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ABSTRACT
We address the problem of determining the optimal number and
location of slots within the urban parking space, reserved to per-
form operations of delivery and/or pick-up of goods to/from a
set of given clients. We extend an existing mixed integer-linear
programming model for the location of slots and demand as-
signment, by adding constraints which allow to control both the
distance between clients and slots, and the splitting of required
parking time for each client. We apply and compare both models
using a case study related to the central business district of a
medium-sized city.
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1 INTRODUCTION
We address the problem of determining the optimal number
and location of the so called loading/unloading bays (L/U bays),
i.e., slots within the urban parking space, reserved to perform
operations of delivery and/or pick-up of goods. The problem
includes decisions which usually are made by local authorities
(e.g. municipalities), in the context of the management of public
space and regulation of logistic operations. In urban areas that are
densely populated and exhibit an intensive commercial activity
(typically, city centers), the parking space is usually scarce [10].
Some clients have dedicated space for vehicle parking, but the
majority of shops depends on on-street parking to carry on their
logistic activities. In the latter case, if truck drivers do not find
an appropriate place to park, they would incur in double parking
or cruising while searching for a suitable parking place. Both
situations may cause congestion and safety issues on the city
streets [2, 11]. A common practice in public planning to face this
problem is to provide loading/unloading bays from the public
parking space. L/U bays are reserved to be used exclusively by
vehicles of logistic operators (small trucks, lorries). Limited space
is available to this end since parking space is shared with private
cars. Therefore, a single slot needs to be used in a time-shared
manner, by vehicles corresponding to different clients that are
located nearby. Montevideo, the capital city of Uruguay, is not the
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exception. In a recent study developed by the UruguayanNational
Institute of Logistic (Instituto Nacional de Logística, INALOG),
by means of a set of interviews with relevant actors across the
logistic sector of the city, lack of parking spaces was mentioned
as the most problematic factor in the urban logistic operations
[6]. According to that study, an in-deep analysis of the space
supply is needed in order to determine the real requirements
across the entire city. Assuming that the location of these clients
(stores, restaurants) is known and also their needs in terms of
parking time within a planning horizon, the problem of optimal
location of L/U bays in general terms consists of determining the
number and location of the bays, in such a way that the loading
and unloading operations needed (demand) of the clients are
fulfilled. A desirable solution to this problem is one for which
the fewest number of bays are located (opened), and, in addition,
they are as close as possible to the clients.

Finding suitable solutions which guarantee both client cov-
erage and rational use of public space, has stimulated the use
of optimization approaches in several academic works. In [1],
a facility location model based on optimization and simulation
techniques is used to determine the optimal location of L/U bays
by minimizing the total cost of both pickup-delivery vehicles as
well as passenger cars, for a given number of parking spaces. The
proposed model considers the parking of passenger cars in bays,
but it does not allow freight vehicles to double-park. In addition,
the scope of the model is limited to a single street as the micro-
simulation is high demanding (computationally and data-wise)
for larger geographical areas. In [13] a mathematical program-
ming approach based on the formulations of the set coverage and
𝑝-median problems is proposed for the problem of locating L/U
bays on the street. The model was evaluated with real data from
a selected area of Fortaleza, Brazil, involving 458 clients and 60
on-street spaces for the L/U bays. In [15], a similar framework for
L/U bays location and evaluation is proposed. The objective of the
optimization model is to locate L/U bays close to the clients with
high frequency of logistic demand requirements. A framework
for an optimization-simulation model is suggested in [2], where
the possibility of a private vehicle obstructing the L/U bays is
incorporated. This phenomenon is assumed to be determined by
the enforcement level. The proposed model is composed by six
modules: a parking demand model, a scenario selection module,
the simulation model, a fixed-demand optimization model, a con-
gestion change calculator, and a module to define the size of bays.
Two factors, the number and location of bays, are addressed by
optimization. The enforcement level is handled with a sensitivity
analysis and the size of bays is considered a practical issue. In
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[11], a two-step methodology for the L/U bays location problem
is proposed. First, the minimum number of loading/unloading
zones required to fulfill the demand of a given set of commercial
establishments is determined (quantification problem). Then, a
mathematical programming model is suggested to determine the
optimal location for the L/U bays (location-allocation problem).
Two different alternatives are considered for the objective func-
tion of the model: one consists in allocating the bays near to the
most demanding establishments, and the other one minimizes
the maximum product of distance and demand for each one of
the establishments. Also, in [12] a two-step methodology for the
L/U location and size problems is considered. In the first stage a
mathematical programming model is proposed for the problem
of location and sizing of the lay-by areas. The second stage ad-
dresses the performance assessment and tuning of the size of the
lay-by areas by means of a simulation model. In [7], the problem
of determining the most relevant delivering or picking up parcels
of urban freight vehicles is studied by means of a cluster analysis
based on GPS traces and a vehicle observation survey. In general
terms, we note that the dynamic nature of urban freight opera-
tions has motivated the development of simulation models which
represent the system with a high level of detail. These simulation
models have been embedded into optimization models which are
solved heuristically in order to achieve near-optimal solutions
to the problem of location of L/U bays. On the other hand, an-
other stream of literature propose optimization models which
include sub-models to represent the freight operations over a set
of L/U bays. These sub-models are typically static assignment
models, which constitute an approximation of the dynamic simu-
lation ones, using mean values of the problem parameters (mostly
parking time) instead of their distributions of probability. The
advantage of this approach lies in the possibility of computing
optimal solutions regarding the location of L/U bays.

