +

∑

(8, 9) ∈�

I8 9 (1)

∑

(8, 9) ∈�

G8 9 = 1, ∀8 ∈ � , (2)

∑

(9,8) ∈�

G 98 −
∑

(8, 9) ∈�

G8 9 = 0, ∀8 ∈ � , (3)

∑

8 ∈�

G08 ≤ |" | , (4)

)8 + C8 −)9 ≤ (1 − G8 9), ∀(8, 9) ∈ �, (5)

!~28 ≥)8 + C8 − !, ∀8 ∈ � , (6)

!~18 ≤)8 , ∀8 ∈ � , (7)

|% | I8 9 ≥ (~19 − ~
2
8) − |% | (1 − G8 9), ∀(8, 9) ∈ �, (8)

08 ≤)8 ≤ 18 , ∀8 ∈ � , (9)
G8 9 ∈ {0, 1}, ∀(8, 9) ∈ �,

I8 9 ∈ {0, 1}, ∀(8, 9) ∈ �,

)8 ∈ R+, ~
1
8 , ~

2
8 ∈ %, ∀8 ∈ � .

where is a sufficiently large number.
The objective function computes the total number ofmachine-

active periods using three terms. In the first term, one period
is counted for each job that appears as a first job in a machine
schedule. The second term accounts for additional periods re-
quired for jobswhose start and end of processing occurs in differ-
ent time periods. Finally, the third term includes the additional
periods required when a pair of compatible jobs is processed by
the same machine and the second job starts at a period posterior
to the end of the first job.

Constraints (2) and (3) are degree constraints on the subgraph
induced by the selected arcs. Together with constrains (5) they

51

specify that the solution must consist of a set of directed cir-
cuits, such that each circuit contains the node 0 and each node
8 ∈ � is contained exactly in one circuit. Each of these circuits
represents the sequence of jobs processed on a specific machine.
Constraints (4) limit the number of such circuits to be less than
or equal to the number of available machines. Constraints (5) set
the values of the processing start times of jobs according to the
job sequences assigned to each machine. Constraints (6)–(7) de-
termine the starting and ending periods of each job. Constraints
(8) count the number of times when two consecutive jobs start
and end at different periods, i.e., if (~19 −~

2
8) > 0 and G8 9 = 1, then

I8 9 = 1. Finally, constraints (9) are time window constraints for
the start time of each job.

In the following some valid inequalities for this model are pre-
sented.

Theorem2.1. The optimal objective value of CSM is not smaller
than:

⌈∑
8 ∈� C8

!

⌉

Proof. If all machines have no idle time, then the total time
for processing all jobs is equal to

∑
8 ∈� C8 and the corresponding

number of machine-periods is:
⌈∑

8 ∈� C8

!

⌉

Clearly this number defines a lower bound for the optimal value
of CSM . �

The next result identifies explicitly the period in which a job
is performed.

Theorem 2.2. Given a job 8 ∈ � such that ⌊08/!⌋ = ⌊(18 +

C8)/!⌋, Then, the equation:

~18 = ~28 =

⌊08
!

⌋

is valid for CSM .

Proof. Since 08 ≤)8 ≤ 18 , the result follows straightfor-
wardly from (6)-(7). �

The time window requirements on the processing start times
of jobs enforce certain binary variables to take the value zero,
which in the proposed formulation directly leads to a reduction
in the number of binary variables.

Theorem 2.3. Given two jobs 8, 9 ∈ � , such that (8, 9) ∈ � and
⌊08/!⌋ = ⌊1 9 /!⌋, then

~19 − ~
2
8 ≤ 0.

Moreover, the equation:
I8 9 = 0

holds for the optimal solution of CSM .

Proof. Since ⌊08/!⌋ = ⌊1 9 /!⌋, the processing start times of
jobs 8 and 9 belong to the same time period. Thus,

~19 ≤
⌊)9
!

⌋
≤

⌊1 9
!

⌋
=

⌊08
!

⌋
≤
⌈)8 + C8 − !

!

⌉
≤ ~28 ,

where the last but one inequality follows from the fact that 08 <
)8 + C8 . Moreover, since the right-hand side of (8) is less than or
equal to zero, I8 9 = 0 holds for an optimal solution.

