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ABSTRACT
In this work, we present two IP formulations for a simultaneous
vehicle routing and crew scheduling problem, involving pickup-
and-delivery requests with multiple time windows. Crews are
composed of 1 or 2 drivers and any of them can descend in specific
locations to rest or change trucks, which offers more planning
options but creates a high interdependence. We perform tests on
instances of up to 8 requests and a planning horizon of 1 week,
obtaining that one of the formulations outperforms the other.
These results are improved when a heuristic that provides an
initial solution is used.
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1 INTRODUCTION
A simultaneous vehicle routing and crew scheduling problem (VRCSP)
consists of planning routes for a fleet of vehicles and scheduling
their crews, where the vehicle-crew correspondence is dynamic
through time, see e.g. [2]. Unlike the common assumption in
which a crew operates the entire route in the same vehicle, the
exchange of drivers allows a more efficient use of the fleet, since
the rest constraints imposed on the drivers are not embedded in
those associated with the vehicles. In contrast, a high synchroni-
sation between vehicles and drivers is required.

In this work, we present two integer programming formula-
tions that model a simultaneous VRCSP. Pickup-and-delivery
requests with daily time windows have to be fulfilled over a
weekly planning horizon by a fleet of homogeneous trucks and
drivers. Here, crews can be composed of one or two drivers, and
any of them can descend from the truck in specific locations.
Thus, trucks play an additional role beyond carrying items: they
can be used to transport drivers across the locations. For instance,
a truck-driver couple might pause a delivery, travel somewhere
else to pick up an additional driver and take her/him to another
location, and then resume the delivery. Additionally, drivers are
allowed to travel across the locations with non-company shuttles,
in exchange for paying an extra rate.

2 PROBLEM DESCRIPTION
Let 𝑉 be a set of homogeneous vehicles, 𝐷 a set of drivers, and
𝐿 a set of locations. Each 𝑑 ∈ 𝐷 and 𝑣 ∈ 𝑉 stay in an initial
location 𝑙𝑑 ∈ 𝐿 and 𝑙𝑣 ∈ 𝐿, respectively. We denote dur𝑉 (𝑙1, 𝑙2)
and dur𝑆 (𝑙1, 𝑙2) to the duration of a trip between the locations 𝑙1
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and 𝑙2 in a company’s vehicle and in a shuttle, respectively, and
cost𝑉 (𝑙1, 𝑙2) and cost𝑆 (𝑙1, 𝑙2) to their costs.

Let 𝑅 be a set of pickup-and-delivery requests. Each 𝑟 ∈ 𝑅

demands shipping an item from a pickup location 𝑙
𝑝
𝑟 ∈ 𝐿 to a

delivery location 𝑙𝑑𝑟 ∈ 𝐿, according to the following time con-
straints. The pickup of 𝑟 must begin during the pickup time win-
dow [𝑎𝑝𝑟 , 𝑏

𝑝
𝑟 ]. The time window repeats everyday (at the same

time) from an initial pickup day 𝑑𝑎𝑦
𝑝
𝑟 , e.g. everyday from the

third day of the planning horizon and during 8 am to 11 am. In
the same way, there are a delivery time window [𝑎𝑑𝑟 , 𝑏𝑑𝑟 ] and an
initial delivery day 𝑑𝑎𝑦𝑑𝑟 , for each request 𝑟 . Each day of delay in
the delivery of the request 𝑟 carries a penalty, 𝑐𝑟 . We use 𝑠𝑝𝑟 and
𝑠𝑑𝑟 to indicate the times taken to load or unload 𝑟 respectively.
Each vehicle can transport any of the requests, but can only do so
one at a time. All the requests must be fulfilled within a planning
horizon of 𝐻 days.

In addition, certain work regulations for drivers must be com-
plied, such as the maximum number of working hours and con-
secutive working days.

The objective is to provide a planning, that is, a set of routes for
the vehicles and a schedule for the crew, at minimum operation
cost. This cost is composed of the travel costs and the penalties
in the delay of deliveries.

3 LITERATURE REVIEW
Vehicle routing problems in accordance with drivers’ hours of ser-
vice regulations have been studied since the 2000s, some heuristic
approaches can be found in [3, 9] and exact approaches in [4, 10].
Unlike our problem, all these works assume that the same dri-
ver operates the entire route, i.e. no driver/vehicle changes are
allowed.

Although the fixed vehicle-crew correspondence is barely
abandoned throughout the literature on VRPs, there are vari-
ous works that effectively deal with simultaneous VRCSPs.

These complex problems are commonly addressed with multi-
stage algorithms, typically, routes for the vehicles are defined
first and routes for the drivers are defined later, consistent with
the decisions made in the previous stage. This approach can be
found for example in [2, 8]. Clearly, multi-stage algorithms do
not guarantee global optimality.