In this work, we propose an extension to the optimization
model introduced in [11] and apply it to a real case based on
one of the main commercial districts of Montevideo (Uruguay),
known as Ciudad Vieja, the historical downtown of the city. The
original model of [11] aimed to select an optimal subset of bays
from a given set of candidates, minimizing the total distance
between clients and bays, and fulfilling the demand requirements
of the clients expressed as parking times. Based on practical
concerns about operative restrictions in the logistic sector, we
add new constraints in order to enrich the original model: the
first one states that any client must fulfill its demand from bays
located no longer than a given distance, while the second one
ensures that the demand (requested parking time) can not be
splitted into fractions smaller than a given parameter. The model
is applied to the real case, to investigate the effect of the new
constraints over the solutions.

2 MODEL
The following model is aimed to support strategic decisions re-
lated to the number and location of L/U bays. Its main goal is to
ensure the best possible solution from the point of view of the
logistic operators, subject to a restriction on the usage of public
space. An implicit assignment of clients to bays is modeled in
order to evaluate the solution according to the goal of the model.

Let I be the set of 𝑛 potential places to locate bays and J
the set of 𝑚 clients. Moreover, let 𝐶𝑖 be the capacity of bay 𝑖 ,
𝐷 𝑗 the demand of client 𝑗 (both in time units), 𝑑𝑖 𝑗 the distance
between bay 𝑖 and place 𝑗 and 𝑁 ≤ 𝑛 the maximum number of

bays to be open. Decision variables include 𝑦𝑖 (open or not bay
𝑖), 𝑧𝑖 𝑗 (discrete assignment of client 𝑗 to bay 𝑖) and 𝑥𝑖 𝑗 (demand
assignment). The formulation is as follows:

min
𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑑𝑖 𝑗𝑥𝑖 𝑗 (1)

s.t.
𝑛∑
𝑖=1

𝑦𝑖 ≤ 𝑁, (2)

𝑛∑
𝑖=1

𝑥𝑖 𝑗 = 𝐷 𝑗 , ∀𝑗 ∈ J , (3)

𝑚∑
𝑗=1

𝑥𝑖 𝑗 ≤ 𝐶𝑖𝑦𝑖 , ∀𝑖 ∈ I, (4)

𝑇𝑚𝑖𝑛𝑦𝑖 ≤
𝑚∑
𝑗=1

𝑥𝑖 𝑗 , ∀𝑖 ∈ I, (5)