�

Some combinations of arcs in� represent infeasible solutions.
Therefore, those subtoursmust be eliminated as away to strengthen
the model.

Theorem 2.4. Given two jobs 8, 9 ∈ � , such that (8, 9), (9, 8) ∈ � ,
the inequalities

I8 9 + I 98 ≤ 1, G8 9 + G 98 ≤ 1

are valid for CSM .

Proof. It follows from (5) that G8 9 and G 98 cannot both be
equal to one at the same time. Thus, I8 9 and I 98 cannot both be
equal to one, neither. �

2.2 Second formulation
A discretized version of the scheduling problem, in which the
sets of time intervals for job processing are explicitly given, is
considered at next as an alternative to the previous formulation.
We use the term event to refer to the start or end of the pro-
cessing of a job, as well as to the start or end of a time period.
For each job 8 ∈ � , the set &1

8 contains all (discrete) time points
related to events concerning the processing of 8 , i.e., all possi-
ble times 08 , 08 + 1, . . . , 18 at which processing of 8 is allowed to
start, together with all possible times 08 + C8 , 08 + C8 + 1, . . . , 18 + C8
at which the processing of the job may end. Moreover, &2 :=
{0, !, . . . , |% | !} is the set of time period limits, i.e., the set of
times at which time periods may start or end. Finally, let & =⋃

8 ∈� &
1
8 ∪&

2. In the following we assume that all events occur
at different times, i.e., that &1

8 ∩ &1
A = ∅ holds for all 8, A ∈ �

and &1
8 ∩ &

2
= ∅ holds for all 8 ∈ � . If two or more events coin-

cide, one can slightly perturb the values of 08 , 18 , and C8 without
changing the optimum solution of the problem instance until
this assumption holds. Thus, |& | = 2(W + 1) |� | + |% | + 1. The
discretized scheduling problem can then be formulated as an in-
stance of the minimum cost flow problem as follows.

Let � = (+ ,�) be a digraph having one node for each event
and two additional nodes representing the start and end of the
schedule, i.e., + = {1, . . . , |& |} ∪ {>,3}. Moreover, let ℎ be a func-
tion assigning to each node 9 ∈ {1, . . . , |& |} the time ℎ(9) ∈ &
of the event represented by 9 and assume the nodes have been
labeled in such a way that 9 < ; holds if and only if ℎ(9) < ℎ(;).

The set of arcs of � is the union of three subsets �1, �2, �3,
where:

�1 = {(9, 9 + 1) : 1 ≤ 9 < |& |} ∪ {(>, 1), (|& | , 3), (>, 3)}

�2 = {(9, ;) : ℎ(9), ℎ(;) ∈ &2, ℎ(;) = ℎ(9) + !}

�3 = ∪8 ∈��
8
3, with �

8
3 = {(9, ;) : ℎ(9), ℎ(;) ∈ &1

8 , ℎ(;) = ℎ(9) + C8 }.

Observe that |�3 | = (W + 1) |� |.
The arc cost function 2 : � → R+ is defined in the following

way. All arcs in �1 of the form (9, 9 + 1), where ℎ(9) ∈ &2 have
costs equal to one, the remaining arcs in �1 have costs equal to
zero. All arcs in �2 have costs equal to zero, whereas the cost of
each arc (9, ;) ∈ �3 is set to

⌊
ℎ (;)
!

⌋
−
⌊
ℎ (9)
!

⌋
.

Node demands are given by

6 9 =

− |" | , if 9 = >,
|" | , if 9 = 3,
0, si 9 ∈ + \ {>, 3}.

Finally, the capacity D 9; of an arc (9, ;) is defined to be equal
to |" |, if (9, ;) ∈ �1 ∪ �2, and equal to one, if (9, ;) ∈ �3.