With regard to exact approaches for simultaneous VRCSPs, [6]
proposed a constraint programming model and a mixed integer
programming model, and [1] developed a mixed integer pro-
gramming formulation and designed a branch-and-cut algorithm.
Unlike the problem addressed in this work, both are restricted to
single shifts, i.e. a multi-day planning horizon is not considered,
and driver/vehicle changes are only possible in a limited set of
locations.
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A recent analysis concerning crews with more than one driver
in the road transport sector is given by [5]. This work investigates
under which conditions it is convenient to use single or team
driving in European road freight transport, and concludes that
the latter is beneficial for longer routes. However, a fixed vehicle-
crew correspondence is assumed, and one driver of the team
can rest while the other drives, which differs from our approach
where both drivers are considered on service.

4 MATHEMATICAL MODEL
Our integer programming formulations are based on twoweighted
digraphs that model the vehicle and driver routes as certain di-
rected paths. Also, a relationship is defined between the directed
paths to keep both, trucks and drivers, synchronised in space and
time.

We follow the usual definitions and notations from graph
theory (see [11]). In particular, given a weighted digraph 𝐺 =

(𝑁, 𝐸,𝑤), we refer to a directed path 𝑝 from a node 𝑢 to a node
𝑣 as a (𝑢, 𝑣)-directed path, the subset of arcs in 𝑝 is denoted as
𝐸 (𝑝) and the cost of 𝑝 ,𝑤 (𝑝), is given by

∑
𝑒∈𝐸 (𝑝) 𝑤 (𝑒).

The constructions presented here use a time discretization
of one hour: an instant of time is given by an integer 𝑡 such
that 0 ≤ 𝑡 ≤ 24𝐻 . Functions 𝑑𝑎𝑦 (𝑡) and ℎ𝑜𝑢𝑟 (𝑡) give the day
and hour of the instant 𝑡 respectively, i.e. 𝑑𝑎𝑦 (𝑡) = ⌊𝑡/24⌋ and
ℎ𝑜𝑢𝑟 (𝑡) = 𝑡 − 24𝑑𝑎𝑦 (𝑡).

4.1 Vehicle routes
We define a weighted digraph 𝐺𝑉 = (𝑁𝑉 , 𝐸𝑉 ,𝑤𝑉 ) as follows.
The node set 𝑁𝑉 has a node 𝑛𝑟

𝑡,𝑙
for each 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 ∪ {0} and

𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻 , and two special nodes: the source
𝑛𝑠 and the sink 𝑛𝑠 . The node 𝑛𝑟𝑡,𝑙 represents the instant of time
𝑡 in the location 𝑙 loaded with the item demanded by request 𝑟
if 𝑟 ∈ 𝑅, and empty if 𝑟 = 0. The arc set 𝐸𝑉 is composed of the
following sets:

• 𝐸𝑉𝑅𝐸𝑆𝑇 has an arc (𝑛𝑟
𝑡,𝑙
, 𝑛𝑟
𝑡+1,𝑙 ) for each 𝑙 ∈ 𝐿, 𝑟 ∈ 𝑅 ∪ {0}

and 𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻 − 1. They represent a
vehicle remaining parked for one hour.

• 𝐸𝑉𝑇𝑅𝐼𝑃 has an arc (𝑛𝑟
𝑡,𝑙1

, 𝑛𝑟
𝑡+Δ,𝑙2 ) for each pair of adjacent

locations 𝑙1, 𝑙2 ∈ 𝐿, and for each 𝑟 ∈ 𝑅 ∪ {0} and 𝑡 ∈ Z
such that 0 ≤ 𝑡 ≤ 24𝐻 − Δ, where Δ = dur𝑉 (𝑙1, 𝑙2). They
represent a vehicle travelling between locations 𝑙1 and 𝑙2.

• For all 𝑟 ∈ 𝑅, 𝐸𝑟
𝑉𝑃𝐼𝐶𝐾

has an arc (𝑛0
𝑡,𝑙
𝑝
𝑟

, 𝑛𝑟
𝑡+𝑠𝑝𝑟 ,𝑙

𝑝
𝑟

) for each

𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻 − 𝑠
𝑝
𝑟 and the pickup time

window of 𝑟 is respected, i.e. 𝑑𝑎𝑦 (𝑡) ≥ 𝑑𝑎𝑦
𝑝
𝑟 and 𝑎

𝑝
𝑟 ≤

ℎ𝑜𝑢𝑟 (𝑡) ≤ 𝑏
𝑝
𝑟 . They represent a vehicle loading an item.

• For all 𝑟 ∈ 𝑅, 𝐸𝑟
𝑉𝐷𝐸𝐿𝐼

has an arc (𝑛𝑟
𝑡,𝑙𝑑𝑟

, 𝑛0
𝑡+𝑠𝑑𝑟 ,𝑙𝑑𝑟

) for each

𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻 − 𝑠𝑑𝑟 and the delivery time
window of 𝑟 is respected, i.e. 𝑑𝑎𝑦 (𝑡) ≥ 𝑑𝑎𝑦𝑑𝑟 and 𝑎𝑑𝑟 ≤
ℎ𝑜𝑢𝑟 (𝑡) ≤ 𝑏𝑑𝑟 . They represent a vehicle unloading an item.