𝑥𝑖 𝑗 ≤ 𝐶𝑖𝑧𝑖 𝑗 , ∀𝑖 ∈ I, ∀𝑗 ∈ J , (6)
𝑥𝑖 𝑗 ≥ 𝑇𝑚𝑖𝑛𝑧𝑖 𝑗 , ∀𝑖 ∈ I, ∀𝑗 ∈ J , (7)
𝑑𝑖 𝑗𝑧𝑖 𝑗 ≤ 𝐷𝑚𝑎𝑥 , ∀𝑖 ∈ I, ∀𝑗 ∈ J , (8)
𝑥𝑖 𝑗 ≥ 0, 𝑧𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ I, ∀𝑗 ∈ J , (9)
𝑦𝑖 ∈ {0, 1}, ∀𝑖 ∈ I . (10)

Expressions (1)-(4) represent a classical location and assign-
ment problem and constitute the original base model proposed
in [11]; constraint (5) prevents from opening unused bays. By
means of the new discrete variable 𝑧 and parameters 𝑇𝑚𝑖𝑛 (mini-
mum value for splitting demand) and 𝐷𝑚𝑎𝑥 (maximum distance
for assigning clients to bays) we are able to extend the original
model with the new constraints (6)-(8). Since we add variable 𝑧 to
represent the assignment, the problem may turn computationally
more difficult to solve.

Note that the only decision variables which are under direct
control of the decision maker are 𝑦. The model also performs an
assignment of clients to bays in order to compute the performance
of the system, once decisions 𝑦 are made. This is represented by
variables 𝑥 and 𝑧. While the latter correspond to discrete assign-
ments (note that one client may be assigned to different bays in
order to fulfill its demand), the former correspond to the demand
assignment of each client to the different bays (note that the
demand, which is an amount of time, can be split among differ-
ent bays). Therefore, although this assignment may reasonably
represent the real behavior of logistics operators under general
conditions, the optimal solution obtained from the model may
not be very realistic, for example, if the assignment is divided
into two bays, one of them to satisfy a very small portion of the
demand. That is the reason why we consider the new constraints,
which are discussed in the following:

• Even though assigning a client to a faraway bay may be
efficient from the point of view of the whole solution, it
would result in an unrealistic assumption.When translated
to the real system, logistic operators assigned to a bay
which is far from the client will prefer to double-park
instead, which is one of the negative consequences that
we want to avoid (or at least, to minimize) by means of a
systematic planning of the bays’ locations. To this end, we
add constraint (8) of maximum distance, which restricts
the alternatives for assignment.

• The demand of each client is expressed as an amount of
time within the planning horizon. It is an aggregated value,
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whichmeans that we do not know howmany operations of
loading/unloading (nor their durations) will be performed
in relation to each client. This is a reasonable assumption,
since feeding the model with highly disaggregated data
may lead to results that are not stable in time. Moreover,
collecting disaggregated data on urban freight operations
may be a challenging and costly task [3]. On the other
hand, considering different planning horizon lengths and
times (i.e., different time windows), would allow us to
evaluate the model under variations in the demand val-
ues as in [8].However, the original model of [11] allows
for potential splitting of the demand into arbitrarily (and
not realistic) low values. To avoid these non-desirable as-
signments, we add constraint (7) of minimum amount of
time for demand splitting. Unlike constraint (8), where
parameter 𝐷𝑚𝑎𝑥 can be configured by common sense and
universal criteria, the configuration of parameter 𝑇𝑚𝑖𝑛 re-
quires stating assumptions about the nature of the demand
of each context. Thus, for scenarios where the demand is
composed by short operations, the value of 𝑇𝑚𝑖𝑛 may be
small as well, which will be convenient from the point of
view of the whole optimization model since it represents
the less restrictive condition. On the contrary, if we do not
have information about the composition of the demand of
clients, a larger value of 𝑇𝑚𝑖𝑛 will be more conservative
and therefore, potentially more compatible with the real
situation. Finally, we note that despite the random nature
of the demand for delivery times, as shown in [14] and
[9], we decided to keep the model as simple as possible in
favor of its usability from the optimization point of view.