52

Example 2.5. Consider a time horizon consisting of two time
periods, each one having length ! = 7 time units . Two jobs have
to be scheduled within this horizon on three parallel machines.
The first job arrives at time 01 = 1 and requires a processing
time of C1 = 5 time units, while the arrival time of the second
job is 02 = 4 and its processing time is C2 = 6 time units. The
maximum waiting time for processing start is W = 1 time unit.
Thus, the first job has to be processed in one of the intervals
[1; 6] or [2; 7], while processing of the second job must occur in
one of the intervals [4; 10] or [5; 11]. Therefore, &1

1 = {1, 2, 6, 7},
&1
2 = {4, 5, 10, 11}, and &2

= {0, 7, 14}. Figure 1 depicts the
graph construction for this instance. Nodes with dashed border
belong to &2 and the remaining nodes belong to &1. Observe
that ℎ(7) = ℎ(8) = 7, as the end of the second interval for job
1 coincides with the end of the first time period. Nonetheless,
these two different events are represented by two different nodes
to achieve the number of 2(W + 1) |� | + |% | + 3 nodes proposed in
the second formulation.

One feasible solution consists in processing each job at the
first possible time on a different machine. The cost of the solu-
tion is three, as the machine processing the first job is active
during the first period, whereas the machine processing the sec-
ond job needs to be active during the two periods in the time
horizon. This solution is represented in the graph as three (>, 3)-
paths %1, %2, and %3, consisting of the nodes:

%1 :>, 1, 2, 6, 7, 8, 11, 3 .
%2 :>, 1, 2, 3, 4, 9, 10, 11, 3 .
%3 :>, 3 .

Paths %1 and %2 indicate the job sequence processed by the first
two machines, while path %3 signalizes that the third machine
has no job assigned in the solution. Costs of the paths corre-
spond to the number of active periods for the machines: 1, 2,
and 0 for the three given paths.

The flow based formulation (DSM) can be stated as follows:

min
∑

(9,;) ∈�

2 9;G 9; (10)

∑

(9,;) ∈�8
3

G 9; = 1, ∀8 ∈ � , (11)

∑

(;, 9) ∈�

G; 9 −
∑

(9,;) ∈�

G 9; = 6 9 , ∀9 ∈ + , (12)

G 9; ≤ D 9; , ∀(9, ;) ∈ �, (13)
G 9; ∈ Z+, ∀(9, ;) ∈ �.

As observed in Example 2.5, any feasible solution to DSM

can be decomposed into at most |" | (>,3)-paths in � . For any
such path %̂ , the arcs in �(%̂) ∩ �3 determine the sequence of
jobs to be processed by one of the machines. Thus, the objective
function seeks the minimization of the total number of machine-
periods. Constraints (11) ensure that every job is processed at
one of its given feasible intervals. Constraints (12) and (13) are
flow demand and arc capacity constraints, respectively. Together,
they require that at most |" | machines are used.

As in the case of CSM , some valid inequalities for DSM

are stated and proven at next. Firstly, since the objective func-
tion measures the total number of machine-periods used in the
solution, the next result is obtained with the same arguments
from Theorem 2.1:

Theorem 2.6. The inequality
∑

(8, 9) ∈�

28 9G8 9 ≥

⌈∑
8 ∈� C8

!

⌉

is valid for DSM .

For any period ? ∈ % , let �? = {8 ∈ � : !(? − 1) ≤ 08 <

18 + C8 ≤ !?} be the set of jobs whose processing must start and
end within ? and let +? = { 9 ∈ + \ {>, 3} : !(? − 1) ≤ ℎ(9) ≤

!?} be the set of nodes representing events that occur within ? .
Comparing the number of active machines in ? with the total
processing time of jobs in �? , the following result is obtained.

Theorem 2.7. For every period ? ∈ % , the inequality

∑

(9,;) ∈�3 :
9∉+? ,; ∈+?

G 9; + G:,:+1 ≥

⌈∑
8 ∈�? C8

!

⌉

is valid for DSM . Here, : is the node representing the starting
time of period ? , i.e., ℎ(:) = !(? − 1) ∈ &2.

Proof. Let ? ∈ % . The expression in the left-hand side equals
to the number of activemachines in period ? . At the time!(?−1)
when the period starts, each of these machines is either busy pro-
cessing a job or idle and waiting for the next job. The sum at the
beginning of the expression accounts for set of busy machines
while the number of idle active machines is given by G:,:+1.