• 𝐸𝑉𝑆𝑂𝑈𝑅 and 𝐸𝑉𝑆𝐼𝑁𝐾 have arcs (𝑛𝑠 , 𝑛00,𝑙 ) and (𝑛024𝐻,𝑙 , 𝑛𝑠 ),
respectively, for all 𝑙 ∈ 𝐿. They are useful to model truck
routes as (𝑛𝑠 , 𝑛𝑠 )-directed paths.

The weight vector𝑤𝑉 is given by:

𝑤𝑉 (𝑒) =


cost𝑉 (𝑙1, 𝑙2) if 𝑒 = (𝑛𝑟

𝑡1,𝑙1
, 𝑛𝑟
𝑡2,𝑙2

) ∈ 𝐸𝑉𝑇𝑅𝐼𝑃

(𝑑𝑎𝑦 (𝑡1) − 𝑑𝑎𝑦𝑑𝑟 )𝑐𝑟 if 𝑒 = (𝑛𝑟
𝑡1,𝑙

, 𝑛0
𝑡2,𝑙

) ∈ 𝐸𝑟
𝑉𝐷𝐸𝐿𝐼

0 otherwise

𝑛𝑠 𝑛𝑠

𝑛
𝑟2
0,𝑙2

𝑛
𝑟2
0,𝑙1

𝑛00,𝑙2

𝑛00,𝑙1

𝑛
𝑟1
0,𝑙2

𝑛
𝑟1
0,𝑙1

0 4 8 12 16 20 24

Figure 1: Example of 𝐺𝑉 and a (𝑛𝑠 , 𝑛𝑠 )-directed path.

The first row in the equation given above considers the cost
of travelling among locations and the second row penalizes late
deliveries proportional to the number of surplus days.

Observe that 𝐺𝑉 is an acyclic digraph, i.e. without directed
cycles. Also, every (𝑛𝑠 , 𝑛𝑠 )-directed path 𝑝 that passes through
a node 𝑛00,𝑙 represents a vehicle route for some vehicle 𝑣 with
𝑙𝑣 = 𝑙 , and vice versa. In fact, 𝑝 alternates between a pickup arc
and a delivery arc of the same request, which means that the
vehicle transports just one item at a time and every loaded item
is eventually unloaded. Also, 𝑤𝑉 (𝑝) represents the travel cost
and the delay cost of the vehicle route.

We present an example of this construction in Figure 1. Let
us consider 2 locations 𝑙1 and 𝑙2 with dur𝑉 (𝑙1, 𝑙2) = 8, a planning
horizon of 1 day discretized every 4 hours, and the following 2
requests:

• 𝑟1 with 𝑙
𝑝
𝑟1 = 𝑙1, 𝑑𝑎𝑦

𝑝
𝑟1 = 0, [𝑎𝑝𝑟1 , 𝑏

𝑝
𝑟1 ] = [0, 4], 𝑙𝑑𝑟1 = 𝑙2,

𝑑𝑎𝑦𝑑𝑟1 = 0, [𝑎𝑑𝑟1 , 𝑏
𝑑
𝑟1 ] = [12, 16] and 𝑠𝑝𝑟1 = 𝑠𝑑𝑟1 = 4.

• 𝑟2 with 𝑙
𝑝
𝑟2 = 𝑙1, 𝑑𝑎𝑦

𝑝
𝑟2 = 0, [𝑎𝑝𝑟2 , 𝑏

𝑝
𝑟2 ] = [4, 8], 𝑙𝑑𝑟2 = 𝑙2,

𝑑𝑎𝑦𝑑𝑟2 = 0, [𝑎𝑑𝑟2 , 𝑏
𝑑
𝑟2 ] = [16, 20] and 𝑠𝑝𝑟2 = 𝑠𝑑𝑟2 = 4.

The top nodes have the superscript 𝑟1 and the bottom ones, 𝑟2.
Nodes at the same height correspond to the same location, but at
a later instant of time. The blue (𝑛𝑠 , 𝑛𝑠 )-directed path represents
a vehicle that starts in 𝑙1, loads the item demanded by 𝑟1 from 0
to 4, parks from 4 to 8, trips to 𝑙2 from 8 to 16, unloads the item
demanded by 𝑟1 from 16 to 20 and parks from 20 to 24. The cost
of this path is just cost𝑉 (𝑙1, 𝑙2), since the delivery of 𝑟1 is done
on schedule.

4.1.1 Alternative digraph. The previous digraph presents the
disadvantage that it quickly grows with the number of requests.
We now propose an alternative digraph �̃�𝑉 whose size is inde-
pendent from that number.