Regarding the mathematical structure of problem (1)-(10), we
may classify it as a variant of the Capacitated Facility Location
Problem (CFLP) [16], which has been formulated in the literature
using Mixed Integer Linear Programming (MILP). In our variant,
the objective function considers only variable costs (distance mul-
tiplied by demand). While fixed costs incurred by opening bays
are not part of the objective function, we consider a maximum
number of bays to be open through constraint (2). Moreover,
capacities are imposed by constraint (4), stating that the demand
that can be collectively assigned to any bay (potentially from
several different clients) should not exceed the extent of the plan-
ning horizon. Several solving methods (both exact and heuristics)
have been proposed to solve the CFLP, since it is computationally
hard to solve [4]. In this work, we investigate empirically the
computational tractability of our problem, by applying a state-
of-the-art MILP solver to the instance corresponding to our case
study. The model was coded in AMPL and solved with CPLEX
20.1.0.0 on a PC with 16 CPUs Intel Core i9-9900K 3.60GHz, 64
bit, 64GB RAM, and CentOS Linux 7.

3 RESULTS AND DISCUSSION
The model was applied to a case study in Ciudad Vieja, the his-
torical downtown of Montevideo, main city of Uruguay. The
area concentrates many administrative activities, including both
public and private offices, as well as several banks. Tourism is
intense also during some parts of the year. Several shops serve
all these activities, including office suppliers and restaurants.
This is a highly dense urban center with high levels of traffic
congestion, which causes that activities associated with loading
and unloading are often complex. The area is constituted by an

almost perfect grid of 13 × 8 blocks of 100 meters each. Most of
the streets are narrow and few of them are of pedestrian type.

In order to build the case study, potential locations of L/U bays
were determined by visual inspection using Google Earth. As a
criterion, a potential bay was considered as every segment of 8
meters of clear sidewalk. This length was selected as it is able
to accommodate the largest vehicle allowed in the area by the
local freight regulation. Location of the clients were determined
by a cadastral survey of the zone. This survey, performed by the
municipality (Intendencia de Montevideo, IM), classifies estab-
lishments according to ISIC 1. The demanded parking time was
determined based on each ISIC establishment using literature
estimates [5], resulting values 𝐷 𝑗 in the range [37, 1825] (min-
utes). The capacity for each bay, 𝐶𝑖 , is set to 1440 minutes (the
whole day). Manhattan distances between bays and clients were
computed to configure parameter 𝑑𝑖 𝑗 . As a reference value, the
number of open bays currently in the area is 36 (taken from the
online Geographical Information System of IM2).

After processing the data as described above, the number
of potential places where bays can be located is 𝑛 = 286, and
the number of clients is𝑚 = 290. Given the size of the whole
study area, clearly is not suitable to open one bay for each client.
Under this assumption, we ran the original model of [11] (setting
𝐷𝑚𝑎𝑥 to an arbitrary large value equal to 9999 and 𝑇𝑚𝑖𝑛 = 0,)
to investigate its response for several values of the maximum
number of bays to be open, 𝑁 . The main finding is that the
minimum value of 𝑁 for which a feasible solution is found (w.r.t.
constraint of maximum capacity (4)) is 38, while for 𝑁 ≥ 144
the best possible objective value is attained. The execution time
ranges from less than one second to 79 seconds. Figure 1 plots
the percentage gap of the objective value for different values
of 𝑁 within the range [39, 144], with respect to the best one,
corresponding to 𝑁 = 144. This simple sensitivity analysis shows
that the quality of the solution (in terms of objective value) can
be significantly improved (e.g. moving the gap from 60% to 30%)
by opening 52 bays instead of 39. The improvement is monotonic
w.r.t. 𝑁 as we might expect, however, it should be taken into
account that as we increase 𝑁 , we are reducing the availability
of public space which may be needed for other purposes.

Figure 1: Sensitivity analysis with respect to the maxi-
mum number of bays to be open.