Since the total time required for processing all jobs that have
to start in ? is equal to

∑
8 ∈�? C8 , the right-hand side of the in-

equality provides a lower bound on the number of required ac-
tive machines. �

Theorem 2.8. The inequality

G>1 ≥ max
? ∈%

{⌈∑
8 ∈�? C8

!

⌉}

is valid for DSM .

Proof. Clearly, from the arguments in the proof of the pre-
vious theorem, the right-hand side of the inequality is a lower
bound for the minimum number of machines required in any
feasible solution.

On the other hand, the schedule of each machine used in the
solution is represented by an (>, 3)-path different from the arc
(>, 3). Since each of these paths contains the arc (>, 1), the num-
ber of such paths equals to G>1 . �

3 COMPUTATIONAL RESULTS
In this section results of some computational experiments car-
ried out with both IP formulations are reported. A set of tests in-
stances has been constructed in order to assess the performance
of both formulations, CSM andDSM , considering the follow-
ing two settings: with and without the inclusion of the valid in-
equalities described in Section 2. The test instances are samples
of real-world (anonymized) data provided by the SRI from its
internal service database. Data include customers arrival times,
waiting times and processing times for some selected work-days
in October 2017 and June 2018 at one of the largest agencies in
Ecuador. All instances were obtained by sampling a partial num-
ber of customers from these days.

The IPs were solved using the integer programming solver
Gurobi 9.1.1 [3] in its default configuration and the Python pro-
gramming language interface. All experiments were performed

53

0 ! 2!

01 01 + C1

01 + 1 01 + 1 + C1

02 02 + C2

02 + 1 02 + 1 + C2

> 1 2 3 4 5 6 7 8 9 10 11 3
(0, 3) (1, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 3) (0, 3) (1, 3) (0, 3) (0, 3) (0, 3)

(0, 3)

(0, 3)

(0, 3)
(0, 1)(0, 1)

(1, 1) (1, 1)

Figure 1: Graph construction for DSM . Labels (28 9 , D8 9) on the arcs indicate arc costs and capacities, respectively.

on a laptop Intel Core i7 2.7GHz with 16 GB RAM running Win-
dows 10 Home. The computation time was limited to 3600 sec-
onds for each instance.

The objective of the experiments was to compare the perfor-
mance of both IP formulations on the aforementioned instances,
as well as to measure the effect of strenghtening the formula-
tions with the valid inequalities presented in the previous sec-
tion. Table 1 and Table 2 summarize the results obtained using
Gurobi in its default configuration and including lower bounds
and valid inequalities, respectively. There, the first two columns
display the number of jobs and the number of periods in each
instance; columns 3 to 9 report data for the CSM formulation,
including the best objective function value, the best lower bound,
the relative optimality gap, the CPU time in seconds, the number
of B&B nodes explored, the number of variables, and the num-
ber of constraints; the remaining columns are dedicated to the
DSM formulation showing the objective function value, the
relative optimality gap, the CPU time in seconds, the number of
explored B&B nodes, the number of variables, and the number
of constraints. All instances consider 25 identical machines.

Regarding to the size of the models, observe that CSM is
clearly larger having up to 17.6 times more variables and 38.6
times more constraints than DSM . This can be explained be-
cause in the first formulation both the number of variables and
the number of constraints depend on the set of compatible jobs,
which has size of order $ (|� |2). On the other hand, these num-
bers depend linearly on the number of jobs, the number of peri-
ods and the maximum allowed waiting times in DSM .

Formulation DSM performed clearly better than CSM in
both settings (with or without the inclusion of lower bounds
and valid inequalities), as it is shown in Table 1 and Table 2. In
the first setting, DSM solves all instances to optimality, five of
them in less than a minute, whereas CSM fails to solve any in-
stance within the maximum allowed running time. Even more,
the minimum reported gap is 50% and no feasible solution is
found for the instance with the largest number of jobs.

When lower bounds and valid inequalities are included in
DSM all instances are still solved to optimality, but the cor-
responding running times change: they decrease for five of the
eight instances and increase for the other three. On the other
hand, no optimal solution is found for any of the test instances
in model CSM under this setting. However, the inclusion of the
valid inequalities is clearly relevant since tighter lower bounds
are obtained for all instances, reaching an average gap equal to
16.15%. Moreover, feasible solutions are found for all instances
in this setting.