The construction is very similar, but it uses only two super-
scripts: 0 and 1. Now, a node 𝑛𝑟

𝑡,𝑙
represents the instant of time

𝑡 in the location 𝑙 loaded with some item if 𝑟 = 1, and empty if
𝑟 = 0, i.e. nodes no longer distinguish the request. We need to re-
define 𝐸𝑉 , which now is a multiset. Both 𝐸𝑉𝑅𝐸𝑆𝑇 and 𝐸𝑉𝑇𝑅𝐼𝑃 are
only defined for 𝑟 ∈ {0, 1}. Each arc (𝑛0

𝑡,𝑙
, 𝑛𝑟
𝑡 ′,𝑙

) ∈ 𝐸𝑟
𝑉𝑃𝐼𝐶𝐾

is now
(𝑛0
𝑡,𝑙
, 𝑛1
𝑡 ′,𝑙

), and each arc (𝑛𝑟
𝑡,𝑙
, 𝑛0
𝑡 ′,𝑙

) ∈ 𝐸𝑟
𝑉𝐷𝐸𝐿𝐼

is now (𝑛1
𝑡,𝑙
, 𝑛0
𝑡 ′,𝑙

).
In this alternative digraph, a (𝑛𝑠 , 𝑛𝑠 )-directed path no longer

guarantees alternation between pickup arcs and delivery arcs of
the same request. For example, a directed path might refer to a
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vehicle that pick up 𝑟1, deliver 𝑟2, pick up 𝑟2, and then deliver 𝑟1.
Thus, additional restrictions, called pairing constraints, have to
be handled externally.

4.2 Driver routes
Now, we define a weighted digraph 𝐺𝐷 = (𝑁𝐷 , 𝐸𝐷 ,𝑤𝐷 ). The
node set 𝑁𝐷 has a node 𝑛𝑡,𝑙 for each 𝑙 ∈ 𝐿 and 𝑡 ∈ Z such
that 0 ≤ 𝑡 ≤ 24𝐻 , and two special nodes: the source 𝑛𝑠 and
the sink 𝑛𝑠 . The node 𝑛𝑡,𝑙 represents the instant of time 𝑡 in the
location 𝑙 . Observe that in this case, it is not necessary to mark
the nodes with the requests. The arc multiset 𝐸𝐷 is composed of
the following sets:

• 𝐸𝐷𝑅𝐸𝑆𝑇 has an arc (𝑛𝑡,𝑙 , 𝑛𝑡+1,𝑙 ) for each 𝑙 ∈ 𝐿 and 𝑡 ∈ Z
such that 0 ≤ 𝑡 ≤ 24𝐻 − 1. They represent a driver resting
for one hour.

• 𝐸𝐷𝑇𝑅𝐼𝑃 has an arc (𝑛𝑡,𝑙1 , 𝑛𝑡+Δ,𝑙2 ) for each pair of adjacent
locations 𝑙1, 𝑙2 ∈ 𝐿, and for each 𝑡 ∈ Z such that 0 ≤ 𝑡 ≤
24𝐻 − Δ, where Δ = dur𝑉 (𝑙1, 𝑙2). They represent a driver
travelling between locations 𝑙1 and 𝑙2 on a truck.

• 𝐸𝐷𝑆𝐻𝑈𝑇 has an arc (𝑛𝑡,𝑙1 , 𝑛𝑡+Δ,𝑙2 ) for each pair of adjacent
locations 𝑙1, 𝑙2 ∈ 𝐿, and for each 𝑡 ∈ Z such that 0 ≤
𝑡 ≤ 24𝐻 − Δ, where Δ = dur𝑆 (𝑙1, 𝑙2). They represent a
driver travelling between locations 𝑙1 and 𝑙2 on an external
shuttle.

• For all 𝑟 ∈ 𝑅, 𝐸𝑟
𝐷𝑃𝐼𝐶𝐾

has an arc (𝑛
𝑡,𝑙
𝑝
𝑟
, 𝑛
𝑡+𝑠𝑝𝑟 ,𝑙

𝑝
𝑟
) for each

𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻 − 𝑠
𝑝
𝑟 and the pickup time

window of 𝑟 is respected. They represent a driver loading
an item.

• For all 𝑟 ∈ 𝑅, 𝐸𝑟
𝐷𝐷𝐸𝐿𝐼

has an arc (𝑛
𝑡,𝑙𝑑𝑟

, 𝑛
𝑡+𝑠𝑑𝑟 ,𝑙𝑑𝑟 ) for each

𝑡 ∈ Z such that 0 ≤ 𝑡 ≤ 24𝐻−𝑠𝑑𝑟 and the delivery timewin-
dow of 𝑟 is respected. They represent a driver unloading
an item.

• 𝐸𝐷𝑆𝑂𝑈𝑅 and 𝐸𝐷𝑆𝐼𝑁𝐾 have arcs (𝑛𝑠 , 𝑛0,𝑙 ) and (𝑛24𝐻,𝑙 , 𝑛𝑠 ),
for all 𝑙 ∈ 𝐿. They are useful to model driver routes as
(𝑛𝑠 , 𝑛𝑠 )-directed paths.