In order to study the effect of adding constraints of maxi-
mum distance and minimum parking time, a sensitivity analysis
1https://unstats.un.org/unsd/classifications/Econ/ISIC.cshtml
2https://sig.montevideo.gub.uy/
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Table 1: Summary of gaps between optimal values of the
original model and the extended one

𝑁 min. gap (%) max. gap (%) avg. gap (%)
40 0.003 3.625 0.735
41 0.004 2.382 0.486
45 0.001 0.626 0.131
60 0.008 0.038 0.025
100 0 0.005 0.003

was performed. We consider the parameter 𝐷𝑚𝑎𝑥 within the set
{200, 300, 400, 500, 600} in meters, and parameter 𝑇𝑚𝑖𝑛 within
the set {10, 15, 20, 25, 30} in minutes; both distance and time
values were selected by considering reasonable conditions in
the context of the case study. For each value of 𝑁 taken from
the set {40, 41, 45, 60, 100}, the model was executed for the 25
combinations of 𝐷𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 resulting from crossing their
respective sets of possible values. The execution time of the re-
stricted model did not change significantly with respect to that
of the unrestricted one. In Table 1 we summarize for each 𝑁

from the set under consideration, the percentage gap (in terms
of objective value) of each restricted solution with respect to the
unrestricted one corresponding to 𝐷𝑚𝑎𝑥 = 9999 and 𝑇𝑚𝑖𝑛 = 0,
i.e., the one of the original model of [11]. Both minimum and
maximum gap values are shown, as well as averages computed
from the solutions corresponding to the 25 combinations of val-
ues of 𝐷𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 . We can observe that as 𝑁 decreases from
100 (a rather unrealistic value, considering the number of bays
open in the current scenario) to 40, the average gap increases
in several orders of magnitude. The maximum gap corresponds
to 𝑁 = 40, 𝐷𝑚𝑎𝑥 = 200 and 𝑇𝑚𝑖𝑛 = 30, i.e., the more restricted
scenario (where each client must have a bay no further than 200
meters and the demand can not be split into fractions smaller
than 30 minutes). For 𝑁 = 39, no feasible solution was obtained
for 𝐷𝑚𝑎𝑥 = 200. With this experiment, we show that by adding
constraints which are meant to bring more realism to the original
model of [11], we obtain solutions which are not so different to
the ones corresponding to the original model in terms of objective
values. In the following analysis, we investigate the differences
in terms of the values of the decision variables.

In order to have more insight on the differences between solu-
tions of both unrestricted and restricted models, we compare the
values of decision variables of the optimal solution for 𝑁 = 40,
𝐷𝑚𝑎𝑥 = 9999, 𝑇𝑚𝑖𝑛 = 0 (unrestricted solution) and for 𝑁 = 40,
𝐷𝑚𝑎𝑥 = 200, 𝑇𝑚𝑖𝑛 = 30 (the more restricted one).

First, we compare decisions related to open or not each poten-
tial bay, i.e., decision variable 𝑦. The first observation is that both
solutions decided not opening the same set of 237 bays and de-
cided opening the same set of 31 bays. Moreover, the unrestricted
solution and the restricted one select different sets of bays to
complete the remaining 9 bays. This means that both solutions
are identical in 78% w.r.t. decisions made about bays to be open.
To investigate the practical consequences in the assignment of
the difference between solutions, we analyze the values of assign-
ment (decision) variables 𝑧 and 𝑥 . In Fig. 2 we plot a histogram
of the distances of assignments of clients to bays for solutions of
both unrestricted and restricted models. As we might expect, the
distances of the restricted model do not surpass 200 meters, since
we imposed that value for parameter 𝐷𝑚𝑎𝑥 . Moreover, although
the assignments are similar in general terms, the unrestricted

model exhibits more assignments in the range of large distances,
which represents an advantage for the restricted model.

Figure 2: Histogram of assigned distances of clients to
bays.

The same analysis was made with the assigned demand, i.e.,
time requested for each client, which can be split among different
bays. From Fig. 3 we can observe that, as we might expect, the
restricted model does not assign fractions of demand smaller
than 30 minutes, since we imposed that value for parameter𝑇𝑚𝑖𝑛 .
We do not identify any tendency in the assignment. A closer
inspection reveals that out of 290 clients, 27 of them split their
demands into 2 fractions and 3 of them split their demands into
3 fractions in the unrestricted model. Regarding the restricted
model, we observe that 29 clients split their demands into 2
fractions and only one of them splits its demand into 3 fractions.
Figure 4 shows the optimal solutions for both unrestricted and
restricted models. Purple points represent clients. Red, orange
and green points represent opened bays with available capacity
in the ranges [0%,20%], [20%,50%] and [50%,100%], respectively.
Grey points represent unopened bays. The clients’ assignments
to bays are represented by light blue lines.