REFERENCES
[1] Jacek Blazewicz, Moshe Dror, and Jan Weglarz. 1991. Mathemati-

cal programming formulations for machine scheduling: A survey. Eu-
ropean Journal of Operational Research 51, 3 (April 1991), 283–300.
https://doi.org/10.1016/0377-2217(91)90304-e

[2] Mark Cieliebak, Thomas Erlebach, Fabian Hennecke, Birgitta Weber, and
Peter Widmayer. [n.d.]. Scheduling With Release Times and Dead-
lines on A Minimum Number of Machines. In IFIP International Fed-
eration for Information Processing. Kluwer Academic Publishers, 209–222.
https://doi.org/10.1007/1-4020-8141-3_18

[3] Inc. Gurobi Optimization. 2018. Gurobi Optimizer Reference Manual.
http://www.gurobi.com

[4] Joseph YT Leung. 2004. Handbook of scheduling: algorithms, models, and per-
formance analysis. CRC press.

[5] Xueqin Lu, Chenxin Wu, Xuhua Yang, Minxia Zhang, and Yujun Zheng. 2021.
Adapted water wave optimization for integrated bank customer service repre-
sentative scheduling. International Journal of Production Research (June 2021),
1–16. https://doi.org/10.1080/00207543.2021.1942284

[6] Luis Osorio-Valenzuela, Jordi Pereira, Franco Quezada, and Óscar C. Vásquez.
2019. Minimizing the number of machines with limited workload capacity for
scheduling jobs with interval constraints. Applied Mathematical Modelling 74
(Oct. 2019), 512–527. https://doi.org/10.1016/j.apm.2019.05.007

[7] Guosong Yu and Guochuan Zhang. 2009. Scheduling with a minimum num-
ber of machines. Operations Research Letters 37, 2 (March 2009), 97–101.
https://doi.org/10.1016/j.orl.2009.01.008

54

Table 1: Solving CSM and DSM using Gurobi in default configuration.

CSM DSM

|� | |% | Obj L. B. Gap(%) Time(s) # Nodes # Vars # Constr Obj Gap(%) Time(s) # Nodes # Vars # Constr
30 1 7 1 85.71 3600.07 221175 1572 1603 7 0.0 0.1 0 1235 634
50 9 12 6 50.0 3600.07 251679 2920 2971 12 0.0 1.04 0 2535 1490
248 9 43 4 90.7 3600.07 3457 65496 65745 39 0.0 397.06 14645 10595 5580
287 4 51 5 90.2 3600.08 2456 91639 91927 46 0.0 28.05 261 11833 6072
372 9 69 7 89.85 3600.92 533 146374 146747 60 0.0 627.06 4582 16102 8607
457 5 90 7 92.22 3606.06 3 227165 227623 74 0.0 44.12 397 18404 9243
500 6 96 3 96.88 3600.17 0 275122 275623 73 0.0 23.92 424 18416 8388
600 7 inf 4 inf 3627.82 0 389886 390487 88 0.0 502.28 2990 22151 10115

Table 2: Solving CSM and DSM using lower bounds and valid inequalities

CSM DSM

|� | |% | Obj L. B. Gap(%) Time(s) # Nodes # Vars # Constr Obj Gap(%) Time(s) # Nodes # Vars # Constr
30 1 7 6 14.28 3600.07 1402599 1572 2134 7 0.0 0.06 0 1235 637
50 9 12 8 33.33 3600.18 453175 3145 2920 12 0.0 0.58 0 2535 1501
248 9 42 37 11.90 3600.11 3164 65496 68532 39 0.0 366.13 22588 10595 5592
287 4 48 44 8.33 3600.06 3403 91639 99903 46 0.0 26.45 461 11833 6074
372 9 63 56 11.11 3600.14 2498 146374 152987 60 0.0 1435.19 21197 16102 8609
457 5 79 68 13.92 3600.18 1967 227165 243898 74 0.0 61.21 701 18404 9245
500 6 82 67 18.29 3600.30 1601 275122 275624 73 0.0 28.54 0 18416 8397
600 7 100 82 18.00 3600.47 875 389866 390488 88 0.0 93.33 782 22151 10117

55