The weight vector𝑤𝐷 is given by:

𝑤𝐷 (𝑒) =
{
cost𝑆 (𝑙1, 𝑙2) if 𝑒 = (𝑛𝑡1,𝑙1 , 𝑛𝑡2,𝑙2 ) ∈ 𝐸𝐷𝑆𝐻𝑈𝑇

0 otherwise

Observe that in 𝐺𝐷 every driver route for some driver 𝑑 de-
termines a (𝑛𝑠 , 𝑛𝑠 )-directed path 𝑝 that passes through the node
𝑛0,𝑙𝑑 . However, the converse is not true due to the rest constraints
imposed on drivers. These constraints have to be enforced ex-
ternally. Also, 𝑤𝐷 (𝑝) represents the shuttle cost of the driver
route.

In Figure 2 we show the result of applying the above construc-
tion to the previous example. We suppose dur𝑆 (𝑙1, 𝑙2) = 8. In
this case, the arcs in 𝐸𝐷𝑆𝐻𝑈𝑇 are drawn with dashed lines (to
distinguish them from the arcs in 𝐸𝐷𝑇𝑅𝐼𝑃 ). Besides, we displayed
the arcs in 𝐸

𝑟𝑖
𝐷𝑃𝐼𝐶𝐾

∪ 𝐸
𝑟𝑖
𝐷𝐷𝐸𝐿𝐼

with 𝑖 ∈ {1, 2} with curved arrows
and labeled with 𝑝𝑖 or 𝑑𝑖 depending on the action (picking or
delivering) of the request 𝑟𝑖 . The red (𝑛𝑠 , 𝑛𝑠 )-directed path rep-
resents a driver that starts in 𝑙1, takes a shuttle to 𝑙2 from 0 to 8,
rests from 8 to 12, unloads the item demanded by 𝑟1 from 12 to
16, and rests from 16 to 24. The cost of this path is cost𝑆 (𝑙1, 𝑙2).

4.3 Synchronisation of routes
Truck and driver routes must be synchronised in space and time.
For example, a truck and a driver need to be idle in the same
location at the same time for a trip to take place, and the same

𝑛𝑠 𝑛𝑠

𝑛0,𝑙2

𝑛0,𝑙1
𝑝1 𝑝1

𝑑1 𝑑1

𝑝2 𝑝2

𝑑2 𝑑2

0 4 8 12 16 20 24

𝑑1

Figure 2: Example of 𝐺𝐷 and a (𝑛𝑠 , 𝑛𝑠 )-directed path.

happens with the loading/unloading of an item. Furthermore, no
more than two drivers can be in the same vehicle at the same time.
Thus, despite having two separated digraphs, 𝐺𝑉 and 𝐺𝐷 , the
directed paths of each are related.We need to introduce additional
notations before formalising the synchronisation constraints.

We use a placeholder in an arc, e.g {(_,𝑤) ∈ 𝐸𝑉 }, to denote the
subset of arcs whose endpoints exactly match the given pattern,
in this case, {(𝑢,𝑤 ′) ∈ 𝐸𝑉 : 𝑤 ′ = 𝑤}. In the sameway, sometimes
we use more than one placeholder or leave the super/subscript of
a node blank, e.g. {(𝑛_

𝑡1,𝑙1
, 𝑛

_
𝑡2,𝑙2

) ∈ 𝐸𝑉 } to denote {(𝑛𝑟1𝑡 ′1,𝑙 ′1
, 𝑛
𝑟2
𝑡 ′2,𝑙

′
2
) ∈

𝐸𝑉 : 𝑡 ′1 = 𝑡1, 𝑙 ′1 = 𝑙1, 𝑡 ′2 = 𝑡2, 𝑙 ′2 = 𝑙2}.
Let 𝐸𝐷𝑆𝑌𝑁𝐶 be the multiset of arcs in 𝐸𝐷 that need synchro-

nisation, i.e.

𝐸𝐷𝑆𝑌𝑁𝐶 = 𝐸𝐷𝑇𝑅𝐼𝑃 ∪ (
⋃
𝑟 ∈𝑅

𝐸𝑟𝐷𝑃𝐼𝐶𝐾 ) ∪ (
⋃
𝑟 ∈𝑅

𝐸𝑟𝐷𝐷𝐸𝐿𝐼 ),

and let M be the function that maps arcs in 𝐸𝐷𝑆𝑌𝑁𝐶 to their
corresponding arcs in 𝐸𝑉 , defined as:

M(𝑒) =


{(𝑛_

𝑡,𝑙
, 𝑛

_
𝑡 ′,𝑙 ′

) ∈ 𝐸𝑉𝑇𝑅𝐼𝑃 } if 𝑒 = (𝑛𝑡,𝑙 , 𝑛𝑡 ′,𝑙 ′) ∈ 𝐸𝐷𝑇𝑅𝐼𝑃

{(𝑛0
𝑡,𝑙
, 𝑛

_
𝑡 ′,𝑙

) ∈ 𝐸𝑟
𝑉𝑃𝐼𝐶𝐾

} if 𝑒 = (𝑛𝑡,𝑙 , 𝑛𝑡 ′,𝑙 ) ∈ 𝐸𝑟
𝐷𝑃𝐼𝐶𝐾

{(𝑛_
𝑡,𝑙
, 𝑛0
𝑡 ′,𝑙

) ∈ 𝐸𝑟
𝑉𝐷𝐸𝐿𝐼

} if 𝑒 = (𝑛𝑡,𝑙 , 𝑛𝑡 ′,𝑙 ) ∈ 𝐸𝑟
𝐷𝐷𝐸𝐿𝐼

Observe that {𝑒} and M(𝑒) contain the arcs in 𝐺𝐷 and 𝐺𝑉 , re-
spectively, that have the same type and whose endpoints have
equal locations and instants of time. Besides, the last two cases in
the definition of M are equal to {(𝑛0