Figure 3: Histogram of demand assigned to bays.

In summary, by applying the original model of [11] to our case
study, we were able to find the lowest feasible number of L/U bays
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Figure 4: Part of the optimal solutions for both unre-
stricted (up) and restricted (down) models.

to be open, which is very similar to the current number of open
bays in the area. Then, by extending the model with additional
distance and time constraints, we show that the objective value
does not change noticeably, i.e., the quality of the solution is not
affected. However, we obtained assignments of clients to bays
which are more likely to be consistent with the behavior of the
real system.

Finally, with the aim of comparing the current solution imple-
mented in the real system against the optimal solution delivered
by our proposed model, we fix variables 𝑦 according to the bays
currently open (totaling 36) and we let the model to assign clients
to bays, in order to compute the objective value. Then, we impose
a maximum number of bays equal to 36 and we let the model
choose the best set of bays to be open, along with its correspond-
ing assignment of clients. It is worth noting that we had to reduce
the demand of all clients down to 90%, since for less than 39 bays
the problem has not feasible solution. Also, we relaxed the con-
straint of maximum distance, since in the current solution there
are bays that are located beyond the distance considered in our
model. The results show that the optimized solution improves
up to 50% the current one in terms of objective value. This fact
should be taken rather as a validation of the model, since strictly
this is not a fair comparison given the assumptions we had to
made.

4 CONCLUSIONS AND FUTURE RESEARCH
In this study we propose and evaluate an extended mathematical
optimization model for the problem of locating L/U bays, taking
into account not only the total distance and demand to be cov-
ered, but also considering constraints on the maximum distance
between clients and bays and minimum parking time for the
loading and unloading tasks. We compare the extended model
against the original one proposed by [11] by means of several

numerical experiments. The instance for the numerical experi-
ments is based on a real case related to a traditional commercial
district of Montevideo, the capital city of Uruguay. From the re-
sults obtained we can conclude that the extended model allow us
to obtain efficient solutions in terms of number of bays open and
distance between clients and bays. In addition, we note that the
optimal solutions of the proposed extended model exhibit some
slight differences in comparison with the ones derived from the
original model. These differences do not imply major changes
in the objective value. However, differences in the geographical
location of the bays of the optimal solutions are observed, as well
as in the assignment of clients to bays and the splitting of demand
among bays. Finally, we consider that the most relevant aspect of
the solutions of the extended model is that they capture in a more
realistic way the behavior of the logistic operators. This aspect
could be considered more precisely in future studies by explicitly
adding the point of view of the logistics operator using a bi-level
model formulation. In this way, we could decouple decisions of
the different participants involved in the problem, which, at the
same time, are coupled into a single optimization problem aimed
to be solved by a central planner.

ACKNOWLEDGMENTS
We would like to thank Cecilia Cuadro and Leonardo Rodríguez
from the Urban Logistic Division of the Municipality of Monte-
video (Unidad Logística, Intendencia de Montevideo), for their
support and contribution to the work reported in this study. Also,
we would like to thank Facundo Sosa and Emiliano Gómez from
the Structures and Transport Institute of the Faculty of Engineer-
ing (IET, Facultad de Ingeniería) for their support in the analysis
and processing of the data needed to estimate the demand of
urban freight operations corresponding to our case study.

REFERENCES
[1] Nobunori Aiura and Eiichi Taniguchi. 2005. Planning On-Street Loading-

Unloading Spaces considering the behaviour of pickup-delivery vehicles. J East
Asia Soc Transp Stud 6 (2005), 2963–2974. https://doi.org/10.11175/easts.6.2963

[2] André Alho, João de Abreu e Silva, and Jorge Pinho de Sousa. 2014. A State-
of-the-Art Modeling Framework to Improve Congestion by Changing the
Configuration/Enforcement of Urban Logistics Loading/Unloading Bays. Procd
Social Behv 111 (2014), 360–369. https://doi.org/10.1016/j.sbspro.2014.01.069