𝑡,𝑙
, 𝑛𝑟
𝑡 ′,𝑙

)} and {(𝑛𝑟
𝑡,𝑙
, 𝑛0
𝑡 ′,𝑙

)},
respectively, but we keep the placeholder notation so that it also
applies to the alternative digraph �̃�𝑉 (where they correspond to
{(𝑛0

𝑡,𝑙
, 𝑛1
𝑡 ′,𝑙

)} and {(𝑛1
𝑡,𝑙
, 𝑛0
𝑡 ′,𝑙

)}, respectively).
Now the synchronisation constraints can be stated as follows.

Let 𝑃𝑉 be a set of vehicle routes and 𝑃𝐷 be a set of driver routes.
Then for all 𝑒 ∈ 𝐸𝐷𝑆𝑌𝑁𝐶 , the inequality𝑚 ≤ 𝑛 ≤ 2𝑚 must hold,
where 𝑛 is the number of driver routes in 𝑃𝐷 that contain 𝑒 and𝑚
is the number of vehicle routes in 𝑃𝑉 that contain an arc ofM(𝑒),
i.e. 𝑛 = |{𝑝 ∈ 𝑃𝐷 : 𝑒 ∈ 𝐸 (𝑝)}| and𝑚 = |{𝑝 ∈ 𝑃𝑉 : M(𝑒) ∩𝐸 (𝑝) ≠
∅}|.

4.4 Integer program
We define the following variables:

• 𝑋𝑒 integer for all 𝑒 ∈ 𝐸𝑉 whose value is the number of
vehicle routes that traverse 𝑒 ,

• 𝑌𝑑𝑒 binary for all 𝑑 ∈ 𝐷 and 𝑒 ∈ 𝐸𝑑
𝐷
, where 𝐸𝑑

𝐷
= 𝐸𝐷 \

{(𝑛𝑠 , 𝑛0,𝑙 ) : 𝑙 ≠ 𝑙𝑑 }, whose value is 1 if the driver route of
𝑑 traverses 𝑒 , and

• 𝑍𝑑 𝑗 binary for all 𝑑 ∈ 𝐷 and 0 ≤ 𝑗 < 𝐻 whose value is 1
if 𝑑 has day 𝑗 off.
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The objective is to minimise:∑
𝑒∈𝐸𝑉𝐷𝐸𝐿𝐼

𝑤𝑉 (𝑒)𝑋𝑒 (1)∑
𝑒∈𝐸𝑉𝑇𝑅𝐼𝑃

𝑤𝑉 (𝑒)𝑋𝑒 (2)∑
𝑒∈𝐸𝐷𝑆𝐻𝑈𝑇

𝑤𝐷 (𝑒)
∑
𝑑∈𝐷

𝑌𝑑𝑒 (3)

subject to:∑
𝑒∈𝐸𝑟

𝑉𝑃𝐼𝐶𝐾

𝑋𝑒 = 1 ∀𝑟 ∈ 𝑅 (4)

∑
𝑒∈{(_,𝑢) ∈𝐸𝑉 }

𝑋𝑒 =
∑

𝑒∈{(𝑢,_) ∈𝐸𝑉 }
𝑋𝑒 ∀𝑢 ∈ 𝑁𝑉 \ {𝑛𝑠 , 𝑛𝑠 } (5)

∑
𝑒∈{(_,𝑢) ∈𝐸𝑑

𝐷
}

𝑌𝑑𝑒 =
∑

𝑒∈{(𝑢,_) ∈𝐸𝑑
𝐷
}

𝑌𝑑𝑒 ∀𝑑 ∈ 𝐷,𝑢 ∈ 𝑁𝐷 \ {𝑛𝑠 , 𝑛𝑠 } (6)

∑
𝑒∈M(𝑒)

𝑋𝑒 ≤
∑
𝑑∈𝐷

𝑌𝑑𝑒 ≤ 2
∑

𝑒∈M(𝑒)
𝑋𝑒 ∀𝑒 ∈ 𝐸𝐷𝑆𝑌𝑁𝐶 (7)

𝑡+23∑
ℎ=𝑡

∑
𝑒∈{(𝑛ℎ,_,_) ∈
𝐸𝐷𝑅𝐸𝑆𝑇 }

𝑌𝑑𝑒 ≥ 12 ∀𝑑 ∈ 𝐷, 0 ≤ 𝑡 ≤ 24(𝐻 − 1) (8)

𝑗+6∑
𝑖=𝑗

𝑍𝑑𝑖 ≥ 1 ∀𝑑 ∈ 𝐷, 0 ≤ 𝑗 ≤ 𝐻 − 7 (9)

24𝑍𝑑 𝑗 ≤
24𝑗+23∑
ℎ=24𝑗

∑
𝑒∈{(𝑛ℎ,_,_) ∈
𝐸𝐷𝑅𝐸𝑆𝑇 }

𝑌𝑑𝑒 ∀𝑑 ∈ 𝐷, 0 ≤ 𝑗 < 𝐻 (10)

𝑋𝑒 ∈ {0, . . . , cap𝑉 (𝑒)} ∀𝑒 ∈ 𝐸𝑉 (11)

𝑌𝑑𝑒 ∈ {0, 1} ∀𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸𝑑𝐷 (12)
𝑍𝑑 𝑗 ∈ {0, 1} ∀𝑑 ∈ 𝐷, 0 ≤ 𝑗 < 𝐻 (13)

The objective functions (1), (2), and (3) are the costs for late
deliveries, company’s vehicle trips, and shuttle trips, respectively.
Constraints (4) say that every pickup request is serviced by ex-
actly one vehicle. (5) and (6) are the flow conservation constraints
for the vehicle routes and driver routes, respectively. (7) are the
synchronization constraints. (8) say that drivers must rest at least
12 hours in every 24-hour interval. (9) say that drivers must have
a day off in every 7-day interval. (10) say that drivers must not
work on days off. (11), (12), and (13) define the possible values for
the variables, where the capacity of the vehicle arcs is given by

cap𝑉 (𝑒) =


|𝑉 | if 𝑒 ∈ 𝐸𝑉𝑆𝐼𝑁𝐾 ∪ {(𝑛0_,_, 𝑛0_,_) ∈ 𝐸𝑉 }
|{𝑣 ∈ 𝑉 : 𝑙𝑣 = 𝑙}| if 𝑒 = (𝑛𝑠 , 𝑛00,𝑙 ) ∈ 𝐸𝑉𝑆𝑂𝑈𝑅

1 otherwise

It is clear that the total number of vehicles bounds the capacity
of all the arcs in 𝐺𝑉 . But, in particular, the number of vehicles
sharing its initial location bounds the capacity of the arcs adjacent
to the source node. Also, the capacity of the arcs adjacent to a
node with a superscript in 𝑅 is bounded by 1, since each request
can be served by a single truck.

We refer to this integer programming formulation as F .

4.4.1 Alternative integer program. We enumerate the changes
needed in the integer program for the alternative digraph pre-
sented in 4.1.1.

• We have a binary variable 𝑋𝑣𝑒 ∈ {0, 1} for each 𝑣 ∈ 𝑉

and 𝑒 ∈ 𝐸𝑣
𝑉
, where 𝐸𝑣

𝑉
= 𝐸𝑉 \ {(𝑛𝑠 , 𝑛00,𝑙 ) : 𝑙 ≠ 𝑙𝑣}, and

constraints (11) are replaced by:

𝑋𝑣𝑒 ∈ {0, 1} ∀𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸𝑣𝑉

• The vehicle flow conservation constraints become:∑
𝑒∈{(_,𝑢) ∈𝐸𝑣

𝑉
}

𝑋𝑣𝑒 =
∑

𝑒∈{(𝑢,_) ∈𝐸𝑣
𝑉
}

𝑋𝑣𝑒 ∀𝑣 ∈ 𝑉 ,𝑢 ∈ 𝑁𝑉 \ {𝑛𝑠 , 𝑛𝑠 }

• In the rest of the constraints and objectives, the expression
𝑋𝑒 becomes an alias for

∑
𝑣∈𝑉 𝑋𝑣𝑒 .

• We add pairing constraints:

𝑋𝑣𝑒 ≤
𝑡∑
ℎ=0

(
∑

𝑒′∈{(_,𝑛_
ℎ,_)

∈𝐸𝑟
𝑉𝑃𝐼𝐶𝐾

}

𝑋𝑣𝑒′ −
∑

𝑒′∈{(_,𝑛_
ℎ,_)

∈𝐸𝑟
𝑉𝐷𝐸𝐿𝐼

}

𝑋𝑣𝑒′) ∀𝑣 ∈ 𝑉 , 𝑟 ∈ 𝑅, 𝑒 ∈
{(𝑛_𝑡,_, _) ∈ 𝐸𝑟𝑉𝐷𝐸𝐿𝐼 }

that forbid the delivery of a request that has already been
delivered or that has not yet been picked up by the vehicle.

We refer to the resulting integer programming formulation as
F𝐴𝐿𝑇 .