[3] Julian Allen, Christian Ambrosini, Michael Browne, Danièle Patier, Jean-Louis
Routhier, and Allan Woodburn. 2014. Data Collection for Understanding
Urban Goods Movement. In Sustainable Urban Logistics: Concepts, Methods
and Information Systems, Jesus González-Feliu, Frédéric Semet, and Jean-Louis
Routhier (Eds.). Springer-Verlag, Berlin Heidelberg, 71–89. https://doi.org/10.
1007/978-3-642-31788-0_5

[4] Pasquale Avella, Maurizio Boccia, Antonio Sforza, and Igor Vasilév. 2009. An
effective heuristic for large-scale capacitated facility location problems. J
Heuristics 15, 6 (2009), 597–615. https://doi.org/10.1007/s10732-008-9078-y

[5] María Alejandra Cuevas. 2016. Método de localización de bahías de carga y
descarga : aplicación al plan integral de movilidad de Santiago centro. Master’s
thesis. Pontificia Universidad Católica de Chile.

[6] Instituto Nacional de Logistica. 2019. Interviews with the private sector.
Diagnosis of cargo mobility in Montevideo (in spanish). Retrieved Au-
gust 27, 2021 from http://www.inalog.org.uy/wp-content/uploads/2019/12/
Logística-Urbana-Informe-final.pdf

[7] Marco Diana, Miriam Pirria, and Andree Woodcock. 2020. Freight distribution
in urban areas: a method to select the most important loading and unloading
areas and a survey tool to investigate related demand patterns. Eur Transp Res
Rev 12 (2020), 1–14. Issue 40. https://doi.org/10.1186/s12544-020-00430-w

[8] José Holguín-Veras, Diana Ramirez-Rios, and Sofía Pérez-Guzmán. 2021. Time-
dependent patterns in freight trip generation. Transportation Research Part A:
Policy and Practice 148 (2021), 423–444. https://doi.org/10.1016/j.tra.2021.03.
029

[9] Sebastián Hughes, Sebastián Moreno, Wilfredo F. Yushimito, and Gonzalo
Huerta-Cánepa. 2019. Evaluation of machine learning methodologies to
predict stop delivery times from GPS data. Transportation Research Part C:
Emerging Technologies 109 (2019), 289–304. https://doi.org/10.1016/j.trc.2019.
10.018

[10] Maria Lindholm. 2013. Urban freight transport from a local authority perspec-
tive – a literature review. Eur Transp 54 (2013), 1–37.

43



[11] Jesús Muñuzuri, Manuel Cuberos, Fátima Abaurrea, and Alejandro Escudero.
2017. Improving the design of urban loading zone systems. J Transp Geogr 59
(2017), 1–13. https://doi.org/10.1016/j.jtrangeo.2017.01.004

[12] Roberto Pinto, Alexandra Lagorio, and Ruggero Golini. 2019. The location
and sizing of urban freight loading/unloading lay-by areas. Int J Prod Res 57
(2019), 83–99. https://doi.org/10.1080/00207543.2018.1461269

[13] Bruno de Athayde Prata, Leise Kelli de Oliveira, and Thiago Costa Holanda.
2018. Locating on-street loading and unloading spaces by means of mixed
integer programming. Transp 26 (2018), 16–29. https://doi.org/10.14295/
transportes.v26i1.1051

[14] Joshua Schmid, Xiaokun (Cara) Wang, and Alison Conway. 2018. Commercial
vehicle parking duration in New York City and its implications for planning.
Transportation Research Part A: Policy and Practice 116 (2018), 580–590. https:
//doi.org/10.1016/j.tra.2018.06.018

[15] Simon Tamayo, Arthur Gaudron, and Arnaud De La Fortelle. 2017. Load-
ing/Unloading spaces location and evaluation: an approach through real data.
In Proceedings of 10th International Conference on City Logistics. Institute for
City Logistics, Phuket, Thailand.

[16] Vedat Verter. 2011. Uncapacitated and Capacitated Facility Location Problems.
In Foundations of Location Analysis, H.A. Eiselt and V.Marianov (Eds.). Springer,
New York, 25–37.

44