5 RESULTS
We use a set of generated instances to evaluate the performance
of F and F𝐴𝑙𝑡 . We consider a real map with 6 Argentinian cities
(the average distance among them is 470km), a planning horizon
of 7 days, and a variable number of requests, vehicles, and drivers.
A further description of this generation is found in [7]. The
multiple objectives were converted into one by a weighted sum,
considering a weighting factor of 1

3 for each objective.
The experiments were performed in a desktop computer with

an Intel Core i5 2.6GHz processor, 5.7GB of memory, Ubuntu
20.04, and CPLEX 12.7 with default parameters (but using a single
thread). The code is written in C++11 with the CPLEX’s API. We
fixed a time limit of 7200s for each execution.

The results are reported in Table 1. Each row gathers three
different instances generated with same parameters, but different
seeds. Columns 1-3 display the number of requests, vehicles,
and drivers, respectively, of the instances. The next columns
show the results obtained with each formulation. Those columns
labeled with “𝑛” report the number of instances where the solver
proves optimality before the time limit, with “𝑡” the average
time in seconds consumed for those instances, with “𝑚” the
number of instances where the solver only proves feasibility
(but not optimality), and with “gap” the averages of relative gap
reported by the solver for those instances. We do not display the
number of instances where the solver does not find any integer
solution before the time limit, but this number can be calculated
as 3 − (𝑚 + 𝑛) as all the instances were feasible. We write a mark
“–” in the columns 𝑡 and gap, respectively, when 𝑛 and 𝑚 are
equal to 0.

As we can see from the table, for |𝑅 | = 4, F𝐴𝑙𝑡 achieves better
gaps and finds an integer solution in one more instance than F ,
while the latter exhibits better times when optimality is proven.
For |𝑅 | ∈ {6, 8}, F clearly outperforms F𝐴𝑙𝑡 , finding integer
solutions in 9 instances and proving optimality in 7 of them. In
particular, for the 3 instances where F𝐴𝑙𝑡 finds a solution, F gets
better ones.
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Table 1: Comparison of formulations

|𝑅 | |𝑉 | |𝐷 |
F𝐴𝑙𝑡 F F + initial heur.

𝑛 𝑡 (s) 𝑚 gap 𝑛 𝑡 (s) 𝑚 gap 𝑛 𝑡 (s) 𝑚 gap
4 1 2 2 4074 1 8 % 2 2305 0 – 2 784 1 4 %
4 2 4 0 – 2 20 % 0 – 2 39 % 0 – 3 23 %
6 2 4 0 – 1 56 % 1 1553 2 25 % 1 693 2 17 %
6 3 6 0 – 1 30 % 2 974 0 – 2 905 1 8 %
8 2 4 0 – 1 65 % 1 1569 0 – 2 2018 1 11 %
8 3 6 0 – 0 – 1 2183 0 – 1 953 2 14 %
8 4 4 0 – 0 – 2 4495 0 – 3 963 0 –

Regarding F , we detected that the value of the linear relax-
ation coincided with the optimal value in, at least, 8 instances.
Also, the solver was not able to find any integer solution in 8
instances within the time limit. Thus, this suggests that the solver
already starts with good dual bounds, but has a hard time finding
primal solutions. For this reason, we repeated the experiment
providing an initial heuristic solution with the CPLEX’sMIP start
functionality. The initial solution was generated with the heuris-
tic described in [7] and required 450 seconds per instance. The
results are reported in the last columns of Table 1, and the time
consumed by the initial heuristic is considered in column “t”.

Starting with an integer solution was beneficial in all the
cases. In particular, the execution was 3 times faster on average
for all the instances previously reported as optimal, and the gap
improved for all the instances previously reported as feasible. Ad-
ditionally, two new instances are solved to optimality, for which
no integer solutions had been discovered during the previous
experiment.

6 CONCLUSIONS
We addressed the exact resolution of a simultaneous vehicle
routing and crew scheduling problem. We consider a dynamic
driver-vehicle correspondence, where crews can have one or
two drivers, and they can be exchanged in a set of locations.
The result is a hard combinatorial optimization problem, with
many interrelated resources to program, subject to a variety of
operational and labour requirements.

We proposed two integer programming formulations. They
are based on two digraphs that model the vehicle and driver
routes, respectively. The structure of the digraphs captures many
of the requirements of the problem, while the rest are handled as
constraints in the formulations.

We used a set of generated instances to evaluate the perfor-
mance of both. The instances involved 4-8 requests, 1-4 vehicles,
2-8 drivers, 1 week, and 6 locations. We detected that the formu-
lation based on the digraph that captured the greatest number
of requirements outperformed the other, and, in general, it pro-
vided good dual bounds. As expected, larger instances cannot be
solved through these IP models and heuristic approaches should
be considered. The option of starting the optimization with an
initial heuristic solution provided by the metaheuristic presented
in [7], greatly improved the results.

As future work, we plan to design and incorporate ad-hoc
callbacks during the optimization that help us to improve the
overall performance, e.g. the results suggest that implementing a
primal heuristic would be beneficial. It would also be interesting
to investigate other alternatives to deal with the multi-objective

optimization, e.g. normalise the objective functions or consider a
hierarchical optimization.
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